mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-10 03:44:01 +08:00
Compare commits
1 Commits
v0.21.1
...
ab-nf4-qua
Author | SHA1 | Date | |
---|---|---|---|
![]() |
152092957c |
@@ -13,62 +13,8 @@ parameters:
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
linux_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
parameters:
|
||||
upload-docs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "15.2.0"
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install -r docs/requirements.txt
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||
- when:
|
||||
condition:
|
||||
not: << parameters.upload-docs >>
|
||||
steps:
|
||||
- run:
|
||||
name: Build documentation
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd docs && doxygen && make html O=-W
|
||||
- when:
|
||||
condition: << parameters.upload-docs >>
|
||||
steps:
|
||||
- add_ssh_keys:
|
||||
fingerprints:
|
||||
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
|
||||
- run:
|
||||
name: Upload documentation
|
||||
command: |
|
||||
source env/bin/activate
|
||||
git config user.email "mlx@group.apple.com"
|
||||
git config user.name "CircleCI Docs"
|
||||
git checkout gh-pages
|
||||
git rebase main
|
||||
cd docs
|
||||
git rm -rf build/html
|
||||
doxygen && make html O=-W
|
||||
git add -f build/html
|
||||
git commit -m "rebase"
|
||||
git push -f origin gh-pages
|
||||
|
||||
linux_build_and_test:
|
||||
docker:
|
||||
- image: cimg/python:3.9
|
||||
@@ -85,24 +31,19 @@ jobs:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.2.0
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py develop
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py develop
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -111,9 +52,7 @@ jobs:
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j `nproc`
|
||||
mkdir -p build && cd build && cmake .. -DMLX_BUILD_METAL=OFF && make -j
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests
|
||||
@@ -131,13 +70,13 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install python@3.8
|
||||
brew install openmpi
|
||||
python3.9 -m venv env
|
||||
python3.8 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.2.0
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
@@ -146,12 +85,11 @@ jobs:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install -e . -v
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -159,7 +97,7 @@ jobs:
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mpirun -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
@@ -173,7 +111,7 @@ jobs:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source env/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
|
||||
mkdir -p build && cd build && cmake .. && make -j
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: |
|
||||
@@ -183,23 +121,8 @@ jobs:
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel -DBUILD_SHARED_LIBS=ON -DMLX_BUILD_CPU=OFF -DMLX_BUILD_SAFETENSORS=OFF -DMLX_BUILD_GGUF=OFF -DMLX_METAL_JIT=ON
|
||||
make -j
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
@@ -226,7 +149,7 @@ jobs:
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.2.0
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install twine
|
||||
@@ -236,20 +159,19 @@ jobs:
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEV_RELEASE=1 \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
<< parameters.build_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
@@ -262,7 +184,7 @@ jobs:
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
|
||||
build_linux_release:
|
||||
build_linux_test_release:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
@@ -291,28 +213,21 @@ jobs:
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.2.0
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
pip install . -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
@@ -330,9 +245,8 @@ workflows:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
@@ -349,17 +263,9 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
upload-docs: true
|
||||
|
||||
prb:
|
||||
when:
|
||||
matches:
|
||||
@@ -374,7 +280,7 @@ workflows:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
nightly_build:
|
||||
@@ -386,7 +292,7 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
weekly_build:
|
||||
when:
|
||||
@@ -397,17 +303,17 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
linux_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.linux_release >>
|
||||
- << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_linux_release:
|
||||
- build_linux_test_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
@@ -1,21 +1,16 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.4
|
||||
rev: v18.1.4
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.10.0
|
||||
rev: 24.4.2
|
||||
hooks:
|
||||
- id: black
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args:
|
||||
- --profile=black
|
||||
- repo: https://github.com/cheshirekow/cmake-format-precommit
|
||||
rev: v0.6.13
|
||||
hooks:
|
||||
- id: cmake-format
|
||||
|
@@ -7,18 +7,16 @@ with a short description of your contribution(s) below. For example:
|
||||
|
||||
MLX was developed with contributions from the following individuals:
|
||||
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`. Added `cross`.
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream`, safetensors support, `einsum`, and `einsum_path`.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
|
||||
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
|
||||
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
|
||||
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
|
||||
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
|
24
CITATION.cff
24
CITATION.cff
@@ -1,24 +0,0 @@
|
||||
cff-version: 1.2.0
|
||||
title: mlx
|
||||
message: >-
|
||||
If you use this software, please cite it using the
|
||||
metadata from this file.
|
||||
type: software
|
||||
authors:
|
||||
- given-names: Awni
|
||||
family-names: Hannun
|
||||
affiliation: Apple
|
||||
- given-names: Jagrit
|
||||
family-names: Digani
|
||||
affiliation: Apple
|
||||
- given-names: Angelos
|
||||
family-names: Katharopoulos
|
||||
affiliation: Apple
|
||||
- given-names: Ronan
|
||||
family-names: Collobert
|
||||
affiliation: Apple
|
||||
repository-code: 'https://github.com/ml-explore'
|
||||
abstract: >-
|
||||
MLX: efficient and flexible machine learning on Apple
|
||||
silicon
|
||||
license: MIT
|
241
CMakeLists.txt
241
CMakeLists.txt
@@ -24,34 +24,32 @@ option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.21.1)
|
||||
set(MLX_VERSION 0.15.1)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
|
||||
message(
|
||||
STATUS
|
||||
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
|
||||
)
|
||||
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
|
||||
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(MLX_BUILD_ARM OFF)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
if(NOT MLX_ENABLE_X64_MAC)
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source"
|
||||
)
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
set(MLX_BUILD_ARM ON)
|
||||
endif()
|
||||
|
||||
else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||
endif()
|
||||
|
||||
@@ -63,59 +61,64 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
if (MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
if (MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
elseif (MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
if (MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
endif()
|
||||
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_VERSION
|
||||
COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON")
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip)
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 15.0)
|
||||
set(MLX_METAL_VERSION METAL_3_2)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(MLX_METAL_VERSION METAL_3_1)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
|
||||
set(MLX_METAL_VERSION METAL_3_0)
|
||||
else()
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
|
||||
FetchContent_Declare(
|
||||
metal_cpp
|
||||
URL ${METAL_CPP_URL}
|
||||
)
|
||||
|
||||
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
||||
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
||||
endif()
|
||||
execute_process(
|
||||
COMMAND
|
||||
zsh "-c"
|
||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
target_include_directories(
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||
$<INSTALL_INTERFACE:include/metal_cpp>)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
mlx PUBLIC
|
||||
$<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||
$<INSTALL_INTERFACE:include/metal_cpp>
|
||||
)
|
||||
target_link_libraries(
|
||||
mlx PUBLIC
|
||||
${METAL_LIB}
|
||||
${FOUNDATION_LIB}
|
||||
${QUARTZ_LIB})
|
||||
|
||||
add_compile_definitions(${MLX_METAL_VERSION})
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CPU)
|
||||
if (MLX_BUILD_CPU)
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if(ACCELERATE_LIBRARY)
|
||||
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||
@@ -127,135 +130,132 @@ if(MLX_BUILD_CPU)
|
||||
# The blas shipped in macOS SDK is not supported, search homebrew for
|
||||
# openblas instead.
|
||||
set(BLA_VENDOR OpenBLAS)
|
||||
set(LAPACK_ROOT
|
||||
"${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
|
||||
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
|
||||
endif()
|
||||
# Search and link with lapack.
|
||||
find_package(LAPACK REQUIRED)
|
||||
if(NOT LAPACK_FOUND)
|
||||
if (NOT LAPACK_FOUND)
|
||||
message(FATAL_ERROR "Must have LAPACK installed")
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h /usr/include /usr/local/include
|
||||
/usr/local/opt/openblas/include)
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/local/opt/openblas/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
|
||||
# List blas after lapack otherwise we may accidentally incldue an old
|
||||
# version of lapack.h from the include dirs of blas.
|
||||
# List blas after lapack otherwise we may accidentally incldue an old version
|
||||
# of lapack.h from the include dirs of blas.
|
||||
find_package(BLAS REQUIRED)
|
||||
if(NOT BLAS_FOUND)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
endif()
|
||||
# TODO find a cleaner way to do this
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include /usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
|
||||
|
||||
if(WIN32)
|
||||
find_package(dlfcn-win32 REQUIRED)
|
||||
message(STATUS "dlfcn-win32 lib " ${dlfcn-win32_LIBRARIES})
|
||||
message(STATUS "dlfcn-win32 include " ${dlfcn-win32_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${dlfcn-win32_LIBRARIES})
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
find_package(MPI)
|
||||
if(MPI_FOUND)
|
||||
if (MPI_FOUND)
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "mpirun --version"
|
||||
OUTPUT_VARIABLE MPI_VERSION
|
||||
ERROR_QUIET)
|
||||
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||
COMMAND_ERROR_IS_FATAL ANY
|
||||
)
|
||||
if (${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||
elseif(MPI_VERSION STREQUAL "")
|
||||
set(MPI_FOUND FALSE)
|
||||
message(
|
||||
WARNING "MPI found but mpirun is not available. Building without MPI.")
|
||||
else()
|
||||
set(MPI_FOUND FALSE)
|
||||
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
|
||||
endif()
|
||||
message(
|
||||
WARNING
|
||||
"MPI which is not OpenMPI found. Building without MPI."
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||
|
||||
target_include_directories(
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
||||
$<INSTALL_INTERFACE:include>)
|
||||
mlx
|
||||
PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
||||
$<INSTALL_INTERFACE:include>
|
||||
)
|
||||
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
FetchContent_Declare(fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL
|
||||
)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
||||
target_link_libraries(mlx PRIVATE fmt::fmt-header-only)
|
||||
|
||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||
if (MLX_BUILD_PYTHON_BINDINGS)
|
||||
message(STATUS "Building Python bindings.")
|
||||
find_package(
|
||||
Python 3.8
|
||||
COMPONENTS Interpreter Development.Module
|
||||
REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
OUTPUT_VARIABLE NB_DIR)
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_TESTS)
|
||||
if (MLX_BUILD_TESTS)
|
||||
include(CTest)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/tests)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_EXAMPLES)
|
||||
if (MLX_BUILD_EXAMPLES)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/examples/cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_BENCHMARKS)
|
||||
if (MLX_BUILD_BENCHMARKS)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/benchmarks/cpp)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
# ----------------------------- Installation -----------------------------
|
||||
include(GNUInstallDirs)
|
||||
|
||||
# Install library
|
||||
install(
|
||||
TARGETS mlx
|
||||
EXPORT MLXTargets
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
INCLUDES
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
|
||||
TARGETS mlx
|
||||
EXPORT MLXTargets
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
|
||||
|
||||
# Install headers
|
||||
install(
|
||||
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
COMPONENT headers
|
||||
FILES_MATCHING
|
||||
PATTERN "*.h"
|
||||
PATTERN "backend/metal/kernels.h" EXCLUDE)
|
||||
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
COMPONENT headers
|
||||
FILES_MATCHING PATTERN "*.h"
|
||||
)
|
||||
|
||||
# Install metal dependencies
|
||||
if(MLX_BUILD_METAL)
|
||||
if (MLX_BUILD_METAL)
|
||||
|
||||
# Install metal cpp
|
||||
install(
|
||||
DIRECTORY ${metal_cpp_SOURCE_DIR}/
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
|
||||
COMPONENT metal_cpp_source)
|
||||
DIRECTORY ${metal_cpp_SOURCE_DIR}/
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
|
||||
COMPONENT metal_cpp_source
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
@@ -267,24 +267,31 @@ set(MLX_CMAKE_INSTALL_MODULE_DIR share/cmake/MLX)
|
||||
install(
|
||||
EXPORT MLXTargets
|
||||
FILE MLXTargets.cmake
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
|
||||
)
|
||||
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
write_basic_package_version_file(
|
||||
${MLX_CMAKE_BUILD_VERSION_CONFIG}
|
||||
COMPATIBILITY SameMajorVersion
|
||||
VERSION ${MLX_VERSION})
|
||||
VERSION ${MLX_VERSION}
|
||||
)
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in ${MLX_CMAKE_BUILD_CONFIG}
|
||||
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in
|
||||
${MLX_CMAKE_BUILD_CONFIG}
|
||||
INSTALL_DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
|
||||
NO_CHECK_REQUIRED_COMPONENTS_MACRO
|
||||
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR
|
||||
MLX_CMAKE_INSTALL_MODULE_DIR)
|
||||
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR MLX_CMAKE_INSTALL_MODULE_DIR
|
||||
)
|
||||
|
||||
install(FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
|
||||
install(
|
||||
FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
|
||||
)
|
||||
|
||||
install(DIRECTORY ${CMAKE_MODULE_PATH}/
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
|
||||
install(
|
||||
DIRECTORY ${CMAKE_MODULE_PATH}/
|
||||
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
|
||||
)
|
||||
|
@@ -6,7 +6,7 @@
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
MLX is an array framework for machine learning on Apple silicon,
|
||||
MLX is an array framework for machine learning research on Apple silicon,
|
||||
brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
@@ -62,10 +62,17 @@ def matmul(x, y):
|
||||
|
||||
def _quant_matmul(x, w, s, b, transpose, group_size, bits):
|
||||
ys = []
|
||||
for i in range(10):
|
||||
for i in range(100):
|
||||
ys.append(
|
||||
mx.quantized_matmul(
|
||||
x, w, s, b, transpose=transpose, group_size=group_size, bits=bits
|
||||
x,
|
||||
w,
|
||||
s,
|
||||
b,
|
||||
transpose=transpose,
|
||||
group_size=group_size,
|
||||
bits=bits,
|
||||
mode=mx.QuantizationMode.DEFAULT,
|
||||
)
|
||||
)
|
||||
mx.eval(ys)
|
||||
@@ -144,13 +151,6 @@ def reduction(op, axis, x):
|
||||
mx.eval(ys)
|
||||
|
||||
|
||||
def sum_and_add(axis, x, y):
|
||||
z = x.sum(axis=axis, keepdims=True)
|
||||
for i in range(50):
|
||||
z = (z + y).sum(axis=axis, keepdims=True)
|
||||
mx.eval(z)
|
||||
|
||||
|
||||
def softmax(axis, x):
|
||||
ys = []
|
||||
for i in range(100):
|
||||
@@ -512,8 +512,5 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "selu":
|
||||
print(bench(selu, x))
|
||||
|
||||
elif args.benchmark == "sum_and_add":
|
||||
print(bench(sum_and_add, axis, *xs))
|
||||
|
||||
else:
|
||||
raise ValueError("Unknown benchmark")
|
||||
|
@@ -1,127 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 1
|
||||
N_iter_bench = 10
|
||||
N_iter_func = 5
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_2D
|
||||
|
||||
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
return ys
|
||||
|
||||
return pt_conv_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("cpu")
|
||||
|
||||
f_mx = make_mx_conv_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
|
||||
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
|
||||
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -1,143 +0,0 @@
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn
|
||||
import mlx.optimizers as opt
|
||||
import torch
|
||||
|
||||
|
||||
def bench_mlx(steps: int = 20) -> float:
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
class BenchNetMLX(mlx.nn.Module):
|
||||
# simple encoder-decoder net
|
||||
|
||||
def __init__(self, in_channels, hidden_channels=32):
|
||||
super().__init__()
|
||||
|
||||
self.net = mlx.nn.Sequential(
|
||||
mlx.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.Conv2d(
|
||||
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.ConvTranspose2d(
|
||||
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.ConvTranspose2d(
|
||||
hidden_channels, in_channels, kernel_size=3, padding=1
|
||||
),
|
||||
)
|
||||
|
||||
def __call__(self, input):
|
||||
return self.net(input)
|
||||
|
||||
benchNet = BenchNetMLX(3)
|
||||
mx.eval(benchNet.parameters())
|
||||
optim = opt.Adam(learning_rate=1e-3)
|
||||
|
||||
inputs = mx.random.normal([10, 256, 256, 3])
|
||||
|
||||
params = benchNet.parameters()
|
||||
optim.init(params)
|
||||
|
||||
state = [benchNet.state, optim.state]
|
||||
|
||||
def loss_fn(params, image):
|
||||
benchNet.update(params)
|
||||
pred_image = benchNet(image)
|
||||
return (pred_image - image).abs().mean()
|
||||
|
||||
def step(params, image):
|
||||
loss, grads = mx.value_and_grad(loss_fn)(params, image)
|
||||
optim.update(benchNet, grads)
|
||||
return loss
|
||||
|
||||
total_time = 0.0
|
||||
print("MLX:")
|
||||
for i in range(steps):
|
||||
start_time = time.perf_counter()
|
||||
|
||||
step(benchNet.parameters(), inputs)
|
||||
mx.eval(state)
|
||||
end_time = time.perf_counter()
|
||||
|
||||
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
|
||||
total_time += (end_time - start_time) * 1000
|
||||
|
||||
return total_time
|
||||
|
||||
|
||||
def bench_torch(steps: int = 20) -> float:
|
||||
device = torch.device("cpu")
|
||||
|
||||
class BenchNetTorch(torch.nn.Module):
|
||||
# simple encoder-decoder net
|
||||
|
||||
def __init__(self, in_channels, hidden_channels=32):
|
||||
super().__init__()
|
||||
|
||||
self.net = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(
|
||||
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.ConvTranspose2d(
|
||||
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.ConvTranspose2d(
|
||||
hidden_channels, in_channels, kernel_size=3, padding=1
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.net(input)
|
||||
|
||||
benchNet = BenchNetTorch(3).to(device)
|
||||
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
|
||||
|
||||
inputs = torch.randn(10, 3, 256, 256, device=device)
|
||||
|
||||
def loss_fn(pred_image, image):
|
||||
return (pred_image - image).abs().mean()
|
||||
|
||||
total_time = 0.0
|
||||
print("PyTorch:")
|
||||
for i in range(steps):
|
||||
start_time = time.perf_counter()
|
||||
|
||||
optim.zero_grad()
|
||||
pred_image = benchNet(inputs)
|
||||
loss = loss_fn(pred_image, inputs)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
end_time = time.perf_counter()
|
||||
|
||||
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
|
||||
total_time += (end_time - start_time) * 1000
|
||||
|
||||
return total_time
|
||||
|
||||
|
||||
def main():
|
||||
steps = 20
|
||||
time_mlx = bench_mlx(steps)
|
||||
time_torch = bench_torch(steps)
|
||||
|
||||
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
|
||||
print(f"total time of MLX: {time_mlx:9.2f} ms")
|
||||
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
|
||||
print(f"total time of PyTorch: {time_torch:9.2f} ms")
|
||||
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,129 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 1
|
||||
N_iter_bench = 10
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_transpose_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv_transpose2d(
|
||||
a, b, stride=strides, padding=padding, groups=groups, stream=mx.cpu
|
||||
)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_transpose_2D
|
||||
|
||||
|
||||
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_transpose_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv_transpose2d(
|
||||
a, b, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
ys.append(y)
|
||||
return ys
|
||||
|
||||
return pt_conv_transpose_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (int(O / groups), kH, kW, C)).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
|
||||
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("cpu")
|
||||
|
||||
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv_transpose2d(
|
||||
a_mx, b_mx, stride=strides, padding=padding, groups=groups, stream=mx.cpu
|
||||
)
|
||||
out_pt = torch.conv_transpose2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -1,110 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 1
|
||||
N_iter_bench = 10
|
||||
N_iter_func = 5
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_3D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv3d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_3D
|
||||
|
||||
|
||||
def make_pt_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_3D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv3d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
return ys
|
||||
|
||||
return pt_conv_3D
|
||||
|
||||
|
||||
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kD * kH * kW * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 4, 1, 2, 3))).to("cpu")
|
||||
|
||||
f_mx = make_mx_conv_3D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_3D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv3d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv3d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
|
||||
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -1,143 +0,0 @@
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn
|
||||
import mlx.optimizers as opt
|
||||
import torch
|
||||
|
||||
|
||||
def bench_mlx(steps: int = 20, shape=(10, 32, 32, 32, 3)) -> float:
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
class BenchNetMLX(mlx.nn.Module):
|
||||
# simple encoder-decoder net
|
||||
|
||||
def __init__(self, in_channels, hidden_channels=16):
|
||||
super().__init__()
|
||||
|
||||
self.net = mlx.nn.Sequential(
|
||||
mlx.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.Conv3d(
|
||||
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.ConvTranspose3d(
|
||||
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
mlx.nn.ReLU(),
|
||||
mlx.nn.ConvTranspose3d(
|
||||
hidden_channels, in_channels, kernel_size=3, padding=1
|
||||
),
|
||||
)
|
||||
|
||||
def __call__(self, input):
|
||||
return self.net(input)
|
||||
|
||||
benchNet = BenchNetMLX(3)
|
||||
mx.eval(benchNet.parameters())
|
||||
optim = opt.Adam(learning_rate=1e-3)
|
||||
|
||||
inputs = mx.random.normal(shape)
|
||||
|
||||
params = benchNet.parameters()
|
||||
optim.init(params)
|
||||
|
||||
state = [benchNet.state, optim.state]
|
||||
|
||||
def loss_fn(params, image):
|
||||
benchNet.update(params)
|
||||
pred_image = benchNet(image)
|
||||
return (pred_image - image).abs().mean()
|
||||
|
||||
def step(params, image):
|
||||
loss, grads = mx.value_and_grad(loss_fn)(params, image)
|
||||
optim.update(benchNet, grads)
|
||||
return loss
|
||||
|
||||
total_time = 0.0
|
||||
print("MLX:")
|
||||
for i in range(steps):
|
||||
start_time = time.perf_counter()
|
||||
|
||||
step(benchNet.parameters(), inputs)
|
||||
mx.eval(state)
|
||||
end_time = time.perf_counter()
|
||||
|
||||
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
|
||||
total_time += (end_time - start_time) * 1000
|
||||
|
||||
return total_time
|
||||
|
||||
|
||||
def bench_torch(steps: int = 20, shape=(10, 3, 32, 32, 32)) -> float:
|
||||
device = torch.device("cpu")
|
||||
|
||||
class BenchNetTorch(torch.nn.Module):
|
||||
# simple encoder-decoder net
|
||||
|
||||
def __init__(self, in_channels, hidden_channels=16):
|
||||
super().__init__()
|
||||
|
||||
self.net = torch.nn.Sequential(
|
||||
torch.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv3d(
|
||||
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.ConvTranspose3d(
|
||||
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.ConvTranspose3d(
|
||||
hidden_channels, in_channels, kernel_size=3, padding=1
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.net(input)
|
||||
|
||||
benchNet = BenchNetTorch(3).to(device)
|
||||
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
|
||||
|
||||
inputs = torch.randn(*shape, device=device)
|
||||
|
||||
def loss_fn(pred_image, image):
|
||||
return (pred_image - image).abs().mean()
|
||||
|
||||
total_time = 0.0
|
||||
print("PyTorch:")
|
||||
for i in range(steps):
|
||||
start_time = time.perf_counter()
|
||||
|
||||
optim.zero_grad()
|
||||
pred_image = benchNet(inputs)
|
||||
loss = loss_fn(pred_image, inputs)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
end_time = time.perf_counter()
|
||||
|
||||
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
|
||||
total_time += (end_time - start_time) * 1000
|
||||
|
||||
return total_time
|
||||
|
||||
|
||||
def main():
|
||||
steps = 10
|
||||
time_mlx = bench_mlx(steps)
|
||||
time_torch = bench_torch(steps)
|
||||
|
||||
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
|
||||
print(f"total time of MLX: {time_mlx:9.2f} ms")
|
||||
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
|
||||
print(f"total time of PyTorch: {time_torch:9.2f} ms")
|
||||
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,116 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 1
|
||||
N_iter_bench = 10
|
||||
N_iter_func = 5
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
|
||||
def mx_conv_3D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv_transpose3d(
|
||||
a, b, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_3D
|
||||
|
||||
|
||||
def make_pt_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_3D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv_transpose3d(
|
||||
a, b, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
ys.append(y)
|
||||
return ys
|
||||
|
||||
return pt_conv_3D
|
||||
|
||||
|
||||
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kD * kH * kW * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
|
||||
b_pt = torch.from_numpy(b_np.transpose((4, 0, 1, 2, 3))).to("cpu")
|
||||
|
||||
f_mx = make_mx_conv_3D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_3D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv_transpose3d(
|
||||
a_mx, b_mx, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.conv_transpose3d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
|
||||
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -1,135 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_transpose_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv_transpose2d(
|
||||
a, b, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_transpose_2D
|
||||
|
||||
|
||||
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_transpose_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv_transpose2d(
|
||||
a, b, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_transpose_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv_transpose2d(
|
||||
a_mx, b_mx, stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.conv_transpose2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -1,66 +0,0 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
"""
|
||||
Run with:
|
||||
mpirun -n 2 python /path/to/distributed_bench.py
|
||||
"""
|
||||
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
def time_fn(fn, *args, **kwargs):
|
||||
msg = kwargs.pop("msg", None)
|
||||
world = mx.distributed.init()
|
||||
if world.rank() == 0:
|
||||
if msg:
|
||||
print(f"Timing {msg} ...", end=" ")
|
||||
else:
|
||||
print(f"Timing {fn.__name__} ...", end=" ")
|
||||
|
||||
# warmup
|
||||
for _ in range(5):
|
||||
mx.eval(fn(*args, **kwargs))
|
||||
|
||||
num_iters = 100
|
||||
tic = time.perf_counter()
|
||||
for _ in range(num_iters):
|
||||
x = mx.eval(fn(*args, **kwargs))
|
||||
toc = time.perf_counter()
|
||||
|
||||
msec = 1e3 * (toc - tic) / num_iters
|
||||
if world.rank() == 0:
|
||||
print(f"{msec:.5f} msec")
|
||||
|
||||
|
||||
def time_all_sum():
|
||||
shape = (4096,)
|
||||
x = mx.random.uniform(shape=shape)
|
||||
mx.eval(x)
|
||||
|
||||
def sine(x):
|
||||
for _ in range(20):
|
||||
x = mx.sin(x)
|
||||
return x
|
||||
|
||||
time_fn(sine, x)
|
||||
|
||||
def all_sum_plain(x):
|
||||
for _ in range(20):
|
||||
x = mx.distributed.all_sum(x)
|
||||
return x
|
||||
|
||||
time_fn(all_sum_plain, x)
|
||||
|
||||
def all_sum_with_sine(x):
|
||||
for _ in range(20):
|
||||
x = mx.sin(x)
|
||||
x = mx.distributed.all_sum(x)
|
||||
return x
|
||||
|
||||
time_fn(all_sum_with_sine, x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_all_sum()
|
@@ -1,84 +0,0 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
|
||||
|
||||
def timeit(fn, its=100, args=[]):
|
||||
for _ in range(5):
|
||||
fn(*args)
|
||||
tic = time.perf_counter()
|
||||
for _ in range(its):
|
||||
fn(*args)
|
||||
toc = time.perf_counter()
|
||||
return 1e3 * (toc - tic) / its
|
||||
|
||||
|
||||
def time_little_einsum_path():
|
||||
subscripts = "ik,kj->ij"
|
||||
x = mx.ones((32, 32))
|
||||
y = mx.ones((32, 32))
|
||||
mx_time = timeit(mx.einsum_path, args=(subscripts, x, y))
|
||||
|
||||
x = np.array(x)
|
||||
y = np.array(y)
|
||||
np_time = timeit(np.einsum_path, args=(subscripts, x, y))
|
||||
print("Timing little einsum path...")
