Compare commits

..

77 Commits

Author SHA1 Message Date
Angelos Katharopoulos
1ce0c0fcb0 Bump version (#1761) 2025-01-09 13:48:20 -08:00
Awni Hannun
657f466402 use sdpa and exportable functions in transformer multi head attention (#1760) 2025-01-09 13:11:55 -08:00
Alex Barron
c7b0300af5 Fix batched qmv bug (#1758) 2025-01-09 11:45:57 -08:00
Awni Hannun
da8c885784 Simplify removes no-ops from the tape (#1759)
* simplify removes no-ops from the tape

* comment
2025-01-09 11:23:19 -08:00
Awni Hannun
1ccaf80575 Dynamic broadcasting for shapeless compile/export (#1722)
* working towards dynamic broadcast

* shapeless broadcast

* fix build + nits

* use broadcast arrays in quantize matmul

* some cleanup / consistency

* mend

* some comments

* add vjp, jvp for broadcast axes
2025-01-09 11:04:24 -08:00
Cheng
ec36bfa317 Include command stdout in error message (#1756)
* Include command stdout in error message

* On Windows pclose returns the exit code
2025-01-08 07:17:03 -08:00
Cheng
b8f76f717a Print exceptions in eval_cpu/eval_gpu and abort (#1754) 2025-01-08 06:31:09 -08:00
Awni Hannun
d1766f2c70 Add boolean mask support in vector SDPA (#1757) 2025-01-07 20:24:53 -08:00
Awni Hannun
516ded618b Dynamic slicing (#1741)
* dynamic slice and slice update

* python bindings + tests + fix set item

* fix compile issue

* comment

* fix jit
2025-01-07 14:02:16 -08:00
Jesper Stemann Andersen
c9c81d0584 Added additional missing unordered_map include that fixes build on FreeBSD (#1755) 2025-01-07 08:27:55 -08:00
Angelos Katharopoulos
545f84d905 Refactor distributed backend (#1752) 2025-01-06 17:33:15 -08:00
Awni Hannun
d5ec172c95 Allow boolean mask in sdpa (#1753)
* allow boolean mask in sdpa

* more permissive donation in ternary
2025-01-06 16:57:07 -08:00
Angelos Katharopoulos
25b3a3e541 Optionally specify names for arrays when exporting (#1749) 2025-01-06 13:07:46 -08:00
Awni Hannun
058d6ce683 mpi send use input as output (#1750)
* mpi send use input as output

* move earlier
2025-01-06 06:08:43 -08:00
Angelos Katharopoulos
eab93985b8 Update custom function docs (#1748) 2025-01-03 16:35:25 -08:00
Awni Hannun
b51d70a83c export docs (#1747) 2025-01-03 15:04:17 -08:00
Awni Hannun
259025100e Fix nd ternary on GPU (#1746) 2025-01-03 11:52:17 -08:00
Awni Hannun
c9d30aa6ac MLX in C++ example (#1736)
* MLX in C++ example

* nits

* fix docs
2025-01-02 19:09:04 -08:00
Angelos Katharopoulos
8544b42007 Add namespace (#1745) 2025-01-02 16:49:23 -08:00
Awni Hannun
6fa0501387 Fix concatenate/slice_update vjp + reduce binary size (#1735)
* fix concatenate vjp + reduce binary size

* also cast in slice update
2025-01-02 16:36:33 -08:00
Awni Hannun
ae69cb15e9 shapeless compile in docs and partially shapeless reshape (#1742) 2025-01-02 16:24:42 -08:00
Awni Hannun
a64a8dfe45 fix extension (#1740) 2025-01-02 16:16:16 -08:00
Venkata Naga Aditya Datta Chivukula
491fa95b1f Added Kronecker Product (#1728) 2025-01-02 16:00:34 -08:00
Danilo Peixoto
92ec632ad5 Fix Distributed Communication documentation (#1731)
* Add missing `size()` method call for group
2025-01-02 14:08:38 -08:00
Cheng
8ecdfb718b Fix export.cpp compilation with MSVC (#1737) 2024-12-29 06:56:30 -08:00
Awni Hannun
4ba0c24a8f Export / import functions to / from a file (#1642)
* export and import functions

* refactor + works for few primitives

* nit

* allow primitives with state

* nit

* nit

* simplify serialize / deserialize

* fix for constants

* python bindings

* maybe fix serialize failure case

* add example

* more primitives, training kind of works

* same result for python and c++

* some fixes

* fix export

* template it up

* some simplificatoin

* rebase

* allow kwargs and multiple functions

* exporter

* more primitives for exporting

* deal with endianness

* handle invalid stream

* add docstring
2024-12-24 11:19:13 -08:00
Cheng
935c8c4bb1 Make mx.compile work on Windows (#1697)
* Invoke MSVC on Windows in mx.compile

* Export kernel symbol on MSVC

* Remove unused template

* Parse env pairs in a robust way

* No need of cassert

* Remove unnecessary helpers

* Fix right trim

* Move command building to a separate file

* Missing header

* Do not pollute cwd with cl.exe

* Simplify str concat

* Pass output dir

* Fix styling
2024-12-24 07:02:33 -08:00
Valentin Roussellet
88f993da38 Explicit parentheses around some logical operators (#1732)
* fix some warnings

* format
2024-12-24 07:02:20 -08:00
Awni Hannun
ebfe64b92d shapeless slice update and broadcast when possible (#1727) 2024-12-23 11:25:15 -08:00
Awni Hannun
0308e9af71 Allow offset to be an mx.array for mx.fast.rope (#1724)
* allow offset for rope

* comment
2024-12-19 15:51:44 -08:00
Awni Hannun
c3628eea49 Add mx.finfo and use it when making causal mask (#1726)
* finfo

* fixes

* docs
2024-12-19 14:52:41 -08:00
Awni Hannun
e03f0372b1 More shape type (#1705)
* more shape type

* fix
2024-12-19 08:08:20 -08:00
Alex Barron
f17536af9c More lenient mask type check in SDPA (#1723)
* check mask type

* require promotion
2024-12-18 19:41:38 -08:00
Cheng
ed4ec81bca Link python extension with mlx statically on Windows (#1716)
* Link python extension with mlx statically on Windows

* More readable code
2024-12-18 19:26:04 -08:00
Awni Hannun
7480059306 track resource limit and throw if exceeded (#1718) 2024-12-18 18:45:58 -08:00
Awni Hannun
8bae22b0fa fix deletion of non-evaled arrays with siblings (#1714) 2024-12-18 18:45:36 -08:00
Alex Barron
49c34c4161 check mask type (#1721) 2024-12-18 14:25:18 -08:00
Awni Hannun
5548fcc96d fix synch race (#1719) 2024-12-18 12:25:16 -08:00
Cheng
070bd433ab Shorter kernel name for Windows (#1701)
* Shorter kernel name for Windows

* Only hash the clipped part
2024-12-17 18:51:38 -08:00
Cheng
c8fb54951a Define NOMINMAX before windows.h (#1715) 2024-12-17 18:51:24 -08:00
Awni Hannun
f110357aaa Bump nanobind to 2.4 + fix (#1710)
* bump nanobind to 2.4 + fix

* fix
2024-12-17 10:57:54 -08:00
Tomohiro Oga
a6b426422e add cubic to type hinting for upsample (#1709) 2024-12-17 07:30:23 -08:00
Awni Hannun
d03c01dfbc fix unflatten vjp (#1708) 2024-12-16 18:37:57 -08:00
Jesper Stemann Andersen
a82996e9fb io/load: Enabled pread implementation for mingw32 (#1706) 2024-12-16 07:20:45 -08:00
Cheng
af5a614aad Eval before cleanup so model file is unlocked (#1702) 2024-12-14 21:41:49 -08:00
Cheng
f9640e049d Install mlx.dll into the same dir with python bindings on Windows (#1690)
* Install mlx.dll into the same dir with python bindings on Windows

* Set BUILD_SHARED_LIBS for dlfcn-win32

* Update cmake requirements to 3.25

* Fix cmake style
2024-12-13 19:50:39 -08:00
Cheng
4768c61b57 Make sure gguf_ctx is closed when error happens (#1699) 2024-12-13 19:50:19 -08:00
Cheng
dfccd17ab9 Use psutil to get memory info on Windows (#1700) 2024-12-13 19:50:13 -08:00
Cheng
635117c5d4 Read/write files in binary mode (#1698) 2024-12-13 17:37:05 -08:00
Awni Hannun
50f3535693 Use expand_dims / unflatten / etc in more places (#1696)
* use expand_dims / unflatten in a couple more places

* few more

* few more

* fix
2024-12-12 17:00:44 -08:00
Awni Hannun
9111999af3 Fix small sort with metal validation (#1695) 2024-12-12 09:21:45 -08:00
Awni Hannun
6bd28d246e Allow no copy negative strides in as_strided and slice (#1688)
* allow no copy negative strides in as_strided and slice

* fix jit

* fix jit
2024-12-12 08:59:45 -08:00
Cheng
4d595a2a39 Make compiled preamble work in MSVC (#1675)
* Make compiled preamble work in MSVC

* Remove logging

* Only use powershell for MSVC
2024-12-12 08:55:49 -08:00
Awni Hannun
3a21f61772 Fix build (#1693) 2024-12-11 23:56:25 -08:00
Awni Hannun
4e1e9520e1 Flatten and unflatten (#1692)
* flatten and unflatten

* fix grad

* fix shape infer

* use squeeze + unsqueeze in get_item
2024-12-11 21:51:37 -08:00
Cheng
0bf19037ca Remove "using namespace mlx::core" in python/src (#1689) 2024-12-11 15:45:39 -08:00
Awni Hannun
f3dfa36a3a Fix x86 tests (#1691)
* fix x86 tests

* comment
2024-12-11 07:47:18 -08:00
Cheng
4f9b60dd53 Remove "using namespace mlx::core" in benchmarks/examples (#1685)
* Remove "using namespace mlx::core" in benchmarks/examples

* Fix building example extension

* A missing one in comment

* Fix building on M chips
2024-12-11 07:08:29 -08:00
Awni Hannun
f76a49e555 ExpandDims primitive (#1687)
* add squeeze primitive

* simplify squeeze, use in gather

* fix

* fix

* fix

* fix

* fix no cpu

* use squeeze in matmul and friends

* expand dims primitive

* comment
2024-12-10 16:39:07 -08:00
Cheng
310ad8d9db Build OpenBLAS from source code for MSVC (#1674)
* Download OpenBLAS binaries when building with MSVC

* Download dlfcn-win32

* Link with dlfcn-win32 correctly

* Build OpenBLAS from source code

* Link with openblas statically

* Link with BLAS privately
2024-12-10 16:14:44 -08:00
Cheng
56db268f47 Provide a pread implementation for MSVC (#1666) 2024-12-10 15:55:53 -08:00
Cheng
92ab6bdeb8 Fix shared library not exporting symbols on Windows (#1684)
* Fix shared library not exporting symbols on Windows

* Function name style
2024-12-10 13:59:14 -08:00
Cheng
0070e360a1 Disable MSVC warnings (#1680) 2024-12-09 19:41:14 -08:00
Amethyst Shen
9df8fed046 Metal-cpp version bump (#1668)
* Metal-cpp version bump

Apple has released the stable version of Metal-cpp for macOS 15 and iOS 18. CMakeLists.txt is updated to build with it instead of the beta one.

* Fix style with cmake-format
2024-12-09 19:40:35 -08:00
Cheng
a59fae040f Fix library output directory for MSVC (#1681) 2024-12-09 19:07:50 -08:00
Awni Hannun
29a620cab2 No reshapes in quantized embedding (#1682)
* no reshapes in quantized embedding

* fix inadvertant cast

* add tol
2024-12-09 18:57:38 -08:00
Cheng
87d7a2520e Use Py_ssize_t in python bindings (#1678)
* Use Py_ssize_t in python bindings

* Args passed to std::max must be same type
2024-12-09 12:59:19 -08:00
Awni Hannun
40c62c1321 Use int64 stride everywhere (#1671)
* use int64 stride everywhere

* fix ext

* fix ext

* more shape + cleanup

* one more

* few more
2024-12-09 11:09:02 -08:00
Awni Hannun
35b412c099 Fix compile hasher for string constants. (#1677)
* fix hash

* add test

* nit
2024-12-09 09:26:18 -08:00
Cheng
d0f471cff7 Using math defines requires switch in MSVC (#1665)
* Using math defines requires switch in MSVC

* Fix more math macros

* Fix type

* Remove _MSC_VER guard for math defines
2024-12-08 08:16:28 -08:00
Cheng
6f316b8bf5 Use int64_t instead of ssize_t (#1673) 2024-12-07 20:10:44 -08:00
Cheng
7c10c93a1f Convert filesystem path to std::string explicitly (#1672) 2024-12-07 20:10:06 -08:00
Cheng
d92ea094f1 Use && instead of and (#1663)
* Use && instead of and

* Remove "and" in ops.cpp
2024-12-07 18:26:39 -08:00
Cheng
6ae5423b4a Do not pass integers to isnan (#1664) 2024-12-07 18:26:23 -08:00
Cheng
9635cffdc8 Include io.h in MSVC for IO functions (#1661) 2024-12-07 18:26:06 -08:00
Cheng
96986fb362 Use auto* for pointers (#1662) 2024-12-07 18:25:40 -08:00
Cheng
3ceb341a75 Use correct complex type for MSVC (#1660) 2024-12-07 18:25:22 -08:00
248 changed files with 10243 additions and 5013 deletions

View File

@@ -85,7 +85,7 @@ jobs:
name: Install dependencies
command: |
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.4.0
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
@@ -137,7 +137,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.4.0
pip install numpy
pip install torch
pip install tensorflow
@@ -226,7 +226,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install twine
@@ -291,7 +291,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel

3
.gitignore vendored
View File

@@ -76,6 +76,9 @@ build/
*.out
*.app
# Debug symbols
*.pdb
# VSCode
.vscode/
.DS_Store

View File

@@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.24)
cmake_minimum_required(VERSION 3.25)
project(mlx LANGUAGES C CXX)
@@ -20,12 +20,14 @@ option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.21.1)
set(MLX_VERSION 0.22.0)
endif()
add_compile_definitions("MLX_VERSION=${MLX_VERSION}")
# --------------------- Processor tests -------------------------
@@ -93,8 +95,7 @@ elseif(MLX_BUILD_METAL)
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
)
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
@@ -113,16 +114,55 @@ elseif(MLX_BUILD_METAL)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
endif()
if(WIN32)
if(MSVC)
# GGUF does not build with MSVC.
set(MLX_BUILD_GGUF OFF)
# There is no prebuilt OpenBLAS distribution for MSVC.
set(MLX_BUILD_BLAS_FROM_SOURCE ON)
endif()
# Windows implementation of dlfcn.h APIs.
FetchContent_Declare(
dlfcn-win32
GIT_REPOSITORY https://github.com/dlfcn-win32/dlfcn-win32.git
GIT_TAG v1.4.1
EXCLUDE_FROM_ALL)
block()
set(BUILD_SHARED_LIBS OFF)
FetchContent_MakeAvailable(dlfcn-win32)
endblock()
target_include_directories(mlx PRIVATE "${dlfcn-win32_SOURCE_DIR}/src")
target_link_libraries(mlx PRIVATE dl)
endif()
if(MLX_BUILD_CPU)
find_library(ACCELERATE_LIBRARY Accelerate)
if(ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
else()
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
endif()
if(MLX_BUILD_ACCELERATE)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
elseif(MLX_BUILD_BLAS_FROM_SOURCE)
# Download and build OpenBLAS from source code.
FetchContent_Declare(
openblas
GIT_REPOSITORY https://github.com/OpenMathLib/OpenBLAS.git
GIT_TAG v0.3.28
EXCLUDE_FROM_ALL)
set(BUILD_STATIC_LIBS ON) # link statically
set(NOFORTRAN ON) # msvc has no fortran compiler
FetchContent_MakeAvailable(openblas)
target_link_libraries(mlx PRIVATE openblas)
target_include_directories(
mlx PRIVATE "${openblas_SOURCE_DIR}/lapack-netlib/LAPACKE/include"
"${CMAKE_BINARY_DIR}/generated" "${CMAKE_BINARY_DIR}")
else()
if(${CMAKE_HOST_APPLE})
# The blas shipped in macOS SDK is not supported, search homebrew for
# openblas instead.
@@ -140,7 +180,7 @@ if(MLX_BUILD_CPU)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
target_link_libraries(mlx PRIVATE ${LAPACK_LIBRARIES})
# List blas after lapack otherwise we may accidentally incldue an old
# version of lapack.h from the include dirs of blas.
find_package(BLAS REQUIRED)
@@ -153,14 +193,7 @@ if(MLX_BUILD_CPU)
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
if(WIN32)
find_package(dlfcn-win32 REQUIRED)
message(STATUS "dlfcn-win32 lib " ${dlfcn-win32_LIBRARIES})
message(STATUS "dlfcn-win32 include " ${dlfcn-win32_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${dlfcn-win32_LIBRARIES})
endif()
target_link_libraries(mlx PRIVATE ${BLAS_LIBRARIES})
endif()
else()
set(MLX_BUILD_ACCELERATE OFF)
@@ -207,8 +240,7 @@ if(MLX_BUILD_PYTHON_BINDINGS)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
OUTPUT_VARIABLE nanobind_ROOT)
find_package(nanobind CONFIG REQUIRED)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
endif()

View File

@@ -5,35 +5,35 @@
#include "mlx/mlx.h"
#include "time_utils.h"
using namespace mlx::core;
namespace mx = mlx::core;
void time_value_and_grad() {
auto x = ones({200, 1000});
eval(x);
auto fn = [](array x) {
auto x = mx::ones({200, 1000});
mx::eval(x);
auto fn = [](mx::array x) {
for (int i = 0; i < 20; ++i) {
x = log(exp(x));
x = mx::log(mx::exp(x));
}
return sum(x);
return mx::sum(x);
};
auto grad_fn = grad(fn);
auto grad_fn = mx::grad(fn);
auto independent_value_and_grad = [&]() {
auto value = fn(x);
auto dfdx = grad_fn(x);
return std::vector<array>{value, dfdx};
return std::vector<mx::array>{value, dfdx};
};
TIME(independent_value_and_grad);
auto value_and_grad_fn = value_and_grad(fn);
auto value_and_grad_fn = mx::value_and_grad(fn);
auto combined_value_and_grad = [&]() {
auto [value, dfdx] = value_and_grad_fn(x);
return std::vector<array>{value, dfdx};
return std::vector<mx::array>{value, dfdx};
};
TIME(combined_value_and_grad);
}
int main() {
std::cout << "Benchmarks for " << default_device() << std::endl;
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
time_value_and_grad();
}

View File

@@ -4,21 +4,21 @@
#include "mlx/mlx.h"
#include "time_utils.h"
using namespace mlx::core;
namespace mx = mlx::core;
void time_add_op() {
std::vector<int> sizes(1, 1);
for (int i = 0; i < 9; ++i) {
sizes.push_back(10 * sizes.back());
}
set_default_device(Device::cpu);
set_default_device(mx::Device::cpu);
for (auto size : sizes) {
auto a = random::uniform({size});
auto b = random::uniform({size});
eval(a, b);
auto a = mx::random::uniform({size});
auto b = mx::random::uniform({size});
mx::eval(a, b);
std::cout << "Size " << size << std::endl;
TIMEM("cpu", add, a, b, Device::cpu);
TIMEM("gpu", add, a, b, Device::gpu);
TIMEM("cpu", mx::add, a, b, mx::Device::cpu);
TIMEM("gpu", mx::add, a, b, mx::Device::gpu);
}
}

