Compare commits

..

3 Commits

Author SHA1 Message Date
Awni Hannun
0c1155faf5 binding + tests 2024-12-09 12:57:36 -08:00
Awni Hannun
2b9c24c517 works 2024-12-09 12:57:36 -08:00
Awni Hannun
ee59d50293 try dynamic reshape 2024-12-09 12:57:36 -08:00
294 changed files with 9423 additions and 16884 deletions

View File

@@ -85,7 +85,7 @@ jobs:
name: Install dependencies
command: |
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install nanobind==2.2.0
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
@@ -137,7 +137,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install nanobind==2.2.0
pip install numpy
pip install torch
pip install tensorflow
@@ -160,7 +160,6 @@ jobs:
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build example extension
command: |
@@ -227,7 +226,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install nanobind==2.2.0
pip install --upgrade setuptools
pip install numpy
pip install twine
@@ -292,7 +291,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install nanobind==2.2.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel

3
.gitignore vendored
View File

@@ -76,9 +76,6 @@ build/
*.out
*.app
# Debug symbols
*.pdb
# VSCode
.vscode/
.DS_Store

View File

@@ -1,16 +1,16 @@
repos:
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
rev: v19.1.4
hooks:
- id: clang-format
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 25.1.0
rev: 24.10.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
rev: 6.0.0
rev: 5.13.2
hooks:
- id: isort
args:

View File

@@ -7,7 +7,7 @@ with a short description of your contribution(s) below. For example:
MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`. Added `cross`. Added `orthogonal` initializer.
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`. Added `cross`.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream`, safetensors support, `einsum`, and `einsum_path`.

View File

@@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.25)
cmake_minimum_required(VERSION 3.24)
project(mlx LANGUAGES C CXX)
@@ -20,14 +20,12 @@ option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.22.1)
set(MLX_VERSION 0.21.1)
endif()
add_compile_definitions("MLX_VERSION=${MLX_VERSION}")
# --------------------- Processor tests -------------------------
@@ -95,7 +93,8 @@ elseif(MLX_BUILD_METAL)
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
)
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
@@ -114,56 +113,16 @@ elseif(MLX_BUILD_METAL)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
endif()
if(WIN32)
if(MSVC)
# GGUF does not build with MSVC.
set(MLX_BUILD_GGUF OFF)
# There is no prebuilt OpenBLAS distribution for MSVC.
set(MLX_BUILD_BLAS_FROM_SOURCE ON)
endif()
# Windows implementation of dlfcn.h APIs.
FetchContent_Declare(
dlfcn-win32
GIT_REPOSITORY https://github.com/dlfcn-win32/dlfcn-win32.git
GIT_TAG v1.4.1
EXCLUDE_FROM_ALL)
block()
set(BUILD_SHARED_LIBS OFF)
FetchContent_MakeAvailable(dlfcn-win32)
endblock()
target_include_directories(mlx PRIVATE "${dlfcn-win32_SOURCE_DIR}/src")
target_link_libraries(mlx PRIVATE dl)
endif()
if(MLX_BUILD_CPU)
find_library(ACCELERATE_LIBRARY Accelerate)
if(ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
else()
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
endif()
if(MLX_BUILD_ACCELERATE)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
add_compile_definitions(MLX_USE_ACCELERATE)
add_compile_definitions(ACCELERATE_NEW_LAPACK)
elseif(MLX_BUILD_BLAS_FROM_SOURCE)
# Download and build OpenBLAS from source code.
FetchContent_Declare(
openblas
GIT_REPOSITORY https://github.com/OpenMathLib/OpenBLAS.git
GIT_TAG v0.3.28
EXCLUDE_FROM_ALL)
set(BUILD_STATIC_LIBS ON) # link statically
set(NOFORTRAN ON) # msvc has no fortran compiler
FetchContent_MakeAvailable(openblas)
target_link_libraries(mlx PRIVATE openblas)
target_include_directories(
mlx PRIVATE "${openblas_SOURCE_DIR}/lapack-netlib/LAPACKE/include"
"${CMAKE_BINARY_DIR}/generated" "${CMAKE_BINARY_DIR}")
else()
if(${CMAKE_HOST_APPLE})
# The blas shipped in macOS SDK is not supported, search homebrew for
# openblas instead.
@@ -181,7 +140,7 @@ if(MLX_BUILD_CPU)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx PRIVATE ${LAPACK_LIBRARIES})
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
# List blas after lapack otherwise we may accidentally incldue an old
# version of lapack.h from the include dirs of blas.
find_package(BLAS REQUIRED)
@@ -194,7 +153,14 @@ if(MLX_BUILD_CPU)
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx PRIVATE ${BLAS_LIBRARIES})
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
if(WIN32)
find_package(dlfcn-win32 REQUIRED)
message(STATUS "dlfcn-win32 lib " ${dlfcn-win32_LIBRARIES})
message(STATUS "dlfcn-win32 include " ${dlfcn-win32_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${dlfcn-win32_LIBRARIES})
endif()
endif()
else()
set(MLX_BUILD_ACCELERATE OFF)
@@ -241,7 +207,8 @@ if(MLX_BUILD_PYTHON_BINDINGS)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE nanobind_ROOT)
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
endif()