|
||||
print(f"MLX ... {mx_time:.3f} ms")
|
||||
print(f"NumPy... {np_time:.3f} ms")
|
||||
|
||||
|
||||
def time_big_einsum_path():
|
||||
chars = list("abcdefgh")
|
||||
char_to_dim = {c: v for v, c in enumerate(chars)}
|
||||
|
||||
num_inputs = 10
|
||||
inputs = []
|
||||
subscripts = []
|
||||
for _ in range(num_inputs):
|
||||
subscript = np.random.choice(chars, size=5, replace=False).tolist()
|
||||
subscripts.append("".join(subscript))
|
||||
inputs.append(np.ones(list(char_to_dim[c] for c in subscript)))
|
||||
subscripts = ",".join(subscripts)
|
||||
|
||||
np_time = timeit(np.einsum_path, args=(subscripts, *inputs))
|
||||
|
||||
inputs = [mx.array(x) for x in inputs]
|
||||
mx_time = timeit(mx.einsum_path, args=(subscripts, *inputs))
|
||||
print("Timing big einsum path...")
|
||||
print(f"MLX ... {mx_time:.3f} ms")
|
||||
print(f"NumPy... {np_time:.3f} ms")
|
||||
|
||||
|
||||
def time_attention():
|
||||
def regular_attention(x):
|
||||
# shape [batch, sequence, num_heads, head_dim]
|
||||
queries, keys, values = x, x, x
|
||||
scores = queries.transpose(0, 2, 1, 3) @ keys.transpose(0, 2, 3, 1)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
output = (scores @ values.transpose(0, 2, 1, 3)).swapaxes(1, 2)
|
||||
mx.eval(output)
|
||||
|
||||
def einsum_attention(x):
|
||||
# shape [batch, sequence, num_heads, head_dim]
|
||||
queries, keys, values = x, x, x
|
||||
scores = mx.einsum("itjk,iujk->ijtu", queries, keys)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
output = mx.einsum("ijtu,iujk->itjk", scores, values)
|
||||
mx.eval(output)
|
||||
|
||||
x = mx.random.uniform(shape=(8, 512, 32, 128))
|
||||
|
||||
regular_time = timeit(regular_attention, args=(x,))
|
||||
ein_time = timeit(einsum_attention, args=(x,))
|
||||
print("Timing einsum attention...")
|
||||
print(f"Regular ... {regular_time:.3f} ms")
|
||||
print(f"Einsum ... {ein_time:.3f} ms")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_little_einsum_path()
|
||||
time_big_einsum_path()
|
||||
time_attention()
|
@@ -1,70 +0,0 @@
|
||||
import argparse
|
||||
|
||||
import matplotlib
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import measure_runtime
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def had(x):
|
||||
y = mx.hadamard_transform(x)
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def copy(x):
|
||||
y = x + 1.0
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def run(dtype):
|
||||
system_size = 2**26
|
||||
outputs = {}
|
||||
for test_fn in (had, copy):
|
||||
for m in [1, 12, 20, 28]:
|
||||
if test_fn == copy:
|
||||
key = "copy"
|
||||
elif m == 1:
|
||||
key = "had_2^k"
|
||||
else:
|
||||
key = "had_m*2^k"
|
||||
outputs.setdefault(key, {})
|
||||
for k in range(7, 14):
|
||||
n = m * 2**k
|
||||
if n > 2**15:
|
||||
continue
|
||||
x_np = np.random.normal(size=(system_size // n, n)).astype(dtype)
|
||||
x = mx.array(x_np)
|
||||
runtime_ms = measure_runtime(test_fn, x=x)
|
||||
bytes_per_gb = 1e9
|
||||
ms_per_s = 1e3
|
||||
bytes_per_had = np.dtype(x_np.dtype).itemsize * 2
|
||||
bandwidth_gb = (
|
||||
system_size * bytes_per_had / runtime_ms * ms_per_s / bytes_per_gb
|
||||
)
|
||||
print(n, bandwidth_gb)
|
||||
outputs[key][n] = bandwidth_gb
|
||||
|
||||
colors = {
|
||||
"copy": "black",
|
||||
"had_2^k": "steelblue",
|
||||
"had_m*2^k": "skyblue",
|
||||
}
|
||||
for key, output in outputs.items():
|
||||
plt.scatter(output.keys(), output.values(), color=colors[key], label=key)
|
||||
plt.title(f"MLX Hadamard Benchmark -- {dtype.__name__}")
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("Bandwidth (GB/s)")
|
||||
plt.legend()
|
||||
plt.savefig(f"bench_{dtype.__name__}.png")
|
||||
plt.clf()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--fp16", action="store_true")
|
||||
args = parser.parse_args()
|
||||
dtype = np.float16 if args.fp16 else np.float32
|
||||
run(dtype)
|
@@ -9,7 +9,7 @@ from time_utils import measure_runtime
|
||||
|
||||
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
|
||||
def scatter(dst, x, idx):
|
||||
dst[tuple(idx)] = x
|
||||
dst[*idx] = x
|
||||
mx.eval(dst)
|
||||
|
||||
idx = []
|
||||
@@ -23,8 +23,8 @@ def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
|
||||
|
||||
|
||||
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
|
||||
def scatter(dst, x, idx, device):
|
||||
dst[tuple(idx)] = x
|
||||
def gather(dst, x, idx, device):
|
||||
dst[*idx] = x
|
||||
if device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
|
||||
@@ -34,7 +34,7 @@ def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
|
||||
x = torch.randn(x_shape, dtype=torch.float32).to(device)
|
||||
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
|
||||
|
||||
runtime = measure_runtime(scatter, dst=dst, x=x, idx=idx, device=device)
|
||||
runtime = measure_runtime(gather, dst=dst, x=x, idx=idx, device=device)
|
||||
print(f"PyTorch: {runtime:.3f}ms")
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ if __name__ == "__main__":
|
||||
(100_000, 64),
|
||||
(1_000_000, 64),
|
||||
(100_000,),
|
||||
(200_000,),
|
||||
(2_000_00,),
|
||||
(20_000_000,),
|
||||
(10000, 64),
|
||||
(100, 64),
|
||||
@@ -91,6 +91,6 @@ if __name__ == "__main__":
|
||||
|
||||
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
|
||||
print("=" * 20)
|
||||
print(f"Dst: {dst_shape}, X {x_shape}, Indices {idx_shape}")
|
||||
print(f"X {x_shape}, Indices {idx_shape}")
|
||||
benchmark_scatter_mlx(dst_shape, x_shape, idx_shape)
|
||||
benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device=device)
|
||||
|
@@ -1,189 +1,62 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import time_fn
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 5
|
||||
N_iter_bench = 40
|
||||
N_iter_func = 8
|
||||
MAX_SEQ = 300
|
||||
START_SEQ = 100
|
||||
SEQ_INCREMENT = 50
|
||||
|
||||
|
||||
def bench(f, *args):
|
||||
for i in range(N_warmup):
|
||||
f(*args)
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(*args)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
def sdpa_primitives(qs, ks, vs, alpha):
|
||||
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ vs
|
||||
return o
|
||||
|
||||
time_fn(sdpa_primitives, q, k, v, scale)
|
||||
|
||||
|
||||
def mlx_sdpa_fused_inner(q, k, v, scale):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
def sdpa_fused(qs, ks, vs, alpha):
|
||||
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
|
||||
return o
|
||||
|
||||
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
q_dtype = q.dtype
|
||||
q = q * mx.array(scale, q_dtype)
|
||||
n_q_heads = q.shape[-3]
|
||||
n_kv_heads = k.shape[-3]
|
||||
n_repeats = n_q_heads // n_kv_heads
|
||||
|
||||
B = q.shape[0]
|
||||
L = q.shape[2]
|
||||
|
||||
if n_repeats > 1:
|
||||
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
||||
k = mx.expand_dims(k, 2)
|
||||
v = mx.expand_dims(v, 2)
|
||||
|
||||
scores = q @ mx.swapaxes(k, -1, -2)
|
||||
if f32softmax:
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
|
||||
else:
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
|
||||
out = scores @ v
|
||||
if n_repeats > 1:
|
||||
out = mx.reshape(out, [B, n_q_heads, L, -1])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def mlx_spda_unfused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def mlx_spda_fused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
|
||||
shape_q = (
|
||||
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
|
||||
)
|
||||
shape_kv = (
|
||||
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
|
||||
)
|
||||
|
||||
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
|
||||
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
|
||||
scale = math.sqrt(1.0 / head_dim)
|
||||
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
|
||||
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
|
||||
if transpose:
|
||||
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
|
||||
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
|
||||
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
|
||||
|
||||
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
|
||||
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
|
||||
print(
|
||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||
)
|
||||
|
||||
return time_mlx_fused, time_mlx_unfused
|
||||
|
||||
|
||||
def get_gflop_count(B, M, N, K):
|
||||
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
|
||||
time_fn(sdpa_fused, q, k, v, scale)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
parser = argparse.ArgumentParser("MLX benchmarks.")
|
||||
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||||
args = parser.parse_args()
|
||||
if args.gpu:
|
||||
mx.set_default_device(mx.gpu)
|
||||
else:
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
dtypes = ("float16", "float32")[:1]
|
||||
transposes = (False,)
|
||||
|
||||
# fmt: off
|
||||
shapes_64 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 32, 32, 64, 32, 32),
|
||||
( 1, 64, 64, 64, 32, 32),
|
||||
( 1, 128, 128, 64, 32, 32),
|
||||
( 1, 256, 256, 64, 32, 32),
|
||||
( 1, 512, 512, 64, 32, 32),
|
||||
( 1, 1024, 1024, 64, 32, 32),
|
||||
( 1, 2048, 2048, 64, 32, 32),
|
||||
( 1, 4096, 4096, 64, 32, 32),
|
||||
)
|
||||
|
||||
shapes_80 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 80, 32, 32),
|
||||
( 1, 2048, 2048, 80, 32, 32),
|
||||
( 1, 4096, 4096, 80, 32, 32),
|
||||
)
|
||||
|
||||
shapes_128 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 128, 32, 32),
|
||||
( 1, 2048, 2048, 128, 32, 32),
|
||||
( 1, 4096, 4096, 128, 32, 32),
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
shapes = shapes_64 + shapes_80 + shapes_128
|
||||
|
||||
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
|
||||
|
||||
for dtype in dtypes:
|
||||
for transpose in transposes:
|
||||
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
|
||||
)
|
||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||
t_str = 1 if transpose else 0
|
||||
print(
|
||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
||||
|
@@ -1,58 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
L = 16384
|
||||
H = 32
|
||||
H_k = H // 4
|
||||
D = 128
|
||||
dtype = mx.float16
|
||||
loops = 10
|
||||
|
||||
|
||||
def attention(q, k, v):
|
||||
def _sdpa(q, k, v):
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
k = k[:, :, None, :, :]
|
||||
v = v[:, :, None, :, :]
|
||||
s = q @ k.transpose(0, 1, 2, 4, 3)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ v
|
||||
return o.reshape(B, Hq, L, D)
|
||||
|
||||
for i in range(loops):
|
||||
q = _sdpa(q, k, v)
|
||||
return q
|
||||
|
||||
|
||||
def sdpa(q, k, v):
|
||||
for i in range(loops):
|
||||
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
return q
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(attention, q, k, v)
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(sdpa, q, k, v)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
@@ -1,41 +1,56 @@
|
||||
include(CMakeParseArguments)
|
||||
|
||||
# ##############################################################################
|
||||
###############################################################################
|
||||
# Build metal library
|
||||
#
|
||||
# Adds a custom target ${TARGET} to build ${OUTPUT_DIRECTORY}/{TITLE}.metallib
|
||||
# from list ${SOURCES}, including list ${INCLUDE_DIRS}, depends on list ${DEPS}
|
||||
#
|
||||
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
|
||||
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
|
||||
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
|
||||
# files (like headers)
|
||||
# Args:
|
||||
# TARGET: Custom target to be added for the metal library
|
||||
# TITLE: Name of the .metallib
|
||||
# OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib
|
||||
# SOURCES: List of source files
|
||||
# INCLUDE_DIRS: List of include dirs
|
||||
# DEPS: List of dependency files (like headers)
|
||||
#
|
||||
macro(mlx_build_metallib)
|
||||
# Parse args
|
||||
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
|
||||
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
|
||||
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
cmake_parse_arguments(
|
||||
MTLLIB
|
||||
""
|
||||
"${oneValueArgs}"
|
||||
"${multiValueArgs}"
|
||||
${ARGN}
|
||||
)
|
||||
|
||||
# Set output
|
||||
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
|
||||
|
||||
# Collect compile options
|
||||
# Collect compile options
|
||||
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
|
||||
|
||||
# Prepare metallib build command
|
||||
add_custom_command(
|
||||
OUTPUT ${MTLLIB_BUILD_TARGET}
|
||||
COMMAND
|
||||
xcrun -sdk macosx metal
|
||||
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
|
||||
${MTLLIB_COMPILE_OPTIONS} ${MTLLIB_SOURCES} -o ${MTLLIB_BUILD_TARGET}
|
||||
COMMAND xcrun -sdk macosx metal
|
||||
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
|
||||
${MTLLIB_COMPILE_OPTIONS}
|
||||
${MTLLIB_SOURCES}
|
||||
-o ${MTLLIB_BUILD_TARGET}
|
||||
DEPENDS ${MTLLIB_DEPS} ${MTLLIB_SOURCES}
|
||||
COMMAND_EXPAND_LISTS
|
||||
COMMENT "Building ${MTLLIB_TITLE}.metallib"
|
||||
VERBATIM)
|
||||
VERBATIM
|
||||
)
|
||||
|
||||
# Add metallib custom target
|
||||
add_custom_target(${MTLLIB_TARGET} DEPENDS ${MTLLIB_BUILD_TARGET})
|
||||
add_custom_target(
|
||||
${MTLLIB_TARGET}
|
||||
DEPENDS
|
||||
${MTLLIB_BUILD_TARGET}
|
||||
)
|
||||
|
||||
endmacro(mlx_build_metallib)
|
||||
endmacro(mlx_build_metallib)
|
@@ -1,4 +1,3 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
mlx
|
||||
|
@@ -60,7 +60,6 @@ html_theme_options = {
|
||||
},
|
||||
}
|
||||
|
||||
html_favicon = html_theme_options["logo"]["image_light"]
|
||||
|
||||
# -- Options for HTMLHelp output ---------------------------------------------
|
||||
|
||||
@@ -84,15 +83,3 @@ def setup(app):
|
||||
# -- Options for LaTeX output ------------------------------------------------
|
||||
|
||||
latex_documents = [(main_doc, "MLX.tex", "MLX Documentation", author, "manual")]
|
||||
latex_elements = {
|
||||
"preamble": r"""
|
||||
\usepackage{enumitem}
|
||||
\setlistdepth{5}
|
||||
\setlist[itemize,1]{label=$\bullet$}
|
||||
\setlist[itemize,2]{label=$\bullet$}
|
||||
\setlist[itemize,3]{label=$\bullet$}
|
||||
\setlist[itemize,4]{label=$\bullet$}
|
||||
\setlist[itemize,5]{label=$\bullet$}
|
||||
\renewlist{itemize}{itemize}{5}
|
||||
""",
|
||||
}
|
||||
|
@@ -1,427 +0,0 @@
|
||||
.. _custom_metal_kernels:
|
||||
|
||||
Custom Metal Kernels
|
||||
====================
|
||||
|
||||
MLX supports writing custom Metal kernels through the Python and C++ APIs.
|
||||
|
||||
Simple Example
|
||||
--------------
|
||||
|
||||
Let's write a custom kernel that computes ``exp`` elementwise:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
T tmp = inp[elem];
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
outputs = kernel(
|
||||
inputs=[a],
|
||||
template=[("T", mx.float32)],
|
||||
grid=(a.size, 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
|
||||
b = exp_elementwise(a)
|
||||
assert mx.allclose(b, mx.exp(a))
|
||||
|
||||
.. note::
|
||||
We are only required to pass the body of the Metal kernel in ``source``.
|
||||
|
||||
The full function signature will be generated using:
|
||||
|
||||
* The shapes/dtypes of ``inputs``
|
||||
In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp``
|
||||
so we will add ``const device float16_t* inp`` to the signature.
|
||||
``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present
|
||||
in ``source``.
|
||||
* The list of ``output_dtypes``
|
||||
In the above, ``out`` is an ``mx.array`` of type ``mx.float16``
|
||||
so we add ``device float16_t* out``.
|
||||
* Template parameters passed using ``template``
|
||||
In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function
|
||||
and instantiates the template with ``custom_kernel_myexp_float<float>``.
|
||||
Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``.
|
||||
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]``
|
||||
These will be added as function arguments.
|
||||
All the attributes defined in Table 5.8 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ are supported.
|
||||
|
||||
Putting this all together, the generated function signature for ``myexp`` is as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
template <typename T>
|
||||
[[kernel]] void custom_kernel_myexp_float(
|
||||
const device float16_t* inp [[buffer(0)]],
|
||||
device float16_t* out [[buffer(1)]],
|
||||
uint3 thread_position_in_grid [[thread_position_in_grid]]) {
|
||||
|
||||
uint elem = thread_position_in_grid.x;
|
||||
T tmp = inp[elem];
|
||||
out[elem] = metal::exp(tmp);
|
||||
|
||||
}
|
||||
|
||||
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
|
||||
|
||||
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
|
||||
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
|
||||
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
|
||||
|
||||
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
|
||||
|
||||
Using Shape/Strides
|
||||
-------------------
|
||||
|
||||
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
|
||||
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
|
||||
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
|
||||
when indexing.
|
||||
|
||||
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
|
||||
input array ``a`` if any are present in ``source``.
|
||||
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
|
||||
|
||||
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
||||
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
|
||||
T tmp = inp[loc];
|
||||
// Output arrays are always row contiguous
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source
|
||||
)
|
||||
outputs = kernel(
|
||||
inputs=[a],
|
||||
template=[("T", mx.float32)],
|
||||
grid=(a.size, 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
|
||||
# make non-contiguous
|
||||
a = a[::2]
|
||||
b = exp_elementwise(a)
|
||||
assert mx.allclose(b, mx.exp(a))
|
||||
|
||||
Complex Example
|
||||
-----------------------------
|
||||
|
||||
Let's implement a more complex example: ``grid_sample`` in ``"bilinear"`` mode.