View File

@@ -6,105 +6,105 @@
#include "mlx/mlx.h"
#include "time_utils.h"
using namespace mlx::core;
namespace mx = mlx::core;
void time_irregular_binary_ops_1D() {
auto device = default_device();
auto device = mx::default_device();
int size = 1000000;
int step = 2;
auto a = random::uniform({size});
auto b = random::uniform({size});
eval(a, b);
auto a = mx::random::uniform({size});
auto b = mx::random::uniform({size});
mx::eval(a, b);
a = slice(a, {0}, {size}, {step});
b = slice(b, {0}, {size}, {step});
TIMEM("1D strided", add, a, b, device);
TIMEM("1D strided", mx::add, a, b, device);
}
void time_irregular_binary_ops_2D() {
auto device = default_device();
auto device = mx::default_device();
int size = 2048;
auto a = random::uniform({size, size});
auto b = random::uniform({size, size});
eval(a, b);
TIMEM("2D regular", add, a, b, device);
auto a = mx::random::uniform({size, size});
auto b = mx::random::uniform({size, size});
mx::eval(a, b);
TIMEM("2D regular", mx::add, a, b, device);
b = transpose(b);
eval(b);
TIMEM("2D transpose", add, a, b, device);
b = mx::transpose(b);
mx::eval(b);
TIMEM("2D mx::transpose", mx::add, a, b, device);
b = random::uniform({size});
eval(b);
TIMEM("2D broadcast dim 0", add, a, b, device);
b = mx::random::uniform({size});
mx::eval(b);
TIMEM("2D broadcast dim 0", mx::add, a, b, device);
b = reshape(b, {size, 1});
eval(b);
TIMEM("2D broadcast dim 1", add, a, b, device);
b = mx::reshape(b, {size, 1});
mx::eval(b);
TIMEM("2D broadcast dim 1", mx::add, a, b, device);
}
void time_irregular_binary_ops_3D() {
auto device = default_device();
auto device = mx::default_device();
int d0 = 32;
int d1 = 512;
int d2 = 512;
auto a = random::uniform({d0, d1, d2});
auto b = random::uniform({d0, d1, d2});
TIMEM("3D regular", add, a, b, device);
auto a = mx::random::uniform({d0, d1, d2});
auto b = mx::random::uniform({d0, d1, d2});
TIMEM("3D regular", mx::add, a, b, device);
b = transpose(b, {0, 2, 1});
TIMEM("3D transpose", add, a, b, device);
b = mx::transpose(b, {0, 2, 1});
TIMEM("3D mx::transpose", mx::add, a, b, device);
b = random::uniform({d1, d2});
TIMEM("3D broadcast dim 0", add, a, b, device);
b = mx::random::uniform({d1, d2});
TIMEM("3D broadcast dim 0", mx::add, a, b, device);
b = random::uniform({d0, 1, d2});
TIMEM("3D broadcast dim 1", add, a, b, device);
b = mx::random::uniform({d0, 1, d2});
TIMEM("3D broadcast dim 1", mx::add, a, b, device);
b = random::uniform({d0, d1, 1});
TIMEM("3D broadcast dim 2", add, a, b, device);
b = mx::random::uniform({d0, d1, 1});
TIMEM("3D broadcast dim 2", mx::add, a, b, device);
b = random::uniform({d2});
TIMEM("3D broadcast dims 0, 1", add, a, b, device);
b = mx::random::uniform({d2});
TIMEM("3D broadcast dims 0, 1", mx::add, a, b, device);
b = random::uniform({d1, 1});
TIMEM("3D broadcast dims 0, 2", add, a, b, device);
b = mx::random::uniform({d1, 1});
TIMEM("3D broadcast dims 0, 2", mx::add, a, b, device);
b = random::uniform({d0, 1, 1});
TIMEM("3D broadcast dims 1, 2", add, a, b, device);
b = mx::random::uniform({d0, 1, 1});
TIMEM("3D broadcast dims 1, 2", mx::add, a, b, device);
}
void time_irregular_binary_ops_4D() {
auto device = default_device();
auto device = mx::default_device();
std::vector<int> shape = {8, 8, 512, 512};
auto a = random::uniform(shape);
auto b = random::uniform(shape);
auto a = mx::random::uniform(shape);
auto b = mx::random::uniform(shape);
TIMEM("4D regular", add, a, b, device);
TIMEM("4D regular", mx::add, a, b, device);
b = transpose(b, {0, 1, 3, 2});
TIMEM("4D transpose", add, a, b, device);
b = mx::transpose(b, {0, 1, 3, 2});
TIMEM("4D mx::transpose", mx::add, a, b, device);
std::string om = "4D broadcast dims ";
for (int i = 0; i < shape.size(); ++i) {
shape[i] = 1;
b = random::uniform(shape);
b = mx::random::uniform(shape);
std::ostringstream msg;
msg << om << i;
TIMEM(msg.str(), add, a, b, device);
TIMEM(msg.str(), mx::add, a, b, device);
for (int j = i + 1; j < shape.size(); ++j) {
shape[j] = 1;
std::ostringstream msg;
msg << om << i << ", " << j;
b = random::uniform(shape);
TIMEM(msg.str(), add, a, b, device);
b = mx::random::uniform(shape);
TIMEM(msg.str(), mx::add, a, b, device);
shape[j] = a.shape(j);
for (int k = j + 1; k < shape.size(); ++k) {
shape[k] = 1;
std::ostringstream msg;
msg << om << i << ", " << j << ", " << k;
b = random::uniform(shape);
TIMEM(msg.str(), add, a, b, device);
b = mx::random::uniform(shape);
TIMEM(msg.str(), mx::add, a, b, device);
shape[k] = a.shape(k);
}
}
@@ -113,83 +113,83 @@ void time_irregular_binary_ops_4D() {
}
void time_irregular_reshape() {
auto device = default_device();
auto device = mx::default_device();
std::vector<int> shape;
auto reshape_fn = [&shape, device](const array& a) {
return reshape(a, shape, device);
auto reshape_fn = [&shape, device](const mx::array& a) {
return mx::reshape(a, shape, device);
};
int size = 64;
int d = 2 * size;
auto a = random::uniform({d, d, d});
auto a = mx::random::uniform({d, d, d});
shape = {8 * size, size, size};
TIMEM("3D contiguous", reshape_fn, a);
a = transpose(a);
a = mx::transpose(a);
shape = {8 * size, size, size};
TIMEM("3D transpose", reshape_fn, a);
TIMEM("3D mx::transpose", reshape_fn, a);
a = transpose(a, {1, 2, 0});
a = mx::transpose(a, {1, 2, 0});
shape = {8 * size, size, size};
TIMEM("3D transpose dims 1 2", reshape_fn, a);
TIMEM("3D mx::transpose dims 1 2", reshape_fn, a);
a = broadcast_to(random::uniform({d, d}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d, d}), {d, d, d});
TIMEM("3D broadcast dim 0", reshape_fn, a);
a = broadcast_to(random::uniform({d, 1, d}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d, 1, d}), {d, d, d});
TIMEM("3D broadcast dim 1", reshape_fn, a);
a = broadcast_to(random::uniform({d, d, 1}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d, d, 1}), {d, d, d});
TIMEM("3D broadcast dim 2", reshape_fn, a);
a = broadcast_to(random::uniform({d}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d}), {d, d, d});
TIMEM("3D broadcast dims 0, 1", reshape_fn, a);
a = broadcast_to(random::uniform({d, 1}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d, 1}), {d, d, d});
TIMEM("3D broadcast dims 0, 2", reshape_fn, a);
a = broadcast_to(random::uniform({d, 1, 1}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({d, 1, 1}), {d, d, d});
TIMEM("3D broadcast dims 1, 2", reshape_fn, a);
a = broadcast_to(random::uniform({1, 1, 1}), {d, d, d});
a = mx::broadcast_to(mx::random::uniform({1, 1, 1}), {d, d, d});
TIMEM("3D broadcast dims 1, 2, 3", reshape_fn, a);
}
void time_irregular_astype_1D() {
auto device = default_device();
auto device = mx::default_device();
int size = 1000000;
int step = 2;
auto a = random::uniform({size});
auto a = mx::random::uniform({size});
a = slice(a, {0}, {size}, {step});
TIMEM("1D strided", astype, a, int32, device);
TIMEM("1D strided", mx::astype, a, mx::int32, device);
}
void time_irregular_astype_2D() {
auto device = default_device();
auto device = mx::default_device();
int size = 2048;
std::vector<int> shape = {size, size};
auto a = random::uniform(shape);
TIMEM("2D regular", astype, a, int32, device);
auto a = mx::random::uniform(shape);
TIMEM("2D regular", mx::astype, a, mx::int32, device);
a = transpose(a);
TIMEM("2D transpose", astype, a, int32, device);
a = mx::transpose(a);
TIMEM("2D mx::transpose", mx::astype, a, mx::int32, device);
a = broadcast_to(random::uniform({size}), shape);
TIMEM("2D broadcast dim 0", astype, a, int32, device);
a = mx::broadcast_to(mx::random::uniform({size}), shape);
TIMEM("2D broadcast dim 0", mx::astype, a, mx::int32, device);
a = broadcast_to(random::uniform({size, 1}), shape);
TIMEM("2D broadcast dim 1", astype, a, int32, device);
a = mx::broadcast_to(mx::random::uniform({size, 1}), shape);
TIMEM("2D broadcast dim 1", mx::astype, a, mx::int32, device);
}
int main(int argc, char** argv) {
if (argc > 1) {
bool use_gpu = !strcmp(argv[1], "gpu");
set_default_device(use_gpu ? Device::gpu : Device::cpu);
set_default_device(use_gpu ? mx::Device::gpu : mx::Device::cpu);
}
std::cout << "Benchmarks for " << default_device() << std::endl;
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
time_irregular_binary_ops_1D();
time_irregular_binary_ops_2D();
time_irregular_binary_ops_3D();

View File

@@ -3,20 +3,20 @@
#include "mlx/mlx.h"
#include "time_utils.h"
using namespace mlx::core;
namespace mx = mlx::core;
void time_creation_ops() {
int M = 2000;
int N = 500;
auto shape = {M, N};
auto full_fp32 = [&]() { return full(shape, 3.3f); };
auto full_fp32 = [&]() { return mx::full(shape, 3.3f); };
TIME(full_fp32);
auto zeros_fp32 = [&]() { return zeros(shape, float32); };
auto zeros_fp32 = [&]() { return mx::zeros(shape, mx::float32); };
TIME(zeros_fp32);
auto ones_fp32 = [&]() { return ones(shape, float32); };
auto ones_fp32 = [&]() { return mx::ones(shape, mx::float32); };
TIME(ones_fp32);
auto arange_fp32 = [&]() { return arange(0.0, 10.0, 1e-4); };
auto arange_fp32 = [&]() { return mx::arange(0.0, 10.0, 1e-4); };
TIME(arange_fp32);
}
@@ -24,194 +24,196 @@ void time_type_conversions() {
int M = 2000;
int N = 500;
auto shape = {M, N};
auto device = default_device();
auto device = mx::default_device();
auto a = zeros(shape, float32);
eval(a);
TIMEM("float32 to int32", astype, a, int32, device);
TIMEM("float32 to uint32", astype, a, uint32, device);
auto a = mx::zeros(shape, mx::float32);
mx::eval(a);
TIMEM("mx::float32 to mx::int32", mx::astype, a, mx::int32, device);
TIMEM("mx::float32 to mx::uint32", mx::astype, a, mx::uint32, device);
a = zeros(shape, int32);
eval(a);
TIMEM("int32 to float32", astype, a, float32, device);
a = mx::zeros(shape, mx::int32);
mx::eval(a);
TIMEM("mx::int32 to mx::float32", mx::astype, a, mx::float32, device);
a = zeros(shape, bool_);
eval(a);
TIMEM("bool to float32", astype, a, float32, device);
TIMEM("bool to int32", astype, a, int32, device);
TIMEM("bool to uint32", astype, a, uint32, device);
a = mx::zeros(shape, mx::bool_);
mx::eval(a);
TIMEM("bool to mx::float32", mx::astype, a, mx::float32, device);
TIMEM("bool to mx::int32", mx::astype, a, mx::int32, device);
TIMEM("bool to mx::uint32", mx::astype, a, mx::uint32, device);
}
void time_random_generation() {
int M = 2000;
int N = 500;
auto uniform = [&]() { return random::uniform({M, N}, float32); };
auto uniform = [&]() { return mx::random::uniform({M, N}, mx::float32); };
TIME(uniform);
auto normal = [&]() { return random::normal({M, N}, float32); };
auto normal = [&]() { return mx::random::normal({M, N}, mx::float32); };
TIME(normal);
}
void time_unary_ops() {
int M = 2000;
int N = 500;
auto device = default_device();
auto device = mx::default_device();
auto a = random::normal({M, N});
eval(a);
auto a = mx::random::normal({M, N});
mx::eval(a);
TIME(mlx::core::abs, a, device);
TIME(negative, a, device);
TIME(sign, a, device);
TIME(square, a, device);
TIME(mx::negative, a, device);
TIME(mx::sign, a, device);
TIME(mx::square, a, device);
TIME(mlx::core::sqrt, a, device);
TIME(rsqrt, a, device);
TIME(mx::rsqrt, a, device);
TIME(mlx::core::exp, a, device);
a = random::uniform({M, N});
a = mx::random::uniform({M, N});
TIME(mlx::core::log, a, device);
}
void time_binary_ops() {
int M = 1000, N = 100, K = 10;
auto condition = random::randint(0, 2, {M, N, K});
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
eval(a, b);
auto condition = mx::random::randint(0, 2, {M, N, K});
auto a = mx::random::uniform({M, N, K});
auto b = mx::random::uniform({M, N, K});
auto device = mx::default_device();
mx::eval(a, b);
TIME(add, a, b, device);
TIME(subtract, a, b, device);
TIME(multiply, a, b, device);
TIME(divide, a, b, device);
TIME(maximum, a, b, device);
TIME(minimum, a, b, device);
TIME(where, condition, a, b, device);
TIME(mx::add, a, b, device);
TIME(mx::subtract, a, b, device);
TIME(mx::multiply, a, b, device);
TIME(mx::divide, a, b, device);
TIME(mx::maximum, a, b, device);
TIME(mx::minimum, a, b, device);
TIME(mx::where, condition, a, b, device);
condition = array({true});
b = random::uniform({1});
eval(b);
TIMEM("scalar", add, a, b, device);
TIMEM("vector-scalar", subtract, a, b, device);
TIMEM("scalar-vector", subtract, b, a, device);
TIMEM("scalar", multiply, a, b, device);
TIMEM("vector-scalar", divide, a, b, device);
TIMEM("scalar-vector", divide, b, a, device);
TIMEM("scalar-vector", where, condition, a, b, device);
condition = mx::array({true});
b = mx::random::uniform({1});
mx::eval(b);
TIMEM("scalar", mx::add, a, b, device);
TIMEM("vector-scalar", mx::subtract, a, b, device);
TIMEM("scalar-vector", mx::subtract, b, a, device);
TIMEM("scalar", mx::multiply, a, b, device);
TIMEM("vector-scalar", mx::divide, a, b, device);
TIMEM("scalar-vector", mx::divide, b, a, device);
TIMEM("scalar-vector", mx::where, condition, a, b, device);
condition = broadcast_to(array({true}), {1000, 100});
a = broadcast_to(random::uniform({1}), {1000, 100});
b = broadcast_to(random::uniform({1}), {1000, 100});
eval(a, b);
TIMEM("scalar-scalar broadcast", add, a, b, device);
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
TIMEM("scalar-scalar broadcast", divide, a, b, device);
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
condition = mx::broadcast_to(mx::array({true}), {1000, 100});
a = mx::broadcast_to(mx::random::uniform({1}), {1000, 100});
b = mx::broadcast_to(mx::random::uniform({1}), {1000, 100});
mx::eval(a, b);
TIMEM("scalar-scalar broadcast", mx::add, a, b, device);
TIMEM("scalar-scalar broadcast", mx::subtract, a, b, device);
TIMEM("scalar-scalar broadcast", mx::multiply, a, b, device);
TIMEM("scalar-scalar broadcast", mx::divide, a, b, device);
TIMEM("scalar-scalar broadcast", mx::where, condition, a, b, device);
}
void time_strided_ops() {
int M = 50, N = 50, O = 50, P = 50;
auto a = random::uniform({M, N, O, P});
auto b = random::uniform({M, N, O, P});
auto device = default_device();
eval(a, b);
TIMEM("non-strided", add, a, b, device);
a = transpose(a, {1, 0, 2, 3});
b = transpose(b, {3, 2, 0, 1});
eval(a, b);
TIMEM("strided", add, a, b, device);
auto a = mx::random::uniform({M, N, O, P});
auto b = mx::random::uniform({M, N, O, P});
auto device = mx::default_device();
mx::eval(a, b);
TIMEM("non-strided", mx::add, a, b, device);
a = mx::transpose(a, {1, 0, 2, 3});
b = mx::transpose(b, {3, 2, 0, 1});
mx::eval(a, b);
TIMEM("strided", mx::add, a, b, device);
}
void time_comparisons() {
int M = 1000, N = 100, K = 10;
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
eval(a, b);
TIME(equal, a, b, device);
TIME(greater, a, b, device);
TIME(greater_equal, a, b, device);
TIME(less, a, b, device);
TIME(less_equal, a, b, device);
auto a = mx::random::uniform({M, N, K});
auto b = mx::random::uniform({M, N, K});
auto device = mx::default_device();
mx::eval(a, b);
TIME(mx::equal, a, b, device);
TIME(mx::greater, a, b, device);
TIME(mx::greater_equal, a, b, device);
TIME(mx::less, a, b, device);
TIME(mx::less_equal, a, b, device);
}
void time_matvec() {
int M = 2000, N = 200;
auto a = random::uniform({M, N});
auto b = random::uniform({N});
auto c = random::uniform({M});
eval(a, b, c);
auto matvec = [&]() { return matmul(a, b); };
auto a = mx::random::uniform({M, N});
auto b = mx::random::uniform({N});
auto c = mx::random::uniform({M});
mx::eval(a, b, c);
auto matvec = [&]() { return mx::matmul(a, b); };
TIME(matvec);
auto matvec_transpose = [&]() { return matmul(transpose(a), c); };
auto matvec_transpose = [&]() { return mx::matmul(mx::transpose(a), c); };
TIME(matvec_transpose);
}
void time_matmul() {
int M = 1000, N = 1000, K = 1000;
auto a = random::uniform({M, K});
auto b = random::uniform({K, N});
auto device = default_device();
eval(a, b);
TIME(matmul, a, b, device);
auto a = mx::random::uniform({M, K});
auto b = mx::random::uniform({K, N});
auto device = mx::default_device();
mx::eval(a, b);
TIME(mx::matmul, a, b, device);
auto transpose_matmul = [&]() { return matmul(transpose(a), b); };
auto transpose_matmul = [&]() { return mx::matmul(mx::transpose(a), b); };
TIME(transpose_matmul);
}
void time_reductions() {
auto a = random::normal({10000, 1000});
eval(a);
auto sum_all = [&a]() { return sum(a, false); };
auto a = mx::random::normal({10000, 1000});
mx::eval(a);
auto sum_all = [&a]() { return mx::sum(a, false); };
TIME(sum_all);
auto sum_along_0 = [&a]() { return sum(a, 0, false); };
auto sum_along_0 = [&a]() { return mx::sum(a, 0, false); };
TIME(sum_along_0);
auto sum_along_1 = [&a]() { return sum(a, 1, false); };
auto sum_along_1 = [&a]() { return mx::sum(a, 1, false); };
TIME(sum_along_1);
auto prod_all = [&a]() { return prod(a, false); };
auto prod_all = [&a]() { return mx::prod(a, false); };
TIME(prod_all);
auto all_true = [&a]() { return all(a, false); };
auto all_true = [&a]() { return mx::all(a, false); };
TIME(all_true);
auto all_along_0 = [&a]() { return all(a, 0, false); };
auto all_along_0 = [&a]() { return mx::all(a, 0, false); };
TIME(all_along_0);
auto all_along_1 = [&a]() { return all(a, 1, false); };
auto all_along_1 = [&a]() { return mx::all(a, 1, false); };
TIME(all_along_1);
auto any_true = [&a]() { return any(a, false); };
auto any_true = [&a]() { return mx::any(a, false); };
TIME(any_true);
auto argmin_along_0 = [&a]() { return argmin(a, 0, false); };
auto argmin_along_0 = [&a]() { return mx::argmin(a, 0, false); };
TIME(argmin_along_0);
auto argmin_along_1 = [&a]() { return argmin(a, 1, false); };
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
TIME(argmin_along_1);
}
void time_gather_scatter() {
auto a = random::normal({1000, 768});
eval(a);
auto indices = random::randint(0, 1000, {256});
eval(indices);
auto a = mx::random::normal({1000, 768});
mx::eval(a);
auto indices = mx::random::randint(0, 1000, {256});
mx::eval(indices);
auto embedding_lookup = [&a, &indices]() { return take(a, indices, 0); };
auto embedding_lookup = [&a, &indices]() { return mx::take(a, indices, 0); };
TIME(embedding_lookup);
indices = random::randint(0, 768 * 1000, {256 * 768});
eval(indices);
indices = mx::random::randint(0, 768 * 1000, {256 * 768});
mx::eval(indices);
auto single_element_lookup = [&a, &indices]() { return take(a, indices); };
auto single_element_lookup = [&a, &indices]() {
return mx::take(a, indices);
};
TIME(single_element_lookup);
indices = random::randint(0, 1000, {256});
auto updates = random::normal({256, 1, 768});
eval(indices, updates);
indices = mx::random::randint(0, 1000, {256});
auto updates = mx::random::normal({256, 1, 768});
mx::eval(indices, updates);
auto embedding_update = [&a, &indices, &updates]() {
return scatter(a, indices, updates, 0);
@@ -223,10 +225,10 @@ void time_gather_scatter() {
};
TIME(embedding_add);
a = reshape(a, {-1});
indices = random::randint(0, 768 * 1000, {768 * 256});
updates = random::normal({256 * 768, 1});
eval(a, indices, updates);
a = mx::reshape(a, {-1});
indices = mx::random::randint(0, 768 * 1000, {768 * 256});
updates = mx::random::normal({256 * 768, 1});
mx::eval(a, indices, updates);
auto single_element_update = [&a, &indices, &updates]() {
return scatter(a, indices, updates, 0);
@@ -240,21 +242,21 @@ void time_gather_scatter() {
}
void time_divmod() {
auto a = random::normal({1000});
auto b = random::normal({1000});
eval({a, b});
auto a = mx::random::normal({1000});
auto b = mx::random::normal({1000});
mx::eval({a, b});
auto divmod_fused = [&a, &b]() { return divmod(a, b); };
auto divmod_fused = [&a, &b]() { return mx::divmod(a, b); };
TIME(divmod_fused);
auto divmod_separate = [&a, &b]() {
return std::vector<array>{floor_divide(a, b), remainder(a, b)};
return std::vector<mx::array>{mx::floor_divide(a, b), mx::remainder(a, b)};
};
TIME(divmod_separate);
}
int main() {
std::cout << "Benchmarks for " << default_device() << std::endl;
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
time_creation_ops();
time_type_conversions();
time_unary_ops();

View File

@@ -12,7 +12,7 @@ dtype = mx.float16
loops = 10
def attention(q, k, v):
def attention(q, k, v, mask=None):
def _sdpa(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
@@ -20,6 +20,9 @@ def attention(q, k, v):
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
if mask is not None:
m = mx.broadcast_to(mask, (B, Hq, L, S)).reshape(B, Hk, Hq // Hk, L, S)
s = mx.where(m, s, mx.finfo(s.dtype).min)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
@@ -29,9 +32,9 @@ def attention(q, k, v):
return q
def sdpa(q, k, v):
def sdpa(q, k, v, mask=None):
for i in range(loops):
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
return q
@@ -53,6 +56,26 @@ def time_self_attention_sdpa():
time_fn(sdpa, q, k, v)
def time_self_attention_sdpa_with_mask():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
mask = mx.full((L,), True)
mask[L // 2 :] = False
mx.eval(q, k, v, mask)
def sdpa_mask(*args):
return sdpa(*args, mask=mask)
def attention_mask(*args):
return attention(*args, mask=mask)
time_fn(attention_mask, q, k, v)
time_fn(sdpa_mask, q, k, v)
if __name__ == "__main__":
time_self_attention_sdpa()
time_self_attention_primitives()
time_self_attention_sdpa_with_mask()

View File

@@ -420,8 +420,8 @@ element in the output.
constant const float& alpha [[buffer(3)]],
constant const float& beta [[buffer(4)]],
constant const int* shape [[buffer(5)]],
constant const size_t* x_strides [[buffer(6)]],
constant const size_t* y_strides [[buffer(7)]],
constant const int64_t* x_strides [[buffer(6)]],
constant const int64_t* y_strides [[buffer(7)]],
constant const int& ndim [[buffer(8)]],
uint index [[thread_position_in_grid]]) {
// Convert linear indices to offsets in array
@@ -438,24 +438,10 @@ each instantiation a unique host name so we can identify it.
.. code-block:: C++
#define instantiate_axpby(type_name, type) \
template [[host_name("axpby_general_" #type_name)]] \
[[kernel]] void axpby_general<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
constant const int* shape [[buffer(5)]], \
constant const size_t* x_strides [[buffer(6)]], \
constant const size_t* y_strides [[buffer(7)]], \
constant const int& ndim [[buffer(8)]], \
uint index [[thread_position_in_grid]]);
instantiate_axpby(float32, float);
instantiate_axpby(float16, half);
instantiate_axpby(bfloat16, bfloat16_t);
instantiate_axpby(complex64, complex64_t);
instantiate_kernel("axpby_general_float32", axpby_general, float)
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown

121
docs/src/dev/mlx_in_cpp.rst Normal file
View File

@@ -0,0 +1,121 @@
.. _mlx_in_cpp:
Using MLX in C++
================
You can use MLX in a C++ project with CMake.
.. note::
This guide is based one the following `example using MLX in C++
<https://github.com/ml-explore/mlx/tree/main/examples/cmake_project>`_
First install MLX:
.. code-block:: bash
pip install -U mlx
You can also install the MLX Python package from source or just the C++
library. For more information see the :ref:`documentation on installing MLX
<build_and_install>`.
Next make an example program in ``example.cpp``:
.. code-block:: C++
#include <iostream>
#include "mlx/mlx.h"
namespace mx = mlx::core;
int main() {
auto x = mx::array({1, 2, 3});
auto y = mx::array({1, 2, 3});
std::cout << x + y << std::endl;
return 0;
}
The next step is to setup a CMake file in ``CMakeLists.txt``:
.. code-block:: cmake
cmake_minimum_required(VERSION 3.27)
project(example LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
Depending on how you installed MLX, you may need to tell CMake where to
find it.
If you installed MLX with Python, then add the following to the CMake file:
.. code-block:: cmake
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
If you installed the MLX C++ package to a system path, then CMake should be
able to find it. If you installed it to a non-standard location or CMake can't
find MLX then set ``MLX_ROOT`` to the location where MLX is installed:
.. code-block:: cmake
set(MLX_ROOT "/path/to/mlx/")
Next, instruct CMake to find MLX:
.. code-block:: cmake
find_package(MLX CONFIG REQUIRED)
Finally, add the ``example.cpp`` program as an executable and link MLX.
.. code-block:: cmake
add_executable(example example.cpp)
target_link_libraries(example PRIVATE mlx)
You can build the example with:
.. code-block:: bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
And run it with:
.. code-block:: bash
./build/example
Note ``find_package(MLX CONFIG REQUIRED)`` sets the following variables:
.. list-table:: Package Variables
:widths: 20 20
:header-rows: 1
* - Variable
- Description
* - MLX_FOUND
- ``True`` if MLX is found
* - MLX_INCLUDE_DIRS
- Include directory
* - MLX_LIBRARIES
- Libraries to link against
* - MLX_CXX_FLAGS
- Additional compiler flags
* - MLX_BUILD_ACCELERATE
- ``True`` if MLX was built with Accelerate
* - MLX_BUILD_METAL
- ``True`` if MLX was built with Metal

View File

@@ -45,6 +45,7 @@ are the CPU and GPU.
usage/numpy
usage/distributed
usage/using_streams
usage/export
.. toctree::
:caption: Examples
@@ -61,6 +62,7 @@ are the CPU and GPU.
python/array
python/data_types
python/devices_and_streams
python/export
python/ops
python/random
python/transforms
@@ -86,3 +88,4 @@ are the CPU and GPU.
dev/extensions
dev/metal_debugger
dev/custom_metal_kernels
dev/mlx_in_cpp