View File

@@ -5,35 +5,35 @@
#include "mlx/mlx.h"
#include "time_utils.h"
namespace mx = mlx::core;
using namespace mlx::core;
void time_value_and_grad() {
auto x = mx::ones({200, 1000});
mx::eval(x);
auto fn = [](mx::array x) {
auto x = ones({200, 1000});
eval(x);
auto fn = [](array x) {
for (int i = 0; i < 20; ++i) {
x = mx::log(mx::exp(x));
x = log(exp(x));
}
return mx::sum(x);
return sum(x);
};
auto grad_fn = mx::grad(fn);
auto grad_fn = grad(fn);
auto independent_value_and_grad = [&]() {
auto value = fn(x);
auto dfdx = grad_fn(x);
return std::vector<mx::array>{value, dfdx};
return std::vector<array>{value, dfdx};
};
TIME(independent_value_and_grad);
auto value_and_grad_fn = mx::value_and_grad(fn);
auto value_and_grad_fn = value_and_grad(fn);
auto combined_value_and_grad = [&]() {
auto [value, dfdx] = value_and_grad_fn(x);
return std::vector<mx::array>{value, dfdx};
return std::vector<array>{value, dfdx};
};
TIME(combined_value_and_grad);
}
int main() {
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
std::cout << "Benchmarks for " << default_device() << std::endl;
time_value_and_grad();
}

View File

@@ -4,21 +4,21 @@
#include "mlx/mlx.h"
#include "time_utils.h"
namespace mx = mlx::core;
using namespace mlx::core;
void time_add_op() {
std::vector<int> sizes(1, 1);
for (int i = 0; i < 9; ++i) {
sizes.push_back(10 * sizes.back());
}
set_default_device(mx::Device::cpu);
set_default_device(Device::cpu);
for (auto size : sizes) {
auto a = mx::random::uniform({size});
auto b = mx::random::uniform({size});
mx::eval(a, b);
auto a = random::uniform({size});
auto b = random::uniform({size});
eval(a, b);
std::cout << "Size " << size << std::endl;
TIMEM("cpu", mx::add, a, b, mx::Device::cpu);
TIMEM("gpu", mx::add, a, b, mx::Device::gpu);
TIMEM("cpu", add, a, b, Device::cpu);
TIMEM("gpu", add, a, b, Device::gpu);
}
}