|
||||
|
||||
We'll start with the following MLX implementation using standard ops:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def grid_sample_ref(x, grid):
|
||||
N, H_in, W_in, _ = x.shape
|
||||
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
|
||||
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
|
||||
|
||||
ix_nw = mx.floor(ix).astype(mx.int32)
|
||||
iy_nw = mx.floor(iy).astype(mx.int32)
|
||||
|
||||
ix_ne = ix_nw + 1
|
||||
iy_ne = iy_nw
|
||||
|
||||
ix_sw = ix_nw
|
||||
iy_sw = iy_nw + 1
|
||||
|
||||
ix_se = ix_nw + 1
|
||||
iy_se = iy_nw + 1
|
||||
|
||||
nw = (ix_se - ix) * (iy_se - iy)
|
||||
ne = (ix - ix_sw) * (iy_sw - iy)
|
||||
sw = (ix_ne - ix) * (iy - iy_ne)
|
||||
se = (ix - ix_nw) * (iy - iy_nw)
|
||||
|
||||
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
|
||||
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
|
||||
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
|
||||
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
|
||||
|
||||
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
|
||||
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
|
||||
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
|
||||
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
|
||||
|
||||
I_nw *= mask_nw[..., None]
|
||||
I_ne *= mask_ne[..., None]
|
||||
I_sw *= mask_sw[..., None]
|
||||
I_se *= mask_se[..., None]
|
||||
|
||||
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
|
||||
|
||||
return output
|
||||
|
||||
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
|
||||
to write a fast GPU kernel for both the forward and backward passes.
|
||||
|
||||
First we'll implement the forward pass as a fused kernel:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@mx.custom_function
|
||||
def grid_sample(x, grid):
|
||||
|
||||
assert x.ndim == 4, "`x` must be 4D."
|
||||
assert grid.ndim == 4, "`grid` must be 4D."
|
||||
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
out_shape = (B, gN, gM, C)
|
||||
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
|
||||
uint grid_idx = elem / C * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
|
||||
int batch_idx = elem / C / gH / gW * b_stride;
|
||||
int channel_idx = elem % C;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
|
||||
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
|
||||
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
|
||||
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
|
||||
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
|
||||
|
||||
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
|
||||
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
|
||||
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
|
||||
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
|
||||
|
||||
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
||||
"""
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample",
|
||||
input_names=["x", "grid"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
outputs = kernel(
|
||||
inputs=[x, grid],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[out_shape],
|
||||
output_dtypes=[x.dtype],
|
||||
grid=(np.prod(out_shape), 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
For a reasonably sized input such as:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
x.shape = (8, 1024, 1024, 64)
|
||||
grid.shape = (8, 256, 256, 2)
|
||||
|
||||
On an M1 Max, we see a big performance improvement:
|
||||
|
||||
``55.7ms -> 6.7ms => 8x speed up``
|
||||
|
||||
Grid Sample VJP
|
||||
---------------
|
||||
|
||||
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
|
||||
its custom vjp transform so MLX can differentiate it.
|
||||
|
||||
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
|
||||
requires a few extra ``mx.fast.metal_kernel`` features:
|
||||
|
||||
* ``init_value=0``
|
||||
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
|
||||
|
||||
* ``atomic_outputs=True``
|
||||
Designate all of the kernel outputs as ``atomic`` in the function signature.
|
||||
This means we can use Metal's ``atomic`` features to simultaneously update the ``x_grad`` and ``grid_grad`` arrays from multiple threadgroups.
|
||||
See section 6.15 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ for more details.
|
||||
|
||||
We can then implement the backwards pass as follows:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@grid_sample.vjp
|
||||
def grid_sample_vjp(primals, cotangent, _):
|
||||
x, grid = primals
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
// Pad C to the nearest larger simdgroup size multiple
|
||||
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
|
||||
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
|
||||
uint grid_idx = elem / C_padded * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
|
||||
int batch_idx = elem / C_padded / gH / gW * b_stride;
|
||||
int channel_idx = elem % C_padded;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
|
||||
T gix = T(0);
|
||||
T giy = T(0);
|
||||
if (channel_idx < C) {
|
||||
int cot_index = elem / C_padded * C + channel_idx;
|
||||
T cot = cotangent[cot_index];
|
||||
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
|
||||
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
|
||||
|
||||
T I_nw = x[offset];
|
||||
gix -= I_nw * (iy_se - iy) * cot;
|
||||
giy -= I_nw * (ix_se - ix) * cot;
|
||||
}
|
||||
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
|
||||
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
|
||||
|
||||
T I_ne = x[offset];
|
||||
gix += I_ne * (iy_sw - iy) * cot;
|
||||
giy -= I_ne * (ix - ix_sw) * cot;
|
||||
}
|
||||
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
|
||||
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
|
||||
|
||||
T I_sw = x[offset];
|
||||
gix -= I_sw * (iy - iy_ne) * cot;
|
||||
giy += I_sw * (ix_ne - ix) * cot;
|
||||
}
|
||||
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
|
||||
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
|
||||
|
||||
T I_se = x[offset];
|
||||
gix += I_se * (iy - iy_nw) * cot;
|
||||
giy += I_se * (ix - ix_nw) * cot;
|
||||
}
|
||||
}
|
||||
|
||||
T gix_mult = W / 2;
|
||||
T giy_mult = H / 2;
|
||||
|
||||
// Reduce across each simdgroup first.
|
||||
// This is much faster than relying purely on atomics.
|
||||
gix = simd_sum(gix);
|
||||
giy = simd_sum(giy);
|
||||
|
||||
if (thread_index_in_simdgroup == 0) {
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
|
||||
}
|
||||
"""
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample_grad",
|
||||
input_names=["x", "grid", "cotangent"],
|
||||
output_names=["x_grad", "grid_grad"],
|
||||
source=source,
|
||||
atomic_outputs=True,
|
||||
)
|
||||
# pad the output channels to simd group size
|
||||
# so that our `simd_sum`s don't overlap.
|
||||
simdgroup_size = 32
|
||||
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
|
||||
grid_size = B * gN * gM * C_padded
|
||||
outputs = kernel(
|
||||
inputs=[x, grid, cotangent],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[x.shape, grid.shape],
|
||||
output_dtypes=[x.dtype, x.dtype],
|
||||
grid=(grid_size, 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
init_value=0,
|
||||
)
|
||||
return outputs[0], outputs[1]
|
||||
|
||||
There's an even larger speed up for the vjp:
|
||||
|
||||
``676.4ms -> 16.7ms => 40x speed up``
|
@@ -486,15 +486,16 @@ below.
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
// Make sure the metal library is available and look for it
|
||||
// in the same folder as this executable if needed
|
||||
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel declaration at axpby.metal
|
||||
@@ -509,14 +510,14 @@ below.
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder.set_bytes(alpha_, 3);
|
||||
compute_encoder.set_bytes(beta_, 4);
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
|
||||
// Encode shape, strides and ndim
|
||||
compute_encoder.set_vector_bytes(x.shape(), 5);
|
||||
compute_encoder.set_vector_bytes(x.strides(), 6);
|
||||
compute_encoder.set_bytes(y.strides(), 7);
|
||||
compute_encoder.set_bytes(ndim, 8);
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 8);
|
||||
|
||||
// We launch 1 thread for each input and make sure that the number of
|
||||
// threads in any given threadgroup is not higher than the max allowed
|
||||
@@ -530,7 +531,7 @@ below.
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
@@ -15,7 +15,7 @@ module to concisely define the model architecture.
|
||||
Attention layer
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
We will start with the Llama attention layer which notably uses the RoPE
|
||||
We will start with the llama attention layer which notably uses the RoPE
|
||||
positional encoding. [1]_ In addition, our attention layer will optionally use a
|
||||
key/value cache that will be concatenated with the provided keys and values to
|
||||
support efficient inference.
|
||||
|
@@ -64,7 +64,7 @@ set:
|
||||
Next, setup the problem parameters and load the data. To load the data, you need our
|
||||
`mnist data loader
|
||||
<https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py>`_, which
|
||||
we will import as ``mnist``.
|
||||
we will import as `mnist`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
@@ -85,4 +85,3 @@ are the CPU and GPU.
|
||||
|
||||
dev/extensions
|
||||
dev/metal_debugger
|
||||
dev/custom_metal_kernels
|
||||
|
@@ -14,7 +14,7 @@ silicon computer is
|
||||
To install from PyPI you must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
- Using a native Python >= 3.8
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
@@ -70,36 +70,36 @@ To build and install the MLX python library from source, first, clone MLX from
|
||||
|
||||
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
|
||||
|
||||
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
||||
Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
|
||||
|
||||
For developing, install the package with development dependencies, and use an
|
||||
editable install:
|
||||
For developing use an editable install:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e .
|
||||
|
||||
Once the development dependencies are installed, you can build faster with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||
|
||||
Run the tests with:
|
||||
To make sure the install is working run the tests with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install ".[testing]"
|
||||
python -m unittest discover python/tests
|
||||
|
||||
Optional: Install stubs to enable auto completions and type checking from your
|
||||
IDE:
|
||||
Optional: Install stubs to enable auto completions and type checking from your IDE:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install ".[dev]"
|
||||
python setup.py generate_stubs
|
||||
|
||||
C++ API
|
||||
@@ -195,7 +195,7 @@ GGUF, you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cmake .. \
|
||||
cmake ..
|
||||
-DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
@@ -209,7 +209,7 @@ Metal library by run-time compiling kernels the first time they are used in MLX
|
||||
on a given machine. Note run-time compilation incurs a cold-start cost which can
|
||||
be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists across reboots.
|
||||
Metal kernel cache persists accross reboots.
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
@@ -240,7 +240,7 @@ x86 Shell
|
||||
|
||||
.. _build shell:
|
||||
|
||||
If the output of ``uname -p`` is ``x86`` then your shell is running as x86 via
|
||||
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
|
||||
Rosetta instead of natively.
|
||||
|
||||
To fix this, find the application in Finder (``/Applications`` for iTerm,
|
||||
@@ -264,4 +264,4 @@ Also check that cmake is using the correct architecture:
|
||||
|
||||
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
|
||||
but the build errors out with "Building for x86_64 on macOS is not supported."
|
||||
wipe your build cache with ``rm -rf build/`` and try again.
|
||||
wipe your build cahce with ``rm -rf build/`` and try again.
|
||||
|
@@ -24,7 +24,6 @@ Array
|
||||
array.any
|
||||
array.argmax
|
||||
array.argmin
|
||||
array.conj
|
||||
array.cos
|
||||
array.cummax
|
||||
array.cummin
|
||||
@@ -53,10 +52,8 @@ Array
|
||||
array.sqrt
|
||||
array.square
|
||||
array.squeeze
|
||||
array.std
|
||||
array.sum
|
||||
array.swapaxes
|
||||
array.sum
|
||||
array.transpose
|
||||
array.T
|
||||
array.var
|
||||
array.view
|
||||
|
@@ -17,6 +17,3 @@ made available.
|
||||
init
|
||||
all_sum
|
||||
all_gather
|
||||
send
|
||||
recv
|
||||
recv_like
|
||||
|
@@ -12,4 +12,3 @@ Fast
|
||||
layer_norm
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
metal_kernel
|
||||
|
@@ -9,12 +9,7 @@ Linear Algebra
|
||||
:toctree: _autosummary
|
||||
|
||||
inv
|
||||
tri_inv
|
||||
norm
|
||||
cholesky
|
||||
cholesky_inv
|
||||
cross
|
||||
qr
|
||||
svd
|
||||
eigvalsh
|
||||
eigh
|
||||
|
@@ -14,7 +14,6 @@ Metal
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
set_wired_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
||||
|
@@ -13,7 +13,6 @@ simple functions.
|
||||
:template: nn-module-template.rst
|
||||
|
||||
elu
|
||||
celu
|
||||
gelu
|
||||
gelu_approx
|
||||
gelu_fast_approx
|
||||
|
@@ -12,20 +12,14 @@ Layers
|
||||
ALiBi
|
||||
AvgPool1d
|
||||
AvgPool2d
|
||||
AvgPool3d
|
||||
BatchNorm
|
||||
CELU
|
||||
Conv1d
|
||||
Conv2d
|
||||
Conv3d
|
||||
ConvTranspose1d
|
||||
ConvTranspose2d
|
||||
ConvTranspose3d
|
||||
Dropout
|
||||
Dropout2d
|
||||
Dropout3d
|
||||
Embedding
|
||||
ELU
|
||||
GELU
|
||||
GLU
|
||||
GroupNorm
|
||||
@@ -37,12 +31,9 @@ Layers
|
||||
LayerNorm
|
||||
LeakyReLU
|
||||
Linear
|
||||
LogSigmoid
|
||||
LogSoftmax
|
||||
LSTM
|
||||
MaxPool1d
|
||||
MaxPool2d
|
||||
MaxPool3d
|
||||
Mish
|
||||
MultiHeadAttention
|
||||
PReLU
|
||||
@@ -55,7 +46,6 @@ Layers
|
||||
RoPE
|
||||
SELU
|
||||
Sequential
|
||||
Sigmoid
|
||||
SiLU
|
||||
SinusoidalPositionalEncoding
|
||||
Softmin
|
||||
|
@@ -44,10 +44,6 @@ Operations
|
||||
convolve
|
||||
conv1d
|
||||
conv2d
|
||||
conv3d
|
||||
conv_transpose1d
|
||||
conv_transpose2d
|
||||
conv_transpose3d
|
||||
conv_general
|
||||
cos
|
||||
cosh
|
||||
@@ -61,8 +57,6 @@ Operations
|
||||
diagonal
|
||||
divide
|
||||
divmod
|
||||
einsum
|
||||
einsum_path
|
||||
equal
|
||||
erf
|
||||
erfinv
|
||||
@@ -78,11 +72,8 @@ Operations
|
||||
gather_qmm
|
||||
greater
|
||||
greater_equal
|
||||
hadamard_transform
|
||||
identity
|
||||
imag
|
||||
inner
|
||||
isfinite
|
||||
isclose
|
||||
isinf
|
||||
isnan
|
||||
@@ -112,7 +103,6 @@ Operations
|
||||
minimum
|
||||
moveaxis
|
||||
multiply
|
||||
nan_to_num
|
||||
negative
|
||||
not_equal
|
||||
ones
|
||||
@@ -122,17 +112,14 @@ Operations
|
||||
pad
|
||||
power
|
||||
prod
|
||||
put_along_axis
|
||||
quantize
|
||||
quantized_matmul
|
||||
radians
|
||||
real
|
||||
reciprocal
|
||||
remainder
|
||||
repeat
|
||||
reshape
|
||||
right_shift
|
||||
roll
|
||||
round
|
||||
rsqrt
|
||||
save
|
||||
|
@@ -31,41 +31,6 @@ model's parameters and the **optimizer state**.
|
||||
# Compute the new parameters but also the optimizer state.
|
||||
mx.eval(model.parameters(), optimizer.state)
|
||||
|
||||
Saving and Loading
|
||||
------------------
|
||||
|
||||
To serialize an optimizer, save its state. To load an optimizer, load and set
|
||||
the saved state. Here's a simple example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
import mlx.optimizers as optim
|
||||
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
# Perform some updates with the optimizer
|
||||
model = {"w" : mx.zeros((5, 5))}
|
||||
grads = {"w" : mx.ones((5, 5))}
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
example, for Adam the learning rate is saved but the ``betas`` and ``eps``
|
||||
parameters are not. A good rule of thumb is if the parameter can be scheduled
|
||||
then it will be included in the optimizer state.
|
||||
|
||||
.. toctree::
|
||||
|
||||
optimizers/optimizer
|
||||
|
@@ -44,5 +44,3 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
split
|
||||
truncated_normal
|
||||
uniform
|
||||
laplace
|
||||
permutation
|
||||
|
@@ -10,7 +10,6 @@ Transforms
|
||||
|
||||
eval
|
||||
compile
|
||||
custom_function
|
||||
disable_compile
|
||||
enable_compile
|
||||
grad
|
||||
|
@@ -33,12 +33,12 @@ Let's start with a simple example:
|
||||
# Compile the function
|
||||
compiled_fun = mx.compile(fun)
|
||||
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
print(compiled_fun(x, y))
|
||||
|
||||
The output of both the regular function and the compiled function is the same
|
||||
up to numerical precision.
|
||||
|
||||
|
||||
The first time you call a compiled function, MLX will build the compute
|
||||
graph, optimize it, and generate and compile code. This can be relatively
|
||||
slow. However, MLX will cache compiled functions, so calling a compiled
|
||||
@@ -96,7 +96,7 @@ element-wise operations:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def gelu(x):
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
If you use this function with small arrays, it will be overhead bound. If you
|
||||
@@ -136,6 +136,13 @@ Now make an array, and benchmark both functions:
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
|
||||
.. note::
|
||||
|
||||
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
|
||||
functions can still be helpful, but won't typically result in as large a
|
||||
speedup as compiling operations that run on the GPU.
|
||||
|
||||
|
||||
Debugging
|
||||
---------
|
||||
|
||||
@@ -280,7 +287,7 @@ to the function. In some cases this can be pretty inconvenient. Hence,
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
|
||||
Compiling Training Graphs
|
||||
Compiling Training Graphs
|
||||
-------------------------
|
||||
|
||||
This section will step through how to use :func:`compile` with a simple example
|
||||
@@ -290,7 +297,7 @@ full forward, backward, and update with :func:`compile`.
|
||||
|
||||
To start, here is the simple example without any compilation:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@@ -323,7 +330,7 @@ To start, here is the simple example without any compilation:
|
||||
To compile the update we can put it all in a function and compile it with the
|
||||
appropriate input and output captures. Here's the same example but compiled:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@@ -348,7 +355,7 @@ appropriate input and output captures. Here's the same example but compiled:
|
||||
|
||||
# The state that will be captured as input and output
|
||||
state = [model.state, optimizer.state]
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=state, outputs=state)
|
||||
def step(x, y):
|
||||
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
||||
@@ -403,7 +410,7 @@ Compiling transformed functions works just as expected:
|
||||
|
||||
In order to compile as much as possible, a transformation of a compiled
|
||||
function will not by default be compiled. To compile the transformed
|
||||
function simply pass it through :func:`compile`.
|
||||
function simply pass it through :func:`compile`.
|
||||
|
||||
You can also compile functions which themselves call compiled functions. A
|
||||
good practice is to compile the outer most function to give :func:`compile`
|
||||
|
@@ -25,7 +25,7 @@ Here is a simple example:
|
||||
|
||||
The output of :func:`grad` on :func:`sin` is simply another function. In this
|
||||
case it is the gradient of the sine function which is exactly the cosine
|
||||
function. To get the second derivative you can do:
|
||||
function. To get the second derivative you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
@@ -50,7 +50,7 @@ Automatic Differentiation
|
||||
.. _auto diff:
|
||||
|
||||
Automatic differentiation in MLX works on functions rather than on implicit
|
||||
graphs.
|
||||
graphs.
|
||||
|
||||
.. note::
|
||||
|
||||
@@ -114,7 +114,7 @@ way to do that is the following:
|
||||
|
||||
def loss_fn(params, x, y):
|
||||
w, b = params["weight"], params["bias"]
|
||||
h = w * x + b
|
||||
h = w * x + b
|
||||
return mx.mean(mx.square(h - y))
|
||||
|
||||
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
|
||||
@@ -132,7 +132,7 @@ way to do that is the following:
|
||||
|
||||
Notice the tree structure of the parameters is preserved in the gradients.
|
||||
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
part of the function. You can use the :func:`stop_gradient` for that.
|
||||
|
||||
|
||||
@@ -161,19 +161,19 @@ A naive way to add the elements from two sets of vectors is with a loop:
|
||||
ys = mx.random.uniform(shape=(100, 4096))
|
||||
|
||||
def naive_add(xs, ys):
|
||||
return [xs[i] + ys[:, i] for i in range(xs.shape[0])]
|
||||
return [xs[i] + ys[:, i] for i in range(xs.shape[1])]
|
||||
|
||||
Instead you can use :func:`vmap` to automatically vectorize the addition:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
# Vectorize over the second dimension of x and the
|
||||
# first dimension of y
|
||||
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(0, 1))
|
||||
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
|
||||
|
||||
The ``in_axes`` parameter can be used to specify which dimensions of the
|
||||
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
|
||||
where the vectorized axes should be in the outputs.
|
||||
where the vectorized axes should be in the outputs.
|
||||
|
||||
Let's time these two different versions:
|
||||
|
||||
@@ -184,8 +184,8 @@ Let's time these two different versions:
|
||||
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
|
||||
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
|
||||
|
||||
On an M1 Max the naive version takes in total ``5.639`` seconds whereas the
|
||||
vectorized version takes only ``0.024`` seconds, more than 200 times faster.
|
||||
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
|
||||
vectorized version takes only ``0.025`` seconds, more than ten times faster.
|
||||
|
||||
Of course, this operation is quite contrived. A better approach is to simply do
|
||||
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.
|
||||
|
@@ -51,7 +51,7 @@ You can also use an :obj:`array` to index another :obj:`array`:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> arr[idx]
|
||||
array([5, 7], dtype=int32)
|
||||
|
||||
@@ -77,12 +77,12 @@ from the GPU. Performing bounds checking for array indices before launching the
|
||||
kernel would be extremely inefficient.
|
||||
|
||||
Indexing with boolean masks is something that MLX may support in the future. In
|
||||
general, MLX has limited support for operations for which output
|
||||
general, MLX has limited support for operations for which outputs
|
||||
*shapes* are dependent on input *data*. Other examples of these types of
|
||||
operations which MLX does not yet support include :func:`numpy.nonzero` and the
|
||||
single input version of :func:`numpy.where`.
|
||||
|
||||
In Place Updates
|
||||
In Place Updates
|
||||
----------------
|
||||
|
||||
In place updates to indexed arrays are possible in MLX. For example:
|
||||
|
@@ -13,7 +13,7 @@ compute graph is recorded. The actual computation only happens if an
|
||||
:func:`eval` is performed.
|
||||
|
||||
MLX uses lazy evaluation because it has some nice features, some of which we
|
||||
describe below.
|
||||
describe below.
|
||||
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
@@ -109,14 +109,14 @@ Here is a concrete example:
|
||||
|
||||
An important behavior to be aware of is when the graph will be implicitly
|
||||
evaluated. Anytime you ``print`` an array, convert it to an
|
||||
:obj:`numpy.ndarray`, or otherwise access its memory via :obj:`memoryview`,
|
||||
:obj:`numpy.ndarray`, or otherwise access it's memory via :obj:`memoryview`,
|
||||
the graph will be evaluated. Saving arrays via :func:`save` (or any other MLX
|
||||
saving functions) will also evaluate the array.
|
||||
|
||||
|
||||
Calling :func:`array.item` on a scalar array will also evaluate it. In the
|
||||
example above, printing the loss (``print(loss)``) or adding the loss scalar to
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
these lines are before ``mx.eval(loss, model.parameters())`` then this
|
||||
will be a partial evaluation, computing only the forward pass.
|
||||
|
||||
|
@@ -3,10 +3,10 @@
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
@@ -66,7 +66,7 @@ even though no in-place operations on MLX memory are executed.
|
||||
PyTorch
|
||||
-------
|
||||
|
||||
.. warning::
|
||||
.. warning::
|
||||
|
||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||
|
@@ -64,4 +64,4 @@ Other gradient transformations include :func:`vjp` for vector-Jacobian products
|
||||
and :func:`jvp` for Jacobian-vector products.