View File

@@ -1,3 +1,5 @@
.. _build_and_install:
Build and Install
=================
@@ -53,7 +55,7 @@ Build Requirements
^^^^^^^^^^^^^^^^^^
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
- `cmake <https://cmake.org/>`_ -- version 3.25 or later, and ``make``
- Xcode >= 15.0 and macOS SDK >= 14.0
.. note::

View File

@@ -66,3 +66,4 @@ documentation for more information. Use :func:`issubdtype` to determine if one
Dtype
DtypeCategory
issubdtype
finfo

View File

@@ -0,0 +1,14 @@
.. _export:
Export Functions
================
.. currentmodule:: mlx.core
.. autosummary::
:toctree: _autosummary
export_function
import_function
exporter
export_to_dot

View File

@@ -89,6 +89,7 @@ Operations
isneginf
isposinf
issubdtype
kron
left_shift
less
less_equal
@@ -144,6 +145,8 @@ Operations
sign
sin
sinh
slice
slice_update
softmax
sort
split
@@ -168,6 +171,7 @@ Operations
tri
tril
triu
unflatten
var
view
where

View File

@@ -421,3 +421,77 @@ the most opportunity to optimize the computation graph:
# Compiling the outer function is good to do as it will likely
# be faster even though the inner functions are compiled
fun = mx.compile(outer)
.. _shapeless_compile:
Shapeless Compilation
---------------------
When the shape of an input to a compiled function changes, the function is
recompiled. You can compile a function once and run it on inputs with
variable shapes by specifying ``shapeless=True`` to :func:`compile`. In this
case changes to the shapes of the inputs do not cause the function to be
recompiled.
.. code-block:: python
def fun(x, y):
return mx.abs(x + y)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.array(1.0)
y = mx.array(-2.0)
# Firt call compiles the function
print(compiled_fun(x, y))
# Second call with different shapes
# does not recompile the function
x = mx.array([1.0, -6.0])
y = mx.array([-2.0, 3.0])
print(compiled_fun(x, y))
Use shapeless compilations carefully. Since compilation is not triggered when
shapes change, any graphs which are conditional on the input shapes will not
work as expected. Shape-dependent computations are common and sometimes subtle
to detect. For example:
.. code-block:: python
def fun(x):
return x.reshape(x.shape[0] * x.shape[1], -1)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.random.uniform(shape=(2, 3, 4))
out = compiled_fun(x)
x = mx.random.uniform(shape=(5, 5, 3))
# Error, can't reshape (5, 5, 3) to (6, -1)
out = compiled_fun(x)
The second call to the ``compiled_fun`` fails because of the call to
:func:`reshape` which uses the static shape of ``x`` in the first call. We can
fix this by using :func:`flatten` to avoid hardcoding the shape of ``x``:
.. code-block:: python
def fun(x):
return x.flatten(0, 1)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.random.uniform(shape=(2, 3, 4))
out = compiled_fun(x)
x = mx.random.uniform(shape=(5, 5, 3))
# Ok
out = compiled_fun(x)

View File

@@ -141,12 +141,13 @@ everything else remaining the same.
from mlx.utils import tree_map
def all_reduce_grads(grads):
N = mx.distributed.init()
N = mx.distributed.init().size()
if N == 1:
return grads
return tree_map(
lambda x: mx.distributed.all_sum(x) / N,
grads)
lambda x: mx.distributed.all_sum(x) / N,
grads
)
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)

288
docs/src/usage/export.rst Normal file
View File

@@ -0,0 +1,288 @@
.. _export_usage:
Exporting Functions
===================
.. currentmodule:: mlx.core
MLX has an API to export and import functions to and from a file. This lets you
run computations written in one MLX front-end (e.g. Python) in another MLX
front-end (e.g. C++).
This guide walks through the basics of the MLX export API with some examples.
To see the full list of functions check-out the :ref:`API documentation
<export>`.
Basics of Exporting
-------------------
Let's start with a simple example:
.. code-block:: python
def fun(x, y):
return x + y
x = mx.array(1.0)
y = mx.array(1.0)
mx.export_function("add.mlxfn", fun, x, y)
To export a function, provide sample input arrays that the function
can be called with. The data doesn't matter, but the shapes and types of the
arrays do. In the above example we exported ``fun`` with two ``float32``
scalar arrays. We can then import the function and run it:
.. code-block:: python
add_fun = mx.import_function("add.mlxfn")
out, = add_fun(mx.array(1.0), mx.array(2.0))
# Prints: array(3, dtype=float32)
print(out)
out, = add_fun(mx.array(1.0), mx.array(3.0))
# Prints: array(4, dtype=float32)
print(out)
# Raises an exception
add_fun(mx.array(1), mx.array(3.0))
# Raises an exception
add_fun(mx.array([1.0, 2.0]), mx.array(3.0))
Notice the third and fourth calls to ``add_fun`` raise exceptions because the
shapes and types of the inputs are different than the shapes and types of the
example inputs we exported the function with.
Also notice that even though the original ``fun`` returns a single output
array, the imported function always returns a tuple of one or more arrays.
The inputs to :func:`export_function` and to an imported function can be
specified as variable positional arguments or as a tuple of arrays:
.. code-block:: python
def fun(x, y):
return x + y
x = mx.array(1.0)
y = mx.array(1.0)
# Both arguments to fun are positional
mx.export_function("add.mlxfn", fun, x, y)
# Same as above
mx.export_function("add.mlxfn", fun, (x, y))
imported_fun = mx.import_function("add.mlxfn")
# Ok
out, = imported_fun(x, y)
# Also ok
out, = imported_fun((x, y))
You can pass example inputs to functions as positional or keyword arguments. If
you use keyword arguments to export the function, then you have to use the same
keyword arguments when calling the imported function.
.. code-block:: python
def fun(x, y):
return x + y
# One argument to fun is positional, the other is a kwarg
mx.export_function("add.mlxfn", fun, x, y=y)
imported_fun = mx.import_function("add.mlxfn")
# Ok
out, = imported_fun(x, y=y)
# Also ok
out, = imported_fun((x,), {"y": y})
# Raises since the keyword argument is missing
out, = imported_fun(x, y)
# Raises since the keyword argument has the wrong key
out, = imported_fun(x, z=y)
Exporting Modules
-----------------
An :obj:`mlx.nn.Module` can be exported with or without the parameters included
in the exported function. Here's an example:
.. code-block:: python
model = nn.Linear(4, 4)
mx.eval(model.parameters())
def call(x):
return model(x)
mx.export_function("model.mlxfn", call, mx.zeros(4))
In the above example, the :obj:`mlx.nn.Linear` module is exported. Its
parameters are also saved to the ``model.mlxfn`` file.
.. note::
For enclosed arrays inside an exported function, be extra careful to ensure
they are evaluated. The computation graph that gets exported will include
the computation that produces enclosed inputs.
If the above example was missing ``mx.eval(model.parameters()``, the
exported function would include the random initialization of the
:obj:`mlx.nn.Module` parameters.
If you only want to export the ``Module.__call__`` function without the
parameters, pass them as inputs to the ``call`` wrapper:
.. code-block:: python
model = nn.Linear(4, 4)
mx.eval(model.parameters())
def call(x, **params):
# Set the model's parameters to the input parameters
model.update(tree_unflatten(list(params.items())))
return model(x)
params = dict(tree_flatten(model.parameters()))
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
Shapeless Exports
-----------------
Just like :func:`compile`, functions can also be exported for dynamically shaped
inputs. Pass ``shapeless=True`` to :func:`export_function` or :func:`exporter`
to export a function which can be used for inputs with variable shapes:
.. code-block:: python
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
imported_abs = mx.import_function("fun.mlxfn")
# Ok
out, = imported_abs(mx.array(-1.0))
# Also ok
out, = imported_abs(mx.array([-1.0, -2.0]))
With ``shapeless=False`` (which is the default), the second call to
``imported_abs`` would raise an exception with a shape mismatch.
Shapeless exporting works the same as shapeless compilation and should be
used carefully. See the :ref:`documentation on shapeless compilation
<shapeless_compile>` for more information.
Exporting Multiple Traces
-------------------------
In some cases, functions build different computation graphs for different
input arguments. A simple way to manage this is to export to a new file with
each set of inputs. This is a fine option in many cases. But it can be
suboptimal if the exported functions have a large amount of duplicate constant
data (for example the parameters of a :obj:`mlx.nn.Module`).
The export API in MLX lets you export multiple traces of the same function to
a single file by creating an exporting context manager with :func:`exporter`:
.. code-block:: python
def fun(x, y=None):
constant = mx.array(3.0)
if y is not None:
x += y
return x + constant
with mx.exporter("fun.mlxfn", fun) as exporter:
exporter(mx.array(1.0))
exporter(mx.array(1.0), y=mx.array(0.0))
imported_function = mx.import_function("fun.mlxfn")
# Call the function with y=None
out, = imported_function(mx.array(1.0))
print(out)
# Call the function with y specified
out, = imported_function(mx.array(1.0), y=mx.array(1.0))
print(out)
In the above example the function constant data, (i.e. ``constant``), is only
saved once.
Transformations with Imported Functions
---------------------------------------
Function transformations like :func:`grad`, :func:`vmap`, and :func:`compile` work
on imported functions just like regular Python functions:
.. code-block:: python
def fun(x):
return mx.sin(x)
x = mx.array(0.0)
mx.export_function("sine.mlxfn", fun, x)
imported_fun = mx.import_function("sine.mlxfn")
# Take the derivative of the imported function
dfdx = mx.grad(lambda x: imported_fun(x)[0])
# Prints: array(1, dtype=float32)
print(dfdx(x))
# Compile the imported function
mx.compile(imported_fun)
# Prints: array(0, dtype=float32)
print(compiled_fun(x)[0])
Importing Functions in C++
--------------------------
Importing and running functions in C++ is basically the same as importing and
running them in Python. First, follow the :ref:`instructions <mlx_in_cpp>` to
setup a simple C++ project that uses MLX as a library.
Next, export a simple function from Python:
.. code-block:: python
def fun(x, y):
return mx.exp(x + y)
x = mx.array(1.0)
y = mx.array(1.0)
mx.export_function("fun.mlxfn", fun, x, y)
Import and run the function in C++ with only a few lines of code:
.. code-block:: c++
auto fun = mx::import_function("fun.mlxfn");
auto inputs = {mx::array(1.0), mx::array(1.0)};
auto outputs = fun(inputs);
// Prints: array(2, dtype=float32)
std::cout << outputs[0] << std::endl;
Imported functions can be transformed in C++ just like in Python. Use
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
mx::array>`` for keyword arguments when calling imported functions in C++.
More Examples
-------------
Here are a few more complete examples exporting more complex functions from
Python and importing and running them in C++:
* `Inference and training a multi-layer perceptron <https://github.com/ml-explore/mlx/tree/main/examples/export>`_

View File

@@ -0,0 +1,22 @@
cmake_minimum_required(VERSION 3.27)
project(example LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Comment the following two commands only the MLX C++ library is installed and
# set(MLX_ROOT "/path/to/mlx") directly if needed.
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
find_package(MLX CONFIG REQUIRED)
add_executable(example example.cpp)
target_link_libraries(example PRIVATE mlx)

View File

@@ -0,0 +1,26 @@
## Build and Run
Install MLX with Python:
```bash
pip install mlx>=0.22
```
Build the C++ example:
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Run the C++ example:
```
./build/example
```
which should output:
```
array([2, 4, 6], dtype=int32)
```

View File

@@ -0,0 +1,14 @@
// Copyright © 2024 Apple Inc.
#include <iostream>
#include "mlx/mlx.h"
namespace mx = mlx::core;
int main() {
auto x = mx::array({1, 2, 3});
auto y = mx::array({1, 2, 3});
std::cout << x + y << std::endl;
return 0;
}

View File

@@ -4,19 +4,19 @@
#include "mlx/mlx.h"
using namespace mlx::core;
namespace mx = mlx::core;
int main() {
if (!distributed::is_available()) {
if (!mx::distributed::is_available()) {
std::cout << "No communication backend found" << std::endl;
return 1;
}
auto global_group = distributed::init();
auto global_group = mx::distributed::init();
std::cout << global_group.rank() << " / " << global_group.size() << std::endl;
array x = ones({10});
array out = distributed::all_sum(x, global_group);
mx::array x = mx::ones({10});
mx::array out = mx::distributed::all_sum(x, global_group);
std::cout << out << std::endl;
}

View File

@@ -10,7 +10,7 @@
/**
* An example of linear regression with MLX.
*/
using namespace mlx::core;
namespace mx = mlx::core;
int main() {
int num_features = 100;
@@ -19,35 +19,35 @@ int main() {
float learning_rate = 0.01;
// True parameters
auto w_star = random::normal({num_features});
auto w_star = mx::random::normal({num_features});
// The input examples (design matrix)
auto X = random::normal({num_examples, num_features});
auto X = mx::random::normal({num_examples, num_features});
// Noisy labels
auto eps = 1e-2 * random::normal({num_examples});
auto y = matmul(X, w_star) + eps;
auto eps = 1e-2 * mx::random::normal({num_examples});
auto y = mx::matmul(X, w_star) + eps;
// Initialize random parameters
array w = 1e-2 * random::normal({num_features});
mx::array w = 1e-2 * mx::random::normal({num_features});
auto loss_fn = [&](array w) {
auto yhat = matmul(X, w);
return (0.5f / num_examples) * sum(square(yhat - y));
auto loss_fn = [&](mx::array w) {
auto yhat = mx::matmul(X, w);
return (0.5f / num_examples) * mx::sum(mx::square(yhat - y));
};
auto grad_fn = grad(loss_fn);
auto grad_fn = mx::grad(loss_fn);
auto tic = timer::time();
for (int it = 0; it < num_iters; ++it) {
auto grad = grad_fn(w);
w = w - learning_rate * grad;
eval(w);
auto grads = grad_fn(w);
w = w - learning_rate * grads;
mx::eval(w);
}
auto toc = timer::time();
auto loss = loss_fn(w);
auto error_norm = std::sqrt(sum(square(w - w_star)).item<float>());
auto error_norm = std::sqrt(mx::sum(mx::square(w - w_star)).item<float>());
auto throughput = num_iters / timer::seconds(toc - tic);
std::cout << "Loss " << loss << ", |w - w*| = " << error_norm
<< ", Throughput " << throughput << " (it/s)." << std::endl;

View File

@@ -10,7 +10,7 @@
/**
* An example of logistic regression with MLX.
*/
using namespace mlx::core;
namespace mx = mlx::core;
int main() {
int num_features = 100;
@@ -19,35 +19,35 @@ int main() {
float learning_rate = 0.1;
// True parameters
auto w_star = random::normal({num_features});
auto w_star = mx::random::normal({num_features});
// The input examples
auto X = random::normal({num_examples, num_features});
auto X = mx::random::normal({num_examples, num_features});
// Labels
auto y = matmul(X, w_star) > 0;
auto y = mx::matmul(X, w_star) > 0;
// Initialize random parameters
array w = 1e-2 * random::normal({num_features});
mx::array w = 1e-2 * mx::random::normal({num_features});
auto loss_fn = [&](array w) {
auto logits = matmul(X, w);
auto loss_fn = [&](mx::array w) {
auto logits = mx::matmul(X, w);
auto scale = (1.0f / num_examples);
return scale * sum(logaddexp(array(0.0f), logits) - y * logits);
return scale * mx::sum(mx::logaddexp(mx::array(0.0f), logits) - y * logits);
};
auto grad_fn = grad(loss_fn);
auto grad_fn = mx::grad(loss_fn);
auto tic = timer::time();
for (int it = 0; it < num_iters; ++it) {
auto grad = grad_fn(w);
w = w - learning_rate * grad;
eval(w);
auto grads = grad_fn(w);
w = w - learning_rate * grads;
mx::eval(w);
}
auto toc = timer::time();
auto loss = loss_fn(w);
auto acc = sum((matmul(X, w) > 0) == y) / num_examples;
auto acc = mx::sum((mx::matmul(X, w) > 0) == y) / num_examples;
auto throughput = num_iters / timer::seconds(toc - tic);
std::cout << "Loss " << loss << ", Accuracy, " << acc << ", Throughput "
<< throughput << " (it/s)." << std::endl;

View File

@@ -5,27 +5,27 @@
#include "mlx/mlx.h"
using namespace mlx::core;
namespace mx = mlx::core;
int main() {
// To use Metal debugging and profiling:
// 1. Build with the MLX_METAL_DEBUG CMake option (i.e. -DMLX_METAL_DEBUG=ON).
// 2. Run with MTL_CAPTURE_ENABLED=1.
metal::start_capture("mlx_trace.gputrace");
mx::metal::start_capture("mlx_trace.gputrace");
// Start at index two because the default GPU and CPU streams have indices
// zero and one, respectively. This naming matches the label assigned to each
// stream's command queue.
auto s2 = new_stream(Device::gpu);
auto s3 = new_stream(Device::gpu);
auto s2 = new_stream(mx::Device::gpu);
auto s3 = new_stream(mx::Device::gpu);
auto a = arange(1.f, 10.f, 1.f, float32, s2);
auto b = arange(1.f, 10.f, 1.f, float32, s3);
auto x = add(a, a, s2);
auto y = add(b, b, s3);
auto a = mx::arange(1.f, 10.f, 1.f, mx::float32, s2);
auto b = mx::arange(1.f, 10.f, 1.f, mx::float32, s3);
auto x = mx::add(a, a, s2);
auto y = mx::add(b, b, s3);
// The multiply will happen on the default stream.
std::cout << multiply(x, y) << std::endl;
std::cout << mx::multiply(x, y) << std::endl;
metal::stop_capture();
mx::metal::stop_capture();
}

View File

@@ -5,11 +5,11 @@
#include "mlx/mlx.h"
using namespace mlx::core;
namespace mx = mlx::core;
void array_basics() {
// Make a scalar array:
array x(1.0);
mx::array x(1.0);
// Get the value out of it:
auto s = x.item<float>();
@@ -29,31 +29,31 @@ void array_basics() {
// The datatype should be float32:
auto dtype = x.dtype();
assert(dtype == float32);
assert(dtype == mx::float32);
// Specify the dtype when constructing the array:
x = array(1, int32);
assert(x.dtype() == int32);
x = mx::array(1, mx::int32);
assert(x.dtype() == mx::int32);
x.item<int>(); // OK
// x.item<float>(); // Undefined!
// Make a multidimensional array:
x = array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
x = mx::array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
// mlx is row-major by default so the first row of this array
// is [1.0, 2.0] and the second row is [3.0, 4.0]
// Make an array of shape {2, 2} filled with ones:
auto y = ones({2, 2});
auto y = mx::ones({2, 2});
// Pointwise add x and y:
auto z = add(x, y);
auto z = mx::add(x, y);
// Same thing:
z = x + y;
// mlx is lazy by default. At this point `z` only
// has a shape and a type but no actual data:
assert(z.dtype() == float32);
assert(z.dtype() == mx::float32);
assert(z.shape(0) == 2);
assert(z.shape(1) == 2);
@@ -63,33 +63,33 @@ void array_basics() {
// and inputs. When `eval` is called on an array (or arrays), the array and
// all of its dependencies are recursively evaluated to produce the result.
// Once an array is evaluated, it has data and is detached from its inputs.
eval(z);
mx::eval(z);
// Of course the array can still be an input to other operations. You can even
// call eval on the array again, this will just be a no-op:
eval(z); // no-op
// Of course the array can still be an input to other operations. You can
// even call eval on the array again, this will just be a no-op:
mx::eval(z); // no-op
// Some functions or methods on arrays implicitly evaluate them. For example
// accessing a value in an array or printing the array implicitly evaluate it:
z = ones({1});
z = mx::ones({1});
z.item<float>(); // implicit evaluation
z = ones({2, 2});
z = mx::ones({2, 2});
std::cout << z << std::endl; // implicit evaluation
}
void automatic_differentiation() {
auto fn = [](array x) { return square(x); };
auto fn = [](mx::array x) { return mx::square(x); };
// Computing the derivative function of a function
auto grad_fn = grad(fn);
auto grad_fn = mx::grad(fn);
// Call grad_fn on the input to get the derivative
auto x = array(1.5);
auto x = mx::array(1.5);
auto dfdx = grad_fn(x);
// dfdx is 2 * x
// Get the second derivative by composing grad with grad
auto d2fdx2 = grad(grad(fn))(x);
auto d2fdx2 = mx::grad(mx::grad(fn))(x);
// d2fdx2 is 2
}

View File

@@ -0,0 +1,22 @@
cmake_minimum_required(VERSION 3.27)
project(import_mlx LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
find_package(MLX CONFIG REQUIRED)
add_executable(eval_mlp eval_mlp.cpp)
target_link_libraries(eval_mlp PRIVATE mlx)
add_executable(train_mlp train_mlp.cpp)
target_link_libraries(train_mlp PRIVATE mlx)

49
examples/export/README.md Normal file
View File

@@ -0,0 +1,49 @@
## Setup
Install MLX:
```bash
pip install mlx>=0.22
```
Build the C++ examples:
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
## Run
### Eval MLP
Run the Python script to export the eval function:
```bash
python eval_mlp.py
```
Then run the C++ program to import and run the function:
```
./build/eval_mlp
```
The Python and C++ programs should output the same result.
### Train MLP
Run the Python script to export the model initialization and training
functions:
```bash
python train_mlp.py
```
Then run the C++ program to import and run the functions:
```
./build/train_mlp
```
The Python and C++ programs should output the same results.