View File

@@ -6,105 +6,105 @@
#include "mlx/mlx.h"
#include "time_utils.h"
namespace mx = mlx::core;
using namespace mlx::core;
void time_irregular_binary_ops_1D() {
auto device = mx::default_device();
auto device = default_device();
int size = 1000000;
int step = 2;
auto a = mx::random::uniform({size});
auto b = mx::random::uniform({size});
mx::eval(a, b);
auto a = random::uniform({size});
auto b = random::uniform({size});
eval(a, b);
a = slice(a, {0}, {size}, {step});
b = slice(b, {0}, {size}, {step});
TIMEM("1D strided", mx::add, a, b, device);
TIMEM("1D strided", add, a, b, device);
}
void time_irregular_binary_ops_2D() {
auto device = mx::default_device();
auto device = default_device();
int size = 2048;
auto a = mx::random::uniform({size, size});
auto b = mx::random::uniform({size, size});
mx::eval(a, b);
TIMEM("2D regular", mx::add, a, b, device);
auto a = random::uniform({size, size});
auto b = random::uniform({size, size});
eval(a, b);
TIMEM("2D regular", add, a, b, device);
b = mx::transpose(b);
mx::eval(b);
TIMEM("2D mx::transpose", mx::add, a, b, device);
b = transpose(b);
eval(b);
TIMEM("2D transpose", add, a, b, device);
b = mx::random::uniform({size});
mx::eval(b);
TIMEM("2D broadcast dim 0", mx::add, a, b, device);
b = random::uniform({size});
eval(b);
TIMEM("2D broadcast dim 0", add, a, b, device);
b = mx::reshape(b, {size, 1});
mx::eval(b);
TIMEM("2D broadcast dim 1", mx::add, a, b, device);
b = reshape(b, {size, 1});
eval(b);
TIMEM("2D broadcast dim 1", add, a, b, device);
}
void time_irregular_binary_ops_3D() {
auto device = mx::default_device();
auto device = default_device();
int d0 = 32;
int d1 = 512;
int d2 = 512;
auto a = mx::random::uniform({d0, d1, d2});
auto b = mx::random::uniform({d0, d1, d2});
TIMEM("3D regular", mx::add, a, b, device);
auto a = random::uniform({d0, d1, d2});
auto b = random::uniform({d0, d1, d2});
TIMEM("3D regular", add, a, b, device);
b = mx::transpose(b, {0, 2, 1});
TIMEM("3D mx::transpose", mx::add, a, b, device);
b = transpose(b, {0, 2, 1});
TIMEM("3D transpose", add, a, b, device);
b = mx::random::uniform({d1, d2});
TIMEM("3D broadcast dim 0", mx::add, a, b, device);
b = random::uniform({d1, d2});
TIMEM("3D broadcast dim 0", add, a, b, device);
b = mx::random::uniform({d0, 1, d2});
TIMEM("3D broadcast dim 1", mx::add, a, b, device);
b = random::uniform({d0, 1, d2});
TIMEM("3D broadcast dim 1", add, a, b, device);
b = mx::random::uniform({d0, d1, 1});
TIMEM("3D broadcast dim 2", mx::add, a, b, device);
b = random::uniform({d0, d1, 1});
TIMEM("3D broadcast dim 2", add, a, b, device);
b = mx::random::uniform({d2});
TIMEM("3D broadcast dims 0, 1", mx::add, a, b, device);
b = random::uniform({d2});
TIMEM("3D broadcast dims 0, 1", add, a, b, device);
b = mx::random::uniform({d1, 1});
TIMEM("3D broadcast dims 0, 2", mx::add, a, b, device);
b = random::uniform({d1, 1});
TIMEM("3D broadcast dims 0, 2", add, a, b, device);
b = mx::random::uniform({d0, 1, 1});
TIMEM("3D broadcast dims 1, 2", mx::add, a, b, device);
b = random::uniform({d0, 1, 1});
TIMEM("3D broadcast dims 1, 2", add, a, b, device);
}
void time_irregular_binary_ops_4D() {
auto device = mx::default_device();
auto device = default_device();
std::vector<int> shape = {8, 8, 512, 512};
auto a = mx::random::uniform(shape);
auto b = mx::random::uniform(shape);
auto a = random::uniform(shape);
auto b = random::uniform(shape);
TIMEM("4D regular", mx::add, a, b, device);
TIMEM("4D regular", add, a, b, device);
b = mx::transpose(b, {0, 1, 3, 2});
TIMEM("4D mx::transpose", mx::add, a, b, device);
b = transpose(b, {0, 1, 3, 2});
TIMEM("4D transpose", add, a, b, device);
std::string om = "4D broadcast dims ";
for (int i = 0; i < shape.size(); ++i) {
shape[i] = 1;
b = mx::random::uniform(shape);
b = random::uniform(shape);
std::ostringstream msg;
msg << om << i;
TIMEM(msg.str(), mx::add, a, b, device);
TIMEM(msg.str(), add, a, b, device);
for (int j = i + 1; j < shape.size(); ++j) {
shape[j] = 1;
std::ostringstream msg;
msg << om << i << ", " << j;
b = mx::random::uniform(shape);
TIMEM(msg.str(), mx::add, a, b, device);