|
||||
|
||||
Use :func:`value_and_grad` to efficiently compute both a function's output and
|
||||
gradient with respect to the function's input.
|
||||
gradient with respect to the function's input.
|
||||
|
@@ -8,33 +8,33 @@ Saving and Loading Arrays
|
||||
MLX supports multiple array serialization formats.
|
||||
|
||||
.. list-table:: Serialization Formats
|
||||
:widths: 20 8 25 25
|
||||
:widths: 20 8 25 25
|
||||
:header-rows: 1
|
||||
|
||||
* - Format
|
||||
- Extension
|
||||
* - Format
|
||||
- Extension
|
||||
- Function
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- :func:`save`
|
||||
- Single arrays only
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
- :func:`savez` and :func:`savez_compressed`
|
||||
- Multiple arrays
|
||||
- Multiple arrays
|
||||
* - Safetensors
|
||||
- ``.safetensors``
|
||||
- ``.safetensors``
|
||||
- :func:`save_safetensors`
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- :func:`save_gguf`
|
||||
- Multiple arrays
|
||||
|
||||
The :func:`load` function will load any of the supported serialization
|
||||
formats. It determines the format from the extensions. The output of
|
||||
:func:`load` depends on the format.
|
||||
:func:`load` depends on the format.
|
||||
|
||||
Here's an example of saving a single array to a file:
|
||||
|
||||
|
@@ -20,7 +20,7 @@ Both ``a`` and ``b`` live in unified memory.
|
||||
|
||||
In MLX, rather than moving arrays to devices, you specify the device when you
|
||||
run the operation. Any device can perform any operation on ``a`` and ``b``
|
||||
without needing to move them from one memory location to another. For example:
|
||||
without needing to move them from one memory location to another. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
@@ -11,14 +11,10 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(
|
||||
Python 3.8
|
||||
COMPONENTS Interpreter Development.Module
|
||||
REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
OUTPUT_VARIABLE NB_DIR)
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
@@ -28,10 +24,16 @@ find_package(nanobind CONFIG REQUIRED)
|
||||
add_library(mlx_ext)
|
||||
|
||||
# Add sources
|
||||
target_sources(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp)
|
||||
target_sources(
|
||||
mlx_ext
|
||||
PUBLIC
|
||||
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
|
||||
)
|
||||
|
||||
# Add include headers
|
||||
target_include_directories(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR})
|
||||
target_include_directories(
|
||||
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
|
||||
)
|
||||
|
||||
# Link to mlx
|
||||
target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
@@ -41,32 +43,27 @@ target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
# Build metallib
|
||||
if(MLX_BUILD_METAL)
|
||||
mlx_build_metallib(
|
||||
TARGET
|
||||
mlx_ext_metallib
|
||||
TITLE
|
||||
mlx_ext
|
||||
SOURCES
|
||||
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
|
||||
INCLUDE_DIRS
|
||||
${PROJECT_SOURCE_DIR}
|
||||
${MLX_INCLUDE_DIRS}
|
||||
OUTPUT_DIRECTORY
|
||||
${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
|
||||
TARGET mlx_ext_metallib
|
||||
TITLE mlx_ext
|
||||
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
|
||||
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
|
||||
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
|
||||
)
|
||||
|
||||
add_dependencies(mlx_ext mlx_ext_metallib)
|
||||
add_dependencies(
|
||||
mlx_ext
|
||||
mlx_ext_metallib
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
# ----------------------------- Python Bindings -----------------------------
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC
|
||||
STABLE_ABI
|
||||
LTO
|
||||
NOMINSIZE
|
||||
NB_DOMAIN
|
||||
mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp)
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
|
@@ -249,15 +249,16 @@ void Axpby::eval_gpu(
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
// Make sure the metal library is available and look for it
|
||||
// in the same folder as this executable if needed
|
||||
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel declaration at axpby.metal
|
||||
@@ -272,15 +273,15 @@ void Axpby::eval_gpu(
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder.set_bytes(alpha_, 3);
|
||||
compute_encoder.set_bytes(beta_, 4);
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
|
||||
// Encode shape, strides and ndim if needed
|
||||
if (!contiguous_kernel) {
|
||||
compute_encoder.set_vector_bytes(x.shape(), 5);
|
||||
compute_encoder.set_vector_bytes(x.strides(), 6);
|
||||
compute_encoder.set_bytes(y.strides(), 7);
|
||||
compute_encoder.set_bytes(ndim, 8);
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 8);
|
||||
}
|
||||
|
||||
// We launch 1 thread for each input and make sure that the number of
|
||||
@@ -295,7 +296,7 @@ void Axpby::eval_gpu(
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
#else // Metal is not available
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
template <typename T>
|
||||
@@ -59,4 +60,4 @@ template <typename T>
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
@@ -2,7 +2,7 @@
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"cmake>=3.24",
|
||||
"mlx>=0.18.0",
|
||||
"nanobind==2.2.0",
|
||||
"mlx>=0.9.0",
|
||||
"nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.21.0
|
||||
nanobind==2.2.0
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
@@ -13,6 +13,7 @@ if __name__ == "__main__":
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev": []},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
15
mlx.pc.in
15
mlx.pc.in
@@ -28,19 +28,10 @@ endif()
|
||||
if (@MLX_BUILD_METAL@)
|
||||
set(MLX_BUILD_METAL @MLX_BUILD_METAL@)
|
||||
set(MLX_CXX_FLAGS ${MLX_CXX_FLAGS} -D_METAL_)
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
set_and_check(MLX_INCLUDE_DIRS
|
||||
${MLX_INCLUDE_DIRS}
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/metal_cpp
|
||||
)
|
||||
if(@MLX_METAL_VERSION@ GREATER_EQUAL 310)
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_1)
|
||||
else()
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_0)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set_target_properties(mlx PROPERTIES
|
||||
@@ -49,4 +40,4 @@ set_target_properties(mlx PROPERTIES
|
||||
)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)
|
||||
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)
|
@@ -1,24 +1,25 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h
|
||||
)
|
||||
|
||||
if(MLX_BUILD_CPU)
|
||||
if (MLX_BUILD_CPU)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
||||
@@ -26,15 +27,17 @@ endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
||||
if(MLX_BUILD_ACCELERATE)
|
||||
if (MLX_BUILD_ACCELERATE)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||
elseif(MLX_BUILD_CPU)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp
|
||||
)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
if (MLX_BUILD_METAL)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
|
||||
|
@@ -19,26 +19,15 @@ Buffer malloc(size_t size) {
|
||||
}
|
||||
|
||||
void free(Buffer buffer) {
|
||||
allocator().free(buffer);
|
||||
return allocator().free(buffer);
|
||||
}
|
||||
|
||||
Buffer CommonAllocator::malloc(size_t size, bool) {
|
||||
void* ptr = std::malloc(size + sizeof(size_t));
|
||||
if (ptr != nullptr) {
|
||||
*static_cast<size_t*>(ptr) = size;
|
||||
}
|
||||
return Buffer{ptr};
|
||||
return Buffer{std::malloc(size)};
|
||||
}
|
||||
|
||||
void CommonAllocator::free(Buffer buffer) {
|
||||
std::free(buffer.ptr());
|
||||
}
|
||||
|
||||
size_t CommonAllocator::size(Buffer buffer) const {
|
||||
if (buffer.ptr() == nullptr) {
|
||||
return 0;
|
||||
}
|
||||
return *static_cast<size_t*>(buffer.ptr());
|
||||
std::free(buffer.raw_ptr());
|
||||
}
|
||||
|
||||
Buffer malloc_or_wait(size_t size) {
|
||||
|
@@ -41,7 +41,6 @@ class Allocator {
|
||||
public:
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
|
||||
virtual void free(Buffer buffer) = 0;
|
||||
virtual size_t size(Buffer buffer) const = 0;
|
||||
|
||||
Allocator() = default;
|
||||
Allocator(const Allocator& other) = delete;
|
||||
@@ -58,7 +57,6 @@ class CommonAllocator : public Allocator {
|
||||
public:
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
|
||||
virtual void free(Buffer buffer) override;
|
||||
virtual size_t size(Buffer buffer) const override;
|
||||
|
||||
private:
|
||||
CommonAllocator() = default;
|
||||
|
105
mlx/array.cpp
105
mlx/array.cpp
@@ -1,6 +1,5 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include <functional>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/ops.h"
|
||||
@@ -18,10 +17,6 @@ bool in_tracing() {
|
||||
return detail::InTracing::in_tracing();
|
||||
}
|
||||
|
||||
bool retain_graph() {
|
||||
return detail::RetainGraph::retain_graph();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
@@ -31,7 +26,7 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
}
|
||||
|
||||
array::array(
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
@@ -42,7 +37,7 @@ array::array(
|
||||
std::move(inputs))) {}
|
||||
|
||||
std::vector<array> array::make_arrays(
|
||||
std::vector<Shape> shapes,
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
@@ -74,7 +69,11 @@ array::array(std::initializer_list<int> data, Dtype dtype)
|
||||
}
|
||||
|
||||
/* Build an array from a shared buffer */
|
||||
array::array(allocator::Buffer data, Shape shape, Dtype dtype, Deleter deleter)
|
||||
array::array(
|
||||
allocator::Buffer data,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
set_data(data, deleter);
|
||||
}
|
||||
@@ -92,37 +91,21 @@ void array::detach() {
|
||||
array_desc_->primitive = nullptr;
|
||||
}
|
||||
|
||||
bool array::is_available() const {
|
||||
if (status() == Status::available) {
|
||||
return true;
|
||||
} else if (status() == Status::evaluated && event().is_signaled()) {
|
||||
set_status(Status::available);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void array::wait() {
|
||||
if (!is_available()) {
|
||||
event().wait();
|
||||
set_status(Status::available);
|
||||
}
|
||||
}
|
||||
|
||||
void array::eval() {
|
||||
// Ensure the array is ready to be read
|
||||
if (status() == Status::unscheduled) {
|
||||
if (status() == Status::scheduled) {
|
||||
event().wait();
|
||||
set_status(Status::available);
|
||||
} else if (status() == Status::unscheduled) {
|
||||
mlx::core::eval({*this});
|
||||
} else {
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
||||
bool array::is_tracer() const {
|
||||
return array_desc_->is_tracer && in_tracing() || retain_graph();
|
||||
return array_desc_->is_tracer && in_tracing();
|
||||
}
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
void array::set_data(allocator::Buffer buffer, deleter_t d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->data_size = size();
|
||||
@@ -135,9 +118,9 @@ void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
void array::set_data(
|
||||
allocator::Buffer buffer,
|
||||
size_t data_size,
|
||||
Strides strides,
|
||||
std::vector<size_t> strides,
|
||||
Flags flags,
|
||||
Deleter d) {
|
||||
deleter_t d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->data_size = data_size;
|
||||
@@ -147,7 +130,7 @@ void array::set_data(
|
||||
|
||||
void array::copy_shared_buffer(
|
||||
const array& other,
|
||||
const Strides& strides,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
@@ -166,7 +149,7 @@ void array::copy_shared_buffer(const array& other) {
|
||||
|
||||
void array::move_shared_buffer(
|
||||
array other,
|
||||
const Strides& strides,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
@@ -175,10 +158,8 @@ void array::move_shared_buffer(
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
auto data_ptr = other.array_desc_->data_ptr;
|
||||
other.array_desc_->data_ptr = nullptr;
|
||||
array_desc_->data_ptr =
|
||||
static_cast<void*>(static_cast<char*>(data_ptr) + char_offset);
|
||||
array_desc_->data_ptr = static_cast<void*>(
|
||||
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||
}
|
||||
|
||||
void array::move_shared_buffer(array other) {
|
||||
@@ -190,11 +171,10 @@ array::~array() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Ignore arrays that might be detached during eval
|
||||
if (status() == array::Status::scheduled) {
|
||||
// Ignore arrays that will be detached
|
||||
if (status() != array::Status::unscheduled) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
bool do_detach = true;
|
||||
@@ -211,8 +191,6 @@ array::~array() {
|
||||
if (do_detach) {
|
||||
for (auto& s : siblings()) {
|
||||
for (auto& ss : s.siblings()) {
|
||||
// Set to null here to avoid descending into array destructor
|
||||
// for siblings
|
||||
ss.array_desc_ = nullptr;
|
||||
}
|
||||
s.array_desc_->siblings.clear();
|
||||
@@ -233,13 +211,13 @@ void array::ArrayDesc::init() {
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(Shape shape, Dtype dtype)
|
||||
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
|
||||
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
@@ -259,46 +237,25 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
// This calls recursively the destructor and can result in stack overflow, we
|
||||
// instead put them in a vector and destroy them one at a time resulting in a
|
||||
// max stack depth of 2.
|
||||
if (inputs.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
|
||||
|
||||
auto append_deletable_inputs = [&for_deletion](ArrayDesc& ad) {
|
||||
std::unordered_map<std::uintptr_t, array> input_map;
|
||||
for (array& a : ad.inputs) {
|
||||
if (a.array_desc_) {
|
||||
input_map.insert({a.id(), a});
|
||||
for (auto& s : a.siblings()) {
|
||||
input_map.insert({s.id(), s});
|
||||
}
|
||||
}
|
||||
for (array& a : inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
ad.inputs.clear();
|
||||
for (auto& [_, a] : input_map) {
|
||||
if (a.array_desc_.use_count() <= a.siblings().size() + 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
append_deletable_inputs(*this);
|
||||
}
|
||||
|
||||
while (!for_deletion.empty()) {
|
||||
// top is going to be deleted at the end of the block *after* the arrays
|
||||
// with inputs have been moved into the vector
|
||||
auto top = std::move(for_deletion.back());
|
||||
for_deletion.pop_back();
|
||||
append_deletable_inputs(*top);
|
||||
|
||||
// Clear out possible siblings to break circular references
|
||||
for (auto& s : top->siblings) {
|
||||
// Set to null here to avoid descending into top-level
|
||||
// array destructor for siblings
|
||||
s.array_desc_ = nullptr;
|
||||
for (array& a : top->inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
top->siblings.clear();
|
||||
}
|
||||
}
|
||||
|
||||
|
115
mlx/array.h
115
mlx/array.h
@@ -5,6 +5,7 @@
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <vector>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
@@ -15,10 +16,7 @@ namespace mlx::core {
|
||||
|
||||
// Forward declaration
|
||||
class Primitive;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using Shape = std::vector<int32_t>;
|
||||
using Strides = std::vector<size_t>;
|
||||
using deleter_t = std::function<void(allocator::Buffer)>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
@@ -36,7 +34,7 @@ class array {
|
||||
template <typename It>
|
||||
array(
|
||||
It data,
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype =
|
||||
TypeToDtype<typename std::iterator_traits<It>::value_type>());
|
||||
|
||||
@@ -52,15 +50,15 @@ class array {
|
||||
template <typename T>
|
||||
array(
|
||||
std::initializer_list<T> data,
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype = TypeToDtype<T>());
|
||||
|
||||
/* Build an array from a buffer */
|
||||
array(
|
||||
allocator::Buffer data,
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
Deleter deleter = allocator::free);
|
||||
deleter_t deleter = allocator::free);
|
||||
|
||||
/** Assignment to rvalue does not compile. */
|
||||
array& operator=(const array& other) && = delete;
|
||||
@@ -99,7 +97,7 @@ class array {
|
||||
}
|
||||
|
||||
/** The shape of the array as a vector of integers. */
|
||||
const Shape& shape() const {
|
||||
const std::vector<int>& shape() const {
|
||||
return array_desc_->shape;
|
||||
}
|
||||
|
||||
@@ -108,12 +106,12 @@ class array {
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
auto shape(int dim) const {
|
||||
int shape(int dim) const {
|
||||
return shape().at(dim < 0 ? dim + ndim() : dim);
|
||||
}
|
||||
|
||||
/** The strides of the array. */
|
||||
const Strides& strides() const {
|
||||
const std::vector<size_t>& strides() const {
|
||||
return array_desc_->strides;
|
||||
}
|
||||
|
||||
@@ -122,7 +120,7 @@ class array {
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
auto strides(int dim) const {
|
||||
size_t strides(int dim) const {
|
||||
return strides().at(dim < 0 ? dim + ndim() : dim);
|
||||
}
|
||||
|
||||
@@ -187,13 +185,13 @@ class array {
|
||||
*/
|
||||
|
||||
array(
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
|
||||
static std::vector<array> make_arrays(
|
||||
std::vector<Shape> shapes,
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs);
|
||||
@@ -210,8 +208,8 @@ class array {
|
||||
|
||||
struct Data {
|
||||
allocator::Buffer buffer;
|
||||
Deleter d;
|
||||
Data(allocator::Buffer buffer, Deleter d = allocator::free)
|
||||
deleter_t d;
|
||||
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
|
||||
: buffer(buffer), d(d) {}
|
||||
// Not copyable
|
||||
Data(const Data& d) = delete;
|
||||
@@ -222,23 +220,11 @@ class array {
|
||||
};
|
||||
|
||||
struct Flags {
|
||||
// True iff there are no gaps in the underlying data. Each item
|
||||
// True if there are no gaps in the underlying data. Each item
|
||||
// in the underlying data buffer belongs to at least one index.
|
||||
//
|
||||
// True iff:
|
||||
// prod(shape[i] for i in range(ndim) if strides[i] > 0) == data_size()
|
||||
bool contiguous : 1;
|
||||
|
||||
// True iff:
|
||||
// strides[-1] == 1 and
|
||||
// all(strides[i] == (shape[i+1]*strides[i+1]) or shape[i] == 1 for i in
|
||||
// range(ndim - 1))
|
||||
bool row_contiguous : 1;
|
||||
|
||||
// True iff:
|
||||
// strides[0] == 1 and
|
||||
// all(strides[i] == (shape[i-1]*strides[i-1]) or shape[i] == 1 for i in
|
||||
// range(1, ndim))
|
||||
bool col_contiguous : 1;
|
||||
};
|
||||
|
||||
@@ -306,16 +292,7 @@ class array {
|
||||
return array_desc_->flags;
|
||||
}
|
||||
|
||||
/** The size (in elements) of the underlying buffer the array points to.
|
||||
*
|
||||
* This can be different than the actual size of the array if the array has
|
||||
* been broadcast or irregularly strided. If ``first`` is the offset into
|
||||
* the data buffer of the first element of the array (i.e. the offset
|
||||
* corresponding to ``arr[0, 0, ...]``) and last is the offset into the
|
||||
* data buffer of the last element of the array (i.e. the offset
|
||||
* corresponding to ``arr[-1, -1, ...]``) then ``data_size = last - first``.
|
||||
* Note, ``data_size`` is in units of ``item_size`` (not bytes).
|
||||
**/
|
||||
/** The size (in elements) of the underlying buffer the array points to. */
|
||||
size_t data_size() const {
|
||||
return array_desc_->data_size;
|
||||
}
|
||||
@@ -327,10 +304,6 @@ class array {
|
||||
return array_desc_->data->buffer;
|
||||
}
|
||||
|
||||
size_t buffer_size() const {
|
||||
return allocator::allocator().size(buffer());
|
||||
}
|
||||
|
||||
// Return a copy of the shared pointer
|
||||
// to the array::Data struct
|
||||
std::shared_ptr<Data> data_shared_ptr() const {
|
||||
@@ -347,33 +320,11 @@ class array {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
}
|
||||
|
||||
enum Status {
|
||||
// The ouptut of a computation which has not been scheduled.
|
||||
// For example, the status of `x` in `auto x = a + b`.
|
||||
unscheduled,
|
||||
enum Status { unscheduled, scheduled, available };
|
||||
|
||||
// The ouptut of a computation which has been scheduled but `eval_*` has
|
||||
// not yet been called on the array's primitive. A possible
|
||||
// status of `x` in `auto x = a + b; eval(x);`
|
||||
scheduled,
|
||||
|
||||
// The array's `eval_*` function has been run, but the computation is not
|
||||
// necessarily complete. The array will have memory allocated and if it is
|
||||
// not a tracer then it will be detached from the graph.
|
||||
evaluated,
|
||||
|
||||
// If the array is the output of a computation then the computation
|
||||
// is complete. Constant arrays are always available (e.g. `array({1, 2,
|
||||
// 3})`)
|
||||
available
|
||||
};
|
||||
|
||||
// Check if the array is safe to read.
|
||||
bool is_available() const;
|
||||
|
||||
// Wait on the array to be available. After this `is_available` returns
|
||||
// `true`.
|
||||
void wait();
|
||||
bool is_available() const {
|
||||
return status() == Status::available;
|
||||
}
|
||||
|
||||
Status status() const {
|
||||
return array_desc_->status;
|
||||
@@ -400,18 +351,18 @@ class array {
|
||||
// Check if the array is a tracer array
|
||||
bool is_tracer() const;
|
||||
|
||||
void set_data(allocator::Buffer buffer, Deleter d = allocator::free);
|
||||
void set_data(allocator::Buffer buffer, deleter_t d = allocator::free);
|
||||
|
||||
void set_data(
|
||||
allocator::Buffer buffer,
|
||||
size_t data_size,
|
||||
Strides strides,
|
||||
std::vector<size_t> strides,
|
||||
Flags flags,
|
||||
Deleter d = allocator::free);
|
||||
deleter_t d = allocator::free);
|
||||
|
||||
void copy_shared_buffer(
|
||||
const array& other,
|
||||
const Strides& strides,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
@@ -420,7 +371,7 @@ class array {
|
||||
|
||||
void move_shared_buffer(
|
||||
array other,
|
||||
const Strides& strides,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
@@ -439,8 +390,8 @@ class array {
|
||||
void init(const It src);
|
||||
|
||||
struct ArrayDesc {
|
||||
Shape shape;
|
||||
Strides strides;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
size_t size;
|
||||
Dtype dtype;
|
||||
std::shared_ptr<Primitive> primitive;
|
||||
@@ -462,6 +413,8 @@ class array {
|
||||
void* data_ptr{nullptr};
|
||||
|
||||
// The size in elements of the data buffer the array accesses
|
||||
// This can be different than the actual size of the array if it
|
||||
// has been broadcast or irregularly strided.