View File

@@ -0,0 +1,25 @@
// Copyright © 2024 Apple Inc.
#include <mlx/mlx.h>
#include <iostream>
namespace mx = mlx::core;
int main() {
int batch_size = 8;
int input_dim = 32;
// Make the input
mx::random::seed(42);
auto example_x = mx::random::uniform({batch_size, input_dim});
// Import the function
auto forward = mx::import_function("eval_mlp.mlxfn");
// Call the imported function
auto out = forward({example_x})[0];
std::cout << out << std::endl;
return 0;
}

View File

@@ -0,0 +1,52 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
import mlx.utils
class MLP(nn.Module):
"""A simple MLP."""
def __init__(
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
):
super().__init__()
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
self.layers = [
nn.Linear(idim, odim)
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
]
def __call__(self, x):
for l in self.layers[:-1]:
x = nn.relu(l(x))
return self.layers[-1](x)
if __name__ == "__main__":
batch_size = 8
input_dim = 32
output_dim = 10
# Load the model
mx.random.seed(0) # Seed for params
model = MLP(num_layers=5, input_dim=input_dim, hidden_dim=64, output_dim=output_dim)
mx.eval(model)
# Note, the model parameters are saved in the export function
def forward(x):
return model(x)
mx.random.seed(42) # Seed for input
example_x = mx.random.uniform(shape=(batch_size, input_dim))
mx.export_function("eval_mlp.mlxfn", forward, example_x)
# Import in Python
imported_forward = mx.import_function("eval_mlp.mlxfn")
expected = forward(example_x)
(out,) = imported_forward(example_x)
assert mx.allclose(expected, out)
print(out)

View File

@@ -0,0 +1,35 @@
// Copyright © 2024 Apple Inc.
#include <mlx/mlx.h>
#include <iostream>
namespace mx = mlx::core;
int main() {
int batch_size = 8;
int input_dim = 32;
int output_dim = 10;
auto state = mx::import_function("init_mlp.mlxfn")({});
// Make the input
mx::random::seed(42);
auto example_X = mx::random::normal({batch_size, input_dim});
auto example_y = mx::random::randint(0, output_dim, {batch_size});
// Import the function
auto step = mx::import_function("train_mlp.mlxfn");
// Call the imported function
for (int it = 0; it < 100; ++it) {
state.insert(state.end(), {example_X, example_y});
state = step(state);
eval(state);
auto loss = state.back();
state.pop_back();
if (it % 10 == 0) {
std::cout << "Loss " << loss.item<float>() << std::endl;
}
}
return 0;
}

View File

@@ -0,0 +1,76 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import mlx.utils
class MLP(nn.Module):
"""A simple MLP."""
def __init__(
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
):
super().__init__()
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
self.layers = [
nn.Linear(idim, odim)
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
]
def __call__(self, x):
for l in self.layers[:-1]:
x = nn.relu(l(x))
return self.layers[-1](x)
if __name__ == "__main__":
batch_size = 8
input_dim = 32
output_dim = 10
def init():
# Seed for the parameter initialization
mx.random.seed(0)
model = MLP(
num_layers=3, input_dim=input_dim, hidden_dim=64, output_dim=output_dim
)
optimizer = optim.SGD(learning_rate=1e-1)
optimizer.init(model.parameters())
state = [model.parameters(), optimizer.state]
tree_structure, state = zip(*mlx.utils.tree_flatten(state))
return model, optimizer, tree_structure, state
# Export the model parameter initialization
model, optimizer, tree_structure, state = init()
mx.eval(state)
mx.export_function("init_mlp.mlxfn", lambda: init()[-1])
def loss_fn(params, X, y):
model.update(params)
return nn.losses.cross_entropy(model(X), y, reduction="mean")
def step(*inputs):
*state, X, y = inputs
params, opt_state = mlx.utils.tree_unflatten(list(zip(tree_structure, state)))
optimizer.state = opt_state
loss, grads = mx.value_and_grad(loss_fn)(params, X, y)
params = optimizer.apply_gradients(grads, params)
_, state = zip(*mlx.utils.tree_flatten([params, optimizer.state]))
return *state, loss
# Make some random data
mx.random.seed(42)
example_X = mx.random.normal(shape=(batch_size, input_dim))
example_y = mx.random.randint(low=0, high=output_dim, shape=(batch_size,))
mx.export_function("train_mlp.mlxfn", step, *state, example_X, example_y)
# Export one step of SGD
imported_step = mx.import_function("train_mlp.mlxfn")
for it in range(100):
*state, loss = imported_step(*state, example_X, example_y)
if it % 10 == 0:
print(f"Loss {loss.item():.6}")

View File

@@ -18,8 +18,7 @@ find_package(
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
OUTPUT_VARIABLE nanobind_ROOT)
find_package(nanobind CONFIG REQUIRED)
# ----------------------------- Extensions -----------------------------

View File

@@ -19,7 +19,7 @@
#include "mlx/backend/metal/utils.h"
#endif
namespace mlx::core {
namespace my_ext {
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
@@ -32,24 +32,24 @@ namespace mlx::core {
* Follow numpy style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
array axpby(
const array& x, // Input array x
const array& y, // Input array y
mx::array axpby(
const mx::array& x, // Input mx::array x
const mx::array& y, // Input mx::array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
mx::StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
// Promote dtypes between x and y as needed
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
// Upcast to float32 for non-floating point inputs x and y
auto out_dtype = issubdtype(promoted_dtype, float32)
auto out_dtype = mx::issubdtype(promoted_dtype, mx::float32)
? promoted_dtype
: promote_types(promoted_dtype, float32);
: promote_types(promoted_dtype, mx::float32);
// Cast x and y up to the determined dtype (on the same stream s)
auto x_casted = astype(x, out_dtype, s);
auto y_casted = astype(y, out_dtype, s);
auto x_casted = mx::astype(x, out_dtype, s);
auto y_casted = mx::astype(y, out_dtype, s);
// Broadcast the shapes of x and y (on the same stream s)
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
@@ -57,12 +57,12 @@ array axpby(
// Construct the array as the output of the Axpby primitive
// with the broadcasted and upcasted arrays as inputs
return array(
/* const std::vector<int>& shape = */ out_shape,
/* Dtype dtype = */ out_dtype,
/* std::unique_ptr<Primitive> primitive = */
return mx::array(
/* const mx::Shape& shape = */ out_shape,
/* mx::Dtype dtype = */ out_dtype,
/* std::shared_ptr<mx::Primitive> primitive = */
std::make_shared<Axpby>(to_stream(s), alpha, beta),
/* const std::vector<array>& inputs = */ broadcasted_inputs);
/* const std::vector<mx::array>& inputs = */ broadcasted_inputs);
}
///////////////////////////////////////////////////////////////////////////////
@@ -71,16 +71,16 @@ array axpby(
template <typename T>
void axpby_impl(
const array& x,
const array& y,
array& out,
const mx::array& x,
const mx::array& y,
mx::array& out,
float alpha_,
float beta_) {
// We only allocate memory when we are ready to fill the output
// malloc_or_wait synchronously allocates available memory
// There may be a wait executed here if the allocation is requested
// under memory-pressured conditions
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
// Collect input and output data pointers
const T* x_ptr = x.data<T>();
@@ -94,8 +94,8 @@ void axpby_impl(
// Do the element-wise operation for each output
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
// Map linear indices to offsets in x and y
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
auto x_offset = mx::elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = mx::elem_to_loc(out_idx, y.shape(), y.strides());
// We allocate the output to be contiguous and regularly strided
// (defaults to row major) and hence it doesn't need additional mapping
@@ -105,8 +105,8 @@ void axpby_impl(
/** Fall back implementation for evaluation on CPU */
void Axpby::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
// Check the inputs (registered in the op while constructing the out array)
assert(inputs.size() == 2);
auto& x = inputs[0];
@@ -114,14 +114,14 @@ void Axpby::eval(
auto& out = outputs[0];
// Dispatch to the correct dtype
if (out.dtype() == float32) {
if (out.dtype() == mx::float32) {
return axpby_impl<float>(x, y, out, alpha_, beta_);
} else if (out.dtype() == float16) {
return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == bfloat16) {
return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == complex64) {
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::float16) {
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::bfloat16) {
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::complex64) {
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_);
} else {
throw std::runtime_error(
"Axpby is only supported for floating point types.");
@@ -136,9 +136,9 @@ void Axpby::eval(
template <typename T>
void axpby_impl_accelerate(
const array& x,
const array& y,
array& out,
const mx::array& x,
const mx::array& y,
mx::array& out,
float alpha_,
float beta_) {
// Accelerate library provides catlas_saxpby which does
@@ -150,10 +150,10 @@ void axpby_impl_accelerate(
// The data in the output array is allocated to match the strides in y
// such that x, y, and out are contiguous in the same mode and
// no transposition is needed
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
// We then copy over the elements using the contiguous vector specialization
copy_inplace(y, out, CopyType::Vector);
copy_inplace(y, out, mx::CopyType::Vector);
// Get x and y pointers for catlas_saxpby
const T* x_ptr = x.data<T>();
@@ -175,15 +175,15 @@ void axpby_impl_accelerate(
/** Evaluate primitive on CPU using accelerate specializations */
void Axpby::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
auto& out = outputs[0];
// Accelerate specialization for contiguous single precision float arrays
if (out.dtype() == float32 &&
if (out.dtype() == mx::float32 &&
((x.flags().row_contiguous && y.flags().row_contiguous) ||
(x.flags().col_contiguous && y.flags().col_contiguous))) {
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
@@ -198,8 +198,8 @@ void Axpby::eval_cpu(
/** Evaluate primitive on CPU falling back to common backend */
void Axpby::eval_cpu(
const std::vector<array>& inputs,
const std::vector<array>& outputs) {
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
eval(inputs, outputs);
}
@@ -213,8 +213,8 @@ void Axpby::eval_cpu(
/** Evaluate primitive on GPU */
void Axpby::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
// Prepare inputs
assert(inputs.size() == 2);
auto& x = inputs[0];
@@ -225,7 +225,7 @@ void Axpby::eval_gpu(
// and each stream carries its device identifiers
auto& s = stream();
// We get the needed metal device using the stream
auto& d = metal::device(s.device);
auto& d = mx::metal::device(s.device);
// Prepare to specialize based on contiguity
bool contiguous_kernel =
@@ -235,12 +235,12 @@ void Axpby::eval_gpu(
// Allocate output memory with strides based on specialization
if (contiguous_kernel) {
out.set_data(
allocator::malloc_or_wait(x.data_size() * out.itemsize()),
mx::allocator::malloc_or_wait(x.data_size() * out.itemsize()),
x.data_size(),
x.strides(),
x.flags());
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
}
// Resolve name of kernel (corresponds to axpby.metal)
@@ -279,7 +279,7 @@ void Axpby::eval_gpu(
if (!contiguous_kernel) {
compute_encoder.set_vector_bytes(x.shape(), 5);
compute_encoder.set_vector_bytes(x.strides(), 6);
compute_encoder.set_bytes(y.strides(), 7);
compute_encoder.set_vector_bytes(y.strides(), 7);
compute_encoder.set_bytes(ndim, 8);
}
@@ -302,8 +302,8 @@ void Axpby::eval_gpu(
/** Fail evaluation on GPU */
void Axpby::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& out) {
const std::vector<mx::array>& inputs,
std::vector<mx::array>& out) {
throw std::runtime_error("Axpby has no GPU implementation.");
}
@@ -314,9 +314,9 @@ void Axpby::eval_gpu(
///////////////////////////////////////////////////////////////////////////////
/** The Jacobian-vector product. */
std::vector<array> Axpby::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
std::vector<mx::array> Axpby::jvp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the primitive can built with ops
@@ -328,8 +328,8 @@ std::vector<array> Axpby::jvp(
// scaled by beta
if (argnums.size() > 1) {
auto scale = argnums[0] == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, tangents[0].dtype());
return {multiply(scale_arr, tangents[0], stream())};
auto scale_arr = mx::array(scale, tangents[0].dtype());
return {mx::multiply(scale_arr, tangents[0], stream())};
}
// If, argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
@@ -339,24 +339,24 @@ std::vector<array> Axpby::jvp(
}
/** The vector-Jacobian product. */
std::vector<array> Axpby::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
std::vector<mx::array> Axpby::vjp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>&) {
const std::vector<mx::array>&) {
// Reverse mode diff
std::vector<array> vjps;
std::vector<mx::array> vjps;
for (auto arg : argnums) {
auto scale = arg == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, cotangents[0].dtype());
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
auto scale_arr = mx::array(scale, cotangents[0].dtype());
vjps.push_back(mx::multiply(scale_arr, cotangents[0], stream()));
}
return vjps;
}
/** Vectorize primitive along given axis */
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
const std::vector<array>& inputs,
std::pair<std::vector<mx::array>, std::vector<int>> Axpby::vmap(
const std::vector<mx::array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("Axpby has no vmap implementation.");
}
@@ -367,4 +367,4 @@ bool Axpby::is_equivalent(const Primitive& other) const {
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
}
} // namespace mlx::core
} // namespace my_ext

View File

@@ -5,7 +5,9 @@
#include "mlx/ops.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace mx = mlx::core;
namespace my_ext {
///////////////////////////////////////////////////////////////////////////////
// Operation
@@ -18,22 +20,22 @@ namespace mlx::core {
* Follow numpy style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
array axpby(
const array& x, // Input array x
const array& y, // Input array y
mx::array axpby(
const mx::array& x, // Input array x
const mx::array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s = {} // Stream on which to schedule the operation
mx::StreamOrDevice s = {} // Stream on which to schedule the operation
);
///////////////////////////////////////////////////////////////////////////////
// Primitive
///////////////////////////////////////////////////////////////////////////////
class Axpby : public Primitive {
class Axpby : public mx::Primitive {
public:
explicit Axpby(Stream stream, float alpha, float beta)
: Primitive(stream), alpha_(alpha), beta_(beta) {};
explicit Axpby(mx::Stream stream, float alpha, float beta)
: mx::Primitive(stream), alpha_(alpha), beta_(beta) {};
/**
* A primitive must know how to evaluate itself on the CPU/GPU
@@ -42,23 +44,25 @@ class Axpby : public Primitive {
* To avoid unnecessary allocations, the evaluation function
* is responsible for allocating space for the array.
*/
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
void eval_cpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) override;
void eval_gpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) override;
/** The Jacobian-vector product. */
std::vector<array> jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
std::vector<mx::array> jvp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& tangents,
const std::vector<int>& argnums) override;
/** The vector-Jacobian product. */
std::vector<array> vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
std::vector<mx::array> vjp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) override;
const std::vector<mx::array>& outputs) override;
/**
* The primitive must know how to vectorize itself across
@@ -66,8 +70,8 @@ class Axpby : public Primitive {
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
std::pair<std::vector<mx::array>, std::vector<int>> vmap(
const std::vector<mx::array>& inputs,
const std::vector<int>& axes) override;
/** Print the primitive. */
@@ -76,14 +80,16 @@ class Axpby : public Primitive {
}
/** Equivalence check **/
bool is_equivalent(const Primitive& other) const override;
bool is_equivalent(const mx::Primitive& other) const override;
private:
float alpha_;
float beta_;
/** Fall back implementation for evaluation on CPU */
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
void eval(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs);
};
} // namespace mlx::core
} // namespace my_ext

View File

@@ -12,8 +12,8 @@ template <typename T>
constant const float& alpha [[buffer(3)]],
constant const float& beta [[buffer(4)]],
constant const int* shape [[buffer(5)]],
constant const size_t* x_strides [[buffer(6)]],
constant const size_t* y_strides [[buffer(7)]],
constant const int64_t* x_strides [[buffer(6)]],
constant const int64_t* y_strides [[buffer(7)]],
constant const int& ndim [[buffer(8)]],
uint index [[thread_position_in_grid]]) {
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
@@ -34,29 +34,14 @@ template <typename T>
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
}
#define instantiate_axpby(type_name, type) \
template [[host_name("axpby_general_" #type_name)]] [[kernel]] void \
axpby_general<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
constant const int* shape [[buffer(5)]], \
constant const size_t* x_strides [[buffer(6)]], \
constant const size_t* y_strides [[buffer(7)]], \
constant const int& ndim [[buffer(8)]], \
uint index [[thread_position_in_grid]]); \
template [[host_name("axpby_contiguous_" #type_name)]] [[kernel]] void \
axpby_contiguous<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
uint index [[thread_position_in_grid]]);
// clang-format off
#define instantiate_axpby(type_name, type) \
instantiate_kernel("axpby_general_" #type_name, axpby_general, type) \
instantiate_kernel( \
"axpby_contiguous_" #type_name, axpby_contiguous, type)
instantiate_axpby(float32, float);
instantiate_axpby(float16, half);
instantiate_axpby(bfloat16, bfloat16_t);
instantiate_axpby(complex64, complex64_t);
// clang-format on

View File

@@ -8,14 +8,12 @@
namespace nb = nanobind;
using namespace nb::literals;
using namespace mlx::core;
NB_MODULE(_ext, m) {
m.doc() = "Sample extension for MLX";
m.def(
"axpby",
&axpby,
&my_ext::axpby,
"x"_a,
"y"_a,
"alpha"_a,

View File

@@ -1,8 +1,8 @@
[build-system]
requires = [
"setuptools>=42",
"cmake>=3.24",
"cmake>=3.25",
"mlx>=0.18.0",
"nanobind==2.2.0",
"nanobind==2.4.0",
]
build-backend = "setuptools.build_meta"

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.24
cmake>=3.25
mlx>=0.21.0
nanobind==2.2.0

View File

@@ -5,6 +5,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
@@ -18,6 +19,16 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
if(MSVC)
# Disable some MSVC warnings to speed up compilation.
target_compile_options(mlx PUBLIC /wd4068 /wd4244 /wd4267 /wd4804)
endif()
if(WIN32)
# Export symbols by default to behave like macOS/linux.
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
endif()
if(MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
else()

View File

@@ -10,22 +10,8 @@
namespace mlx::core {
namespace {
/** Return true if we are currently performing a function transformation in
* order to keep the graph when evaluating tracer arrays. */
bool in_tracing() {
return detail::InTracing::in_tracing();
}
bool retain_graph() {
return detail::RetainGraph::retain_graph();
}
} // namespace
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
: array_desc_(std::make_shared<ArrayDesc>(std::vector<int>{}, dtype)) {
: array_desc_(std::make_shared<ArrayDesc>(Shape{}, dtype)) {
auto cval = static_cast<complex64_t>(val);
init(&cval);
}
@@ -61,14 +47,14 @@ std::vector<array> array::make_arrays(
array::array(std::initializer_list<float> data)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
Shape{static_cast<ShapeElem>(data.size())},
float32)) {
init(data.begin());
}
array::array(std::initializer_list<int> data, Dtype dtype)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
Shape{static_cast<ShapeElem>(data.size())},
dtype)) {
init(data.begin());
}
@@ -119,7 +105,8 @@ void array::eval() {
}
bool array::is_tracer() const {
return array_desc_->is_tracer && in_tracing() || retain_graph();
return (array_desc_->is_tracer && detail::in_tracing()) ||
detail::retain_graph();
}
void array::set_data(allocator::Buffer buffer, Deleter d) {
@@ -277,7 +264,19 @@ array::ArrayDesc::~ArrayDesc() {
}
ad.inputs.clear();
for (auto& [_, a] : input_map) {
if (a.array_desc_.use_count() <= a.siblings().size() + 1) {
bool is_deletable =
(a.array_desc_.use_count() <= a.siblings().size() + 1);
// An array with siblings is deletable only if all of its siblings
// are deletable
for (auto& s : a.siblings()) {
if (!is_deletable) {
break;
}
int is_input = (input_map.find(s.id()) != input_map.end());
is_deletable &=
s.array_desc_.use_count() <= a.siblings().size() + is_input;
}
if (is_deletable) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
@@ -310,7 +309,7 @@ array::ArrayIterator::ArrayIterator(const array& arr, int idx)
}
array::ArrayIterator::reference array::ArrayIterator::operator*() const {
auto start = std::vector<int>(arr.ndim(), 0);
auto start = Shape(arr.ndim(), 0);
auto end = arr.shape();
auto shape = arr.shape();
shape.erase(shape.begin());

View File

@@ -17,8 +17,9 @@ namespace mlx::core {
class Primitive;
using Deleter = std::function<void(allocator::Buffer)>;
using Shape = std::vector<int32_t>;
using Strides = std::vector<size_t>;
using ShapeElem = int32_t;
using Shape = std::vector<ShapeElem>;
using Strides = std::vector<int64_t>;
class array {
/* An array is really a node in a graph. It contains a shared ArrayDesc
@@ -34,29 +35,29 @@ class array {
explicit array(const std::complex<float>& val, Dtype dtype = complex64);
template <typename It>
array(
explicit array(
It data,
Shape shape,
Dtype dtype =
TypeToDtype<typename std::iterator_traits<It>::value_type>());
template <typename T>
array(std::initializer_list<T> data, Dtype dtype = TypeToDtype<T>());
explicit array(std::initializer_list<T> data, Dtype dtype = TypeToDtype<T>());
/* Special case so empty lists default to float32. */
array(std::initializer_list<float> data);
explicit array(std::initializer_list<float> data);
/* Special case so array({}, type) is an empty array. */
array(std::initializer_list<int> data, Dtype dtype);
explicit array(std::initializer_list<int> data, Dtype dtype);
template <typename T>
array(
explicit array(
std::initializer_list<T> data,
Shape shape,
Dtype dtype = TypeToDtype<T>());
/* Build an array from a buffer */
array(
explicit array(
allocator::Buffer data,
Shape shape,
Dtype dtype,
@@ -498,7 +499,7 @@ class array {
template <typename T>
array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
: array_desc_(std::make_shared<ArrayDesc>(std::vector<int>{}, dtype)) {
: array_desc_(std::make_shared<ArrayDesc>(Shape{}, dtype)) {
init(&val);
}
@@ -516,7 +517,7 @@ array::array(
std::initializer_list<T> data,
Dtype dtype /* = TypeToDtype<T>() */)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
Shape{static_cast<ShapeElem>(data.size())},
dtype)) {
init(data.begin());
}

View File

@@ -32,6 +32,7 @@ DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(BlockMaskedMM)
DEFAULT(Broadcast)
DEFAULT(BroadcastAxes)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Conjugate)
@@ -43,6 +44,7 @@ DEFAULT(NumberOfElements)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
DEFAULT(ExpandDims)
DEFAULT(FFT)
DEFAULT(Floor)
DEFAULT(Gather)
@@ -65,7 +67,6 @@ DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT_MULTI(QRF)
DEFAULT(RandomBits)
DEFAULT(Reshape)
DEFAULT(Remainder)
DEFAULT(Round)
DEFAULT(Scatter)
@@ -76,6 +77,7 @@ DEFAULT(Slice)
DEFAULT(SliceUpdate)
DEFAULT_MULTI(Split)
DEFAULT(Sort)
DEFAULT(Squeeze)
DEFAULT(StopGradient)
DEFAULT_MULTI(SVD)
DEFAULT(Transpose)

View File

@@ -5,13 +5,21 @@ else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
if(MSVC)
set(SHELL_EXT ps1)
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
else()
set(SHELL_EXT sh)
set(SHELL_CMD /bin/bash)
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG}
DEPENDS make_compiled_preamble.sh
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
DEPENDS make_compiled_preamble.${SHELL_EXT}
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
@@ -58,5 +66,6 @@ target_sources(
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
endif()

View File

@@ -13,8 +13,8 @@ template <typename InT, typename OpT>
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
auto axis_size = in.shape()[axis];
auto axis_stride = in.strides()[axis];
std::vector<size_t> strides = in.strides();
std::vector<int> shape = in.shape();
Strides strides = in.strides();
Shape shape = in.shape();
strides.erase(strides.begin() + axis);
shape.erase(shape.begin() + axis);
for (uint32_t i = 0; i < out.size(); ++i) {

View File

@@ -28,8 +28,8 @@ BinaryOpType get_binary_op_type(const array& a, const array& b) {
} else if (b.data_size() == 1 && a.flags().contiguous) {
bopt = BinaryOpType::VectorScalar;
} else if (
a.flags().row_contiguous && b.flags().row_contiguous ||
a.flags().col_contiguous && b.flags().col_contiguous) {
(a.flags().row_contiguous && b.flags().row_contiguous) ||
(a.flags().col_contiguous && b.flags().col_contiguous)) {
bopt = BinaryOpType::VectorVector;
} else {
bopt = BinaryOpType::General;
@@ -178,10 +178,10 @@ void binary_op_dims(
const T* b,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -212,10 +212,10 @@ void binary_op_dispatch_dims(
array& out,
Op op,
int dim,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides) {
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
@@ -258,10 +258,10 @@ void binary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
size_t stride = out_strides[dim - 4];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
@@ -327,7 +327,7 @@ void binary_op(
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
@@ -337,7 +337,7 @@ void binary_op(
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}

View File

@@ -16,10 +16,10 @@ void binary_op_dims(
U* out_a,
U* out_b,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -96,9 +96,9 @@ void binary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 2>(
a_ptr + a_it.loc,

View File

@@ -42,14 +42,12 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
return move_or_copy(in, out, strides_, flags, data_size, offset_);
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
std::vector<size_t> strides(out.ndim(), 0);
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
@@ -61,6 +59,14 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
move_or_copy(in, out, strides, flags, in.data_size());
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
void BroadcastAxes::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
void Copy::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
move_or_copy(inputs[0], out);
@@ -85,6 +91,16 @@ void Depends::eval(
}
}
void ExpandDims::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
auto strides = in.strides();
for (auto ax : axes_) {
strides.insert(strides.begin() + ax, 1);
}
move_or_copy(in, out, strides, in.flags(), in.data_size());
}
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
@@ -141,9 +157,7 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
}
}
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
const array& in,
const array& out) {
std::pair<bool, Strides> prepare_reshape(const array& in, const array& out) {
// Special case for empty arrays or row contiguous arrays
if (in.size() == 0 || in.flags().row_contiguous) {
return {false, out.strides()};
@@ -151,8 +165,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
// Special case for scalars
if (in.ndim() == 0) {
std::vector<size_t> out_strides(out.ndim(), 0);
return {false, out_strides};
return {false, Strides(out.ndim(), 0)};
}
// Firstly let's collapse all the contiguous dimensions of the input
@@ -160,7 +173,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
// If shapes fit exactly in the contiguous dims then no copy is necessary so
// let's check.
std::vector<size_t> out_strides;
Strides out_strides;
bool copy_necessary = false;
int j = 0;
for (int i = 0; i < out.ndim(); i++) {
@@ -181,9 +194,9 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
return {copy_necessary, out_strides};
}
void Reshape::shared_buffer_reshape(
void shared_buffer_reshape(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
array& out) {
auto flags = in.flags();
if (flags.row_contiguous) {
@@ -249,16 +262,18 @@ void Split::eval(
}
}
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
const array& in) {
int64_t data_offset = 0;
std::vector<int64_t> inp_strides(in.ndim(), 0);
for (int i = 0; i < in.ndim(); ++i) {
data_offset += start_indices_[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides_[i];
void Squeeze::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
Strides strides;
for (int i = 0, j = 0; i < in.ndim(); ++i) {
if (j < axes_.size() && i == axes_[j]) {
j++;
} else {
strides.push_back(in.strides(i));
}
}
return std::make_tuple(data_offset, inp_strides);
move_or_copy(in, out, strides, in.flags(), in.data_size());
}
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
@@ -268,7 +283,7 @@ void StopGradient::eval(const std::vector<array>& inputs, array& out) {
void Transpose::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
std::vector<size_t> out_strides(out.ndim());
Strides out_strides(out.ndim());
auto& in = inputs[0];
for (int ax = 0; ax < axes_.size(); ++ax) {
out_strides[ax] = in.strides()[axes_[ax]];
@@ -285,8 +300,8 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
size_t f_stride = 1;
size_t b_stride = 1;
int64_t f_stride = 1;
int64_t b_stride = 1;
flags.col_contiguous = true;
flags.row_contiguous = true;
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {

View File

@@ -130,7 +130,7 @@ std::string build_lib_name(
bool compiled_check_contiguity(
const std::vector<array>& inputs,
const std::vector<int>& shape) {
const Shape& shape) {
bool contiguous = true;
bool all_contig = true;
bool all_row_contig = true;
@@ -165,7 +165,7 @@ void compiled_allocate_outputs(
bool move_buffers /* = false */) {
if (contiguous) {
int o = 0;
std::vector<size_t> strides;
Strides strides;
size_t data_size;
array::Flags flags;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {

View File

@@ -11,9 +11,7 @@
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
return (typeid(p) == typeid(Broadcast) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
@@ -56,7 +54,7 @@ inline bool is_scalar(const array& x) {
// Check if we can use a contiguous operation given inputs and the output shape
bool compiled_check_contiguity(
const std::vector<array>& inputs,
const std::vector<int>& shape);
const Shape& shape);
// Allocate space for the outputs possibly with input donation
void compiled_allocate_outputs(

View File

@@ -7,8 +7,11 @@
#include <mutex>
#include <shared_mutex>
#include <fmt/format.h>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
#include "mlx/backend/common/jit_compiler.h"
#include "mlx/device.h"
#include "mlx/graph_utils.h"
@@ -44,11 +47,8 @@ namespace detail {
bool compile_available_for_device(const Device& device) {
return true;
}
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name).string();
}
} // namespace detail
// Return a pointer to a compiled function
void* compile(
@@ -68,24 +68,30 @@ void* compile(
std::string source_code = source_builder();
std::string kernel_file_name;
// Deal with long kernel names. Maximum length for files on macOS is 255
// characters. Clip file name with a little extra room and append a 16
// character hash.
// Deal with long kernel names. Maximum length for filename on macOS is 255
// characters, and on Windows the maximum length for whole path is 260. Clip
// file name with a little extra room and append a 16 character hash.
#ifdef _WIN32
constexpr int max_file_name_length = 140;
#else
constexpr int max_file_name_length = 245;
#endif
if (kernel_name.size() > max_file_name_length) {
std::ostringstream file_name;
file_name
<< std::string_view(kernel_name).substr(0, max_file_name_length - 16);
auto file_id = std::hash<std::string>{}(kernel_name);
auto file_id =
std::hash<std::string>{}(kernel_name.substr(max_file_name_length - 16));
file_name << "_" << std::hex << std::setw(16) << file_id << std::dec;
kernel_file_name = file_name.str();
} else {
kernel_file_name = kernel_name;
}
std::ostringstream shared_lib_name;
shared_lib_name << "lib" << kernel_file_name << ".so";
auto shared_lib_path = get_temp_file(shared_lib_name.str());
auto output_dir = std::filesystem::temp_directory_path();
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
auto shared_lib_path = (output_dir / shared_lib_name).string();
bool lib_exists = false;
{
std::ifstream f(shared_lib_path.c_str());
@@ -94,24 +100,21 @@ void* compile(
if (!lib_exists) {
// Open source file and write source code to it
std::ostringstream source_file_name;
source_file_name << kernel_file_name << ".cpp";
auto source_file_path = get_temp_file(source_file_name.str());
std::string source_file_name = kernel_file_name + ".cpp";
auto source_file_path = (output_dir / source_file_name).string();
std::ofstream source_file(source_file_path);
source_file << source_code;
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O3 -Wall -fPIC -shared '"
<< source_file_path << "' -o '" << shared_lib_path << "'";
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to compile function " << kernel_name
<< " with error code " << return_code << "." << std::endl;
throw std::runtime_error(msg.str());
try {
JitCompiler::exec(JitCompiler::build_command(
output_dir, source_file_name, shared_lib_name));
} catch (const std::exception& error) {
throw std::runtime_error(fmt::format(
"[Compile::eval_cpu] Failed to compile function {0}: {1}",
kernel_name,
error.what()));
}
}
@@ -151,6 +154,11 @@ inline void build_kernel(
NodeNamer namer;
#ifdef _MSC_VER
// Export the symbol
os << "__declspec(dllexport) ";
#endif
// Start the kernel
os << "void " << kernel_name << "(void** args) {" << std::endl;

View File

@@ -726,7 +726,7 @@ void explicit_gemm_conv_1D_cpu(
auto conv_dtype = float32;
// Pad input
std::vector<int> padded_shape = {N, iH + 2 * padding[0], C};
Shape padded_shape = {N, iH + 2 * padding[0], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -746,9 +746,9 @@ void explicit_gemm_conv_1D_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape = {N, oH, wH, C};
Shape strided_shape = {N, oH, wH, C};
std::vector<size_t> strided_strides = {
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[1],
@@ -765,7 +765,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
std::vector<int> strided_reshape = {N * oH, wH * C};
Shape strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General);
@@ -843,8 +843,7 @@ void explicit_gemm_conv_2D_cpu(
auto conv_dtype = out.dtype();
// Pad input
std::vector<int> padded_shape = {
N, iH + 2 * padding[0], iW + 2 * padding[1], C};
Shape padded_shape = {N, iH + 2 * padding[0], iW + 2 * padding[1], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -865,9 +864,9 @@ void explicit_gemm_conv_2D_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape = {N, oH, oW, wH, wW, C};
Shape strided_shape = {N, oH, oW, wH, wW, C};
std::vector<size_t> strided_strides = {
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[2] * wt_strides[1],
@@ -881,7 +880,7 @@ void explicit_gemm_conv_2D_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
std::vector<int> strided_reshape = {N * oH * oW, wH * wW * C};
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General);
@@ -934,19 +933,19 @@ void explicit_gemm_conv_ND_cpu(
const std::vector<int>& wt_dilation,
const bool flip) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const auto iDim = std::vector<int>(
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
const auto oDim = std::vector<int>(
const auto iDim =
Shape(in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
const auto oDim = Shape(
out.shape().begin() + 1, out.shape().end() - 1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(-1); // In channels
const auto wDim = std::vector<int>(
wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
const auto wDim =
Shape(wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
auto conv_dtype = float32;
// Pad input
std::vector<int> padded_shape(in.shape().size());
Shape padded_shape(in.shape().size());
padded_shape.front() = N;
for (size_t i = 0; i < iDim.size(); i++) {
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
@@ -974,7 +973,7 @@ void explicit_gemm_conv_ND_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape(oDim.size() + wDim.size() + 2);
Shape strided_shape(oDim.size() + wDim.size() + 2);
strided_shape.front() = N;
for (size_t i = 0; i < oDim.size(); i++) {
strided_shape[i + 1] = oDim[i];
@@ -984,7 +983,7 @@ void explicit_gemm_conv_ND_cpu(
}
strided_shape.back() = C;
std::vector<size_t> strided_strides(in.shape().size() * 2 - 2);
Strides strided_strides(in.shape().size() * 2 - 2);
strided_strides[0] = in_padded.strides()[0];
for (size_t i = 0; i < wt_strides.size(); i++) {
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
@@ -1000,7 +999,7 @@ void explicit_gemm_conv_ND_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
std::vector<int> strided_reshape = {N, C};
Shape strided_reshape = {N, C};
for (const auto& o : oDim) {
strided_reshape[0] *= o;
}

View File

@@ -26,13 +26,13 @@ void copy_vector(const array& src, array& dst) {
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
}
template <typename SrcT, typename DstT, typename StrideT, int D>
template <typename SrcT, typename DstT, int D>
inline void copy_dims(
const SrcT* src,
DstT* dst,
const std::vector<int>& shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& shape,
const Strides& i_strides,
const Strides& o_strides,
int axis) {
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
@@ -40,7 +40,7 @@ inline void copy_dims(
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
copy_dims<SrcT, DstT, StrideT, D - 1>(
copy_dims<SrcT, DstT, D - 1>(
src, dst, shape, i_strides, o_strides, axis + 1);
} else {
*dst = static_cast<DstT>(*src);
@@ -50,13 +50,13 @@ inline void copy_dims(
}
}
template <typename SrcT, typename DstT, typename StrideT>
template <typename SrcT, typename DstT>
void copy_general_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset) {
if (data_shape.empty()) {
@@ -65,30 +65,30 @@ void copy_general_general(
*dst_ptr = val;
return;
}
auto [shape, strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
auto [shape, strides] =
collapse_contiguous_dims(data_shape, {i_strides, o_strides});
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>() + o_offset;
int ndim = shape.size();
if (ndim == 1) {
copy_dims<SrcT, DstT, StrideT, 1>(
copy_dims<SrcT, DstT, 1>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 2) {
copy_dims<SrcT, DstT, StrideT, 2>(
copy_dims<SrcT, DstT, 2>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 3) {
copy_dims<SrcT, DstT, StrideT, 3>(
copy_dims<SrcT, DstT, 3>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
}
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
StrideT stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
for (StrideT elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, StrideT, 3>(
ContiguousIterator in(shape, strides[0], ndim - 3);
ContiguousIterator out(shape, strides[1], ndim - 3);
auto stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<int64_t>());
for (int64_t elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, 3>(
src_ptr + in.loc,
dst_ptr + out.loc,
shape,
@@ -102,37 +102,37 @@ void copy_general_general(
template <typename SrcT, typename DstT>
inline void copy_general_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
copy_general_general<SrcT, DstT>(
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
}
template <typename SrcT, typename DstT, typename StrideT>
template <typename SrcT, typename DstT>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>&,
const Shape& data_shape,
const Strides& i_strides,
const Strides&,
int64_t i_offset,
int64_t o_offset) {
copy_general_general<SrcT, DstT, StrideT>(
copy_general_general<SrcT, DstT>(
src,
dst,
data_shape,
i_strides,
make_contiguous_strides<StrideT>(data_shape),
make_contiguous_strides(data_shape),
i_offset,
o_offset);
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
copy_general_general<SrcT, DstT>(
src,
dst,
src.shape(),
src.strides(),
make_contiguous_strides<size_t>(src.shape()),
make_contiguous_strides(src.shape()),
0,
0);
}
@@ -282,13 +282,12 @@ void copy(const array& src, array& dst, CopyType ctype) {
copy_inplace(src, dst, ctype);
}
template <typename StrideT>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype) {
@@ -311,24 +310,4 @@ void copy_inplace(
}
}
template void copy_inplace<size_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<size_t>& i_strides,
const std::vector<size_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
template void copy_inplace<int64_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<int64_t>& i_strides,
const std::vector<int64_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
} // namespace mlx::core

View File

@@ -26,13 +26,12 @@ enum class CopyType {
void copy(const array& src, array& dst, CopyType ctype);
void copy_inplace(const array& src, array& dst, CopyType ctype);
template <typename stride_t>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);

View File

@@ -37,6 +37,7 @@ DEFAULT(ArgSort)
DEFAULT(AsType)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(BroadcastAxes)
DEFAULT(BlockMaskedMM)
DEFAULT(GatherMM)
DEFAULT(GatherQMM)
@@ -57,6 +58,7 @@ DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
DEFAULT(Exp)
DEFAULT(ExpandDims)
DEFAULT(Expm1)
DEFAULT(FFT)
DEFAULT(Floor)
@@ -86,7 +88,6 @@ DEFAULT_MULTI(QRF)
DEFAULT(QuantizedMatmul)
DEFAULT(RandomBits)
DEFAULT(Reduce)
DEFAULT(Reshape)
DEFAULT(Round)
DEFAULT(Scan)
DEFAULT(Scatter)
@@ -101,6 +102,7 @@ DEFAULT(Softmax)
DEFAULT(Sort)
DEFAULT_MULTI(Split)
DEFAULT(Square)
DEFAULT(Squeeze)
DEFAULT(Sqrt)
DEFAULT(StopGradient)
DEFAULT(Subtract)
@@ -130,7 +132,7 @@ inline void matmul_common_general(
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};

View File

@@ -32,7 +32,7 @@ void gather(
const std::vector<array>& inds,
array& out,
const std::vector<int>& axes,
const std::vector<int>& slice_sizes) {
const Shape& slice_sizes) {
// If the array is row contiguous then we can do a contiguous copy given
// two conditions on the slice size:
// - Any number of leading ones in the slice sizes are allowed
@@ -80,11 +80,10 @@ void gather(
T* dst_ptr = out.data<T>();
size_t out_idx = 0;
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> src_it;
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
ContiguousIterator src_it;
if (!can_copy && src.ndim() > 0) {
src_it = std::move(
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
}
for (int idx = 0; idx < ind_size; idx++) {
size_t src_idx = 0;
@@ -119,7 +118,7 @@ void dispatch_gather(
const std::vector<array>& inds,
array& out,
const std::vector<int>& axes,
const std::vector<int>& size) {
const Shape& size) {
switch (out.dtype()) {
case bool_:
gather<bool, IdxT>(src, inds, out, axes, size);
@@ -223,16 +222,16 @@ void scatter(
auto inds_ndim = updates.ndim() - out.ndim();
size_t n_updates = nind ? inds[0].size() : 1;
std::vector<int> update_shape(
Shape update_shape(
updates.shape().begin() + inds_ndim, updates.shape().end());
size_t update_size = 1;
for (auto us : update_shape) {
update_size *= us;
}
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> update_it(updates);
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
ContiguousIterator update_it(updates);
ContiguousIterator out_it(update_shape, out.strides(), out.ndim());
for (int i = 0; i < n_updates; ++i) {
size_t out_offset = 0;

View File

@@ -0,0 +1,152 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/jit_compiler.h"
#include <sstream>
#include <vector>
#include <fmt/format.h>
namespace mlx::core {
#ifdef _MSC_VER
namespace {
// Split string into array.
std::vector<std::string> str_split(const std::string& str, char delimiter) {
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(str);
while (std::getline(tokenStream, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
// Get path information about MSVC.
struct VisualStudioInfo {
VisualStudioInfo() {
#ifdef _M_ARM64
arch = "arm64";
#else
arch = "x64";
#endif
// Get path of Visual Studio.
std::string vs_path = JitCompiler::exec(fmt::format(
"\"{0}\\Microsoft Visual Studio\\Installer\\vswhere.exe\""
" -property installationPath",
std::getenv("ProgramFiles(x86)")));
if (vs_path.empty()) {
throw std::runtime_error("Can not find Visual Studio.");
}
// Read the envs from vcvarsall.
std::string envs = JitCompiler::exec(fmt::format(
"\"{0}\\VC\\Auxiliary\\Build\\vcvarsall.bat\" {1} >NUL && set",
vs_path,
arch));
for (const std::string& line : str_split(envs, '\n')) {
// Each line is in the format "ENV_NAME=values".
auto pos = line.find_first_of('=');
if (pos == std::string::npos || pos == 0 || pos == line.size() - 1)
continue;
std::string name = line.substr(0, pos);
std::string value = line.substr(pos + 1);
if (name == "LIB") {
libpaths = str_split(value, ';');
} else if (name == "VCToolsInstallDir") {
cl_exe = fmt::format("{0}\\bin\\Host{1}\\{1}\\cl.exe", value, arch);
}
}
}
std::string arch;
std::string cl_exe;
std::vector<std::string> libpaths;
};
const VisualStudioInfo& GetVisualStudioInfo() {
static VisualStudioInfo info;
return info;
}
} // namespace
#endif // _MSC_VER
std::string JitCompiler::build_command(
const std::filesystem::path& dir,
const std::string& source_file_name,
const std::string& shared_lib_name) {
#ifdef _MSC_VER
const VisualStudioInfo& info = GetVisualStudioInfo();
std::string libpaths;
for (const std::string& lib : info.libpaths) {
libpaths += fmt::format(" /libpath:\"{0}\"", lib);
}
return fmt::format(
"\""
"cd /D \"{0}\" && "
"\"{1}\" /LD /EHsc /MD /Ox /nologo /std:c++17 \"{2}\" "
"/link /out:\"{3}\" {4} 2>&1"
"\"",
dir.string(),
info.cl_exe,
source_file_name,
shared_lib_name,
libpaths);
#else
return fmt::format(
"g++ -std=c++17 -O3 -Wall -fPIC -shared '{0}' -o '{1}' 2>&1",
(dir / source_file_name).string(),
(dir / shared_lib_name).string());
#endif
}
std::string JitCompiler::exec(const std::string& cmd) {
#ifdef _MSC_VER
FILE* pipe = _popen(cmd.c_str(), "r");
#else
FILE* pipe = popen(cmd.c_str(), "r");
#endif
if (!pipe) {
throw std::runtime_error("popen() failed.");
}
char buffer[128];
std::string ret;
while (fgets(buffer, sizeof(buffer), pipe)) {
ret += buffer;
}
// Trim trailing spaces.
ret.erase(
std::find_if(
ret.rbegin(),
ret.rend(),
[](unsigned char ch) { return !std::isspace(ch); })
.base(),
ret.end());
#ifdef _MSC_VER
int status = _pclose(pipe);
#else
int status = pclose(pipe);
#endif
if (status == -1) {
throw std::runtime_error("pclose() failed.");
}
#ifdef _MSC_VER
int code = status;
#else
int code = WEXITSTATUS(status);
#endif
if (code != 0) {
throw std::runtime_error(fmt::format(
"Failed to execute command with return code {0}: \"{1}\", "
"the output is: {2}",
code,
cmd,
ret));
}
return ret;
}
} // namespace mlx::core

View File

@@ -0,0 +1,20 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include <filesystem>
namespace mlx::core {
class JitCompiler {
public:
// Build a shell command that compiles a source code file to a shared library.
static std::string build_command(
const std::filesystem::path& dir,
const std::string& source_file_name,
const std::string& shared_lib_name);
// Run a command and get its output.
static std::string exec(const std::string& cmd);
};
} // namespace mlx::core

View File

@@ -2,6 +2,15 @@
#pragma once
// Required for Visual Studio.
// https://github.com/OpenMathLib/OpenBLAS/blob/develop/docs/install.md
#ifdef _MSC_VER
#include <complex>
#define LAPACK_COMPLEX_CUSTOM
#define lapack_complex_float std::complex<float>
#define lapack_complex_double std::complex<double>
#endif
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else

View File

@@ -0,0 +1,38 @@
# This script generates a C++ function that provides the CPU
# code for use with kernel generation.
#
# Copyright © 2024 Apple Inc.
$OUTPUT_FILE = $args[0]
$CL = $args[1]
$SRCDIR = $args[2]
# Get command result as array.
$CONTENT = & $CL /std:c++17 /EP "/I$SRCDIR" /Tp "$SRCDIR/mlx/backend/common/compiled_preamble.h"
# Remove empty lines.
# Otherwise there will be too much empty lines making the result unreadable.
$CONTENT = $CONTENT | Where-Object { $_.Trim() -ne '' }
# Concatenate to string.
$CONTENT = $CONTENT -join "`n"
# Append extra content.
$CONTENT = @"
$($CONTENT)
using namespace mlx::core;
using namespace mlx::core::detail;
"@
# Convert each char to ASCII code.
# Unlike the unix script that outputs string literal directly, the output from
# MSVC is way too large to be embedded as string and compilation will fail, so
# we store it as static array instead.
$CHARCODES = ([System.Text.Encoding]::ASCII.GetBytes($CONTENT) -join ', ') + ', 0'
$OUTPUT = @"
const char* get_kernel_preamble() {
static char preamble[] = { $CHARCODES };
return preamble;
}
"@
Set-Content -Path $OUTPUT_FILE -Value $OUTPUT

View File

@@ -10,15 +10,16 @@ OUTPUT_FILE=$1
GCC=$2
SRCDIR=$3
CLANG=$4
ARCH=$5
if [ "$CLANG" = "TRUE" ]; then
read -r -d '' INCLUDES <<- EOM
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
EOM
CC_FLAGS=""
CC_FLAGS="-arch ${ARCH}"
else
CC_FLAGS="-std=c++17"
fi

View File

@@ -19,10 +19,10 @@ inline void mask_matrix(
int block_size,
const int X,
const int Y,
const size_t X_data_str,
const size_t Y_data_str,
const size_t X_mask_str,
const size_t Y_mask_str,
const int64_t X_data_str,
const int64_t Y_data_str,
const int64_t X_mask_str,
const int64_t Y_mask_str,
const size_t mask_offset) {
int tX = (X + block_size - 1) / block_size;
int tY = (Y + block_size - 1) / block_size;
@@ -84,7 +84,7 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
@@ -117,13 +117,13 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
int Y,
size_t X_data_str,
size_t Y_data_str) {
size_t mask_offset = elem_to_loc(
auto mask_offset = elem_to_loc(
mask.shape(-1) * mask.shape(-2) * batch_idx,
mask.shape(),
mask.strides());
size_t X_mask_str = mask.strides()[mask.ndim() - 2];
size_t Y_mask_str = mask.strides()[mask.ndim() - 1];
auto X_mask_str = mask.strides()[mask.ndim() - 2];
auto Y_mask_str = mask.strides()[mask.ndim() - 1];
if (mask.dtype() == bool_) {
return mask_matrix(
@@ -230,7 +230,7 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
@@ -262,13 +262,13 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
auto& lhs_indices = inputs[2];
auto& rhs_indices = inputs[3];
std::vector<int> batch_shape = get_batch_dims(out.shape());
auto batch_shape = get_batch_dims(out.shape());
int batch_ndim = batch_shape.size();
std::vector<int> batch_shape_A = get_batch_dims(a.shape());
std::vector<size_t> batch_strides_A = get_batch_dims(a.strides());
std::vector<int> batch_shape_B = get_batch_dims(b.shape());
std::vector<size_t> batch_strides_B = get_batch_dims(b.strides());
auto batch_shape_A = get_batch_dims(a.shape());
auto batch_strides_A = get_batch_dims(a.strides());
auto batch_shape_B = get_batch_dims(b.shape());
auto batch_strides_B = get_batch_dims(b.strides());
const uint32_t* lhs_indices_ptr = lhs_indices.data<uint32_t>();
const uint32_t* rhs_indices_ptr = rhs_indices.data<uint32_t>();

View File

@@ -500,7 +500,12 @@ struct Equal {
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
return x == y || (std::isnan(x) && std::isnan(y));
if constexpr (std::is_integral_v<T>) {
// isnan always returns false for integers, and MSVC refuses to compile.
return x == y;
} else {
return x == y || (std::isnan(x) && std::isnan(y));
}
}
};