b = random::uniform(shape);
TIMEM(msg.str(), add, a, b, device);
shape[j] = a.shape(j);
for (int k = j + 1; k < shape.size(); ++k) {
shape[k] = 1;
std::ostringstream msg;
msg << om << i << ", " << j << ", " << k;
b = mx::random::uniform(shape);
TIMEM(msg.str(), mx::add, a, b, device);
b = random::uniform(shape);
TIMEM(msg.str(), add, a, b, device);
shape[k] = a.shape(k);
}
}
@@ -113,83 +113,83 @@ void time_irregular_binary_ops_4D() {
}
void time_irregular_reshape() {
auto device = mx::default_device();
auto device = default_device();
std::vector<int> shape;
auto reshape_fn = [&shape, device](const mx::array& a) {
return mx::reshape(a, shape, device);
auto reshape_fn = [&shape, device](const array& a) {
return reshape(a, shape, device);
};
int size = 64;
int d = 2 * size;
auto a = mx::random::uniform({d, d, d});
auto a = random::uniform({d, d, d});
shape = {8 * size, size, size};
TIMEM("3D contiguous", reshape_fn, a);
a = mx::transpose(a);
a = transpose(a);
shape = {8 * size, size, size};
TIMEM("3D mx::transpose", reshape_fn, a);
TIMEM("3D transpose", reshape_fn, a);
a = mx::transpose(a, {1, 2, 0});
a = transpose(a, {1, 2, 0});
shape = {8 * size, size, size};
TIMEM("3D mx::transpose dims 1 2", reshape_fn, a);
TIMEM("3D transpose dims 1 2", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d, d}), {d, d, d});
a = broadcast_to(random::uniform({d, d}), {d, d, d});
TIMEM("3D broadcast dim 0", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d, 1, d}), {d, d, d});
a = broadcast_to(random::uniform({d, 1, d}), {d, d, d});
TIMEM("3D broadcast dim 1", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d, d, 1}), {d, d, d});
a = broadcast_to(random::uniform({d, d, 1}), {d, d, d});
TIMEM("3D broadcast dim 2", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d}), {d, d, d});
a = broadcast_to(random::uniform({d}), {d, d, d});
TIMEM("3D broadcast dims 0, 1", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d, 1}), {d, d, d});
a = broadcast_to(random::uniform({d, 1}), {d, d, d});
TIMEM("3D broadcast dims 0, 2", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({d, 1, 1}), {d, d, d});
a = broadcast_to(random::uniform({d, 1, 1}), {d, d, d});
TIMEM("3D broadcast dims 1, 2", reshape_fn, a);
a = mx::broadcast_to(mx::random::uniform({1, 1, 1}), {d, d, d});
a = broadcast_to(random::uniform({1, 1, 1}), {d, d, d});
TIMEM("3D broadcast dims 1, 2, 3", reshape_fn, a);
}
void time_irregular_astype_1D() {
auto device = mx::default_device();
auto device = default_device();
int size = 1000000;
int step = 2;
auto a = mx::random::uniform({size});
auto a = random::uniform({size});
a = slice(a, {0}, {size}, {step});
TIMEM("1D strided", mx::astype, a, mx::int32, device);
TIMEM("1D strided", astype, a, int32, device);
}
void time_irregular_astype_2D() {
auto device = mx::default_device();
auto device = default_device();
int size = 2048;
std::vector<int> shape = {size, size};
auto a = mx::random::uniform(shape);
TIMEM("2D regular", mx::astype, a, mx::int32, device);
auto a = random::uniform(shape);
TIMEM("2D regular", astype, a, int32, device);
a = mx::transpose(a);
TIMEM("2D mx::transpose", mx::astype, a, mx::int32, device);
a = transpose(a);
TIMEM("2D transpose", astype, a, int32, device);
a = mx::broadcast_to(mx::random::uniform({size}), shape);
TIMEM("2D broadcast dim 0", mx::astype, a, mx::int32, device);
a = broadcast_to(random::uniform({size}), shape);
TIMEM("2D broadcast dim 0", astype, a, int32, device);
a = mx::broadcast_to(mx::random::uniform({size, 1}), shape);
TIMEM("2D broadcast dim 1", mx::astype, a, mx::int32, device);
a = broadcast_to(random::uniform({size, 1}), shape);
TIMEM("2D broadcast dim 1", astype, a, int32, device);
}
int main(int argc, char** argv) {
if (argc > 1) {
bool use_gpu = !strcmp(argv[1], "gpu");
set_default_device(use_gpu ? mx::Device::gpu : mx::Device::cpu);
set_default_device(use_gpu ? Device::gpu : Device::cpu);
}
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
std::cout << "Benchmarks for " << default_device() << std::endl;
time_irregular_binary_ops_1D();
time_irregular_binary_ops_2D();
time_irregular_binary_ops_3D();