|
||||
size_t data_size;
|
||||
|
||||
// Contains useful meta data about the array
|
||||
@@ -474,10 +427,10 @@ class array {
|
||||
// The arrays position in the output list
|
||||
uint32_t position{0};
|
||||
|
||||
explicit ArrayDesc(Shape shape, Dtype dtype);
|
||||
explicit ArrayDesc(std::vector<int> shape, Dtype dtype);
|
||||
|
||||
explicit ArrayDesc(
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
@@ -505,7 +458,7 @@ array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
|
||||
template <typename It>
|
||||
array::array(
|
||||
It data,
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<typename std::iterator_traits<It>::value_type>() */) :
|
||||
array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
init(data);
|
||||
@@ -524,7 +477,7 @@ array::array(
|
||||
template <typename T>
|
||||
array::array(
|
||||
std::initializer_list<T> data,
|
||||
Shape shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
@@ -613,4 +566,6 @@ inline constexpr bool is_arrays_v = (is_array_v<T> && ...);
|
||||
template <typename... T>
|
||||
using enable_for_arrays_t = typename std::enable_if_t<is_arrays_v<T...>>;
|
||||
|
||||
enum QuantizationMode { DEFAULT, NF4 };
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,8 +1,10 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
)
|
||||
|
@@ -1,9 +1,9 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
#include <vecLib/vDSP.h>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
@@ -2,7 +2,8 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <vecLib/BNNS/bnns.h>
|
||||
#include <vecLib/cblas_new.h>
|
||||
|
||||
#include "mlx/backend/accelerate/utils.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
|
@@ -3,7 +3,8 @@
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <vecLib/vDSP.h>
|
||||
#include <vecLib/vForce.h>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
@@ -36,7 +37,7 @@ DEFAULT(Ceil)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Conjugate)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT_MULTI(CustomTransforms)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(NumberOfElements)
|
||||
@@ -50,7 +51,6 @@ DEFAULT(GatherMM)
|
||||
DEFAULT(GatherQMM)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Hadamard)
|
||||
DEFAULT(Less)
|
||||
DEFAULT(LessEqual)
|
||||
DEFAULT(Load)
|
||||
@@ -81,7 +81,6 @@ DEFAULT_MULTI(SVD)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
DEFAULT(Cholesky)
|
||||
DEFAULT_MULTI(Eigh)
|
||||
|
||||
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
@@ -103,7 +102,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -118,7 +117,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -133,7 +132,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
binary(a, b, out, [](auto x, auto y) { return x + y; });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -288,7 +287,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -301,7 +300,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -316,7 +315,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
binary(a, b, out, [](auto x, auto y) { return x / y; });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -327,8 +326,12 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::exp(x); });
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
throw std::invalid_argument(
|
||||
"[exp] Cannot exponentiate elements in array"
|
||||
" with non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -390,8 +393,12 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vvlog1pf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::log1p(x); });
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
throw std::invalid_argument(
|
||||
"[log1p] Cannot compute log of elements in array with"
|
||||
" non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -401,7 +408,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -416,7 +423,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
binary(a, b, out, [](auto x, auto y) { return x * y; });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -427,7 +434,7 @@ void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
unary(in, out, [](auto x) { return -x; });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -514,7 +521,7 @@ void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
unary(in, out, [](auto x) { return x * x; });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -540,7 +547,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -558,7 +565,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
binary(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -570,7 +577,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
},
|
||||
UseDefaultBinaryOp());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
binary(a, b, out, [](auto x, auto y) { return x - y; });
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -18,61 +18,49 @@ void _qmm_t_4_64(
|
||||
const float* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int B,
|
||||
bool batched_w) {
|
||||
int K) {
|
||||
constexpr int bits = 4;
|
||||
constexpr int group_size = 64;
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
int w_els = N * K / pack_factor;
|
||||
int g_els = w_els * pack_factor / group_size;
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const float* scales_local = scales;
|
||||
const float* biases_local = biases;
|
||||
|
||||
for (int i = 0; i < B; i++) {
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const float* scales_local = scales;
|
||||
const float* biases_local = biases;
|
||||
for (int n = 0; n < N; n++) {
|
||||
const simd_float16* x_local = (simd_float16*)x;
|
||||
simd_float16 sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
float scale = *scales_local++;
|
||||
float bias = *biases_local++;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const simd_float16* x_local = (simd_float16*)x;
|
||||
simd_float16 sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
float scale = *scales_local++;
|
||||
float bias = *biases_local++;
|
||||
|
||||
for (int kw = 0; kw < packs_in_group; kw += 2) {
|
||||
// TODO: vectorize this properly
|
||||
simd_uint16 wi;
|
||||
for (int e = 0; e < 2; e++) {
|
||||
uint32_t wii = *w_local++;
|
||||
for (int p = 0; p < 8; p++) {
|
||||
wi[e * 8 + p] = wii & bitmask;
|
||||
wii >>= bits;
|
||||
}
|
||||
for (int kw = 0; kw < packs_in_group; kw += 2) {
|
||||
// TODO: vectorize this properly
|
||||
simd_uint16 wi;
|
||||
for (int e = 0; e < 2; e++) {
|
||||
uint32_t wii = *w_local++;
|
||||
for (int p = 0; p < 8; p++) {
|
||||
wi[e * 8 + p] = wii & bitmask;
|
||||
wii >>= bits;
|
||||
}
|
||||
simd_float16 wf = simd_float(wi);
|
||||
wf *= scale;
|
||||
wf += bias;
|
||||
|
||||
sum += (*x_local) * wf;
|
||||
x_local++;
|
||||
}
|
||||
}
|
||||
simd_float16 wf = simd_float(wi);
|
||||
wf *= scale;
|
||||
wf += bias;
|
||||
|
||||
*result = simd_reduce_add(sum);
|
||||
result++;
|
||||
sum += (*x_local) * wf;
|
||||
x_local++;
|
||||
}
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
if (batched_w) {
|
||||
w += w_els;
|
||||
scales += g_els;
|
||||
biases += g_els;
|
||||
*result = simd_reduce_add(sum);
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -94,10 +82,8 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (condition) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int M = x.size() / K;
|
||||
int N = out.shape(-1);
|
||||
int B = x.size() / K / M;
|
||||
bool batched_w = w.ndim() > 2;
|
||||
_qmm_t_4_64(
|
||||
out.data<float>(),
|
||||
x.data<float>(),
|
||||
@@ -106,9 +92,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
biases.data<float>(),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
B,
|
||||
batched_w);
|
||||
K);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
|
@@ -2,8 +2,8 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
#include <vecLib/vDSP.h>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
@@ -3,10 +3,7 @@
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
@@ -33,8 +30,8 @@ namespace {
|
||||
* Note: The implementation below is a general fast exp. There could be faster
|
||||
* implementations for numbers strictly < 0.
|
||||
*/
|
||||
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
|
||||
auto x = x_init * 1.442695; // multiply with log_2(e)
|
||||
inline simd_float16 simd_fast_exp(simd_float16 x) {
|
||||
x *= 1.442695; // multiply with log_2(e)
|
||||
simd_float16 ipart, fpart;
|
||||
simd_int16 epart;
|
||||
x = simd_clamp(x, -80, 80);
|
||||
@@ -53,30 +50,28 @@ inline simd_float16 simd_fast_exp(simd_float16 x_init) {
|
||||
// bitshifting
|
||||
epart = (simd_int(ipart) + 127) << 23;
|
||||
|
||||
// Avoid supressing NaNs
|
||||
simd_int16 eq = (x_init == x_init);
|
||||
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
|
||||
return (*(simd_float16*)&epart) * x;
|
||||
}
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
/**
|
||||
* The ARM neon equivalent of the fast exp above.
|
||||
*/
|
||||
inline float16x8_t neon_fast_exp(float16x8_t x) {
|
||||
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
|
||||
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
|
||||
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
|
||||
x = vmulq_f16(x, vdupq_n_f16(1.442695)); // multiply with log_2(e)
|
||||
x = vmaxq_f16(x, vdupq_n_f16(-14)); // clamp under with -14
|
||||
x = vminq_f16(x, vdupq_n_f16(14)); // clamp over with 14
|
||||
|
||||
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
|
||||
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(0.5)));
|
||||
float16x8_t fpart = vsubq_f16(x, ipart);
|
||||
|
||||
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
|
||||
x = vdupq_n_f16(1.535336188319500e-4f);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(9.618437357674640e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(5.550332471162809e-2f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(2.402264791363012e-1f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(6.931472028550421e-1f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.000000000000000f), x, fpart);
|
||||
|
||||
// generate 2**ipart in the floating point representation using integer
|
||||
// bitshifting
|
||||
@@ -112,55 +107,6 @@ inline float16_t neon_reduce_add(float16x8_t x) {
|
||||
return vget_lane_f16(y, 0);
|
||||
}
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct NeonFp16SimdOps {
|
||||
VT init(T a) {
|
||||
return vdupq_n_f16(a);
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return vld1q_f16(a);
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
vst1q_f16(dst, x);
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return vmaxq_f16(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return neon_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return vaddq_f16(a, b);
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return vsubq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return vmulq_f16(a, b);
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return vmulq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return neon_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return neon_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct AccelerateSimdOps {
|
||||
VT init(T a) {
|
||||
@@ -208,6 +154,53 @@ struct AccelerateSimdOps {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct NeonFp16SimdOps {
|
||||
VT init(T a) {
|
||||
return vdupq_n_f16(a);
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return vld1q_f16(a);
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
vst1q_f16(dst, x);
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return vmaxq_f16(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return neon_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return vaddq_f16(a, b);
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return vsubq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return vmulq_f16(a, b);
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return vmulq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return neon_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return neon_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||
void softmax(const array& in, array& out) {
|
||||
Ops ops;
|
||||
@@ -369,16 +362,12 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
} else {
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
softmax<
|
||||
float16_t,
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
eval(inputs, out); // Redirect to common backend for consistency
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
|
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <vecLib/BNNS/bnns.h>
|
||||
#include "mlx/dtype.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
@@ -1,4 +1,5 @@
|
||||
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(COMPILER ${CMAKE_C_COMPILER})
|
||||
set(CLANG TRUE)
|
||||
else()
|
||||
@@ -6,57 +7,71 @@ else()
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT compiled_preamble.cpp
|
||||
COMMAND
|
||||
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
|
||||
${PROJECT_SOURCE_DIR} ${CLANG}
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
compiled_preamble.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
|
||||
ops.h)
|
||||
OUTPUT compiled_preamble.cpp
|
||||
COMMAND /bin/bash
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
${COMPILER}
|
||||
${PROJECT_SOURCE_DIR}
|
||||
${CLANG}
|
||||
|
||||
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
compiled_preamble.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
|
||||
ops.h
|
||||
)
|
||||
|
||||
add_custom_target(
|
||||
cpu_compiled_preamble
|
||||
DEPENDS compiled_preamble.cpp
|
||||
)
|
||||
|
||||
add_dependencies(mlx cpu_compiled_preamble)
|
||||
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
)
|
||||
|
||||
if(IOS)
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
|
||||
if (IOS)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp
|
||||
)
|
||||
else()
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
|
||||
)
|
||||
endif()
|
||||
|
@@ -43,15 +43,13 @@ void set_binary_op_output_data(
|
||||
array& out,
|
||||
BinaryOpType bopt,
|
||||
bool donate_with_move = false) {
|
||||
bool b_donatable = is_donatable(b, out);
|
||||
bool a_donatable = is_donatable(a, out);
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
if (b_donatable) {
|
||||
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
@@ -66,7 +64,7 @@ void set_binary_op_output_data(
|
||||
}
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
if (a_donatable) {
|
||||
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
@@ -81,13 +79,13 @@ void set_binary_op_output_data(
|
||||
}
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
if (a_donatable) {
|
||||
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
out.copy_shared_buffer(a);
|
||||
}
|
||||
} else if (b_donatable) {
|
||||
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
@@ -102,14 +100,16 @@ void set_binary_op_output_data(
|
||||
}
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
|
||||
if (a.is_donatable() && a.flags().row_contiguous &&
|
||||
a.itemsize() == out.itemsize() && a.size() == out.size()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
out.copy_shared_buffer(a);
|
||||
}
|
||||
} else if (
|
||||
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
|
||||
b.is_donatable() && b.flags().row_contiguous &&
|
||||
b.itemsize() == out.itemsize() && b.size() == out.size()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
@@ -122,7 +122,19 @@ void set_binary_op_output_data(
|
||||
}
|
||||
}
|
||||
|
||||
struct UseDefaultBinaryOp {};
|
||||
struct UseDefaultBinaryOp {
|
||||
template <typename T, typename U>
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
// Should we throw? This should normally never be called.
|
||||
assert(false);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
|
||||
// Should we throw? This should normally never be called.
|
||||
assert(false);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
struct DefaultVectorScalar {
|
||||
@@ -138,6 +150,18 @@ struct DefaultVectorScalar {
|
||||
a++;
|
||||
}
|
||||
}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
|
||||
T scalar = *b;
|
||||
while (size-- > 0) {
|
||||
auto dst = op(*a, scalar);
|
||||
*dst_a = dst.first;
|
||||
*dst_b = dst.second;
|
||||
dst_a++;
|
||||
dst_b++;
|
||||
a++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
@@ -154,6 +178,18 @@ struct DefaultScalarVector {
|
||||
b++;
|
||||
}
|
||||
}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
|
||||
T scalar = *a;
|
||||
while (size-- > 0) {
|
||||
auto dst = op(scalar, *b);
|
||||
*dst_a = dst.first;
|
||||
*dst_b = dst.second;
|
||||
dst_a++;
|
||||
dst_b++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
@@ -170,110 +206,204 @@ struct DefaultVectorVector {
|
||||
b++;
|
||||
}
|
||||
}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
|
||||
while (size-- > 0) {
|
||||
auto dst = op(*a, *b);
|
||||
*dst_a = dst.first;
|
||||
*dst_b = dst.second;
|
||||
dst_a++;
|
||||
dst_b++;
|
||||
a++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op, int D, bool Strided>
|
||||
void binary_op_dims(
|
||||
const T* a,
|
||||
const T* b,
|
||||
U* out,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
auto stride_out = out_strides[axis];
|
||||
auto N = shape[axis];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
binary_op_dims<T, U, Op, D - 1, Strided>(
|
||||
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
|
||||
} else {
|
||||
if constexpr (Strided) {
|
||||
op(a, b, out, stride_out);
|
||||
} else {
|
||||
*out = op(*a, *b);
|
||||
}
|
||||
}
|
||||
out += stride_out;
|
||||
a += stride_a;
|
||||
b += stride_b;
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims1(const array& a, const array& b, array& out, Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, bool Strided, typename Op>
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims1(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
int stride) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; i++) {
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
dst += stride;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims2(const array& a, const array& b, array& out, Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims2(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
int stride) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
dst += stride;
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims3(const array& a, const array& b, array& out, Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
a_idx += a.strides()[2];
|
||||
b_idx += b.strides()[2];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims4(const array& a, const array& b, array& out, Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
a_idx += a.strides()[3];
|
||||
b_idx += b.strides()[3];
|
||||
}
|
||||
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
|
||||
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op) {
|
||||
switch (out.ndim()) {
|
||||
case 1:
|
||||
binary_op_dims1<T, U, Op>(a, b, out, op);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims2<T, U, Op>(a, b, out, op);
|
||||
return;
|
||||
case 3:
|
||||
binary_op_dims3<T, U, Op>(a, b, out, op);
|
||||
return;
|
||||
case 4:
|
||||
binary_op_dims4<T, U, Op>(a, b, out, op);
|
||||
return;
|
||||
}
|
||||
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
for (size_t i = 0; i < out.size(); i++) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
int dim,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
int stride) {
|
||||
// Number of dimensions to loop over for vectorized ops
|
||||
switch (dim) {
|
||||
case 1:
|
||||
binary_op_dims<T, U, Op, 1, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
binary_op_dims1<T, U, Op>(a, b, out, op, stride);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims<T, U, Op, 2, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 3:
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
binary_op_dims2<T, U, Op>(a, b, out, op, stride);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
|
||||
size_t stride = out_strides[dim - 4];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
out_ptr + elem,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
dim - 3);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst = out.data<U>();
|
||||
for (size_t i = 0; i < out.size(); i += stride) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
|
||||
dst += stride;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -320,33 +450,29 @@ void binary_op(
|
||||
}
|
||||
|
||||
// General computation so let's try to optimize
|
||||
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||
a.shape(), {a.strides(), b.strides(), out.strides()});
|
||||
const auto& a_strides = new_strides[0];
|
||||
const auto& b_strides = new_strides[1];
|
||||
const auto& strides = new_strides[2];
|
||||
|
||||
// Get the left-most dim such that the array is row contiguous after
|
||||
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
||||
auto& strides = out.strides();
|
||||
auto leftmost_rc_dim = [&strides](const array& arr) {
|
||||
int d = arr.ndim() - 1;
|
||||
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
||||
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
||||
auto a_rc_dim = leftmost_rc_dim(a);
|
||||
auto b_rc_dim = leftmost_rc_dim(b);
|
||||
|
||||
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
||||
auto leftmost_s_dim = [](const array& arr) {
|
||||
int d = arr.ndim() - 1;
|
||||
for (; d >= 0 && arr.strides()[d] == 0; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_s_dim = leftmost_s_dim(a_strides);
|
||||
auto b_s_dim = leftmost_s_dim(b_strides);
|
||||
auto a_s_dim = leftmost_s_dim(a);
|
||||
auto b_s_dim = leftmost_s_dim(b);
|
||||
|
||||
auto ndim = new_shape.size();
|
||||
auto ndim = out.ndim();
|
||||
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
@@ -368,27 +494,27 @@ void binary_op(
|
||||
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
||||
// contiguous methods above. Except for the case that the flags do not
|
||||
// correspond to the underlying contiguity.
|
||||
size_t stride;
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
stride = 1;
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
} else {
|
||||
stride = strides[dim - 1];
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
|
||||
break;
|
||||
default:
|
||||
binary_op_dispatch_dims<T, U, false>(
|
||||
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -405,9 +531,9 @@ void binary_op(
|
||||
// TODO: The following mess of constexpr evaluations can probably be achieved
|
||||
// with template specializations and overloading. Would it be simpler?
|
||||
|
||||
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
|
||||
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
@@ -428,8 +554,7 @@ void binary_op(
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opsv and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
@@ -444,8 +569,7 @@ void binary_op(
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opvs and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
@@ -461,8 +585,7 @@ void binary_op(
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opvv was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));
|
||||
|
@@ -9,43 +9,168 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename U, typename Op, int D>
|
||||
void binary_op_dims(
|
||||
const T* a,
|
||||
const T* b,
|
||||
U* out_a,
|
||||
U* out_b,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
auto stride_out = out_strides[axis];
|
||||
auto N = shape[axis];
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims1(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < out_a.size(); ++i) {
|
||||
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
dst_a[i] = dst.first;
|
||||
dst_b[i] = dst.second;
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
binary_op_dims<T, U, Op, D - 1>(
|
||||
a,
|
||||
b,
|
||||
out_a,
|
||||
out_b,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
axis + 1);
|
||||
} else {
|
||||
std::tie(*out_a, *out_b) = op(*a, *b);
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims1(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op,
|
||||
int stride) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; i++) {
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
dst_a += stride;
|
||||
dst_b += stride;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims2(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
dst_a[out_idx] = dst.first;
|
||||
dst_b[out_idx++] = dst.second;
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
}
|
||||
a += stride_a;
|
||||
b += stride_b;
|
||||
out_a += stride_out;
|
||||
out_b += stride_out;
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims2(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op,
|
||||
int stride) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
dst_a += stride;
|
||||
dst_b += stride;
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims3(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
dst_a[out_idx] = dst.first;
|
||||
dst_b[out_idx++] = dst.second;
|
||||
a_idx += a.strides()[2];
|
||||
b_idx += b.strides()[2];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dims4(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
|
||||
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
dst_a[out_idx] = dst.first;
|
||||
dst_b[out_idx++] = dst.second;
|
||||
a_idx += a.strides()[3];
|
||||
b_idx += b.strides()[3];
|
||||
}
|
||||
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
|
||||
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -56,160 +181,352 @@ void binary_op_dispatch_dims(
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(
|
||||
a.shape(), {a.strides(), b.strides(), out_a.strides()});
|
||||
const auto& a_strides = strides[0];
|
||||
const auto& b_strides = strides[1];
|
||||
const auto& out_strides = strides[2];
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* out_a_ptr = out_a.data<U>();
|
||||
U* out_b_ptr = out_b.data<U>();
|
||||
|
||||
int ndim = shape.size();
|
||||
switch (ndim) {
|
||||
switch (out_a.ndim()) {
|
||||
case 1:
|
||||
binary_op_dims<T, U, Op, 1>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_a_ptr,
|
||||
out_b_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_a_ptr,
|
||||
out_b_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op);
|
||||
return;
|
||||
case 3:
|
||||
binary_op_dims3<T, U, Op>(a, b, out_a, out_b, op);
|
||||
return;
|
||||
case 4:
|
||||
binary_op_dims4<T, U, Op>(a, b, out_a, out_b, op);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
|
||||
size_t stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
out_a_ptr + elem,
|
||||
out_b_ptr + elem,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
ndim - 2);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
for (size_t i = 0; i < out_a.size(); i++) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
std::tie(dst_a[i], dst_b[i]) = op(a_ptr[a_idx], b_ptr[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U = T, typename Op>
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op,
|
||||
int dim,
|
||||
int stride) {
|
||||
// Number of dimensions to loop over for vectorized ops
|
||||
switch (dim) {
|
||||
case 1:
|
||||
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op, stride);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op, stride);
|
||||
return;
|
||||
}
|
||||
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* dst_a = out_a.data<U>();
|
||||
U* dst_b = out_b.data<U>();
|
||||
for (size_t i = 0; i < out_a.size(); i += stride) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
|
||||
dst_a += stride;
|
||||
dst_b += stride;
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename OpSV,
|
||||
typename OpVS,
|
||||
typename OpVV>
|
||||
void binary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out_a,
|
||||
array& out_b,
|
||||
Op op,
|
||||
OpSV opsv,
|
||||
OpVS opvs,
|
||||
OpVV opvv) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out_a, bopt);
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
|
||||
op(*a.data<T>(), *b.data<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is scalar vector so delegate to the op
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
opsv(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
out_a.data<U>(),
|
||||
out_b.data<U>(),
|
||||
b.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector scalar so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorScalar) {
|
||||
opvs(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
out_a.data<U>(),
|
||||
out_b.data<U>(),
|
||||
a.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector vector so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorVector) {
|
||||
opvv(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
out_a.data<U>(),
|
||||
out_b.data<U>(),
|
||||
out_a.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// General computation so let's try to optimize
|
||||
|
||||
// Get the left-most dim such that the array is row contiguous after
|
||||
auto& strides = out_a.strides();
|
||||
auto leftmost_rc_dim = [&strides](const array& arr) {
|
||||
int d = arr.ndim() - 1;
|
||||
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_rc_dim = leftmost_rc_dim(a);
|
||||
auto b_rc_dim = leftmost_rc_dim(b);
|
||||
|
||||
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||
auto leftmost_s_dim = [](const array& arr) {
|
||||
int d = arr.ndim() - 1;
|
||||
for (; d >= 0 && arr.strides()[d] == 0; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_s_dim = leftmost_s_dim(a);
|
||||
auto b_s_dim = leftmost_s_dim(b);
|
||||
|
||||
auto ndim = out_a.ndim();
|
||||
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
dim = d;
|
||||
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
dim = d;
|
||||
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
dim = d;
|
||||
}
|
||||
|
||||
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
||||
// contiguous methods above. Except for the case that the flags do not
|
||||
// correspond to the underlying contiguity.