View File

@@ -19,6 +19,45 @@
namespace mlx::core {
void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
copy_inplace(in, out, CopyType::General);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
int64_t compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes) {
auto compute_offset = [&strides, &axes](const auto* indices) {
int64_t offset = 0;
for (int i = 0; i < axes.size(); ++i) {
offset += indices[i] * strides[axes[i]];
}
return offset;
};
switch (indices.dtype()) {
case int8:
case uint8:
return compute_offset(indices.data<uint8_t>());
case int16:
case uint16:
return compute_offset(indices.data<uint16_t>());
case int32:
case uint32:
return compute_offset(indices.data<uint32_t>());
case int64:
case uint64:
return compute_offset(indices.data<uint64_t>());
default:
throw std::runtime_error("Invalid indices type.");
}
}
void Abs::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -258,6 +297,14 @@ void Expm1::eval(const std::vector<array>& inputs, array& out) {
}
}
void Flatten::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void Unflatten::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void Floor::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -417,18 +464,8 @@ void Real::eval_cpu(const std::vector<array>& inputs, array& out) {
unary_op<complex64_t, float>(inputs[0], out, detail::Real());
}
void Reshape::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
copy_inplace(in, out, CopyType::General);
} else {
shared_buffer_reshape(in, out_strides, out);
}
void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void Round::eval(const std::vector<array>& inputs, array& out) {
@@ -498,34 +535,65 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Calculate out strides, initial offset and if copy needs to be made
auto [copy_needed, data_offset, inp_strides] =
prepare_slice(in, start_indices_, strides_);
// Do copy if needed
if (copy_needed) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
copy_inplace<int64_t>(
/* const array& src = */ in,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ out.shape(),
/* const std::vector<stride_t>& i_strides = */ inp_strides,
/* const std::vector<stride_t>& o_strides = */ ostrides,
/* int64_t i_offset = */ data_offset,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::General);
} else {
size_t data_end = 1;
for (int i = 0; i < end_indices_.size(); ++i) {
if (in.shape()[i] > 1) {
auto end_idx = start_indices_[i] + out.shape()[i] * strides_[i] - 1;
data_end += end_idx * in.strides()[i];
}
auto [data_offset, inp_strides] = prepare_slice(in, start_indices_, strides_);
size_t data_end = 1;
for (int i = 0; i < end_indices_.size(); ++i) {
if (in.shape()[i] > 1) {
auto end_idx = start_indices_[i] + out.shape()[i] * strides_[i] - 1;
data_end += end_idx * in.strides()[i];
}
size_t data_size = data_end - data_offset;
std::vector<size_t> ostrides{inp_strides.begin(), inp_strides.end()};
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
}
size_t data_size = data_end - data_offset;
Strides ostrides{inp_strides.begin(), inp_strides.end()};
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
}
void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto i_offset = compute_dynamic_offset(inputs[1], in.strides(), axes_);
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
/* const Strides& i_strides = */ in.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ i_offset,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void DynamicSliceUpdate::eval_cpu(
const std::vector<array>& inputs,
array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
// Copy or move src to dst
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
auto o_offset = compute_dynamic_offset(inputs[2], out.strides(), axes_);
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
/* const std::vector<stride_t>& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ o_offset,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
@@ -550,15 +618,14 @@ void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] = prepare_slice(out);
auto [data_offset, out_strides] = prepare_slice(in, start_indices_, strides_);
// Do copy
std::vector<int64_t> upd_strides{upd.strides().begin(), upd.strides().end()};
copy_inplace<int64_t>(
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
/* const std::vector<stride_t>& i_strides = */ upd_strides,
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
/* const std::vector<stride_t>& o_strides = */ out_strides,
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ data_offset,
@@ -614,7 +681,7 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {

View File

@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r) {
// Copy the input to be column contiguous
flags.col_contiguous = num_matrices == 1;
flags.row_contiguous = false;
std::vector<size_t> strides = in.strides();
auto strides = in.strides();
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(

View File

@@ -174,19 +174,19 @@ void reduce_dispatch_min_max(
void nd_loop(
std::function<void(int)> callback,
const std::vector<int>& shape,
const std::vector<size_t>& strides) {
const Shape& shape,
const Strides& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
int size = shape[dim];
size_t stride = strides[dim];
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
}
} else {
int size = shape[dim];
size_t stride = strides[dim];
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}

View File

@@ -38,13 +38,10 @@ enum ReductionOpType {
struct ReductionPlan {
ReductionOpType type;
std::vector<int> shape;
std::vector<size_t> strides;
Shape shape;
Strides strides;
ReductionPlan(
ReductionOpType type_,
std::vector<int> shape_,
std::vector<size_t> strides_)
ReductionPlan(ReductionOpType type_, Shape shape_, Strides strides_)
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
ReductionPlan(ReductionOpType type_) : type(type_) {}
};
@@ -55,10 +52,10 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
// Should this be in utils?
void nd_loop(
std::function<void(int)> callback,
const std::vector<int>& shape,
const std::vector<size_t>& strides);
const Shape& shape,
const Strides& strides);
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
@@ -113,9 +110,6 @@ void reduction_op(
return;
}
std::vector<int> shape;
std::vector<size_t> strides;
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape[0];
const T* x_ptr = x.data<T>();
@@ -135,7 +129,7 @@ void reduction_op(
U* out_ptr = out.data<U>();
// Unrolling the following loop (and implementing it in order for
// ContiguousReduce) should hold extra performance boost.
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
@@ -181,7 +175,7 @@ void reduction_op(
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
@@ -211,7 +205,7 @@ void reduction_op(
if (plan.type == GeneralReduce) {
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
U val = init;

View File

@@ -4,11 +4,11 @@
namespace mlx::core {
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
std::vector<int> shape = x.shape();
std::vector<size_t> strides = x.strides();
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
@@ -29,8 +29,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
std::vector<int> shape = {x.shape(axes[0])};
std::vector<size_t> strides = {x.strides()[axes[0]]};
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
@@ -69,7 +69,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Sort reduction axes by stride in order to merge them and figure out if we
// have a contiguous reduction.
std::vector<std::pair<int, size_t>> reductions;
std::vector<std::pair<int, int64_t>> reductions;
for (auto a : axes) {
if (x.shape(a) > 1) {
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
@@ -93,8 +93,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
}
}
std::vector<int> shape;
std::vector<size_t> strides;
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
@@ -109,15 +109,15 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int size = 1;
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
}
size_t stride_i = x.strides()[i];
int shape_i = x.shape(i);
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;

View File

@@ -4,24 +4,22 @@
namespace mlx::core {
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
std::tuple<int64_t, Strides> prepare_slice(
const array& in,
const std::vector<int>& start_indices,
const std::vector<int>& strides) {
const Shape& start_indices,
const Shape& strides) {
int64_t data_offset = 0;
bool copy_needed = false;
std::vector<int64_t> inp_strides(in.ndim(), 0);
Strides inp_strides(in.ndim(), 0);
for (int i = 0; i < in.ndim(); ++i) {
data_offset += start_indices[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides[i];
copy_needed |= strides[i] < 0;
}
return std::make_tuple(copy_needed, data_offset, inp_strides);
return std::make_tuple(data_offset, inp_strides);
}
void shared_buffer_slice(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out) {

View File

@@ -6,14 +6,14 @@
namespace mlx::core {
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
std::tuple<int64_t, Strides> prepare_slice(
const array& in,
const std::vector<int>& start_indices,
const std::vector<int>& strides);
const Shape& start_indices,
const Shape& strides);
void shared_buffer_slice(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out);

View File

@@ -14,10 +14,10 @@ namespace mlx::core {
namespace {
template <typename T, typename IdxT = int32_t>
template <typename T>
struct StridedIterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = IdxT;
using difference_type = int32_t;
using value_type = T;
using reference = value_type&;
using pointer = value_type*;
@@ -25,7 +25,7 @@ struct StridedIterator {
// Constructors
StridedIterator() = default;
explicit StridedIterator(T* ptr, size_t stride, difference_type offset = 0)
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
: ptr_(ptr + offset * stride), stride_(stride) {}
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
@@ -99,7 +99,7 @@ struct StridedIterator {
}
private:
size_t stride_;
int64_t stride_;
T* ptr_;
};
@@ -120,11 +120,11 @@ void sort(const array& in, array& out, int axis) {
auto remaining_strides = out.strides();
remaining_strides.erase(remaining_strides.begin() + axis);
size_t axis_stride = out.strides()[axis];
int axis_size = out.shape(axis);
auto axis_stride = out.strides()[axis];
auto axis_size = out.shape(axis);
// Perform sorting in place
ContiguousIterator<size_t> src_it(
ContiguousIterator src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
@@ -158,14 +158,14 @@ void argsort(const array& in, array& out, int axis) {
auto out_remaining_strides = out.strides();
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
size_t in_stride = in.strides()[axis];
size_t out_stride = out.strides()[axis];
int axis_size = in.shape(axis);
auto in_stride = in.strides()[axis];
auto out_stride = out.strides()[axis];
auto axis_size = in.shape(axis);
// Perform sorting
ContiguousIterator<size_t> in_it(
ContiguousIterator in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
ContiguousIterator out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;
@@ -208,13 +208,13 @@ void partition(const array& in, array& out, int axis, int kth) {
auto remaining_strides = in.strides();
remaining_strides.erase(remaining_strides.begin() + axis);
size_t axis_stride = in.strides()[axis];
auto axis_stride = in.strides()[axis];
int axis_size = in.shape(axis);
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition in place
ContiguousIterator<size_t> src_it(
ContiguousIterator src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
@@ -249,16 +249,16 @@ void argpartition(const array& in, array& out, int axis, int kth) {
auto out_remaining_strides = out.strides();
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
size_t in_stride = in.strides()[axis];
size_t out_stride = out.strides()[axis];
int axis_size = in.shape(axis);
auto in_stride = in.strides()[axis];
auto out_stride = out.strides()[axis];
auto axis_size = in.shape(axis);
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition
ContiguousIterator<size_t> in_it(
ContiguousIterator in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
ContiguousIterator out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;

View File

@@ -67,7 +67,12 @@ void set_ternary_op_output_data(
}
break;
case TernaryOpType::General:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
// Try to donate an input which is row_contiguous
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
(b.flags().row_contiguous && maybe_donate(b)) ||
(c.flags().row_contiguous && maybe_donate(c)))) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
break;
}
}
@@ -78,11 +83,11 @@ void ternary_op_dims(
const T3* c,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& c_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -164,10 +169,10 @@ void ternary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
ContiguousIterator<size_t> c_it(shape, c_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,

View File

@@ -15,7 +15,7 @@ void move_or_copy(const array& in, array& out) {
void move_or_copy(
const array& in,
array& out,
const std::vector<size_t>& strides,
const Strides& strides,
array::Flags flags,
size_t data_size,
size_t offset /* = 0 */) {
@@ -26,15 +26,13 @@ void move_or_copy(
}
}
template <typename StrideT>
std::tuple<std::vector<int>, std::vector<std::vector<StrideT>>>
collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<std::vector<StrideT>>& strides,
StrideT size_cap) {
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
int64_t size_cap) {
// Make a vector that has axes separated with -1. Collapse all axes between
// -1.
std::vector<int> to_collapse;
Shape to_collapse;
if (shape.size() > 0) {
if (shape[0] != 1) {
to_collapse.push_back(0);
@@ -43,7 +41,7 @@ collapse_contiguous_dims_impl(
for (int i = 1; i < shape.size(); i++) {
bool contiguous = true;
size *= shape[i];
for (const std::vector<StrideT>& st : strides) {
for (const auto& st : strides) {
if (st[i] * shape[i] != st[i - 1] || size > size_cap) {
contiguous = false;
size = shape[i];
@@ -60,8 +58,8 @@ collapse_contiguous_dims_impl(
to_collapse.push_back(-1);
}
std::vector<int> out_shape;
std::vector<std::vector<StrideT>> out_strides(strides.size());
Shape out_shape;
std::vector<Strides> out_strides(strides.size());
for (int i = 0;;) {
while (i < to_collapse.size() && to_collapse[i] == -1) {
++i;
@@ -76,7 +74,7 @@ collapse_contiguous_dims_impl(
}
out_shape.push_back(current_shape);
for (int j = 0; j < strides.size(); j++) {
const std::vector<StrideT>& st = strides[j];
const auto& st = strides[j];
out_strides[j].push_back(st[to_collapse[k - 1]]);
}
i = k + 1;
@@ -91,29 +89,12 @@ collapse_contiguous_dims_impl(
return std::make_tuple(out_shape, out_strides);
}
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap /* = std::numeric_limits<int32>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
template <typename StrideT>
std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
StrideT size_cap) {
std::vector<int> collapsed_shape;
std::vector<StrideT> collapsed_strides;
std::pair<Shape, Strides> collapse_contiguous_dims(
const Shape& shape,
const Strides& strides,
int64_t size_cap) {
Shape collapsed_shape;
Strides collapsed_strides;
if (shape.size() > 0) {
collapsed_shape.push_back(shape[0]);
@@ -123,7 +104,7 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
continue;
} else if (
strides[i] * shape[i] != collapsed_strides.back() ||
collapsed_shape.back() * static_cast<StrideT>(shape[i]) > size_cap) {
collapsed_shape.back() * static_cast<int64_t>(shape[i]) > size_cap) {
collapsed_shape.push_back(shape[i]);
collapsed_strides.push_back(strides[i]);
} else {
@@ -136,25 +117,10 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
return std::make_pair(collapsed_shape, collapsed_strides);
}
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<int64_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<size_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
size_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
return collapse_contiguous_dims_impl<size_t>(
a.shape(), a.strides(), size_cap);
int64_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
}
} // namespace mlx::core

View File

@@ -8,12 +8,9 @@
namespace mlx::core {
template <typename StrideT>
inline StrideT elem_to_loc(
int elem,
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
StrideT loc = 0;
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
int64_t loc = 0;
for (int i = shape.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(elem, shape[i]);
loc += q_and_r.rem * strides[i];
@@ -22,16 +19,15 @@ inline StrideT elem_to_loc(
return loc;
}
inline size_t elem_to_loc(int elem, const array& a) {
inline int64_t elem_to_loc(int elem, const array& a) {
if (a.flags().row_contiguous) {
return elem;
}
return elem_to_loc(elem, a.shape(), a.strides());
}
template <typename StrideT>
std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
std::vector<StrideT> strides(shape.size(), 1);
inline Strides make_contiguous_strides(const Shape& shape) {
Strides strides(shape.size(), 1);
for (int i = shape.size() - 1; i > 0; i--) {
strides[i - 1] = strides[i] * shape[i];
}
@@ -44,22 +40,15 @@ std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
//
// When multiple arrays are passed they should all have the same shape. The
// collapsed axes are also the same so one shape is returned.
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
inline std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const std::vector<array>& xs,
size_t size_cap = std::numeric_limits<int32_t>::max()) {
std::vector<std::vector<size_t>> strides;
std::vector<Strides> strides;
for (auto& x : xs) {
strides.emplace_back(x.strides());
}
@@ -73,19 +62,14 @@ inline auto collapse_contiguous_dims(Arrays&&... xs) {
}
// The single array version of the above.
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
std::pair<Shape, Strides> collapse_contiguous_dims(
const Shape& shape,
const Strides& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
size_t size_cap = std::numeric_limits<int32_t>::max());
int64_t size_cap = std::numeric_limits<int32_t>::max());
template <typename StrideT>
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
@@ -102,7 +86,7 @@ struct ContiguousIterator {
loc += strides_[i];
}
void seek(StrideT n) {
void seek(int64_t n) {
loc = 0;
for (int i = shape_.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(n, shape_[i]);
@@ -123,37 +107,34 @@ struct ContiguousIterator {
: shape_(a.shape()), strides_(a.strides()) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = std::vector<int>(shape_.size(), 0);
pos_ = Shape(shape_.size(), 0);
}
}
explicit ContiguousIterator(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
const Shape& shape,
const Strides& strides,
int dims)
: shape_(shape.begin(), shape.begin() + dims),
strides_(strides.begin(), strides.begin() + dims) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = std::vector<int>(shape_.size(), 0);
pos_ = Shape(shape_.size(), 0);
}
}
StrideT loc{0};
int64_t loc{0};
private:
std::vector<int> shape_;
std::vector<StrideT> strides_;
std::vector<int> pos_;
Shape shape_;
Strides strides_;
Shape pos_;
};
template <typename StrideT>
inline auto check_contiguity(
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
size_t no_broadcast_data_size = 1;
size_t f_stride = 1;
size_t b_stride = 1;
int64_t f_stride = 1;
int64_t b_stride = 1;
bool is_row_contiguous = true;
bool is_col_contiguous = true;
@@ -182,9 +163,15 @@ void move_or_copy(const array& in, array& out);
void move_or_copy(
const array& in,
array& out,
const std::vector<size_t>& strides,
const Strides& strides,
array::Flags flags,
size_t data_size,
size_t offset = 0);
std::pair<bool, Strides> prepare_reshape(const array& in, const array& out);
void shared_buffer_reshape(
const array& in,
const Strides& out_strides,
array& out);
} // namespace mlx::core

View File

@@ -34,16 +34,20 @@ BufferCache::~BufferCache() {
clear();
}
void BufferCache::clear() {
int BufferCache::clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
if (holder->buf)
if (holder->buf) {
holder->buf->release();
n_release++;
}
delete holder;
}
buffer_pool_.clear();
pool_size_ = 0;
head_ = nullptr;
tail_ = nullptr;
return n_release;
}
MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
@@ -81,10 +85,11 @@ void BufferCache::recycle_to_cache(MTL::Buffer* buf) {
}
}
void BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
int BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
if (min_bytes_to_free >= 0.9 * pool_size_) {
clear();
return clear();
} else {
int n_release = 0;
size_t total_bytes_freed = 0;
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
@@ -92,10 +97,12 @@ void BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
total_bytes_freed += tail_->buf->length();
tail_->buf->release();
tail_->buf = nullptr;
n_release++;
}
remove_from_list(tail_);
}
pool_size_ -= total_bytes_freed;
return n_release;
}
}
@@ -144,11 +151,11 @@ MetalAllocator::MetalAllocator()
residency_set_(device_),
buffer_cache_(device_) {
auto memsize = std::get<size_t>(device_info()["memory_size"]);
block_limit_ =
std::min(1.5 * device_->recommendedMaxWorkingSetSize(), 0.95 * memsize);
gc_limit_ = std::min(
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()),
block_limit_);
auto max_rec_size =
std::get<size_t>(device_info()["max_recommended_working_set_size"]);
resource_limit_ = std::get<size_t>(device_info()["resource_limit"]);
block_limit_ = std::min(1.5 * max_rec_size, 0.95 * memsize);
gc_limit_ = std::min(static_cast<size_t>(0.95 * max_rec_size), block_limit_);
max_pool_size_ = block_limit_;
device(mlx::core::Device::gpu)
.set_residency_set(residency_set_.mtl_residency_set());
@@ -186,7 +193,8 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// More helpful message if maximum buffer length is exceeded
if (size > device_->maxBufferLength()) {
std::ostringstream msg;
msg << "Attempting to allocate " << size << " bytes which is greater than"
msg << "[metal::malloc] Attempting to allocate " << size
<< " bytes which is greater than"
<< " the maximum allowed buffer size of " << device_->maxBufferLength()
<< " bytes.";
throw std::runtime_error(msg.str());
@@ -212,16 +220,26 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache
if (mem_required >= gc_limit_) {
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) {
num_resources_ -=
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
}
// Allocate new buffer if needed
size_t res_opt = MTL::ResourceStorageModeShared;
res_opt |= MTL::ResourceHazardTrackingModeUntracked;
if (num_resources_ >= resource_limit_) {
std::ostringstream msg;
msg << "[metal::malloc] Resource limit (" << resource_limit_
<< ") exceeded.";
throw std::runtime_error(msg.str());
}
lk.unlock();
buf = device_->newBuffer(size, res_opt);
lk.lock();
if (buf) {
num_resources_++;
}
}
active_memory_ += buf->length();
@@ -230,7 +248,8 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Maintain the cache below the requested limit
if (get_cache_memory() >= max_pool_size_) {
auto pool = metal::new_scoped_memory_pool();
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
num_resources_ -= buffer_cache_.release_cached_buffers(
get_cache_memory() - max_pool_size_);
}
residency_set_.insert(buf);
@@ -241,7 +260,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
void MetalAllocator::clear_cache() {
std::unique_lock lk(mutex_);
auto pool = metal::new_scoped_memory_pool();
buffer_cache_.clear();
num_resources_ -= buffer_cache_.clear();
}
void MetalAllocator::free(Buffer buffer) {
@@ -255,6 +274,7 @@ void MetalAllocator::free(Buffer buffer) {
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
num_resources_--;
lk.unlock();
auto pool = metal::new_scoped_memory_pool();
buf->release();

View File

@@ -23,11 +23,11 @@ class BufferCache {
MTL::Buffer* reuse_from_cache(size_t size);
void recycle_to_cache(MTL::Buffer* buf);
void release_cached_buffers(size_t min_bytes_to_free);
int release_cached_buffers(size_t min_bytes_to_free);
size_t cache_size() {
return pool_size_;
}
void clear();
int clear();
private:
struct BufferHolder {
@@ -94,6 +94,8 @@ class MetalAllocator : public allocator::Allocator {
size_t max_pool_size_;
size_t wired_limit_{0};
bool relaxed_{true};
size_t num_resources_{0};
size_t resource_limit_{0};
std::mutex mutex_;
};

View File

@@ -75,19 +75,21 @@ void binary_op_gpu_inplace(
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
return std::make_tuple(shape, strides[0], strides[1], strides[2]);
} else {
std::vector<size_t> e;
return std::make_tuple(std::vector<int>{}, e, e, e);
decltype(a.strides()) e{};
return std::make_tuple(decltype(a.shape()){}, e, e, e);
}
};
auto [shape, strides_a, strides_b, strides_out] = maybe_collapse();
bool large = out.data_size() > UINT32_MAX;
bool large;
auto ndim = shape.size();
int work_per_thread;
if (bopt == BinaryOpType::General) {
large |= (a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX);
large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out.size() > INT32_MAX;
work_per_thread = large ? 4 : 2;
} else {
large = out.data_size() > UINT32_MAX;
work_per_thread = 1;
}
std::string kernel_name =

View File

@@ -1,6 +1,5 @@
// Copyright © 2023-2024 Apple Inc.
#include <fmt/format.h>
#include <iostream> //TODO
#include <sstream>
#include "mlx/backend/common/compiled.h"
@@ -67,7 +66,7 @@ inline void build_kernel(
if (add_indices) {
os += fmt::format(
" constant const size_t* in_strides [[buffer({0})]],\n", cnt++);
" constant const int64_t* in_strides [[buffer({0})]],\n", cnt++);
}
// Add the output arguments
@@ -81,7 +80,7 @@ inline void build_kernel(
// Add output strides and shape to extract the indices.
if (!contiguous) {
os += fmt::format(
" constant const size_t* output_strides [[buffer({0})]],\n", cnt++);
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
os += fmt::format(
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
}
@@ -93,11 +92,11 @@ inline void build_kernel(
os += " uint3 pos [[thread_position_in_grid]],\n";
os += " uint3 grid [[threads_per_grid]]) {\n";
std::string idx_type = use_big_index ? "size_t" : "uint";
std::string idx_type = use_big_index ? "int64_t" : "uint";
if (contiguous && use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os += " size_t index = pos.x + grid.x * size_t(pos.y);\n";
os += " int64_t index = pos.x + grid.x * int64_t(pos.y);\n";
} else if (work_per_thread > 1) {
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
os += fmt::format(
@@ -144,20 +143,18 @@ inline void build_kernel(
os += fmt::format(" {0} index_{1} = ", idx_type, xname);
if (ndim == 1) {
int offset = i * ndim;
os += fmt::format(
"elem_to_loc_1<size_t, uint>(pos.x, in_strides[{0}]);\n", offset);
os +=
fmt::format("elem_to_loc_1<uint>(pos.x, in_strides[{0}]);\n", offset);
} else if (ndim == 2) {
int offset = i * ndim;
os += fmt::format(
"elem_to_loc_2<size_t, {0}>({{pos.x, pos.y}}, in_strides + {1});\n",
"elem_to_loc_2<{0}>({{pos.x, pos.y}}, in_strides + {1});\n",
idx_type,
offset);
} else if (ndim == 3) {
int offset = i * ndim;
os += fmt::format(
"elem_to_loc_3<size_t, {0}>(pos, in_strides + {1});\n",
idx_type,
offset);
"elem_to_loc_3<{0}>(pos, in_strides + {1});\n", idx_type, offset);
} else if (!dynamic_dims) {
int offset = (i + 1) * ndim;
os += fmt::format(
@@ -360,10 +357,10 @@ void Compiled::eval_gpu(
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
std::vector<std::vector<size_t>> initial_strides;
std::vector<Strides> initial_strides;
initial_strides.push_back(outputs[0].strides());
std::vector<int> shape;
std::vector<std::vector<size_t>> strides;
Shape shape;
std::vector<Strides> strides;
if (!contiguous) {
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
@@ -378,7 +375,7 @@ void Compiled::eval_gpu(
}
// Broadcast the inputs to the output shape.
std::vector<size_t> xstrides;
Strides xstrides;
int j = 0;
for (; j < output_shape.size() - x.ndim(); j++) {
if (output_shape[j] == 1) {
@@ -440,7 +437,7 @@ void Compiled::eval_gpu(
// Put the inputs in
int cnt = 0;
int stride_idx = 1; // idx 0 is the output strides
std::vector<size_t> in_strides;
Strides in_strides;
for (int i = 0; i < inputs.size(); i++) {
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;