View File

@@ -3,20 +3,20 @@
#include "mlx/mlx.h"
#include "time_utils.h"
namespace mx = mlx::core;
using namespace mlx::core;
void time_creation_ops() {
int M = 2000;
int N = 500;
auto shape = {M, N};
auto full_fp32 = [&]() { return mx::full(shape, 3.3f); };
auto full_fp32 = [&]() { return full(shape, 3.3f); };
TIME(full_fp32);
auto zeros_fp32 = [&]() { return mx::zeros(shape, mx::float32); };
auto zeros_fp32 = [&]() { return zeros(shape, float32); };
TIME(zeros_fp32);
auto ones_fp32 = [&]() { return mx::ones(shape, mx::float32); };
auto ones_fp32 = [&]() { return ones(shape, float32); };
TIME(ones_fp32);
auto arange_fp32 = [&]() { return mx::arange(0.0, 10.0, 1e-4); };
auto arange_fp32 = [&]() { return arange(0.0, 10.0, 1e-4); };
TIME(arange_fp32);
}
@@ -24,196 +24,194 @@ void time_type_conversions() {
int M = 2000;
int N = 500;
auto shape = {M, N};
auto device = mx::default_device();
auto device = default_device();
auto a = mx::zeros(shape, mx::float32);
mx::eval(a);
TIMEM("mx::float32 to mx::int32", mx::astype, a, mx::int32, device);
TIMEM("mx::float32 to mx::uint32", mx::astype, a, mx::uint32, device);
auto a = zeros(shape, float32);
eval(a);
TIMEM("float32 to int32", astype, a, int32, device);
TIMEM("float32 to uint32", astype, a, uint32, device);
a = mx::zeros(shape, mx::int32);
mx::eval(a);
TIMEM("mx::int32 to mx::float32", mx::astype, a, mx::float32, device);
a = zeros(shape, int32);
eval(a);
TIMEM("int32 to float32", astype, a, float32, device);
a = mx::zeros(shape, mx::bool_);
mx::eval(a);
TIMEM("bool to mx::float32", mx::astype, a, mx::float32, device);
TIMEM("bool to mx::int32", mx::astype, a, mx::int32, device);
TIMEM("bool to mx::uint32", mx::astype, a, mx::uint32, device);
a = zeros(shape, bool_);
eval(a);
TIMEM("bool to float32", astype, a, float32, device);
TIMEM("bool to int32", astype, a, int32, device);
TIMEM("bool to uint32", astype, a, uint32, device);
}
void time_random_generation() {
int M = 2000;
int N = 500;
auto uniform = [&]() { return mx::random::uniform({M, N}, mx::float32); };
auto uniform = [&]() { return random::uniform({M, N}, float32); };
TIME(uniform);
auto normal = [&]() { return mx::random::normal({M, N}, mx::float32); };
auto normal = [&]() { return random::normal({M, N}, float32); };
TIME(normal);
}
void time_unary_ops() {
int M = 2000;
int N = 500;
auto device = mx::default_device();
auto device = default_device();
auto a = mx::random::normal({M, N});
mx::eval(a);
auto a = random::normal({M, N});
eval(a);
TIME(mlx::core::abs, a, device);
TIME(mx::negative, a, device);
TIME(mx::sign, a, device);
TIME(mx::square, a, device);
TIME(negative, a, device);
TIME(sign, a, device);
TIME(square, a, device);
TIME(mlx::core::sqrt, a, device);
TIME(mx::rsqrt, a, device);
TIME(rsqrt, a, device);
TIME(mlx::core::exp, a, device);
a = mx::random::uniform({M, N});
a = random::uniform({M, N});
TIME(mlx::core::log, a, device);
}
void time_binary_ops() {
int M = 1000, N = 100, K = 10;
auto condition = mx::random::randint(0, 2, {M, N, K});
auto a = mx::random::uniform({M, N, K});
auto b = mx::random::uniform({M, N, K});
auto device = mx::default_device();
mx::eval(a, b);
auto condition = random::randint(0, 2, {M, N, K});
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
eval(a, b);
TIME(mx::add, a, b, device);
TIME(mx::subtract, a, b, device);
TIME(mx::multiply, a, b, device);
TIME(mx::divide, a, b, device);
TIME(mx::maximum, a, b, device);
TIME(mx::minimum, a, b, device);
TIME(mx::where, condition, a, b, device);
TIME(add, a, b, device);
TIME(subtract, a, b, device);
TIME(multiply, a, b, device);
TIME(divide, a, b, device);
TIME(maximum, a, b, device);
TIME(minimum, a, b, device);
TIME(where, condition, a, b, device);
condition = mx::array({true});
b = mx::random::uniform({1});
mx::eval(b);
TIMEM("scalar", mx::add, a, b, device);
TIMEM("vector-scalar", mx::subtract, a, b, device);
TIMEM("scalar-vector", mx::subtract, b, a, device);
TIMEM("scalar", mx::multiply, a, b, device);
TIMEM("vector-scalar", mx::divide, a, b, device);
TIMEM("scalar-vector", mx::divide, b, a, device);
TIMEM("scalar-vector", mx::where, condition, a, b, device);
condition = array({true});
b = random::uniform({1});
eval(b);
TIMEM("scalar", add, a, b, device);
TIMEM("vector-scalar", subtract, a, b, device);
TIMEM("scalar-vector", subtract, b, a, device);
TIMEM("scalar", multiply, a, b, device);
TIMEM("vector-scalar", divide, a, b, device);
TIMEM("scalar-vector", divide, b, a, device);
TIMEM("scalar-vector", where, condition, a, b, device);
condition = mx::broadcast_to(mx::array({true}), {1000, 100});
a = mx::broadcast_to(mx::random::uniform({1}), {1000, 100});
b = mx::broadcast_to(mx::random::uniform({1}), {1000, 100});
mx::eval(a, b);
TIMEM("scalar-scalar broadcast", mx::add, a, b, device);
TIMEM("scalar-scalar broadcast", mx::subtract, a, b, device);
TIMEM("scalar-scalar broadcast", mx::multiply, a, b, device);
TIMEM("scalar-scalar broadcast", mx::divide, a, b, device);
TIMEM("scalar-scalar broadcast", mx::where, condition, a, b, device);
condition = broadcast_to(array({true}), {1000, 100});
a = broadcast_to(random::uniform({1}), {1000, 100});
b = broadcast_to(random::uniform({1}), {1000, 100});
eval(a, b);
TIMEM("scalar-scalar broadcast", add, a, b, device);
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
TIMEM("scalar-scalar broadcast", divide, a, b, device);
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
}
void time_strided_ops() {
int M = 50, N = 50, O = 50, P = 50;
auto a = mx::random::uniform({M, N, O, P});
auto b = mx::random::uniform({M, N, O, P});
auto device = mx::default_device();
mx::eval(a, b);
TIMEM("non-strided", mx::add, a, b, device);
a = mx::transpose(a, {1, 0, 2, 3});
b = mx::transpose(b, {3, 2, 0, 1});
mx::eval(a, b);
TIMEM("strided", mx::add, a, b, device);