|
||||
size_t stride;
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
stride = 1;
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
} else {
|
||||
stride = strides[dim - 1];
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
|
||||
break;
|
||||
default:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
|
||||
void binary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
std::vector<array>& outputs,
|
||||
Op op,
|
||||
OpSV opsv,
|
||||
OpVS opvs,
|
||||
OpVV opvv) {
|
||||
// TODO: The following mess of constexpr evaluations can probably be achieved
|
||||
// with template specializations and overloading. Would it be simpler?
|
||||
|
||||
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opsv and opvs were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
opvv);
|
||||
}
|
||||
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opsv and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
opvs,
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opsv was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
opvs,
|
||||
opvv);
|
||||
}
|
||||
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opvs and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
opsv,
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opvs was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
opsv,
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
opvv);
|
||||
}
|
||||
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opvv was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
op,
|
||||
opsv,
|
||||
opvs,
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// All ops provided
|
||||
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
void binary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
std::vector<array>& outputs,
|
||||
Op op) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
auto& out_a = outputs[0];
|
||||
auto& out_b = outputs[1];
|
||||
set_binary_op_output_data(a, b, out_a, bopt);
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == BinaryOpType::General) {
|
||||
binary_op_dispatch_dims<T, U, Op>(a, b, out_a, out_b, op);
|
||||
return;
|
||||
}
|
||||
|
||||
auto a_ptr = a.data<T>();
|
||||
auto b_ptr = b.data<T>();
|
||||
auto out_a_ptr = out_a.data<U>();
|
||||
auto out_b_ptr = out_b.data<U>();
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
} else if (bopt == BinaryOpType::ScalarVector) {
|
||||
for (size_t i = 0; i < b.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
a_ptr++;
|
||||
}
|
||||
} else { // VectorVector
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
}
|
||||
DefaultScalarVector<T, T, Op> opsv(op);
|
||||
DefaultVectorScalar<T, T, Op> opvs(op);
|
||||
DefaultVectorVector<T, T, Op> opvv(op);
|
||||
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
template <typename... Ops>
|
||||
void binary(
|
||||
const array& a,
|
||||
const array& b,
|
||||
std::vector<array>& outputs,
|
||||
Op op) {
|
||||
Ops... ops) {
|
||||
switch (outputs[0].dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, outputs, op);
|
||||
binary_op<bool>(a, b, outputs, ops...);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, outputs, op);
|
||||
binary_op<uint8_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, outputs, op);
|
||||
binary_op<uint16_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, outputs, op);
|
||||
binary_op<uint32_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, outputs, op);
|
||||
binary_op<uint64_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, outputs, op);
|
||||
binary_op<int8_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, outputs, op);
|
||||
binary_op<int16_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, outputs, op);
|
||||
binary_op<int32_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, outputs, op);
|
||||
binary_op<int64_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t>(a, b, outputs, op);
|
||||
binary_op<float16_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float>(a, b, outputs, op);
|
||||
binary_op<float>(a, b, outputs, ops...);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t>(a, b, outputs, op);
|
||||
binary_op<bfloat16_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t>(a, b, outputs, op);
|
||||
binary_op<complex64_t>(a, b, outputs, ops...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@@ -2,12 +2,46 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Delegate to the Cholesky factorization taking into account differences in
|
||||
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
|
||||
int spotrf_wrapper(char uplo, float* matrix, int N) {
|
||||
int info;
|
||||
|
||||
#ifdef LAPACK_FORTRAN_STRLEN_END
|
||||
spotrf_(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info,
|
||||
/* uplo_len = */ static_cast<size_t>(1));
|
||||
#else
|
||||
spotrf_(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
#endif
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void cholesky_impl(const array& a, array& factor, bool upper) {
|
||||
// Lapack uses the column-major convention. We take advantage of the fact that
|
||||
// the matrix should be symmetric:
|
||||
@@ -32,14 +66,7 @@ void cholesky_impl(const array& a, array& factor, bool upper) {
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info;
|
||||
MLX_LAPACK_FUNC(spotrf)
|
||||
(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
int info = spotrf_wrapper(uplo, matrix, N);
|
||||
|
||||
// TODO: We do nothing when the matrix is not positive semi-definite
|
||||
// because throwing an error would result in a crash. If we figure out how
|
||||
|
@@ -39,7 +39,7 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
// rely on data_size anyway.
|
||||
size_t data_size = out.size();
|
||||
|
||||
return move_or_copy(in, out, strides_, flags, data_size, offset_);
|
||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -58,21 +58,21 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
move_or_copy(in, out, strides, flags, in.data_size());
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
move_or_copy(inputs[0], out);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void CustomTransforms::eval(
|
||||
void CustomVJP::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
move_or_copy(inputs[j], outputs[i]);
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -81,7 +81,7 @@ void Depends::eval(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
move_or_copy(inputs[i], outputs[i]);
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -156,7 +156,8 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
}
|
||||
|
||||
// Firstly let's collapse all the contiguous dimensions of the input
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto [shape, _strides] = collapse_contiguous_dims(in);
|
||||
auto& strides = _strides[0];
|
||||
|
||||
// If shapes fit exactly in the contiguous dims then no copy is necessary so
|
||||
// let's check.
|
||||
@@ -194,7 +195,7 @@ void Reshape::shared_buffer_reshape(
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
}
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
@@ -263,7 +264,7 @@ std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
|
||||
|
||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
move_or_copy(inputs[0], out);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -297,7 +298,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
b_stride *= out.shape(ri);
|
||||
}
|
||||
}
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -18,8 +18,7 @@ void print_constant(std::ostream& os, const array& x) {
|
||||
case complex64:
|
||||
return print_complex_constant<complex64_t>(os, x);
|
||||
case int8:
|
||||
os << static_cast<int32_t>(x.item<int8_t>());
|
||||
return;
|
||||
return print_int_constant<int8_t>(os, x);
|
||||
case int16:
|
||||
return print_int_constant<int16_t>(os, x);
|
||||
case int32:
|
||||
@@ -27,8 +26,7 @@ void print_constant(std::ostream& os, const array& x) {
|
||||
case int64:
|
||||
return print_int_constant<int64_t>(os, x);
|
||||
case uint8:
|
||||
os << static_cast<uint32_t>(x.item<uint8_t>());
|
||||
return;
|
||||
return print_int_constant<uint8_t>(os, x);
|
||||
case uint16:
|
||||
return print_int_constant<uint16_t>(os, x);
|
||||
case uint32:
|
||||
@@ -207,8 +205,8 @@ void compiled_allocate_outputs(
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
|
||||
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o].move_shared_buffer(
|
||||
|
@@ -2,10 +2,7 @@
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <list>
|
||||
#include <mutex>
|
||||
#include <shared_mutex>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/common/compiled_preamble.h"
|
||||
@@ -14,7 +11,22 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
struct CompilerCache {
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
return true;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
std::string get_temp_file(const std::string& name) {
|
||||
return std::filesystem::temp_directory_path().append(name);
|
||||
}
|
||||
|
||||
// Return a pointer to a compiled function
|
||||
void* compile(
|
||||
const std::string& kernel_name,
|
||||
const std::string& source_code = "") {
|
||||
struct DLib {
|
||||
DLib(const std::string& libname) {
|
||||
lib = dlopen(libname.c_str(), RTLD_NOW);
|
||||
@@ -31,41 +43,15 @@ struct CompilerCache {
|
||||
void* lib;
|
||||
};
|
||||
// Statics to cache compiled libraries and functions
|
||||
std::list<DLib> libs;
|
||||
std::unordered_map<std::string, void*> kernels;
|
||||
std::shared_mutex mtx;
|
||||
};
|
||||
|
||||
static CompilerCache cache{};
|
||||
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
return true;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
std::string get_temp_file(const std::string& name) {
|
||||
return std::filesystem::temp_directory_path().append(name).string();
|
||||
}
|
||||
|
||||
// Return a pointer to a compiled function
|
||||
void* compile(
|
||||
const std::string& kernel_name,
|
||||
const std::function<std::string(void)>& source_builder) {
|
||||
{
|
||||
std::shared_lock lock(cache.mtx);
|
||||
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_lock lock(cache.mtx);
|
||||
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
|
||||
static std::list<DLib> libs;
|
||||
static std::unordered_map<std::string, void*> kernels;
|
||||
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
|
||||
return it->second;
|
||||
}
|
||||
std::string source_code = source_builder();
|
||||
if (source_code.empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string kernel_file_name;
|
||||
|
||||
// Deal with long kernel names. Maximum length for files on macOS is 255
|
||||
@@ -103,8 +89,8 @@ void* compile(
|
||||
source_file.close();
|
||||
|
||||
std::ostringstream build_command;
|
||||
build_command << "g++ -std=c++17 -O3 -Wall -fPIC -shared '"
|
||||
<< source_file_path << "' -o '" << shared_lib_path << "'";
|
||||
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
|
||||
<< source_file_path << " -o " << shared_lib_path;
|
||||
std::string build_command_str = build_command.str();
|
||||
auto return_code = system(build_command_str.c_str());
|
||||
if (return_code) {
|
||||
@@ -116,10 +102,10 @@ void* compile(
|
||||
}
|
||||
|
||||
// load library
|
||||
cache.libs.emplace_back(shared_lib_path);
|
||||
libs.emplace_back(shared_lib_path);
|
||||
|
||||
// Load function
|
||||
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
|
||||
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
|
||||
if (!fun) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Compile::eval_cpu] Failed to load compiled function "
|
||||
@@ -127,7 +113,7 @@ void* compile(
|
||||
<< dlerror();
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
cache.kernels.insert({kernel_name, fun});
|
||||
kernels.insert({kernel_name, fun});
|
||||
return fun;
|
||||
}
|
||||
|
||||
@@ -279,7 +265,7 @@ void Compiled::eval_cpu(
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& shape = outputs[0].shape();
|
||||
auto contiguous = compiled_check_contiguity(inputs, shape);
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
|
||||
// Handle all broadcasting and collect function input arguments
|
||||
std::vector<void*> args;
|
||||
@@ -329,7 +315,10 @@ void Compiled::eval_cpu(
|
||||
}
|
||||
|
||||
// Get the function
|
||||
auto fn_ptr = compile(kernel_name, [&]() {
|
||||
auto fn_ptr = compile(kernel_name);
|
||||
|
||||
// If it doesn't exist, compile it
|
||||
if (fn_ptr == nullptr) {
|
||||
std::ostringstream kernel;
|
||||
kernel << get_kernel_preamble() << std::endl;
|
||||
kernel << "extern \"C\" {" << std::endl;
|
||||
@@ -344,8 +333,10 @@ void Compiled::eval_cpu(
|
||||
ndim);
|
||||
// Close extern "C"
|
||||
kernel << "}" << std::endl;
|
||||
return kernel.str();
|
||||
});
|
||||
|
||||
// Compile and get function pointer
|
||||
fn_ptr = compile(kernel_name, kernel.str());
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous, false);
|
||||
|
@@ -3,8 +3,13 @@
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
@@ -679,32 +684,6 @@ void dispatch_slow_conv_3D(
|
||||
// Explicit gemm conv
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
void flip_spatial_dims_inplace(array& wt) {
|
||||
T* x = wt.data<T>();
|
||||
size_t out_channels = wt.shape(0);
|
||||
size_t in_channels = wt.shape(-1);
|
||||
|
||||
// Calculate the total size of the spatial dimensions
|
||||
int spatial_size = 1;
|
||||
for (int d = 1; d < wt.ndim() - 1; ++d) {
|
||||
spatial_size *= wt.shape(d);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < out_channels; i++) {
|
||||
T* top = x + i * spatial_size * in_channels;
|
||||
T* bottom =
|
||||
x + i * spatial_size * in_channels + (spatial_size - 1) * in_channels;
|
||||
for (size_t j = 0; j < spatial_size / 2; j++) {
|
||||
for (size_t k = 0; k < in_channels; k++) {
|
||||
std::swap(top[k], bottom[k]);
|
||||
}
|
||||
top += in_channels;
|
||||
bottom -= in_channels;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_1D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
@@ -931,8 +910,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const bool flip) {
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const auto iDim = std::vector<int>(
|
||||
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
|
||||
@@ -1022,14 +1000,6 @@ void explicit_gemm_conv_ND_cpu(
|
||||
copy(wt, gemm_wt, ctype);
|
||||
}
|
||||
|
||||
if (flip) {
|
||||
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
|
||||
copy(gemm_wt, gemm_wt_, CopyType::Vector);
|
||||
|
||||
flip_spatial_dims_inplace<float>(gemm_wt_);
|
||||
gemm_wt = gemm_wt_;
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
|
||||
@@ -1072,15 +1042,10 @@ void conv_1D_cpu(
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const int groups = in.shape().back() / wt.shape().back();
|
||||
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
|
||||
return explicit_gemm_conv_1D_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
}
|
||||
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && groups == 1) {
|
||||
return explicit_gemm_conv_ND_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, flip);
|
||||
}
|
||||
|
||||
return dispatch_slow_conv_1D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
@@ -1095,13 +1060,6 @@ void conv_2D_cpu(
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const int groups = in.shape().back() / wt.shape().back();
|
||||
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && in_dilation[0] == 1 &&
|
||||
in_dilation[1] == 1 && groups == 1) {
|
||||
return explicit_gemm_conv_ND_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, flip);
|
||||
}
|
||||
|
||||
return dispatch_slow_conv_2D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
@@ -1115,14 +1073,6 @@ void conv_3D_cpu(
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const int groups = in.shape().back() / wt.shape().back();
|
||||
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && wt_dilation[2] == 1 &&
|
||||
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1 &&
|
||||
groups == 1) {
|
||||
return explicit_gemm_conv_ND_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, flip);
|
||||
}
|
||||
|
||||
return dispatch_slow_conv_3D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
@@ -1175,7 +1125,7 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
|
||||
else {
|
||||
std::ostringstream msg;
|
||||
msg << "[Convolution::eval] Convolution currently only supports"
|
||||
<< " 1D, 2D and 3D convolutions. Got inputs with " << in.ndim() - 2
|
||||
<< " 1D and 2D convolutions. Got inputs with " << in.ndim() - 2
|
||||
<< " spatial dimensions";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
@@ -4,7 +4,6 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -26,117 +25,252 @@ void copy_vector(const array& src, array& dst) {
|
||||
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT, int D>
|
||||
inline void copy_dims(
|
||||
const SrcT* src,
|
||||
DstT* dst,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
int axis) {
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = shape[axis];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
copy_dims<SrcT, DstT, StrideT, D - 1>(
|
||||
src, dst, shape, i_strides, o_strides, axis + 1);
|
||||
} else {
|
||||
*dst = static_cast<DstT>(*src);
|
||||
}
|
||||
src += stride_src;
|
||||
dst += stride_dst;
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim1(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += i_strides[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT>
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_dim1(const array& src, array& dst) {
|
||||
return copy_general_dim1<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim2(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += i_strides[1];
|
||||
}
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_dim2(const array& src, array& dst) {
|
||||
return copy_general_dim2<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim3(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
for (int k = 0; k < data_shape[2]; ++k) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += i_strides[2];
|
||||
}
|
||||
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
|
||||
}
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_dim3(const array& src, array& dst) {
|
||||
return copy_general_dim3<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim4(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
for (int k = 0; k < data_shape[2]; ++k) {
|
||||
for (int ii = 0; ii < data_shape[3]; ++ii) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += i_strides[3];
|
||||
}
|
||||
src_idx += i_strides[2] - i_strides[3] * data_shape[3];
|
||||
}
|
||||
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
|
||||
}
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_dim4(const array& src, array& dst) {
|
||||
return copy_general_dim4<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
switch (src.ndim()) {
|
||||
case 1:
|
||||
copy_general_dim1<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_dim2<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_dim3<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_dim4<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
auto src_ptr = src.data<SrcT>() + i_offset;
|
||||
auto dst_ptr = dst.data<DstT>();
|
||||
for (size_t i = 0; i < dst.size(); ++i) {
|
||||
stride_t src_elem = elem_to_loc(i, data_shape, i_strides);
|
||||
dst_ptr[i] = static_cast<DstT>(src_ptr[src_elem]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general(const array& src, array& dst) {
|
||||
return copy_general<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
inline void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
return copy_general<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t, int D>
|
||||
inline void copy_general_general_dims(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
if constexpr (D > 1) {
|
||||
int axis = src.ndim() - D;
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
for (int i = 0; i < N; i++) {
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, D - 1>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
i_offset += stride_src;
|
||||
o_offset += stride_dst;
|
||||
}
|
||||
} else {
|
||||
int axis = src.ndim() - 1;
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
const SrcT* src_ptr = src.data<SrcT>() + i_offset;
|
||||
DstT* dst_ptr = dst.data<DstT>() + o_offset;
|
||||
for (int i = 0; i < N; i++) {
|
||||
*dst_ptr = static_cast<DstT>(*src_ptr);
|
||||
src_ptr += stride_src;
|
||||
dst_ptr += stride_dst;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
if (data_shape.empty()) {
|
||||
auto val = static_cast<DstT>(*(src.data<SrcT>() + i_offset));
|
||||
auto dst_ptr = dst.data<DstT>() + o_offset;
|
||||
*dst_ptr = val;
|
||||
return;
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
switch (src.ndim()) {
|
||||
case 1:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 1>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 2>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 3>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 4>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 5:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
}
|
||||
auto [shape, strides] = collapse_contiguous_dims(
|
||||
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
|
||||
auto src_ptr = src.data<SrcT>() + i_offset;
|
||||
auto dst_ptr = dst.data<DstT>() + o_offset;
|
||||
int ndim = shape.size();
|
||||
if (ndim == 1) {
|
||||
copy_dims<SrcT, DstT, StrideT, 1>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
} else if (ndim == 2) {
|
||||
copy_dims<SrcT, DstT, StrideT, 2>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
} else if (ndim == 3) {
|
||||
copy_dims<SrcT, DstT, StrideT, 3>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
}
|
||||
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
|
||||
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
|
||||
StrideT stride = std::accumulate(
|
||||
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
|
||||
for (StrideT elem = 0; elem < src.size(); elem += stride) {
|
||||
copy_dims<SrcT, DstT, StrideT, 3>(
|
||||
src_ptr + in.loc,
|
||||
dst_ptr + out.loc,
|
||||
shape,
|
||||
strides[0],
|
||||
strides[1],
|
||||
ndim - 3);
|
||||
in.step();
|
||||
out.step();
|
||||
|
||||
int size = std::accumulate(
|
||||
data_shape.end() - 5, data_shape.end(), 1, std::multiplies<int>());
|
||||
for (int i = 0; i < src.size(); i += size) {
|
||||
stride_t src_offset = i_offset + elem_to_loc(i, data_shape, i_strides);
|
||||
stride_t dst_offset = o_offset + elem_to_loc(i, dst.shape(), o_strides);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, src_offset, dst_offset);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_general(const array& src, array& dst) {
|
||||
copy_general_general<SrcT, DstT, size_t>(
|
||||
return copy_general_general<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT>
|
||||
void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>&,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
copy_general_general<SrcT, DstT, StrideT>(
|
||||
src,
|
||||
dst,
|
||||
data_shape,
|
||||
i_strides,
|
||||
make_contiguous_strides<StrideT>(data_shape),
|
||||
i_offset,
|
||||
o_offset);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general(const array& src, array& dst) {
|
||||
copy_general_general<SrcT, DstT, size_t>(
|
||||
src,
|
||||
dst,
|
||||
src.shape(),
|
||||
src.strides(),
|
||||
make_contiguous_strides<size_t>(src.shape()),
|
||||
0,
|
||||
0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename... Args>
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
switch (ctype) {
|
||||
@@ -151,7 +285,6 @@ void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
return;
|
||||
case CopyType::GeneralGeneral:
|
||||
copy_general_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -252,7 +385,7 @@ inline void copy_inplace_dispatch(
|
||||
} // namespace
|
||||
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype) {
|
||||
copy_inplace_dispatch(src, dst, ctype);
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
|
||||
void copy(const array& src, array& dst, CopyType ctype) {
|
||||
@@ -282,20 +415,20 @@ void copy(const array& src, array& dst, CopyType ctype) {
|
||||
copy_inplace(src, dst, ctype);
|
||||
}
|
||||
|
||||
template <typename StrideT>
|
||||
template <typename stride_t>
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype) {
|
||||
switch (ctype) {
|
||||
case CopyType::General:
|
||||
case CopyType::GeneralGeneral:
|
||||
copy_inplace_dispatch(
|
||||
return copy_inplace_dispatch(
|
||||
src,
|
||||
dst,
|
||||
ctype,
|
||||
@@ -304,24 +437,15 @@ void copy_inplace(
|
||||
o_strides,
|
||||
i_offset,
|
||||
o_offset);
|
||||
break;
|
||||
|
||||
case CopyType::Scalar:
|
||||
case CopyType::Vector:
|
||||
copy_inplace_dispatch(src, dst, ctype);
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
}
|
||||
|
||||
template void copy_inplace<size_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<size_t>& i_strides,
|
||||
const std::vector<size_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
||||
template void copy_inplace<int64_t>(
|
||||
template <>
|
||||
void copy_inplace<int64_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
@@ -329,6 +453,24 @@ template void copy_inplace<int64_t>(
|
||||
const std::vector<int64_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
CopyType ctype) {
|
||||
switch (ctype) {
|
||||
case CopyType::General:
|
||||
case CopyType::GeneralGeneral:
|
||||
return copy_inplace_dispatch(
|
||||
src,
|
||||
dst,
|
||||
ctype,
|
||||
data_shape,
|
||||
i_strides,
|
||||
o_strides,
|
||||
i_offset,
|
||||
o_offset);
|
||||
|
||||
case CopyType::Scalar:
|
||||
case CopyType::Vector:
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,10 +1,14 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
#include <cstring>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -48,7 +52,7 @@ DEFAULT(Convolution)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT(Cos)
|
||||
DEFAULT(Cosh)
|
||||
DEFAULT_MULTI(CustomTransforms)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT(Divide)
|
||||
DEFAULT(NumberOfElements)
|
||||
@@ -64,7 +68,6 @@ DEFAULT(Full)
|
||||
DEFAULT(Gather)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Hadamard)
|
||||
DEFAULT(Less)
|
||||
DEFAULT(LessEqual)
|
||||
DEFAULT(Load)
|
||||
@@ -110,7 +113,6 @@ DEFAULT(Tanh)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
DEFAULT(Cholesky)
|
||||
DEFAULT_MULTI(Eigh)
|
||||
|
||||
namespace {
|
||||
|
||||
|
@@ -1,117 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
void ssyevd(
|
||||
char jobz,
|
||||
char uplo,
|
||||
float* a,
|
||||
int N,
|
||||
float* w,
|
||||
float* work,
|
||||
int lwork,
|
||||
int* iwork,
|
||||
int liwork) {
|
||||
int info;
|
||||
MLX_LAPACK_FUNC(ssyevd)
|
||||
(
|
||||
/* jobz = */ &jobz,
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ a,
|
||||
/* lda = */ &N,
|
||||
/* w = */ w,
|
||||
/* work = */ work,
|
||||
/* lwork = */ &lwork,
|
||||
/* iwork = */ iwork,
|
||||
/* liwork = */ &liwork,
|
||||
/* info = */ &info);
|
||||
if (info != 0) {
|
||||
std::stringstream msg;
|
||||
msg << "[Eigh::eval_cpu] Eigenvalue decomposition failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Eigh::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
|
||||
const auto& a = inputs[0];
|
||||
auto& values = outputs[0];
|
||||
|
||||
auto vectors = compute_eigenvectors_
|
||||
? outputs[1]
|
||||
: array(a.shape(), a.dtype(), nullptr, {});
|
||||
|
||||
values.set_data(allocator::malloc_or_wait(values.nbytes()));
|
||||
|
||||
copy(
|
||||
a,
|
||||
vectors,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
|
||||
if (compute_eigenvectors_) {
|
||||
// Set the strides and flags so the eigenvectors
|
||||
// are in the columns of the output
|
||||
auto flags = vectors.flags();
|
||||
auto strides = vectors.strides();
|
||||
auto ndim = a.ndim();
|
||||
std::swap(strides[ndim - 1], strides[ndim - 2]);
|
||||
|
||||
if (a.size() > 1) {
|
||||
flags.row_contiguous = false;
|
||||
if (ndim > 2) {
|
||||
flags.col_contiguous = false;
|
||||
} else {
|
||||
flags.col_contiguous = true;
|
||||
}
|
||||
}
|
||||
vectors.move_shared_buffer(vectors, strides, flags, vectors.data_size());
|
||||
}
|
||||
|
||||
auto vec_ptr = vectors.data<float>();
|
||||
auto eig_ptr = values.data<float>();
|
||||
|
||||
char jobz = compute_eigenvectors_ ? 'V' : 'N';
|
||||
auto N = a.shape(-1);
|
||||
|
||||
// Work query
|
||||
int lwork;
|
||||
int liwork;
|
||||
{
|
||||
float work;
|
||||
int iwork;
|
||||
ssyevd(jobz, uplo_[0], nullptr, N, nullptr, &work, -1, &iwork, -1);
|
||||
lwork = static_cast<int>(work);
|
||||
liwork = iwork;
|
||||
}
|
||||
|
||||
auto work_buf = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
auto iwork_buf = array::Data{allocator::malloc_or_wait(sizeof(int) * liwork)};
|
||||
for (size_t i = 0; i < a.size() / (N * N); ++i) {
|
||||
ssyevd(
|
||||
jobz,
|
||||
uplo_[0],
|
||||
vec_ptr,
|
||||
N,
|
||||
eig_ptr,
|
||||
static_cast<float*>(work_buf.buffer.raw_ptr()),
|
||||
lwork,
|
||||
static_cast<int*>(iwork_buf.buffer.raw_ptr()),
|
||||
liwork);
|
||||
vec_ptr += N * N;
|
||||
eig_ptr += N;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,107 +0,0 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/hadamard.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// n = 2^k component
|
||||
template <typename T>
|
||||
void hadamard_n(array& out, int n, int m, float scale) {
|
||||
for (int b = 0; b < out.size() / n; b++) {
|
||||
size_t loc = b * n;
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
int h = 1;
|
||||
int n_over_2 = n / 2;
|
||||
while (h < n) {
|
||||
for (int i = 0; i < n / 2; i++) {
|
||||
int k = i & (h - 1);
|
||||
int j = ((i - k) << 1) + k;
|
||||
float x = *(data_ptr + j);
|
||||
float y = *(data_ptr + j + h);
|
||||
*(data_ptr + j) = x + y;
|
||||
*(data_ptr + j + h) = x - y;
|
||||
if (h == n_over_2) {
|
||||
*(data_ptr + j) *= scale;
|
||||
*(data_ptr + j + h) *= scale;
|
||||
}
|
||||
}
|
||||
h <<= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// m component
|
||||
template <typename T>
|
||||
void hadamard_m(array& out, int n, int m, float scale) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
auto start = 1;
|
||||
auto end = matrix.find('\n', start);
|
||||
std::vector<bool> hmat_vec;
|
||||
while (end != std::string_view::npos) {
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
hmat_vec.push_back(row[i] == '+');
|
||||
}
|
||||
start = end + 1;
|
||||
end = matrix.find('\n', start);
|
||||
}
|
||||
|
||||
for (int b = 0; b < out.size() / m / n; b++) {
|
||||
size_t loc = b * n * m;
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<float> out(m);
|
||||
for (int j = 0; j < m; j++) {
|
||||
for (int k = 0; k < m; k++) {
|
||||
float x = *(data_ptr + i + k * n);
|
||||
if (hmat_vec[k + j * m]) {
|
||||
out[j] += x;
|
||||
} else {
|
||||
out[j] -= x;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m; j++) {
|
||||
*(data_ptr + i + j * n) = out[j] * scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void hadamard(array& out, int n, int m, float scale) {
|
||||
float n_scale = m > 1 ? 1.0 : scale;
|
||||
hadamard_n<T>(out, n, m, n_scale);
|
||||
if (m > 1) {
|
||||
hadamard_m<T>(out, n, m, scale);
|
||||
}
|
||||
}
|
||||
|
||||
void Hadamard::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Copy input to output
|
||||
copy(in, out, CopyType::General);
|
||||
|
||||
int axis = out.ndim() - 1;
|
||||
auto [n, m] = decompose_hadamard(out.shape(axis));
|
||||
|
||||
switch (in.dtype()) {
|
||||
case float32:
|
||||
return hadamard<float>(out, n, m, scale_);
|
||||
case float16:
|
||||
return hadamard<float16_t>(out, n, m, scale_);
|
||||
case bfloat16:
|
||||
return hadamard<bfloat16_t>(out, n, m, scale_);
|
||||
default:
|
||||
throw std::invalid_argument("[hadamard] Unsupported type.");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,105 +0,0 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// From http://neilsloane.com/hadamard/
|
||||
constexpr std::string_view h12 = R"(
|
||||
+-++++++++++
|
||||
--+-+-+-+-+-
|
||||
+++-++----++
|
||||
+---+--+-++-
|
||||
+++++-++----
|
||||
+-+---+--+-+
|
||||
++--+++-++--
|
||||
+--++---+--+
|
||||
++----+++-++
|
||||
+--+-++---+-
|
||||
++++----+++-
|
||||
+-+--+-++---
|
||||
)";
|
||||
|
||||
constexpr std::string_view h20 = R"(
|
||||
+----+----++--++-++-
|
||||
-+----+---+++---+-++
|
||||
--+----+---+++-+-+-+
|
||||
---+----+---+++++-+-
|
||||
----+----++--++-++-+
|
||||
-+++++-----+--+++--+
|
||||
+-+++-+---+-+--+++--
|
||||
++-++--+---+-+--+++-
|
||||
+++-+---+---+-+--+++
|
||||
++++-----++--+-+--++
|
||||
--++-+-++-+-----++++
|
||||
---++-+-++-+---+-+++
|
||||
+---++-+-+--+--++-++
|
||||
++---++-+----+-+++-+
|
||||
-++---++-+----+++++-
|
||||
-+--+--++-+----+----
|
||||
+-+-----++-+----+---
|
||||
-+-+-+---+--+----+--
|
||||
--+-+++------+----+-
|
||||
+--+--++------+----+
|
||||
)";
|
||||
|
||||
constexpr std::string_view h28 = R"(
|
||||
+------++----++-+--+-+--++--
|
||||
-+-----+++-----+-+--+-+--++-
|
||||
--+-----+++---+-+-+----+--++
|
||||
---+-----+++---+-+-+-+--+--+
|
||||
----+-----+++---+-+-+++--+--
|
||||
-----+-----++++--+-+--++--+-
|
||||
------++----++-+--+-+--++--+
|
||||
--++++-+-------++--+++-+--+-
|
||||
---++++-+-----+-++--+-+-+--+
|
||||
+---+++--+----++-++--+-+-+--
|
||||
++---++---+----++-++--+-+-+-
|
||||
+++---+----+----++-++--+-+-+
|
||||
++++--------+-+--++-++--+-+-
|
||||
-++++--------+++--++--+--+-+
|
||||
-+-++-++--++--+--------++++-
|
||||
+-+-++--+--++--+--------++++
|
||||
-+-+-++--+--++--+----+---+++
|
||||
+-+-+-++--+--+---+---++---++
|
||||
++-+-+-++--+------+--+++---+
|
||||
-++-+-+-++--+------+-++++---
|
||||
+-++-+---++--+------+-++++--
|
||||
-++--++-+-++-+++----++------
|
||||
+-++--++-+-++-+++-----+-----
|
||||
++-++---+-+-++-+++-----+----
|
||||
-++-++-+-+-+-+--+++-----+---
|
||||
--++-++++-+-+----+++-----+--
|
||||
+--++-+-++-+-+----+++-----+-
|
||||
++--++-+-++-+-+----++------+
|
||||
)";
|
||||
|
||||
inline const std::map<int, std::string_view> hadamard_matrices() {
|
||||
return {{12, h12}, {20, h20}, {28, h28}};
|
||||
}
|
||||
|
||||
inline std::pair<int, int> decompose_hadamard(int n) {
|
||||
// n = m*2^k
|
||||
int m = 1;
|
||||
if (!is_power_of_2(n)) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
for (auto [factor, _] : h_matrices) {
|
||||
if (n % factor == 0) {
|
||||
m = factor;
|
||||
n /= factor;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m == 1) {
|
||||
throw std::invalid_argument(
|
||||
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
|
||||
}
|
||||
}
|
||||
return {n, m};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,4 +1,5 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
@@ -80,18 +81,11 @@ void gather(
|
||||
T* dst_ptr = out.data<T>();
|
||||
size_t out_idx = 0;
|
||||
|
||||
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
|
||||
ContiguousIterator<size_t> src_it;
|
||||
if (!can_copy && src.ndim() > 0) {
|
||||
src_it = std::move(
|
||||
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
|
||||
}
|
||||
for (int idx = 0; idx < ind_size; idx++) {
|
||||
size_t src_idx = 0;
|
||||
for (int ii = 0; ii < inds.size(); ++ii) {
|
||||
auto ax = axes[ii];
|
||||
auto idx_loc = its[ii].loc;
|
||||
its[ii].step();
|
||||
auto idx_loc = elem_to_loc(idx, inds[ii]);
|
||||
auto idx_val =
|
||||
offset_neg_idx(inds[ii].data<IdxT>()[idx_loc], src.shape(ax));
|
||||
src_idx += (idx_val * src.strides()[ax]);
|
||||
@@ -105,10 +99,9 @@ void gather(
|
||||
out_idx += slice_size;
|
||||
} else {
|
||||
for (int jj = 0; jj < slice_size; jj++) {
|
||||
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
|
||||
src_it.step();
|
||||
auto src_offset = elem_to_loc(jj, slice_sizes, src.strides());
|
||||
dst_ptr[out_idx++] = src_ptr[src_idx + src_offset];
|
||||
}
|
||||
src_it.reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -230,29 +223,21 @@ void scatter(
|
||||
update_size *= us;
|
||||
}
|
||||
|
||||
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
|
||||
ContiguousIterator<size_t> update_it(updates);
|
||||
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
|
||||
|
||||
for (int i = 0; i < n_updates; ++i) {
|
||||
size_t out_offset = 0;
|
||||
for (int j = 0; j < nind; ++j) {
|
||||
auto ax = axes[j];
|
||||
auto idx_loc = its[j].loc;
|
||||
its[j].step();
|
||||
auto idx_loc = elem_to_loc(i, inds[j]);
|
||||
auto idx_val =
|
||||
offset_neg_idx(inds[j].data<IdxT>()[idx_loc], out.shape(ax));
|
||||
out_offset += (idx_val * out.strides()[ax]);
|
||||
}
|
||||
update_it.seek(i * update_size);
|
||||
for (int j = 0; j < update_size; ++j) {
|
||||
op(updates.data<InT>()[update_it.loc],
|
||||
out.data<InT>() + out_offset + out_it.loc);
|
||||
update_it.step();
|
||||
out_it.step();
|
||||
auto update_loc = elem_to_loc(i * update_size + j, updates);
|
||||
auto out_loc = elem_to_loc(j, update_shape, out.strides());
|
||||
op(updates.data<InT>()[update_loc],
|
||||
out.data<InT>() + out_offset + out_loc);
|
||||
}
|
||||
out_it.reset();
|
||||
update_it.reset();
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -2,94 +2,17 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
|
||||
int info;
|
||||
MLX_LAPACK_FUNC(strtri)
|
||||
(
|
||||
/* uplo = */ &uplo,
|
||||
/* diag = */ &diag,
|
||||
/* N = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
return info;
|
||||
}
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void general_inv(array& inv, int N, int i) {
|
||||
int info;
|
||||
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
|
||||
// Compute LU factorization.
|
||||
sgetrf_(
|
||||
/* m = */ &N,
|
||||
/* n = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU factorization failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
static const int lwork_query = -1;
|
||||
float workspace_size = 0;
|
||||
|
||||
// Compute workspace size.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ nullptr,
|
||||
/* work = */ &workspace_size,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU workspace calculation failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_size;
|
||||
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Compute inverse.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
void tri_inv(array& inv, int N, int i, bool upper) {
|
||||
const char uplo = upper ? 'L' : 'U';
|
||||
const char diag = 'N';
|
||||
int info = strtri_wrapper(uplo, diag, inv.data<float>() + N * N * i, N);
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: triangular inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
|
||||
void inverse_impl(const array& a, array& inv) {
|
||||
// Lapack uses the column-major convention. We take advantage of the following
|
||||
// identity to avoid transposing (see
|
||||
// https://math.stackexchange.com/a/340234):
|
||||
@@ -101,11 +24,63 @@ void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
int info;
|
||||
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
if (tri) {
|
||||
tri_inv(inv, N, i, upper);
|
||||
} else {
|
||||
general_inv(inv, N, i);
|
||||
// Compute LU factorization.
|
||||
sgetrf_(
|
||||
/* m = */ &N,
|
||||
/* n = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU factorization failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
static const int lwork_query = -1;
|
||||
float workspace_size = 0;
|
||||
|
||||
// Compute workspace size.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ nullptr,
|
||||
/* work = */ &workspace_size,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU workspace calculation failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_size;
|
||||
auto scratch =
|
||||
array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Compute inverse.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -114,7 +89,7 @@ void Inverse::eval(const std::vector<array>& inputs, array& output) {
|
||||
if (inputs[0].dtype() != float32) {
|
||||
throw std::runtime_error("[Inverse::eval] only supports float32.");
|
||||
}
|
||||
inverse_impl(inputs[0], output, tri_, upper_);
|
||||
inverse_impl(inputs[0], output);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,11 +1,10 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
@@ -5,9 +5,11 @@
|
||||
#include <utility>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/load.h"
|
||||
#include "mlx/io/load.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <const uint8_t scalar_size>
|
||||
@@ -27,14 +29,12 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace mlx::core {
|
||||
void Load::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 0);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
void load(
|
||||
array& out,
|
||||
size_t offset,
|
||||
const std::shared_ptr<io::Reader>& reader,
|
||||
bool swap_endianness_) {
|
||||
reader->read(out.data<char>(), out.nbytes(), offset);
|
||||
reader_->seek(offset_, std::ios_base::beg);
|
||||
reader_->read(out.data<char>(), out.nbytes());
|
||||
|
||||
if (swap_endianness_) {
|
||||
switch (out.itemsize()) {
|
||||
@@ -51,11 +51,4 @@ void load(
|
||||
}
|
||||
}
|
||||
|
||||
void Load::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 0);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
load(out, offset_, reader_, swap_endianness_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,14 +0,0 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/io/load.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void load(
|
||||
array& out,
|
||||
size_t offset,
|
||||
const std::shared_ptr<io::Reader>& reader,
|
||||
bool swap_endianess);
|
||||
|
||||
} // namespace mlx::core
|
@@ -18,12 +18,10 @@ if [ "$CLANG" = "TRUE" ]; then
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
EOM
|
||||
CC_FLAGS=""
|
||||
else
|
||||
CC_FLAGS="-std=c++17"
|
||||
|
||||
fi
|
||||
|
||||
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null)
|
||||
CONTENT=$($GCC -I $SRCDIR -E $SRCDIR/mlx/backend/common/compiled_preamble.h 2>/dev/null)
|
||||
|
||||
cat << EOF > "$OUTPUT_FILE"
|
||||
const char* get_kernel_preamble() {
|
||||
|
@@ -1,10 +1,15 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
|
@@ -295,13 +295,6 @@ struct Floor {
|
||||
}
|
||||
};
|
||||
|
||||
struct Imag {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::imag(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Log {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
@@ -344,13 +337,6 @@ struct Negative {
|
||||
}
|
||||
};
|
||||
|
||||
struct Real {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::real(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Round {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
@@ -387,10 +373,6 @@ struct Sign {
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return x == complex64_t(0) ? x : x / std::abs(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Sin {
|
||||
|
@@ -159,17 +159,6 @@ void Conjugate::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.flags().row_contiguous ||
|
||||
(allow_col_major_ && in.flags().col_contiguous)) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy(in, out, CopyType::General);
|
||||
}
|
||||
}
|
||||
|
||||
void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -284,10 +273,6 @@ void Full::eval(const std::vector<array>& inputs, array& out) {
|
||||
copy(in, out, ctype);
|
||||
}
|
||||
|
||||
void Imag::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
unary_op<complex64_t, float>(inputs[0], out, detail::Imag());
|
||||
}
|
||||
|
||||
void Log::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -413,10 +398,6 @@ void RandomBits::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Real::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
unary_op<complex64_t, float>(inputs[0], out, detail::Real());
|
||||
}
|
||||
|
||||
void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -424,8 +405,7 @@ void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
|
||||
if (copy_necessary) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
copy_inplace(in, out, CopyType::General);
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : CopyType::General);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
@@ -515,16 +495,8 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
/* int64_t o_offset = */ 0,
|
||||
/* CopyType ctype = */ CopyType::General);
|
||||
} else {
|
||||
size_t data_end = 1;
|
||||
for (int i = 0; i < end_indices_.size(); ++i) {
|
||||
if (in.shape()[i] > 1) {
|
||||
auto end_idx = start_indices_[i] + out.shape()[i] * strides_[i] - 1;
|
||||
data_end += end_idx * in.strides()[i];
|
||||
}
|
||||
}
|
||||
size_t data_size = data_end - data_offset;
|
||||
std::vector<size_t> ostrides{inp_strides.begin(), inp_strides.end()};
|
||||
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
|
||||
shared_buffer_slice(in, ostrides, data_offset, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -617,23 +589,16 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
|
||||
in.flags().row_contiguous) {
|
||||
auto strides = in.strides();
|
||||
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
|
||||
for (int i = 0; i < strides.size() - 1; ++i) {
|
||||
strides[i] *= ibytes;
|
||||
strides[i] /= obytes;
|
||||
}
|
||||
out.copy_shared_buffer(
|
||||
in, strides, in.flags(), in.data_size() * ibytes / obytes);
|
||||
in, strides, in.flags(), in.data_size() * obytes / ibytes);
|
||||
} else {
|
||||
auto tmp = array(
|
||||
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
|
||||
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
|
||||
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
|
||||
if (in.dtype() == bool_) {
|
||||
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
||||
in_tmp.copy_shared_buffer(in);
|
||||
copy_inplace(in_tmp, tmp, CopyType::General);
|
||||
} else {
|
||||
copy_inplace(in, tmp, CopyType::General);
|
||||
}
|
||||
copy_inplace(in, tmp, CopyType::General);
|
||||
|
||||
auto flags = out.flags();
|
||||
flags.contiguous = true;
|
||||
|
@@ -2,9 +2,14 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T>
|
||||
|
@@ -2,38 +2,13 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, int bits>
|
||||
void extract_bits(const uint8_t* w_in, T* w_out) {
|
||||
assert(bits == 3 || bits == 6);
|
||||
if (bits == 3) {
|
||||
w_out[0] = static_cast<T>(w_in[0] & 0x7);
|
||||
w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
|
||||
w_out[2] = static_cast<T>(((w_in[0] & 0xc0) >> 6) + ((w_in[1] & 0x1) << 2));
|
||||
w_out[3] = static_cast<T>((w_in[1] & 0xe) >> 1);
|
||||
w_out[4] = static_cast<T>((w_in[1] & 0x70) >> 4);
|
||||
w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
|
||||
w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
|
||||
w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
|
||||
} else if (bits == 6) {
|
||||
w_out[0] = static_cast<T>(w_in[0] & 0x3f);
|
||||
w_out[1] =
|
||||
static_cast<T>(((w_in[0] >> 6) & 0x03) + ((w_in[1] & 0x0f) << 2));
|
||||
w_out[2] =
|
||||
static_cast<T>(((w_in[1] >> 4) & 0x0f) + ((w_in[2] & 0x03) << 4));
|
||||
w_out[3] = static_cast<T>((w_in[2] >> 2) & 0x3f);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm(
|
||||
T* result,
|
||||
@@ -45,12 +20,13 @@ void _qmm(
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
|
||||
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Ng = N / group_size;
|
||||
const int Nw = N / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint32_t* w_local = w;
|
||||
const T* scales_local = scales;
|
||||
const T* biases_local = biases;
|
||||
|
||||
@@ -64,25 +40,13 @@ void _qmm(
|
||||
T scale = *scales_local++;
|
||||
T bias = *biases_local++;
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
if (bits == 3 || bits == 6) {
|
||||
T wl[pack_factor];
|
||||
extract_bits<T, bits>(w_local, wl);
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) += xi * (scale * wl[p] + bias);
|
||||
}
|
||||
w_local += bytes_per_pack;
|
||||
uint32_t wi = *w_local++;
|
||||
|
||||
} else {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
if (bits != 8) {
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -103,12 +67,13 @@ void _qmm_t(
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
|
||||
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Kg = K / group_size;
|
||||
const int Kw = K / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint32_t* w_local = w;
|
||||
const T* scales_local = scales;
|
||||
const T* biases_local = biases;
|
||||
|
||||
@@ -120,26 +85,12 @@ void _qmm_t(
|
||||
T bias = *biases_local++;
|
||||
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
if (bits == 3 || bits == 6) {
|
||||
T wl[pack_factor];
|
||||
extract_bits<T, bits>(w_local, wl);
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum += x_local[p] * (scale * wl[p] + bias);
|
||||
}
|
||||
w_local += bytes_per_pack;
|
||||
x_local += pack_factor;
|
||||
uint32_t wi = *w_local++;
|
||||
|
||||
} else {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum +=
|
||||
(*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
if (bits != 8) {
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum += (*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -151,55 +102,6 @@ void _qmm_t(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits>
|
||||
void _qmm_dispatch_group(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int group_size,
|
||||
bool transposed_w) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
_qmm_dispatch_transpose<T, bits, 32>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
case 64:
|
||||
_qmm_dispatch_transpose<T, bits, 64>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
case 128:
|
||||
_qmm_dispatch_transpose<T, bits, 128>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"Quantization group size must be 32, 64 or 128.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _qmm_dispatch_typed(
|
||||
T* result,
|
||||
@@ -214,29 +116,79 @@ void _qmm_dispatch_typed(
|
||||
int bits,
|
||||
bool transposed_w) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
_qmm_dispatch_group<T, 2>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 3:
|
||||
_qmm_dispatch_group<T, 3>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 4:
|
||||
_qmm_dispatch_group<T, 4>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 6:
|
||||
_qmm_dispatch_group<T, 6>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 8:
|
||||
_qmm_dispatch_group<T, 8>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Quantization bits must be 2, 3, 4, 6 or 8.");
|
||||
case 2: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 4: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 8: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
std::ostringstream msg;
|
||||
msg << "Quantization type not supported. Provided bits=" << bits
|
||||
<< " and group_size=" << group_size
|
||||
<< ". The supported options are bits in "
|
||||
<< "{2, 4, 8} and group_size in {64, 128}.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
void _qmm_dispatch(
|
||||
@@ -249,61 +201,55 @@ void _qmm_dispatch(
|
||||
int group_size,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int M = x.size() / K;
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
|
||||
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
|
||||
|
||||
int batch_size = x.size() / x.shape(-1) / x.shape(-2);
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
_qmm_dispatch_typed<float>(
|
||||
out.data<float>() + i * M * N,
|
||||
x.data<float>() + elem_to_loc(i * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
|
||||