View File

@@ -34,7 +34,7 @@ void explicit_gemm_conv_ND_gpu(
int implicit_K = wt.size() / conv_params.O;
int implicit_N = conv_params.O;
// Prepare unfolding array
std::vector<int> unfolded_shape{implicit_M, implicit_K};
Shape unfolded_shape{implicit_M, implicit_K};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
in_unfolded.set_data(allocator::malloc_or_wait(in_unfolded.nbytes()));
@@ -64,8 +64,8 @@ void explicit_gemm_conv_ND_gpu(
compute_encoder.dispatch_threads(grid_dims, group_dims);
// Reshape weight
std::vector<int> wt_reshape{implicit_K, implicit_N};
std::vector<size_t> wt_restride{1, static_cast<size_t>(implicit_K)};
Shape wt_reshape{implicit_K, implicit_N};
Strides wt_restride{1, implicit_K};
array wt_reshaped(wt_reshape, wt.dtype(), nullptr, {});
auto wt_flags = wt.flags();
wt_flags.row_contiguous = false;
@@ -113,7 +113,7 @@ void explicit_gemm_conv_group_ND_gpu(
}
// Prepare unfolding array
std::vector<int> unfolded_shape{implicit_M, implicit_K * groups};
Shape unfolded_shape{implicit_M, implicit_K * groups};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
in_unfolded.set_data(allocator::malloc_or_wait(in_unfolded.nbytes()));
@@ -147,10 +147,7 @@ void explicit_gemm_conv_group_ND_gpu(
array wt_view(
{wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
wt_view.copy_shared_buffer(
wt,
{wt.strides(0), 1, static_cast<size_t>(C_per_group)},
wt.flags(),
wt.size());
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
// Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
@@ -195,12 +192,12 @@ void conv_1D_gpu(
bool flip) {
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ in.shape(0),
/* const int C = */ in.shape(2),
/* const int O = */ wt.shape(0),
/* const int iS[NDIM] = */ {in.shape(1)},
/* const int wS[NDIM] = */ {wt.shape(1)},
/* const int oS[NDIM] = */ {out.shape(1)},
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(2)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1))},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1))},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1))},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
@@ -544,7 +541,7 @@ void winograd_conv_2D_gpu(
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies_w) {
std::vector<int> padded_shape = {
Shape padded_shape = {
conv_params.N,
conv_params.iS[0] + 2 * conv_params.pad[0],
conv_params.iS[1] + 2 * conv_params.pad[1],
@@ -553,7 +550,7 @@ void winograd_conv_2D_gpu(
padded_shape[1] = 6 * ((padded_shape[1] - 2 + 5) / 6) + 2;
padded_shape[2] = 6 * ((padded_shape[2] - 2 + 5) / 6) + 2;
array in_padded(padded_shape, in.dtype(), nullptr, {});
array in_padded(std::move(padded_shape), in.dtype(), nullptr, {});
// Fill with zeros
array zero_arr = array(0, in.dtype());
@@ -578,12 +575,16 @@ void winograd_conv_2D_gpu(
copies_w.push_back(in_padded);
MLXConvParams<2> conv_params_updated{
/* const int N = */ in_padded.shape(0),
/* const int C = */ in_padded.shape(3),
/* const int O = */ wt.shape(0),
/* const int iS[NDIM] = */ {in_padded.shape(1), in_padded.shape(2)},
/* const int wS[NDIM] = */ {wt.shape(1), wt.shape(2)},
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int N = */ static_cast<int>(in_padded.shape(0)),
/* const int C = */ static_cast<int>(in_padded.shape(3)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in_padded.shape(1)),
static_cast<int>(in_padded.shape(2))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
/* const int str[NDIM] = */ {1, 1},
/* const int pad[NDIM] = */ {0, 0},
/* const int kdil[NDIM] = */ {1, 1},
@@ -610,8 +611,8 @@ void winograd_conv_2D_gpu(
int N_tiles = N_tiles_n * N_tiles_h * N_tiles_w;
// Do filter transform
std::vector<int> filt_wg_shape = {8 * 8, conv_params.C, conv_params.O};
array filt_wg(filt_wg_shape, wt.dtype(), nullptr, {});
Shape filt_wg_shape = {8 * 8, conv_params.C, conv_params.O};
array filt_wg(std::move(filt_wg_shape), wt.dtype(), nullptr, {});
filt_wg.set_data(allocator::malloc_or_wait(filt_wg.nbytes()));
copies_w.push_back(filt_wg);
{
@@ -637,8 +638,8 @@ void winograd_conv_2D_gpu(
}
// Do input transform
std::vector<int> inp_wg_shape = {8 * 8, N_tiles, conv_params.C};
array inp_wg(inp_wg_shape, in.dtype(), nullptr, {});
Shape inp_wg_shape = {8 * 8, N_tiles, conv_params.C};
array inp_wg(std::move(inp_wg_shape), in.dtype(), nullptr, {});
inp_wg.set_data(allocator::malloc_or_wait(inp_wg.nbytes()));
copies_w.push_back(inp_wg);
{
@@ -664,8 +665,8 @@ void winograd_conv_2D_gpu(
}
// Do batched gemm
std::vector<int> out_wg_shape = {8 * 8, N_tiles, conv_params.O};
array out_wg(out_wg_shape, in.dtype(), nullptr, {});
Shape out_wg_shape = {8 * 8, N_tiles, conv_params.O};
array out_wg(std::move(out_wg_shape), in.dtype(), nullptr, {});
out_wg.set_data(allocator::malloc_or_wait(out_wg.nbytes()));
copies_w.push_back(out_wg);
{
@@ -726,12 +727,15 @@ void conv_2D_gpu(
std::vector<array>& copies) {
// Make conv params
MLXConvParams<2> conv_params{
/* const int N = */ in.shape(0),
/* const int C = */ in.shape(3),
/* const int O = */ wt.shape(0),
/* const int iS[NDIM] = */ {in.shape(1), in.shape(2)},
/* const int wS[NDIM] = */ {wt.shape(1), wt.shape(2)},
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(3)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in.shape(1)), static_cast<int>(in.shape(2))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1]},
/* const int pad[NDIM] = */ {padding[0], padding[1]},
/* const int kdil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
@@ -803,12 +807,21 @@ void conv_3D_gpu(
std::vector<array>& copies) {
// Make conv params
MLXConvParams<3> conv_params{
/* const int N = */ in.shape(0),
/* const int C = */ in.shape(4),
/* const int O = */ wt.shape(0),
/* const int iS[NDIM] = */ {in.shape(1), in.shape(2), in.shape(3)},
/* const int wS[NDIM] = */ {wt.shape(1), wt.shape(2), wt.shape(3)},
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2), out.shape(3)},
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(4)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in.shape(1)),
static_cast<int>(in.shape(2)),
static_cast<int>(in.shape(3))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)),
static_cast<int>(wt.shape(2)),
static_cast<int>(wt.shape(3))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)),
static_cast<int>(out.shape(2)),
static_cast<int>(out.shape(3))},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1], wt_strides[2]},
/* const int pad[NDIM] = */ {padding[0], padding[1], padding[2]},
/* const int kdil[NDIM] = */

View File

@@ -43,17 +43,18 @@ void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
template <typename stride_t>
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int>& data_shape,
const std::vector<stride_t>& strides_in_pre,
const std::vector<stride_t>& strides_out_pre,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
const Stream& s) {
const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) {
if (out.size() == 0) {
return;
}
@@ -68,8 +69,8 @@ void copy_gpu_inplace(
/* size_cap = */ INT32_MAX);
return std::make_tuple(shape, strides[0], strides[1]);
} else {
std::vector<stride_t> e;
return std::make_tuple(std::vector<int>{}, e, e);
Strides e{};
return std::make_tuple(Shape{}, e, e);
}
};
auto [shape, strides_in_, strides_out_] = maybe_collapse();
@@ -81,6 +82,7 @@ void copy_gpu_inplace(
} else {
large = out.data_size() > UINT32_MAX;
}
bool dynamic = dynamic_i_offset || dynamic_o_offset;
auto& d = metal::device(s.device);
int work_per_thread = 1;
std::string kernel_name;
@@ -108,9 +110,17 @@ void copy_gpu_inplace(
if (large) {
kernel_name += "large";
}
if (dynamic) {
kernel_name += "_dynamic";
if (ctype != CopyType::GeneralGeneral) {
throw std::runtime_error(
"[Copy::eval_gpu] Dynamic output offset requires GeneralGeneral copy");
}
}
}
concatenate(kernel_name, "_copy", type_to_name(in), type_to_name(out));
auto kernel = get_copy_kernel(d, kernel_name, in, out);
auto kernel = dynamic ? get_dynamic_copy_kernel(d, kernel_name, in, out)
: get_copy_kernel(d, kernel_name, in, out);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
@@ -124,8 +134,8 @@ void copy_gpu_inplace(
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
std::vector<int64_t> strides_in{strides_in_.begin(), strides_in_.end()};
std::vector<int64_t> strides_out{strides_out_.begin(), strides_out_.end()};
Strides strides_in{strides_in_.begin(), strides_in_.end()};
Strides strides_out{strides_out_.begin(), strides_out_.end()};
if (ndim > 3) {
compute_encoder.set_vector_bytes(shape, ndim, 2);
}
@@ -146,6 +156,18 @@ void copy_gpu_inplace(
compute_encoder.set_bytes(ndim, 5);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
}
if (dynamic) {
if (dynamic_i_offset) {
compute_encoder.set_input_array(*dynamic_i_offset, 6);
} else {
compute_encoder.set_bytes(0ll, 6);
}
if (dynamic_o_offset) {
compute_encoder.set_input_array(*dynamic_o_offset, 7);
} else {
compute_encoder.set_bytes(0ll, 7);
}
}
// NB assuming thread_group_size is a power of 2 larger than 32 x 32
if (thread_group_size != 1024) {
@@ -180,14 +202,13 @@ void copy_gpu_inplace(
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int64_t>& istride,
int64_t ioffset,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
return copy_gpu_inplace(
in, out, in.shape(), istride, ostrides, ioffset, 0, ctype, s);
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
void fill_gpu(const array& val, array& out, const Stream& s) {

View File

@@ -8,23 +8,24 @@
namespace mlx::core {
// Generic copy inplace
template <typename stride_t>
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype,
const Stream& s);
const Stream& s,
const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt);
void copy_gpu(const array& src, array& out, CopyType ctype, const Stream& s);
void copy_gpu(const array& src, array& out, CopyType ctype);
void copy_gpu_inplace(
const array& src,
const array& in,
array& out,
CopyType ctype,
const Stream& s);
@@ -32,8 +33,8 @@ void copy_gpu_inplace(
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int64_t>& istride,
int64_t ioffset,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s);

View File

@@ -651,18 +651,23 @@ device_info() {
auto raw_device = device(default_device()).mtl_device();
auto arch = std::string(raw_device->architecture()->name()->utf8String());
int mib[] = {CTL_HW, HW_MEMSIZE};
size_t memsize = 0;
size_t length = sizeof(memsize);
sysctlbyname("hw.memsize", &memsize, &length, NULL, 0);
sysctl(mib, 2, &memsize, &length, NULL, 0);
size_t rsrc_limit = 0;
sysctlbyname("iogpu.rsrc_limit", &rsrc_limit, &length, NULL, 0);
if (rsrc_limit == 0) {
rsrc_limit = 499000;
}
return {
{"architecture", arch},
{"max_buffer_length", raw_device->maxBufferLength()},
{"max_recommended_working_set_size",
raw_device->recommendedMaxWorkingSetSize()},
{"memory_size", memsize}};
{"memory_size", memsize},
{"resource_limit", rsrc_limit}};
};
static auto device_info_ = init_device_info();
return device_info_;

View File

@@ -3,6 +3,7 @@
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/device.h"
#include "mlx/distributed/ops.h"
#include "mlx/distributed/primitives.h"
@@ -89,13 +90,14 @@ void Send::eval_gpu(
auto& in = inputs[0];
auto& out = outputs[0];
move_or_copy(in, out);
// Schedule an async send on the comm stream
auto task = [in = in, out = out, group = group(), dst = dst_]() mutable {
if (in.event().valid()) {
in.event().wait();
}
distributed::detail::send(group, in, dst);
distributed::detail::send(group, out, dst);
out.event().signal();
};
scheduler::enqueue(detail::communication_stream(), std::move(task));
@@ -133,6 +135,7 @@ void Recv::eval_gpu(
// Encode a wait event as there is no input for the recv to encode a signal.
auto& s = stream();
auto& d = metal::device(s.device);
d.end_encoding(s.index);
auto command_buffer = d.get_command_buffer(s.index);
command_buffer->encodeWait(
static_cast<MTL::Event*>(out.event().raw_event().get()),

View File

@@ -363,7 +363,7 @@ void multi_upload_bluestein_fft(
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
// Broadcast w_q and w_k to the batch size
std::vector<size_t> b_strides(in.ndim(), 0);
Strides b_strides(in.ndim(), 0);
b_strides[axis] = 1;
array w_k_broadcast({}, complex64, nullptr, {});
array w_q_broadcast({}, complex64, nullptr, {});
@@ -386,8 +386,8 @@ void multi_upload_bluestein_fft(
copies.push_back(slice_temp);
copies.push_back(conj_temp);
std::vector<int> rstarts(in.ndim(), 0);
std::vector<int> rstrides(in.ndim(), 1);
Shape rstarts(in.ndim(), 0);
Shape rstrides(in.ndim(), 1);
rstarts[axis] = in.shape(axis) - back_offset;
rstrides[axis] = -1;
unary_op_gpu({in}, conj_temp, "Conjugate", s);
@@ -431,19 +431,19 @@ void multi_upload_bluestein_fft(
s);
int offset = plan.bluestein_n - (2 * n - 1);
std::vector<int> starts(in.ndim(), 0);
std::vector<int> strides(in.ndim(), 1);
Shape starts(in.ndim(), 0);
Shape strides(in.ndim(), 1);
starts[axis] = plan.bluestein_n - offset - n;
slice_gpu(pad_temp1, temp, starts, strides, s);
binary_op_gpu_inplace({temp, w_k_broadcast}, temp1, "Multiply", s);
if (real && !inverse) {
std::vector<int> rstarts(in.ndim(), 0);
std::vector<int> rstrides(in.ndim(), 1);
Shape rstarts(in.ndim(), 0);
Shape rstrides(in.ndim(), 1);
slice_gpu(temp1, out, rstarts, strides, s);
} else if (real && inverse) {
std::vector<size_t> b_strides(in.ndim(), 0);
Strides b_strides(in.ndim(), 0);
auto inv_n = array({1.0f / n}, {1}, float32);
array temp_float(out.shape(), out.dtype(), nullptr, {});
copies.push_back(temp_float);
@@ -531,8 +531,8 @@ void fft_op(
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
std::vector<size_t> strides;
size_t cur_stride = x.shape(axis);
Strides strides;
int64_t cur_stride = x.shape(axis);
for (int a = 0; a < x.ndim(); a++) {
if (a == axis) {
strides.push_back(1);
@@ -777,7 +777,7 @@ void nd_fft_op(
// Mirror np.fft.(i)rfftn and perform a real transform
// only on the final axis.
bool step_real = (real && index == axes.size() - 1);
int step_shape = inverse ? out.shape(axis) : in.shape(axis);
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);

View File

@@ -53,9 +53,9 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
bool large_index = nidx && inputs[1].size() > UINT32_MAX;
bool large_src = src.size() > UINT32_MAX;
bool large_out = out.size() > UINT32_MAX;
bool large_index = nidx && inputs[1].size() > INT32_MAX;
bool large_src = src.size() > INT32_MAX;
bool large_out = out.size() > INT32_MAX;
bool large = large_index || large_src || large_out;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
@@ -65,7 +65,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_type_name,
nidx,
idx_ndim,
large ? "size_t" : "uint");
large ? "int64_t" : "int");
std::string lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
@@ -86,7 +86,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_args,
idx_arr,
idx_ndim,
large ? "size_t" : "uint");
large ? "int64_t" : "int");
return kernel_source;
});
@@ -234,9 +234,9 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
break;
}
auto upd_contig = upd.flags().row_contiguous;
bool large_out = out.size() > UINT32_MAX;
bool large_idx = nidx && (inputs[1].size() > UINT32_MAX);
bool large_upd = upd.size() > UINT32_MAX;
bool large_out = out.size() > INT32_MAX;
bool large_idx = nidx && (inputs[1].size() > INT32_MAX);
bool large_upd = upd.size() > INT32_MAX;
bool large = large_out || large_idx || large_upd;
std::string kernel_name = fmt::format(
"scatter{0}{1}_{2}_{3}_{4}_nwork{5}_{6}",
@@ -246,7 +246,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
nidx,
upd_contig ? "updc_true" : "updc_false",
nwork,
large ? "size_t" : "uint");
large ? "int64_t" : "int");
std::string lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
@@ -290,7 +290,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_arr,
upd_contig,
nwork,
large ? "size_t" : "uint");
large ? "int64_t" : "int");
return kernel_source;
});
@@ -312,8 +312,8 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
upd_size *= upd.shape(i);
}
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
Shape idx_shapes;
Strides idx_strides;
// To access .data() use char instead of bool
// bool is 1 byte in Metal so this is safe
std::vector<char> idx_contigs;
@@ -332,7 +332,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
int64_t stride_ = 0;
compute_encoder.set_bytes(shape_, 3);
compute_encoder.set_bytes(stride_, 4);
} else {
@@ -347,7 +347,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
int64_t stride_ = 0;
compute_encoder.set_bytes(shape_, 7);
compute_encoder.set_bytes(stride_, 8);
} else {

View File

@@ -11,13 +11,13 @@ gemv_{trans}masked<{itype}, {outm_t}, {opm_t}, {bm}, {bn}, {sm}, {sn}, {tm}, {tn
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device {outm_t}* out_mask [[buffer(20)]],
const device {opm_t}* mat_mask [[buffer(21)]],
const device {opm_t}* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],

View File

@@ -5,12 +5,12 @@ constexpr std::string_view gather_kernels = R"(
const device {1}* src [[buffer(0)]],
device {1}* out [[buffer(1)]],
const constant int* src_shape [[buffer(2)]],
const constant size_t* src_strides [[buffer(3)]],
const constant int64_t* src_strides [[buffer(3)]],
const constant size_t& src_ndim [[buffer(4)]],
const constant int* slice_sizes [[buffer(5)]],
const constant int* axes [[buffer(6)]],
const constant int* idx_shapes [[buffer(7)]],
const constant size_t* idx_strides [[buffer(8)]],
const constant int64_t* idx_strides [[buffer(8)]],
const constant bool* idx_contigs [[buffer(9)]],
const constant int& idx_ndim [[buffer(10)]],
{4}
@@ -38,15 +38,15 @@ constexpr std::string_view scatter_kernels = R"(
const device {1}* updates [[buffer(1)]],
device mlx_atomic<{1}>* out [[buffer(2)]],
const constant int* upd_shape [[buffer(3)]],
const constant size_t* upd_strides [[buffer(4)]],
const constant int64_t* upd_strides [[buffer(4)]],
const constant size_t& upd_ndim [[buffer(5)]],
const constant size_t& upd_size [[buffer(6)]],
const constant int* out_shape [[buffer(7)]],
const constant size_t* out_strides [[buffer(8)]],
const constant int64_t* out_strides [[buffer(8)]],
const constant size_t& out_ndim [[buffer(9)]],
const constant int* axes [[buffer(10)]],
const constant int* idx_shapes [[buffer(11)]],
const constant size_t* idx_strides [[buffer(12)]],
const constant int64_t* idx_strides [[buffer(12)]],
const constant bool* idx_contigs [[buffer(13)]],
const constant int& idx_ndim [[buffer(14)]],
const constant size_t& idx_size [[buffer(15)]],

View File

@@ -10,12 +10,12 @@ template [[host_name("{name}")]]
const constant GEMMParams* params [[buffer(4)]],
const constant GEMMAddMMParams* addmm_params [[buffer(5), function_constant(use_out_source)]],
const constant int* batch_shape [[buffer(6)]],
const constant size_t* batch_strides [[buffer(7)]],
const constant int64_t* batch_strides [[buffer(7)]],
const constant uint32_t* lhs_indices [[buffer(10), function_constant(do_gather)]],
const constant uint32_t* rhs_indices [[buffer(11), function_constant(do_gather)]],
const constant uint32_t* C_indices [[buffer(12), function_constant(gather_bias)]],
const constant int* operand_shape [[buffer(13), function_constant(do_gather)]],
const constant size_t* operand_strides [[buffer(14), function_constant(do_gather)]],
const constant int64_t* operand_strides [[buffer(14), function_constant(do_gather)]],
const constant packed_int3& operand_batch_ndim [[buffer(15), function_constant(do_gather)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
@@ -43,7 +43,7 @@ block_masked_gemm<
device {itype}* D [[buffer(3)]],
const constant GEMMParams* params [[buffer(4)]],
const constant int* batch_shape [[buffer(6)]],
const constant size_t* batch_strides [[buffer(7)]],
const constant int64_t* batch_strides [[buffer(7)]],
const device {outmasktype}* out_mask [[buffer(10)]],
const device {opmasktype}* lhs_mask [[buffer(11)]],
const device {opmasktype}* rhs_mask [[buffer(12)]],