auto a = random::uniform({M, N, O, P});
auto b = random::uniform({M, N, O, P});
auto device = default_device();
eval(a, b);
TIMEM("non-strided", add, a, b, device);
a = transpose(a, {1, 0, 2, 3});
b = transpose(b, {3, 2, 0, 1});
eval(a, b);
TIMEM("strided", add, a, b, device);
}
void time_comparisons() {
int M = 1000, N = 100, K = 10;
auto a = mx::random::uniform({M, N, K});
auto b = mx::random::uniform({M, N, K});
auto device = mx::default_device();
mx::eval(a, b);
TIME(mx::equal, a, b, device);
TIME(mx::greater, a, b, device);
TIME(mx::greater_equal, a, b, device);
TIME(mx::less, a, b, device);
TIME(mx::less_equal, a, b, device);
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
eval(a, b);
TIME(equal, a, b, device);
TIME(greater, a, b, device);
TIME(greater_equal, a, b, device);
TIME(less, a, b, device);
TIME(less_equal, a, b, device);
}
void time_matvec() {
int M = 2000, N = 200;
auto a = mx::random::uniform({M, N});
auto b = mx::random::uniform({N});
auto c = mx::random::uniform({M});
mx::eval(a, b, c);
auto matvec = [&]() { return mx::matmul(a, b); };
auto a = random::uniform({M, N});
auto b = random::uniform({N});
auto c = random::uniform({M});
eval(a, b, c);
auto matvec = [&]() { return matmul(a, b); };
TIME(matvec);
auto matvec_transpose = [&]() { return mx::matmul(mx::transpose(a), c); };
auto matvec_transpose = [&]() { return matmul(transpose(a), c); };
TIME(matvec_transpose);
}
void time_matmul() {
int M = 1000, N = 1000, K = 1000;
auto a = mx::random::uniform({M, K});
auto b = mx::random::uniform({K, N});
auto device = mx::default_device();
mx::eval(a, b);
TIME(mx::matmul, a, b, device);
auto a = random::uniform({M, K});
auto b = random::uniform({K, N});
auto device = default_device();
eval(a, b);
TIME(matmul, a, b, device);
auto transpose_matmul = [&]() { return mx::matmul(mx::transpose(a), b); };
auto transpose_matmul = [&]() { return matmul(transpose(a), b); };
TIME(transpose_matmul);
}
void time_reductions() {
auto a = mx::random::normal({10000, 1000});
mx::eval(a);
auto sum_all = [&a]() { return mx::sum(a, false); };
auto a = random::normal({10000, 1000});
eval(a);
auto sum_all = [&a]() { return sum(a, false); };
TIME(sum_all);
auto sum_along_0 = [&a]() { return mx::sum(a, 0, false); };
auto sum_along_0 = [&a]() { return sum(a, 0, false); };
TIME(sum_along_0);
auto sum_along_1 = [&a]() { return mx::sum(a, 1, false); };
auto sum_along_1 = [&a]() { return sum(a, 1, false); };
TIME(sum_along_1);
auto prod_all = [&a]() { return mx::prod(a, false); };
auto prod_all = [&a]() { return prod(a, false); };
TIME(prod_all);
auto all_true = [&a]() { return mx::all(a, false); };
auto all_true = [&a]() { return all(a, false); };
TIME(all_true);
auto all_along_0 = [&a]() { return mx::all(a, 0, false); };
auto all_along_0 = [&a]() { return all(a, 0, false); };
TIME(all_along_0);
auto all_along_1 = [&a]() { return mx::all(a, 1, false); };
auto all_along_1 = [&a]() { return all(a, 1, false); };
TIME(all_along_1);
auto any_true = [&a]() { return mx::any(a, false); };
auto any_true = [&a]() { return any(a, false); };
TIME(any_true);
auto argmin_along_0 = [&a]() { return mx::argmin(a, 0, false); };
auto argmin_along_0 = [&a]() { return argmin(a, 0, false); };
TIME(argmin_along_0);
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
auto argmin_along_1 = [&a]() { return argmin(a, 1, false); };
TIME(argmin_along_1);
}
void time_gather_scatter() {
auto a = mx::random::normal({1000, 768});
mx::eval(a);
auto indices = mx::random::randint(0, 1000, {256});
mx::eval(indices);
auto a = random::normal({1000, 768});
eval(a);
auto indices = random::randint(0, 1000, {256});
eval(indices);
auto embedding_lookup = [&a, &indices]() { return mx::take(a, indices, 0); };
auto embedding_lookup = [&a, &indices]() { return take(a, indices, 0); };
TIME(embedding_lookup);
indices = mx::random::randint(0, 768 * 1000, {256 * 768});
mx::eval(indices);
indices = random::randint(0, 768 * 1000, {256 * 768});
eval(indices);
auto single_element_lookup = [&a, &indices]() {
return mx::take(a, indices);
};
auto single_element_lookup = [&a, &indices]() { return take(a, indices); };
TIME(single_element_lookup);
indices = mx::random::randint(0, 1000, {256});
auto updates = mx::random::normal({256, 1, 768});
mx::eval(indices, updates);
indices = random::randint(0, 1000, {256});
auto updates = random::normal({256, 1, 768});
eval(indices, updates);
auto embedding_update = [&a, &indices, &updates]() {
return scatter(a, indices, updates, 0);
@@ -225,10 +223,10 @@ void time_gather_scatter() {
};
TIME(embedding_add);
a = mx::reshape(a, {-1});
indices = mx::random::randint(0, 768 * 1000, {768 * 256});
updates = mx::random::normal({256 * 768, 1});
mx::eval(a, indices, updates);
a = reshape(a, {-1});
indices = random::randint(0, 768 * 1000, {768 * 256});
updates = random::normal({256 * 768, 1});
eval(a, indices, updates);
auto single_element_update = [&a, &indices, &updates]() {
return scatter(a, indices, updates, 0);
@@ -242,21 +240,21 @@ void time_gather_scatter() {
}
void time_divmod() {
auto a = mx::random::normal({1000});
auto b = mx::random::normal({1000});
mx::eval({a, b});
auto a = random::normal({1000});
auto b = random::normal({1000});
eval({a, b});
auto divmod_fused = [&a, &b]() { return mx::divmod(a, b); };
auto divmod_fused = [&a, &b]() { return divmod(a, b); };
TIME(divmod_fused);
auto divmod_separate = [&a, &b]() {
return std::vector<mx::array>{mx::floor_divide(a, b), mx::remainder(a, b)};
return std::vector<array>{floor_divide(a, b), remainder(a, b)};
};
TIME(divmod_separate);
}
int main() {
std::cout << "Benchmarks for " << mx::default_device() << std::endl;
std::cout << "Benchmarks for " << default_device() << std::endl;
time_creation_ops();
time_type_conversions();
time_unary_ops();