scales.data<float>() + elem_to_loc(i * g_els, scales),
|
||||
biases.data<float>() + elem_to_loc(i * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
_qmm_dispatch_typed<float16_t>(
|
||||
out.data<float16_t>() + i * M * N,
|
||||
x.data<float16_t>() + elem_to_loc(i * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
|
||||
scales.data<float16_t>() + elem_to_loc(i * g_els, scales),
|
||||
biases.data<float16_t>() + elem_to_loc(i * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
_qmm_dispatch_typed<bfloat16_t>(
|
||||
out.data<bfloat16_t>() + i * M * N,
|
||||
x.data<bfloat16_t>() + elem_to_loc(i * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
|
||||
scales.data<bfloat16_t>() + elem_to_loc(i * g_els, scales),
|
||||
biases.data<bfloat16_t>() + elem_to_loc(i * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
_qmm_dispatch_typed<float>(
|
||||
out.data<float>(),
|
||||
x.data<float>(),
|
||||
w.data<uint32_t>(),
|
||||
scales.data<float>(),
|
||||
biases.data<float>(),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
_qmm_dispatch_typed<float16_t>(
|
||||
out.data<float16_t>(),
|
||||
x.data<float16_t>(),
|
||||
w.data<uint32_t>(),
|
||||
scales.data<float16_t>(),
|
||||
biases.data<float16_t>(),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
_qmm_dispatch_typed<bfloat16_t>(
|
||||
out.data<bfloat16_t>(),
|
||||
x.data<bfloat16_t>(),
|
||||
w.data<uint32_t>(),
|
||||
scales.data<bfloat16_t>(),
|
||||
biases.data<bfloat16_t>(),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -452,114 +398,4 @@ void GatherQMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
transpose_);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
void quantize(
|
||||
const array& w_,
|
||||
array& out_,
|
||||
array& scales_,
|
||||
array& biases_,
|
||||
int bits,
|
||||
int group_size) {
|
||||
const T* w = w_.data<T>();
|
||||
|
||||
auto out = out_.data<U>();
|
||||
T* scales = scales_.data<T>();
|
||||
T* biases = biases_.data<T>();
|
||||
|
||||
T n_bins = (1 << bits) - 1;
|
||||
T eps = 1e-7;
|
||||
bool power_of_2_bits = is_power_of_2(bits);
|
||||
int el_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
|
||||
// For 3/6 bits we read 3 uint8s at a time instead of 1 uint32
|
||||
int bytes_per_pack = power_of_2_bits ? 1 : 3;
|
||||
int int_per_group = group_size * bytes_per_pack / el_per_int;
|
||||
size_t n_groups = w_.size() / group_size;
|
||||
|
||||
for (size_t i = 0; i < n_groups; ++i) {
|
||||
size_t w_idx = i * group_size;
|
||||
T w_min = std::numeric_limits<float>::infinity();
|
||||
T w_max = -w_min;
|
||||
for (int j = 0; j < group_size; ++j) {
|
||||
w_max = std::max(w_max, w[w_idx + j]);
|
||||
w_min = std::min(w_min, w[w_idx + j]);
|
||||
}
|
||||
bool mask = std::abs(w_min) > std::abs(w_max);
|
||||
T scale = std::max(T((w_max - w_min) / n_bins), eps);
|
||||
scale = mask ? scale : -scale;
|
||||
|
||||
auto edge = mask ? w_min : w_max;
|
||||
auto q0 = std::rint(edge / scale);
|
||||
if (q0 == 0) {
|
||||
scales[i] = scale;
|
||||
biases[i] = 0;
|
||||
} else {
|
||||
scales[i] = edge / q0;
|
||||
biases[i] = edge;
|
||||
}
|
||||
size_t out_idx = i * int_per_group;
|
||||
for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
|
||||
uint32_t out_el = 0;
|
||||
for (int k = 0; k < el_per_int; ++k) {
|
||||
T w_el = w[w_idx + j * el_per_int + k];
|
||||
w_el = std::rint((w_el - biases[i]) / scales[i]);
|
||||
w_el = std::min(std::max(w_el, T(0)), n_bins);
|
||||
out_el |= static_cast<uint32_t>(w_el) << (k * bits);
|
||||
}
|
||||
if (power_of_2_bits) {
|
||||
out[out_idx + j] = out_el;
|
||||
} else {
|
||||
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
|
||||
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
|
||||
out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
return arr_copy;
|
||||
}
|
||||
};
|
||||
auto w = ensure_row_contiguous(inputs[0]);
|
||||
|
||||
auto& out = outputs[0];
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
|
||||
if (w.dtype() == float16) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<float16_t, uint32_t>(w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<float16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else if (w.dtype() == bfloat16) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<bfloat16_t, uint32_t>(
|
||||
w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<bfloat16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else if (w.dtype() == float32) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<float, uint32_t>(w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<float, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -87,86 +87,48 @@ struct OrReduce {
|
||||
}
|
||||
};
|
||||
|
||||
struct MaxReduce {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>> operator()(T* y, T x) {
|
||||
(*y) = (*y > x) ? *y : x;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>> operator()(T* y, T x) {
|
||||
if (std::isnan(x)) {
|
||||
*y = x;
|
||||
} else {
|
||||
(*y) = (*y > x) ? *y : x;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
struct MinReduce {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>> operator()(T* y, T x) {
|
||||
(*y) = (*y < x) ? *y : x;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>> operator()(T* y, T x) {
|
||||
if (std::isnan(x)) {
|
||||
*y = x;
|
||||
} else {
|
||||
(*y) = (*y < x) ? *y : x;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_and_or(
|
||||
void reduce_dispatch_out(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
if (rtype == Reduce::And) {
|
||||
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
|
||||
} else {
|
||||
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_sum_prod(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
if (rtype == Reduce::Sum) {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
|
||||
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 0, op);
|
||||
switch (rtype) {
|
||||
case Reduce::And: {
|
||||
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
auto op = [](auto y, auto x) { (*y) *= x; };
|
||||
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
|
||||
reduction_op<InT, int32_t>(in, out, axes, 1, op);
|
||||
} else {
|
||||
case Reduce::Or: {
|
||||
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
|
||||
break;
|
||||
}
|
||||
case Reduce::Sum: {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
|
||||
if (out.dtype() == int32) {
|
||||
// special case since the input type can be bool
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 0, op);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Reduce::Prod: {
|
||||
auto op = [](auto y, auto x) { (*y) *= x; };
|
||||
reduction_op<InT, InT>(in, out, axes, 1, op);
|
||||
break;
|
||||
}
|
||||
case Reduce::Max: {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y > x) ? *y : x; };
|
||||
auto init = Limits<InT>::min;
|
||||
reduction_op<InT, InT>(in, out, axes, init, op);
|
||||
break;
|
||||
}
|
||||
case Reduce::Min: {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y < x) ? *y : x; };
|
||||
auto init = Limits<InT>::max;
|
||||
reduction_op<InT, InT>(in, out, axes, init, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_min_max(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
if (rtype == Reduce::Max) {
|
||||
auto init = Limits<InT>::min;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
|
||||
} else {
|
||||
auto init = Limits<InT>::max;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -198,114 +160,46 @@ void nd_loop(
|
||||
void Reduce::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
switch (reduce_type_) {
|
||||
case Reduce::And:
|
||||
case Reduce::Or: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
case int8:
|
||||
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
case float16:
|
||||
case bfloat16:
|
||||
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
case int32:
|
||||
case float32:
|
||||
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
case int64:
|
||||
case complex64:
|
||||
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
reduce_dispatch_out<bool>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
case Reduce::Sum:
|
||||
case Reduce::Prod: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
case int8:
|
||||
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
case uint8:
|
||||
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
case Reduce::Max:
|
||||
case Reduce::Min: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint8:
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
case uint16:
|
||||
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_out<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_out<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_out<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
reduce_dispatch_out<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_out<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_out<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_out<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_out<complex64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -49,7 +49,7 @@ struct ReductionPlan {
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes);
|
||||
|
||||
// Helper for the ndimensional strided loop
|
||||
// Should this be in utils?
|
||||
|
@@ -19,7 +19,7 @@ std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
|
||||
return std::make_pair(shape, strides);
|
||||
}
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
@@ -32,7 +32,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
std::vector<int> shape = {x.shape(axes[0])};
|
||||
std::vector<size_t> strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
||||
if (axes[i] - 1 == axes[i - 1]) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
} else {
|
||||
@@ -41,14 +41,6 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
}
|
||||
}
|
||||
|
||||
// Remove singleton axes from the plan
|
||||
for (int i = shape.size() - 1; i >= 0; i--) {
|
||||
if (shape[i] == 1) {
|
||||
shape.erase(shape.begin() + i);
|
||||
strides.erase(strides.begin() + i);
|
||||
}
|
||||
}
|
||||
|
||||
if (strides.back() == 1) {
|
||||
return ReductionPlan(ContiguousReduce, shape, strides);
|
||||
} else if (strides.back() > 1) {
|
||||
@@ -71,14 +63,10 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// have a contiguous reduction.
|
||||
std::vector<std::pair<int, size_t>> reductions;
|
||||
for (auto a : axes) {
|
||||
if (x.shape(a) > 1) {
|
||||
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
||||
}
|
||||
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
||||
}
|
||||
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
|
||||
bool a_is_zero = a.second == 0;
|
||||
bool b_is_zero = b.second == 0;
|
||||
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
|
||||
return a.second > b.second;
|
||||
});
|
||||
// Extract the two smallest and try to merge them in case the contiguous
|
||||
// reduction can be bigger than just the last axis.
|
||||
@@ -110,33 +98,16 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// strides.back() are contiguous.
|
||||
if (strides.back() > 1) {
|
||||
int size = 1;
|
||||
bool have_expand = false;
|
||||
for (int i = x.ndim() - 1; i >= 0; i--) {
|
||||
if (axes.back() == i) {
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t stride_i = x.strides()[i];
|
||||
int shape_i = x.shape(i);
|
||||
if (stride_i == 0) {
|
||||
if (shape_i == 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
have_expand = true;
|
||||
if (x.strides()[i] != size) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (stride_i != size && shape_i != 1) {
|
||||
break;
|
||||
}
|
||||
size *= shape_i;
|
||||
size *= x.shape(i);
|
||||
}
|
||||
// In the case of an expanded dimension we are being conservative and
|
||||
// require the smallest reduction stride to be smaller than the maximum row
|
||||
// contiguous size. The reason is that we can't easily know if the reduced
|
||||
// axis is before or after an expanded dimension.
|
||||
if (size > strides.back() || (size == strides.back() && !have_expand)) {
|
||||
if (size >= strides.back()) {
|
||||
return ReductionPlan(GeneralStridedReduce, shape, strides);
|
||||
}
|
||||
}
|
||||
|
@@ -6,16 +6,18 @@ namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
const array& in,
|
||||
const std::vector<int>& start_indices,
|
||||
const std::vector<int>& strides) {
|
||||
std::vector<int>& start_indices,
|
||||
std::vector<int>& strides) {
|
||||
int64_t data_offset = 0;
|
||||
bool copy_needed = false;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides[i];
|
||||
|
||||
copy_needed |= strides[i] < 0;
|
||||
}
|
||||
|
||||
return std::make_tuple(copy_needed, data_offset, inp_strides);
|
||||
}
|
||||
|
||||
@@ -23,18 +25,28 @@ void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [no_bsx_size, is_row_contiguous, is_col_contiguous] =
|
||||
auto [data_size, is_row_contiguous, is_col_contiguous] =
|
||||
check_contiguity(out.shape(), out_strides);
|
||||
|
||||
auto flags = in.flags();
|
||||
flags.row_contiguous = is_row_contiguous;
|
||||
flags.col_contiguous = is_col_contiguous;
|
||||
flags.contiguous = (no_bsx_size == data_size);
|
||||
|
||||
move_or_copy(in, out, out_strides, flags, data_size, data_offset);
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
flags.contiguous = true;
|
||||
} else if (data_size == in.data_size()) {
|
||||
// Means we sliced a broadcasted dimension so leave the "no holes" flag
|
||||
// alone.
|
||||
} else {
|
||||
// We sliced something. So either we are row or col contiguous or we
|
||||
// punched a hole.
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -8,14 +8,13 @@ namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
const array& in,
|
||||
const std::vector<int>& start_indices,
|
||||
const std::vector<int>& strides);
|
||||
std::vector<int>& start_indices,
|
||||
std::vector<int>& strides);
|
||||
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
array& out);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -111,29 +111,26 @@ void sort(const array& in, array& out, int axis) {
|
||||
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t in_size = in.flags().contiguous ? in.data_size() : in.size();
|
||||
size_t n_rows = in_size / in.shape(axis);
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
auto remaining_shape = in.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
|
||||
auto remaining_strides = out.strides();
|
||||
auto remaining_strides = in.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
size_t axis_stride = out.strides()[axis];
|
||||
int axis_size = out.shape(axis);
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
|
||||
// Perform sorting in place
|
||||
ContiguousIterator<size_t> src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out.data<T>() + src_it.loc;
|
||||
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -146,46 +143,34 @@ void argsort(const array& in, array& out, int axis) {
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
auto remaining_shape = in.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
|
||||
auto in_remaining_strides = in.strides();
|
||||
in_remaining_strides.erase(in_remaining_strides.begin() + axis);
|
||||
auto remaining_strides = in.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
auto out_remaining_shape = out.shape();
|
||||
out_remaining_shape.erase(out_remaining_shape.begin() + axis);
|
||||
|
||||
auto out_remaining_strides = out.strides();
|
||||
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
|
||||
|
||||
size_t in_stride = in.strides()[axis];
|
||||
size_t out_stride = out.strides()[axis];
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
|
||||
// Perform sorting
|
||||
ContiguousIterator<size_t> in_it(
|
||||
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
|
||||
ContiguousIterator<size_t> out_it(
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in.data<T>() + in_it.loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + out_it.loc;
|
||||
in_it.step();
|
||||
out_it.step();
|
||||
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
|
||||
const T* data_ptr = in.data<T>() + loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + loc;
|
||||
|
||||
StridedIterator st_(idx_ptr, out_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, out_stride, axis_size);
|
||||
StridedIterator st_(idx_ptr, axis_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, axis_stride, axis_size);
|
||||
|
||||
// Initialize with iota
|
||||
std::iota(st_, ed_, IdxT(0));
|
||||
|
||||
// Sort according to vals
|
||||
StridedIterator st(idx_ptr, out_stride, 0);
|
||||
StridedIterator ed(idx_ptr, out_stride, axis_size);
|
||||
StridedIterator st(idx_ptr, axis_stride, 0);
|
||||
StridedIterator ed(idx_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
std::stable_sort(st, ed, [data_ptr, axis_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * axis_stride];
|
||||
auto v2 = data_ptr[b * axis_stride];
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -199,8 +184,7 @@ void partition(const array& in, array& out, int axis, int kth) {
|
||||
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t in_size = in.flags().contiguous ? in.data_size() : in.size();
|
||||
size_t n_rows = in_size / in.shape(axis);
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto remaining_shape = in.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -214,11 +198,9 @@ void partition(const array& in, array& out, int axis, int kth) {
|
||||
kth = kth < 0 ? kth + axis_size : kth;
|
||||
|
||||
// Perform partition in place
|
||||
ContiguousIterator<size_t> src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out.data<T>() + src_it.loc;
|
||||
src_it.step();
|
||||
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
@@ -237,49 +219,37 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
auto remaining_shape = in.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
|
||||
auto in_remaining_strides = in.strides();
|
||||
in_remaining_strides.erase(in_remaining_strides.begin() + axis);
|
||||
auto remaining_strides = in.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
auto out_remaining_shape = out.shape();
|
||||
out_remaining_shape.erase(out_remaining_shape.begin() + axis);
|
||||
|
||||
auto out_remaining_strides = out.strides();
|
||||
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
|
||||
|
||||
size_t in_stride = in.strides()[axis];
|
||||
size_t out_stride = out.strides()[axis];
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
|
||||
kth = kth < 0 ? kth + axis_size : kth;
|
||||
|
||||
// Perform partition
|
||||
ContiguousIterator<size_t> in_it(
|
||||
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
|
||||
ContiguousIterator<size_t> out_it(
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in.data<T>() + in_it.loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + out_it.loc;
|
||||
in_it.step();
|
||||
out_it.step();
|
||||
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
|
||||
const T* data_ptr = in.data<T>() + loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + loc;
|
||||
|
||||
StridedIterator st_(idx_ptr, out_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, out_stride, axis_size);
|
||||
StridedIterator st_(idx_ptr, axis_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, axis_stride, axis_size);
|
||||
|
||||
// Initialize with iota
|
||||
std::iota(st_, ed_, IdxT(0));
|
||||
|
||||
// Sort according to vals
|
||||
StridedIterator st(idx_ptr, out_stride, 0);
|
||||
StridedIterator md(idx_ptr, out_stride, kth);
|
||||
StridedIterator ed(idx_ptr, out_stride, axis_size);
|
||||
StridedIterator st(idx_ptr, axis_stride, 0);
|
||||
StridedIterator md(idx_ptr, axis_stride, kth);
|
||||
StridedIterator ed(idx_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
std::nth_element(st, md, ed, [data_ptr, axis_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * axis_stride];
|
||||
auto v2 = data_ptr[b * axis_stride];
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
@@ -2,7 +2,7 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/backend/common/lapack_helper.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
@@ -12,7 +12,6 @@ namespace {
|
||||
// TODO: Add support for more combinations of input types.
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
VectorVectorVector,
|
||||
General,
|
||||
};
|
||||
|
||||
@@ -21,12 +20,6 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
TernaryOpType topt;
|
||||
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
|
||||
topt = TernaryOpType::ScalarScalarScalar;
|
||||
} else if (
|
||||
(a.flags().row_contiguous && b.flags().row_contiguous &&
|
||||
c.flags().row_contiguous) ||
|
||||
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
||||
c.flags().col_contiguous)) {
|
||||
topt = TernaryOpType::VectorVectorVector;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
@@ -40,77 +33,138 @@ void set_ternary_op_output_data(
|
||||
array& out,
|
||||
TernaryOpType topt,
|
||||
bool donate_with_move = false) {
|
||||
auto maybe_donate = [&out, donate_with_move](const array& x) {
|
||||
if (is_donatable(x, out)) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(x);
|
||||
} else {
|
||||
out.copy_shared_buffer(x);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
switch (topt) {
|
||||
case TernaryOpType::ScalarScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize()), 1, b.strides(), b.flags());
|
||||
break;
|
||||
case TernaryOpType::VectorVectorVector:
|
||||
if (!(maybe_donate(a) || maybe_donate(b) || maybe_donate(c))) {
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize() * b.data_size()),
|
||||
b.data_size(),
|
||||
b.strides(),
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case TernaryOpType::General:
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
break;
|
||||
}
|
||||
}
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
|
||||
void ternary_op_dims(
|
||||
const T1* a,
|
||||
const T2* b,
|
||||
const T3* c,
|
||||
U* out,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& c_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
auto stride_c = c_strides[axis];
|
||||
auto stride_out = out_strides[axis];
|
||||
auto N = shape[axis];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
out,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
c_strides,
|
||||
out_strides,
|
||||
axis + 1);
|
||||
} else {
|
||||
*out = op(*a, *b, *c);
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims1(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
c_idx += c.strides()[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims2(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
c_idx += c.strides()[1];
|
||||
}
|
||||
a += stride_a;
|
||||
b += stride_b;
|
||||
c += stride_c;
|
||||
out += stride_out;
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims3(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[2];
|
||||
b_idx += b.strides()[2];
|
||||
c_idx += c.strides()[2];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims4(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[3];
|
||||
b_idx += b.strides()[3];
|
||||
c_idx += c.strides()[3];
|
||||
}
|
||||
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
|
||||
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
|
||||
c_idx += c.strides()[2] - c.strides()[3] * c.shape()[3];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -121,69 +175,30 @@ void ternary_op_dispatch_dims(
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(
|
||||
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
|
||||
const auto& a_strides = strides[0];
|
||||
const auto& b_strides = strides[1];
|
||||
const auto& c_strides = strides[2];
|
||||
const auto& out_strides = strides[3];
|
||||
switch (out.ndim()) {
|
||||
case 1:
|
||||
ternary_op_dims1<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 2:
|
||||
ternary_op_dims2<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 3:
|
||||
ternary_op_dims3<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 4:
|
||||
ternary_op_dims4<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
}
|
||||
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
U* out_ptr = out.data<T3>();
|
||||
int ndim = shape.size();
|
||||
switch (ndim) {
|
||||
case 1:
|
||||
ternary_op_dims<T1, T2, T3, U, Op, 1>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
c_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 2:
|
||||
ternary_op_dims<T1, T2, T3, U, Op, 2>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
c_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> c_it(shape, c_strides, ndim - 2);
|
||||
size_t stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
ternary_op_dims<T1, T2, T3, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
c_ptr + c_it.loc,
|
||||
out_ptr + elem,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
c_strides,
|
||||
out_strides,
|
||||
ndim - 2);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
U* dst = out.data<U>();
|
||||
for (size_t i = 0; i < out.size(); i++) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
int c_idx = elem_to_loc(i, c.shape(), c.strides());
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -200,21 +215,10 @@ void ternary_op(
|
||||
// The full computation is scalar-scalar-scalar so we call the base op once.
|
||||
if (topt == TernaryOpType::ScalarScalarScalar) {
|
||||
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
|
||||
} else if (topt == TernaryOpType::VectorVectorVector) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
U* out_ptr = out.data<U>();
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
c_ptr++;
|
||||
out_ptr++;
|
||||
}
|
||||
} else {
|
||||
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
|
||||
return;
|
||||
}
|
||||
|
||||
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user