View File

@@ -52,7 +52,7 @@ MTL::ComputePipelineState* get_unary_kernel(
kernel_source +=
get_template_definition("v2_" + lib_name, "unary_v2", in_t, out_t, op);
kernel_source += get_template_definition(
"gn1_" + lib_name, "unary_g", in_t, out_t, op, 1, "uint");
"gn1_" + lib_name, "unary_g", in_t, out_t, op, 1, "int");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "unary_g", in_t, out_t, op, 4);
return kernel_source;
@@ -74,7 +74,7 @@ void append_binary_kernels(
{"vs2", "binary_vs2"},
{"sv2", "binary_sv2"},
{"vv2", "binary_vv2"},
{"g1", "binary_g_nd1"},
{"g1large", "binary_g_nd1"},
{"g2large", "binary_g_nd2"},
{"g3large", "binary_g_nd3"},
}};
@@ -86,11 +86,13 @@ void append_binary_kernels(
get_template_definition(name + "_" + lib_name, func, in_t, out_t, op);
}
kernel_source += get_template_definition(
"g2_" + lib_name, "binary_g_nd2", in_t, out_t, op, "uint");
"g1_" + lib_name, "binary_g_nd1", in_t, out_t, op, "int");
kernel_source += get_template_definition(
"g3_" + lib_name, "binary_g_nd3", in_t, out_t, op, "uint");
"g2_" + lib_name, "binary_g_nd2", in_t, out_t, op, "int");
kernel_source += get_template_definition(
"gn2_" + lib_name, "binary_g", in_t, out_t, op, 2, "uint");
"g3_" + lib_name, "binary_g_nd3", in_t, out_t, op, "int");
kernel_source += get_template_definition(
"gn2_" + lib_name, "binary_g", in_t, out_t, op, 2, "int");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "binary_g", in_t, out_t, op, 4);
}
@@ -141,7 +143,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
const std::array<std::pair<std::string, std::string>, 5> kernel_types = {{
{"v", "ternary_v"},
{"v2", "ternary_v2"},
{"g1", "ternary_g_nd1"},
{"g1large", "ternary_g_nd1"},
{"g2large", "ternary_g_nd2"},
{"g3large", "ternary_g_nd3"},
}};
@@ -150,11 +152,13 @@ MTL::ComputePipelineState* get_ternary_kernel(
get_template_definition(name + "_" + lib_name, func, t_str, op);
}
kernel_source += get_template_definition(
"g2_" + lib_name, "ternary_g_nd2", t_str, op, "uint");
"g1_" + lib_name, "ternary_g_nd1", t_str, op, "int");
kernel_source += get_template_definition(
"g3_" + lib_name, "ternary_g_nd3", t_str, op, "uint");
"g2_" + lib_name, "ternary_g_nd2", t_str, op, "int");
kernel_source += get_template_definition(
"gn2_" + lib_name, "ternary_g", t_str, op, 2, "uint");
"g3_" + lib_name, "ternary_g_nd3", t_str, op, "int");
kernel_source += get_template_definition(
"gn2_" + lib_name, "ternary_g", t_str, op, 2, "int");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "ternary_g", t_str, op, 4);
return kernel_source;
@@ -178,7 +182,7 @@ MTL::ComputePipelineState* get_copy_kernel(
kernel_source +=
get_template_definition("v_" + lib_name, "copy_v", in_type, out_type);
kernel_source += get_template_definition(
"g1_" + lib_name, "copy_g_nd1", in_type, out_type);
"g1_" + lib_name, "copy_g_nd1", in_type, out_type, "int");
kernel_source += get_template_definition(
"g2_" + lib_name, "copy_g_nd2", in_type, out_type, "int");
kernel_source += get_template_definition(
@@ -186,19 +190,23 @@ MTL::ComputePipelineState* get_copy_kernel(
kernel_source += get_template_definition(
"gn2_" + lib_name, "copy_g", in_type, out_type, 2, "int");
kernel_source += get_template_definition(
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type);
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type, "int");
kernel_source += get_template_definition(
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type, "int");
kernel_source += get_template_definition(
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type, "int");
kernel_source += get_template_definition(
"ggn2_" + lib_name, "copy_gg", in_type, out_type, 2, "int");
kernel_source += get_template_definition(
"g1large_" + lib_name, "copy_g_nd1", in_type, out_type);
kernel_source += get_template_definition(
"g2large_" + lib_name, "copy_g_nd2", in_type, out_type);
kernel_source += get_template_definition(
"g3large_" + lib_name, "copy_g_nd3", in_type, out_type);
kernel_source += get_template_definition(
"gn4large_" + lib_name, "copy_g", in_type, out_type, 4);
kernel_source += get_template_definition(
"gg1large_" + lib_name, "copy_gg_nd1", in_type, out_type);
kernel_source += get_template_definition(
"gg2large_" + lib_name, "copy_gg_nd2", in_type, out_type);
kernel_source += get_template_definition(
@@ -210,6 +218,38 @@ MTL::ComputePipelineState* get_copy_kernel(
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_dynamic_copy_kernel(
metal::Device& d,
const std::string& kernel_name,
const array& in,
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source = metal::utils();
kernel_source += metal::copy();
auto in_type = get_type_string(in.dtype());
auto out_type = get_type_string(out.dtype());
kernel_source += get_template_definition(
"gg1_" + lib_name, "copy_gg_dynamic_nd1", in_type, out_type, "int");
kernel_source += get_template_definition(
"gg2_" + lib_name, "copy_gg_dynamic_nd2", in_type, out_type, "int");
kernel_source += get_template_definition(
"gg3_" + lib_name, "copy_gg_dynamic_nd3", in_type, out_type, "int");
kernel_source += get_template_definition(
"ggn2_" + lib_name, "copy_gg_dynamic", in_type, out_type, 2, "int");
kernel_source += get_template_definition(
"gg1large_" + lib_name, "copy_gg_dynamic_nd1", in_type, out_type);
kernel_source += get_template_definition(
"gg2large_" + lib_name, "copy_gg_dynamic_nd2", in_type, out_type);
kernel_source += get_template_definition(
"gg3large_" + lib_name, "copy_gg_dynamic_nd3", in_type, out_type);
kernel_source += get_template_definition(
"ggn4large_" + lib_name, "copy_gg_dynamic", in_type, out_type, 4);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_softmax_kernel(
metal::Device& d,
const std::string& kernel_name,

View File

@@ -45,6 +45,12 @@ MTL::ComputePipelineState* get_copy_kernel(
const array& in,
const array& out);
MTL::ComputePipelineState* get_dynamic_copy_kernel(
metal::Device& d,
const std::string& kernel_name,
const array& in,
const array& out);
MTL::ComputePipelineState* get_softmax_kernel(
metal::Device& d,
const std::string& kernel_name,

View File

@@ -75,10 +75,10 @@ template <typename T, typename Op, int N_READS = 4>
const device T* in [[buffer(0)]],
device uint32_t* out [[buffer(1)]],
const constant int* shape [[buffer(2)]],
const constant size_t* in_strides [[buffer(3)]],
const constant size_t* out_strides [[buffer(4)]],
const constant int64_t* in_strides [[buffer(3)]],
const constant int64_t* out_strides [[buffer(4)]],
const constant size_t& ndim [[buffer(5)]],
const constant size_t& axis_stride [[buffer(6)]],
const constant int64_t& axis_stride [[buffer(6)]],
const constant size_t& axis_size [[buffer(7)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],

View File

@@ -43,7 +43,7 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[0], b[offset]);
}
@@ -54,7 +54,7 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[0]);
}
@@ -65,49 +65,49 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[offset]);
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd1(
device const T* a,
device const T* b,
device U* c,
constant const size_t& a_stride,
constant const size_t& b_stride,
constant const int64_t& a_stride,
constant const int64_t& b_stride,
uint index [[thread_position_in_grid]]) {
auto a_idx = elem_to_loc_1<size_t, IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<size_t, IdxT>(index, b_stride);
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
c[index] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd2(
device const T* a,
device const T* b,
device U* c,
constant const size_t a_strides[2],
constant const size_t b_strides[2],
constant const int64_t a_strides[2],
constant const int64_t b_strides[2],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2<size_t, IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<size_t, IdxT>(index, b_strides);
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd3(
device const T* a,
device const T* b,
device U* c,
constant const size_t a_strides[3],
constant const size_t b_strides[3],
constant const int64_t a_strides[3],
constant const int64_t b_strides[3],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_3<size_t, IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<size_t, IdxT>(index, b_strides);
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
@@ -117,18 +117,18 @@ template <
typename U,
typename Op,
int N = 1,
typename IdxT = size_t>
typename IdxT = int64_t>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
device U* c,
constant const int* shape,
constant const size_t* a_strides,
constant const size_t* b_strides,
constant const int64_t* a_strides,
constant const int64_t* b_strides,
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd<size_t, IdxT>(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);

View File

@@ -9,21 +9,21 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, int) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, int) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, int) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, int) \
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
#define instantiate_binary_integer(op) \

View File

@@ -56,7 +56,7 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[0], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
@@ -70,7 +70,7 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[0]);
c[offset] = out[0];
d[offset] = out[1];
@@ -84,58 +84,58 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd1(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t& a_stride,
constant const size_t& b_stride,
constant const int64_t& a_stride,
constant const int64_t& b_stride,
uint index [[thread_position_in_grid]]) {
auto a_idx = elem_to_loc_1<size_t, IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<size_t, IdxT>(index, b_stride);
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
auto out = Op()(a[a_idx], b[b_idx]);
c[index] = out[0];
d[index] = out[1];
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t a_strides[2],
constant const size_t b_strides[2],
constant const int64_t a_strides[2],
constant const int64_t b_strides[2],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2<size_t, IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<size_t, IdxT>(index, b_strides);
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}
template <typename T, typename U, typename Op, typename IdxT = size_t>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd3(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t a_strides[3],
constant const size_t b_strides[3],
constant const int64_t a_strides[3],
constant const int64_t b_strides[3],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_3<size_t, IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<size_t, IdxT>(index, b_strides);
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
@@ -147,19 +147,19 @@ template <
typename U,
typename Op,
int N = 1,
typename IdxT = size_t>
typename IdxT = int64_t>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const int* shape,
constant const size_t* a_strides,
constant const size_t* b_strides,
constant const int64_t* a_strides,
constant const int64_t* b_strides,
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd<size_t, IdxT>(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);

View File

@@ -7,21 +7,21 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary_two.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, int) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, int) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, int) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, int) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
#define instantiate_binary_float(op) \

View File

@@ -22,7 +22,7 @@ template <typename T, typename U>
device U* dst [[buffer(1)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[0]);
}
@@ -32,7 +32,7 @@ template <typename T, typename U>
device U* dst [[buffer(1)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[offset]);
}
@@ -42,7 +42,7 @@ template <typename T, typename U, typename IdxT = int64_t>
device U* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
uint index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_1<int64_t, IdxT>(index, src_stride);
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
dst[index] = static_cast<U>(src[src_idx]);
}
@@ -53,7 +53,7 @@ template <typename T, typename U, typename IdxT = int64_t>
constant const int64_t* src_strides [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc_2<int64_t, IdxT>(index, src_strides);
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
IdxT dst_idx = index.x + IdxT(grid_dim.x) * index.y;
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
@@ -65,7 +65,7 @@ template <typename T, typename U, typename IdxT = int64_t>
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc_3<int64_t, IdxT>(index, src_strides);
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
IdxT dst_idx =
index.x + IdxT(grid_dim.x) * (index.y + IdxT(grid_dim.y) * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
@@ -80,7 +80,7 @@ template <typename T, typename U, int N = 1, typename IdxT = int64_t>
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc<int64_t, IdxT>(
auto src_idx = elem_to_loc<IdxT>(
{N * index.x, index.y, index.z}, src_shape, src_strides, ndim);
if (N == 1) {
IdxT dst_idx =
@@ -104,8 +104,8 @@ template <typename T, typename U, typename IdxT = int64_t>
constant const int64_t& src_stride [[buffer(3)]],
constant const int64_t& dst_stride [[buffer(4)]],
uint index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_1<int64_t, IdxT>(index, src_stride);
auto dst_idx = elem_to_loc_1<int64_t, IdxT>(index, dst_stride);
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
auto dst_idx = elem_to_loc_1<IdxT>(index, dst_stride);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
@@ -116,8 +116,8 @@ template <typename T, typename U, typename IdxT = int64_t>
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint2 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_2<int64_t, IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_2<int64_t, IdxT>(index, dst_strides);
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_2<IdxT>(index, dst_strides);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
@@ -128,8 +128,8 @@ template <typename T, typename U, typename IdxT = int64_t>
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_3<int64_t, IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_3<int64_t, IdxT>(index, dst_strides);
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_3<IdxT>(index, dst_strides);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
@@ -142,7 +142,7 @@ template <typename T, typename U, int N = 1, typename IdxT = int64_t>
constant const int64_t* dst_strides [[buffer(4)]],
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]]) {
auto idx = elem_to_loc_2_nd<int64_t, IdxT>(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z},
src_shape,
src_strides,
@@ -161,3 +161,78 @@ template <typename T, typename U, int N = 1, typename IdxT = int64_t>
idx.y += dst_xstride;
}
}
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_dynamic_nd1(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
constant const int64_t& dst_stride [[buffer(4)]],
constant const int64_t& src_offset [[buffer(6)]],
constant const int64_t& dst_offset [[buffer(7)]],
uint index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
auto dst_idx = elem_to_loc_1<IdxT>(index, dst_stride);
dst[dst_idx + dst_offset] = src[src_idx + src_offset];
}
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_dynamic_nd2(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
constant const int64_t& src_offset [[buffer(6)]],
constant const int64_t& dst_offset [[buffer(7)]],
uint2 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_2<IdxT>(index, dst_strides);
dst[dst_idx + dst_offset] = src[src_idx + src_offset];
}
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_dynamic_nd3(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
constant const int64_t& src_offset [[buffer(6)]],
constant const int64_t& dst_offset [[buffer(7)]],
uint3 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_3<IdxT>(index, dst_strides);
dst[dst_idx + dst_offset] = src[src_idx + src_offset];
}
template <typename T, typename U, int N = 1, typename IdxT = int64_t>
[[kernel]] void copy_gg_dynamic(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
constant const int& ndim [[buffer(5)]],
constant const int64_t& src_offset [[buffer(6)]],
constant const int64_t& dst_offset [[buffer(7)]],
uint3 index [[thread_position_in_grid]]) {
src += src_offset;
dst += dst_offset;
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z},
src_shape,
src_strides,
dst_strides,
ndim);
if (N == 1) {
dst[idx.y] = src[idx.x];
return;
}
IdxT src_xstride = src_strides[ndim - 1];
IdxT dst_xstride = dst_strides[ndim - 1];
auto xshape = src_shape[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
dst[idx.y] = src[idx.x];
idx.x += src_xstride;
idx.y += dst_xstride;
}
}

View File

@@ -4,29 +4,40 @@
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/copy.h"
#define instantiate_copy_all(tname, itype, otype) \
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype, int) \
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype, int) \
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype, int) \
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype, int) \
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype, int) \
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype, int) \
instantiate_kernel("gn2_copy" #tname, copy_g, itype, otype, 2, int) \
instantiate_kernel("ggn2_copy" #tname, copy_gg, itype, otype, 2, int) \
instantiate_kernel("g1large_copy" #tname, copy_g_nd1, itype, otype) \
instantiate_kernel("g2large_copy" #tname, copy_g_nd2, itype, otype) \
instantiate_kernel("g3large_copy" #tname, copy_g_nd3, itype, otype) \
instantiate_kernel("gg1large_copy" #tname, copy_gg_nd1, itype, otype) \
instantiate_kernel("gg2large_copy" #tname, copy_gg_nd2, itype, otype) \
instantiate_kernel("gg3large_copy" #tname, copy_gg_nd3, itype, otype) \
instantiate_kernel("gn4large_copy" #tname, copy_g, itype, otype, 4) \
instantiate_kernel("ggn4large_copy" #tname, copy_gg, itype, otype, 4)
#define instantiate_copy_all(tname, itype, otype) \
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype, int) \
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype, int) \
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype, int) \
instantiate_kernel("gn2_copy" #tname, copy_g, itype, otype, 2, int) \
instantiate_kernel("g1large_copy" #tname, copy_g_nd1, itype, otype) \
instantiate_kernel("g2large_copy" #tname, copy_g_nd2, itype, otype) \
instantiate_kernel("g3large_copy" #tname, copy_g_nd3, itype, otype) \
instantiate_kernel("gn4large_copy" #tname, copy_g, itype, otype, 4)
#define instantiate_copy_same(tname, type) \
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, type, type, int) \
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, type, type, int) \
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, type, type, int) \
instantiate_kernel("ggn2_copy" #tname, copy_gg, type, type, 2, int) \
instantiate_kernel("gg1large_copy" #tname, copy_gg_nd1, type, type) \
instantiate_kernel("gg2large_copy" #tname, copy_gg_nd2, type, type) \
instantiate_kernel("gg3large_copy" #tname, copy_gg_nd3, type, type) \
instantiate_kernel("ggn4large_copy" #tname, copy_gg, type, type, 4) \
instantiate_kernel("gg1_dynamic_copy" #tname, copy_gg_dynamic_nd1, type, type, int) \
instantiate_kernel("gg2_dynamic_copy" #tname, copy_gg_dynamic_nd2, type, type, int) \
instantiate_kernel("gg3_dynamic_copy" #tname, copy_gg_dynamic_nd3, type, type, int) \
instantiate_kernel("ggn2_dynamic_copy" #tname, copy_gg_dynamic, type, type, 2, int) \
instantiate_kernel("gg1large_dynamic_copy" #tname, copy_gg_dynamic_nd1, type, type) \
instantiate_kernel("gg2large_dynamic_copy" #tname, copy_gg_dynamic_nd2, type, type) \
instantiate_kernel("gg3large_dynamic_copy" #tname, copy_gg_dynamic_nd3, type, type) \
instantiate_kernel("ggn4large_dynamic_copy" #tname, copy_gg_dynamic, type, type, 4)
#define instantiate_copy_itype(itname, itype) \
instantiate_copy_same(itname ##itname, itype) \
instantiate_copy_all(itname ##bool_, itype, bool) \
instantiate_copy_all(itname ##uint8, itype, uint8_t) \
instantiate_copy_all(itname ##uint16, itype, uint16_t) \

View File

@@ -9,7 +9,7 @@ METAL_FUNC void gather_impl(
const device T* src [[buffer(0)]],
device T* out [[buffer(1)]],
const constant int* src_shape [[buffer(2)]],
const constant size_t* src_strides [[buffer(3)]],
const constant int64_t* src_strides [[buffer(3)]],
const constant size_t& src_ndim [[buffer(4)]],
const constant int* slice_sizes [[buffer(5)]],
const constant int* axes [[buffer(6)]],
@@ -27,7 +27,7 @@ METAL_FUNC void gather_impl(
idx_loc = index.x * static_cast<LocT>(indices.strides[indices.ndim * i]);
idx_loc += indices.row_contiguous[i]
? index.y
: elem_to_loc<size_t, LocT>(
: elem_to_loc<LocT>(
index.y,
&indices.shapes[indices.ndim * i + 1],
&indices.strides[indices.ndim * i + 1],
@@ -39,7 +39,7 @@ METAL_FUNC void gather_impl(
}
auto src_offset =
elem_to_loc<size_t, LocT>(index.z, slice_sizes, src_strides, src_ndim);
elem_to_loc<LocT>(index.z, slice_sizes, src_strides, src_ndim);
LocT out_idx = index.z;
if (IDX_NDIM == 1) {

View File

@@ -436,9 +436,9 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant size_t* bias_batch_stride [[buffer(13)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* bias_batch_stride [[buffer(13)]],
const constant int& bias_stride [[buffer(14)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
@@ -486,31 +486,21 @@ template <
simd_lid);
}
#define instantiate_gemv_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
template [[host_name("gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc \
"_axpby" #axpby)]] [[kernel]] void \
gemv<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const constant size_t* bias_batch_stride [[buffer(13)]], \
const constant int& bias_stride [[buffer(14)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define instantiate_gemv_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
instantiate_kernel( \
"gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc "_axpby" #axpby, \
gemv, \
itype, \
bm, \
bn, \
sm, \
sn, \
tm, \
tn, \
nc, \
axpby)
// clang-format off
#define instantiate_gemv(name, itype, bm, bn, tm, tn) \
@@ -549,13 +539,13 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* index_batch_strides [[buffer(11)]],
const constant int64_t* index_batch_strides [[buffer(11)]],
const constant int& vector_batch_ndim [[buffer(12)]],
const constant int* vector_batch_shape [[buffer(13)]],
const constant size_t* vector_batch_stride [[buffer(14)]],
const constant int64_t* vector_batch_stride [[buffer(14)]],
const constant int& matrix_batch_ndim [[buffer(15)]],
const constant int* matrix_batch_shape [[buffer(16)]],
const constant size_t* matrix_batch_stride [[buffer(17)]],
const constant int64_t* matrix_batch_stride [[buffer(17)]],
const constant uint32_t* vec_indices [[buffer(18)]],
const constant uint32_t* mat_indices [[buffer(19)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -571,8 +561,8 @@ template <
// Update batch offsets
if (batch_ndim > 1) {
const constant size_t* veci_bstrides = index_batch_strides;
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
const constant auto* veci_bstrides = index_batch_strides;
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
@@ -619,37 +609,14 @@ template <
simd_lid);
}
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
template [[host_name("gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
gemv_gather<itype, bm, bn, sm, sn, tm, tn>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* index_batch_strides [[buffer(11)]], \
const constant int& vector_batch_ndim [[buffer(12)]], \
const constant int* vector_batch_shape [[buffer(13)]], \
const constant size_t* vector_batch_stride [[buffer(14)]], \
const constant int& matrix_batch_ndim [[buffer(15)]], \
const constant int* matrix_batch_shape [[buffer(16)]], \
const constant size_t* matrix_batch_stride [[buffer(17)]], \
const constant uint32_t* vec_indices [[buffer(18)]], \
const constant uint32_t* mat_indices [[buffer(19)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_bs_blocks(name, itype) \
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
instantiate_kernel( \
"gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn, \
gemv_gather, itype, bm, bn, sm, sn, tm, tn)
#define instantiate_gemv_bs_blocks(name, itype) \
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 1, 4) \
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 4, 4) \
instantiate_gemv_bs_helper(name, itype, 8, 1, 1, 32, 4, 4) // clang-format on
@@ -684,9 +651,9 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant size_t* bias_batch_stride [[buffer(13)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* bias_batch_stride [[buffer(13)]],
const constant int& bias_stride [[buffer(14)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
@@ -734,33 +701,14 @@ template <
simd_lid);
}
#define instantiate_gemv_t_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
template [[host_name("gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc \
"_axpby" #axpby)]] [[kernel]] void \
gemv_t<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const constant size_t* bias_batch_stride [[buffer(13)]], \
const constant int& bias_stride [[buffer(14)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_t_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
instantiate_kernel( \
"gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc "_axpby" #axpby, \
gemv_t, itype, bm, bn, sm, sn, tm, tn, nc, axpby)
#define instantiate_gemv_t(name, itype, bm, bn, sm, sn, tm, tn) \
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 0) \
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 1) \
@@ -800,13 +748,13 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* index_batch_strides [[buffer(11)]],
const constant int64_t* index_batch_strides [[buffer(11)]],
const constant int& vector_batch_ndim [[buffer(12)]],
const constant int* vector_batch_shape [[buffer(13)]],
const constant size_t* vector_batch_stride [[buffer(14)]],
const constant int64_t* vector_batch_stride [[buffer(14)]],
const constant int& matrix_batch_ndim [[buffer(15)]],
const constant int* matrix_batch_shape [[buffer(16)]],
const constant size_t* matrix_batch_stride [[buffer(17)]],
const constant int64_t* matrix_batch_stride [[buffer(17)]],
const constant uint32_t* vec_indices [[buffer(18)]],
const constant uint32_t* mat_indices [[buffer(19)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -822,8 +770,8 @@ template <
// Update batch offsets
if (batch_ndim > 1) {
const constant size_t* veci_bstrides = index_batch_strides;
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
const constant auto* veci_bstrides = index_batch_strides;
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
@@ -870,36 +818,14 @@ template <
simd_lid);
}
#define instantiate_gemv_t_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
template [[host_name("gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
gemv_t_gather<itype, bm, bn, sm, sn, tm, tn>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* index_batch_strides [[buffer(11)]], \
const constant int& vector_batch_ndim [[buffer(12)]], \
const constant int* vector_batch_shape [[buffer(13)]], \
const constant size_t* vector_batch_stride [[buffer(14)]], \
const constant int& matrix_batch_ndim [[buffer(15)]], \
const constant int* matrix_batch_shape [[buffer(16)]], \
const constant size_t* matrix_batch_stride [[buffer(17)]], \
const constant uint32_t* vec_indices [[buffer(18)]], \
const constant uint32_t* mat_indices [[buffer(19)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_t_bs_helper( \
nm, itype, bm, bn, sm, sn, tm, tn) \
instantiate_kernel( \
"gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn, \
gemv_t_gather, itype, bm, bn, sm, sn, tm, tn)
#define instantiate_gemv_t_bs_blocks(name, itype) \
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 1) \
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 4) \

View File

@@ -642,13 +642,13 @@ template <
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device out_mask_t* out_mask [[buffer(20)]],
const device op_mask_t* mat_mask [[buffer(21)]],
const device op_mask_t* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@@ -673,8 +673,8 @@ template <
}
if (has_operand_mask) {
const constant size_t* mask_strides_mat = mask_batch_strides;
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
const constant auto* mask_strides_mat = mask_batch_strides;
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
@@ -742,13 +742,13 @@ template <
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device out_mask_t* out_mask [[buffer(20)]],
const device op_mask_t* mat_mask [[buffer(21)]],
const device op_mask_t* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@@ -773,8 +773,8 @@ template <
}
if (has_operand_mask) {
const constant size_t* mask_strides_mat = mask_batch_strides;
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
const constant auto* mask_strides_mat = mask_batch_strides;
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);

Some files were not shown because too many files have changed in this diff Show More