View File

@@ -8,44 +8,30 @@ L = 16384
H = 32
H_k = H // 4
D = 128
V = 128
dtype = mx.float16
loops = 10
def upproject(x, w):
if w is None:
return x
else:
return x @ w.T
def attention(q, k, v, mask=None, w=None):
def attention(q, k, v):
def _sdpa(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
_, _, _, V = v.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
if mask is not None:
m = mx.broadcast_to(mask, (B, Hq, L, S)).reshape(B, Hk, Hq // Hk, L, S)
s = mx.where(m, s, mx.finfo(s.dtype).min)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, V)
return o.reshape(B, Hq, L, D)
for i in range(loops):
q = _sdpa(q, k, v)
q = upproject(q, w)
return q
def sdpa(q, k, v, mask=None, w=None):
def sdpa(q, k, v):
for i in range(loops):
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
q = upproject(q, w)
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
return q
@@ -53,43 +39,20 @@ def time_self_attention_primitives():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mx.eval(q, k, v, w)
time_fn(attention, q, k, v, w=w)
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
mx.eval(q, k, v)
time_fn(attention, q, k, v)
def time_self_attention_sdpa():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mx.eval(q, k, v, w)
time_fn(sdpa, q, k, v, w=w)
def time_self_attention_sdpa_with_mask():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mask = mx.full((L,), True)
mask[L // 2 :] = False
mx.eval(q, k, v, mask, w)
def sdpa_mask(*args):
return sdpa(*args, mask=mask, w=w)
def attention_mask(*args):
return attention(*args, mask=mask, w=w)
time_fn(attention_mask, q, k, v)
time_fn(sdpa_mask, q, k, v)
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
mx.eval(q, k, v)
time_fn(sdpa, q, k, v)
if __name__ == "__main__":
time_self_attention_sdpa()
time_self_attention_primitives()
time_self_attention_sdpa_with_mask()

View File

@@ -1,55 +0,0 @@
import time
import mlx.core as mx
rank = mx.distributed.init().rank()
def timeit(fn, a):
# warmup
for _ in range(5):
mx.eval(fn(a))
its = 10
tic = time.perf_counter()
for _ in range(its):
mx.eval(fn(a))
toc = time.perf_counter()
ms = 1000 * (toc - tic) / its
return ms
def all_reduce_benchmark():
a = mx.ones((5, 5), mx.int32)
its_per_eval = 100
def fn(x):
for _ in range(its_per_eval):
x = mx.distributed.all_sum(x)
x = x - 1
return x
ms = timeit(fn, a) / its_per_eval
if rank == 0:
print(f"All Reduce: time per iteration {ms:.6f} (ms)")
def all_gather_benchmark():
a = mx.ones((5, 5), mx.int32)
its_per_eval = 100
def fn(x):
for _ in range(its_per_eval):
x = mx.distributed.all_gather(x)[0]
return x
ms = timeit(fn, a) / its_per_eval
if rank == 0:
print(f"All gather: time per iteration {ms:.6f} (ms)")
if __name__ == "__main__":
all_reduce_benchmark()
all_gather_benchmark()

View File

@@ -1,121 +0,0 @@
.. _mlx_in_cpp:
Using MLX in C++
================
You can use MLX in a C++ project with CMake.
.. note::
This guide is based one the following `example using MLX in C++
<https://github.com/ml-explore/mlx/tree/main/examples/cmake_project>`_
First install MLX:
.. code-block:: bash
pip install -U mlx
You can also install the MLX Python package from source or just the C++
library. For more information see the :ref:`documentation on installing MLX
<build_and_install>`.
Next make an example program in ``example.cpp``:
.. code-block:: C++
#include <iostream>
#include "mlx/mlx.h"
namespace mx = mlx::core;
int main() {
auto x = mx::array({1, 2, 3});
auto y = mx::array({1, 2, 3});
std::cout << x + y << std::endl;
return 0;
}
The next step is to setup a CMake file in ``CMakeLists.txt``:
.. code-block:: cmake
cmake_minimum_required(VERSION 3.27)
project(example LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
Depending on how you installed MLX, you may need to tell CMake where to
find it.
If you installed MLX with Python, then add the following to the CMake file:
.. code-block:: cmake
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
If you installed the MLX C++ package to a system path, then CMake should be
able to find it. If you installed it to a non-standard location or CMake can't
find MLX then set ``MLX_ROOT`` to the location where MLX is installed:
.. code-block:: cmake
set(MLX_ROOT "/path/to/mlx/")
Next, instruct CMake to find MLX:
.. code-block:: cmake
find_package(MLX CONFIG REQUIRED)
Finally, add the ``example.cpp`` program as an executable and link MLX.
.. code-block:: cmake
add_executable(example example.cpp)
target_link_libraries(example PRIVATE mlx)
You can build the example with:
.. code-block:: bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
And run it with:
.. code-block:: bash
./build/example
Note ``find_package(MLX CONFIG REQUIRED)`` sets the following variables:
.. list-table:: Package Variables
:widths: 20 20
:header-rows: 1
* - Variable
- Description
* - MLX_FOUND
- ``True`` if MLX is found
* - MLX_INCLUDE_DIRS
- Include directory
* - MLX_LIBRARIES
- Libraries to link against
* - MLX_CXX_FLAGS
- Additional compiler flags
* - MLX_BUILD_ACCELERATE
- ``True`` if MLX was built with Accelerate
* - MLX_BUILD_METAL
- ``True`` if MLX was built with Metal

View File

@@ -45,7 +45,6 @@ are the CPU and GPU.
usage/numpy
usage/distributed
usage/using_streams
usage/export
.. toctree::
:caption: Examples
@@ -62,7 +61,6 @@ are the CPU and GPU.
python/array
python/data_types
python/devices_and_streams
python/export
python/ops
python/random
python/transforms
@@ -88,4 +86,3 @@ are the CPU and GPU.
dev/extensions
dev/metal_debugger
dev/custom_metal_kernels
dev/mlx_in_cpp

View File

@@ -1,5 +1,3 @@
.. _build_and_install:
Build and Install
=================
@@ -55,7 +53,7 @@ Build Requirements
^^^^^^^^^^^^^^^^^^
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
- `cmake <https://cmake.org/>`_ -- version 3.25 or later, and ``make``
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
- Xcode >= 15.0 and macOS SDK >= 14.0
.. note::

View File

@@ -66,4 +66,3 @@ documentation for more information. Use :func:`issubdtype` to determine if one
Dtype
DtypeCategory
issubdtype
finfo

View File

@@ -1,14 +0,0 @@
.. _export:
Export Functions
================
.. currentmodule:: mlx.core
.. autosummary::
:toctree: _autosummary
export_function
import_function
exporter
export_to_dot

View File

@@ -89,7 +89,6 @@ Operations
isneginf
isposinf
issubdtype
kron
left_shift
less
less_equal
@@ -145,8 +144,6 @@ Operations
sign
sin
sinh
slice
slice_update
softmax
sort
split
@@ -171,7 +168,6 @@ Operations
tri
tril
triu
unflatten
var
view
where

View File

@@ -421,77 +421,3 @@ the most opportunity to optimize the computation graph:
# Compiling the outer function is good to do as it will likely
# be faster even though the inner functions are compiled
fun = mx.compile(outer)
.. _shapeless_compile:
Shapeless Compilation
---------------------
When the shape of an input to a compiled function changes, the function is
recompiled. You can compile a function once and run it on inputs with
variable shapes by specifying ``shapeless=True`` to :func:`compile`. In this
case changes to the shapes of the inputs do not cause the function to be
recompiled.
.. code-block:: python
def fun(x, y):
return mx.abs(x + y)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.array(1.0)
y = mx.array(-2.0)
# Firt call compiles the function
print(compiled_fun(x, y))
# Second call with different shapes
# does not recompile the function
x = mx.array([1.0, -6.0])
y = mx.array([-2.0, 3.0])
print(compiled_fun(x, y))
Use shapeless compilations carefully. Since compilation is not triggered when
shapes change, any graphs which are conditional on the input shapes will not
work as expected. Shape-dependent computations are common and sometimes subtle
to detect. For example:
.. code-block:: python
def fun(x):
return x.reshape(x.shape[0] * x.shape[1], -1)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.random.uniform(shape=(2, 3, 4))
out = compiled_fun(x)
x = mx.random.uniform(shape=(5, 5, 3))
# Error, can't reshape (5, 5, 3) to (6, -1)
out = compiled_fun(x)
The second call to the ``compiled_fun`` fails because of the call to
:func:`reshape` which uses the static shape of ``x`` in the first call. We can
fix this by using :func:`flatten` to avoid hardcoding the shape of ``x``:
.. code-block:: python
def fun(x):
return x.flatten(0, 1)
compiled_fun = mx.compile(fun, shapeless=True)
x = mx.random.uniform(shape=(2, 3, 4))
out = compiled_fun(x)
x = mx.random.uniform(shape=(5, 5, 3))
# Ok
out = compiled_fun(x)

View File

@@ -57,7 +57,7 @@ with the Anaconda package manager as follows:
.. code:: shell
$ conda install conda-forge::openmpi
$ conda install openmpi
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
so that MLX can find it and load it at runtime. This can simply be achieved by
@@ -141,13 +141,12 @@ everything else remaining the same.
from mlx.utils import tree_map
def all_reduce_grads(grads):
N = mx.distributed.init().size()
N = mx.distributed.init()
if N == 1:
return grads
return tree_map(
lambda x: mx.distributed.all_sum(x) / N,
grads
)
lambda x: mx.distributed.all_sum(x) / N,
grads)
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)

View File

@@ -1,288 +0,0 @@
.. _export_usage:
Exporting Functions
===================
.. currentmodule:: mlx.core
MLX has an API to export and import functions to and from a file. This lets you
run computations written in one MLX front-end (e.g. Python) in another MLX
front-end (e.g. C++).
This guide walks through the basics of the MLX export API with some examples.
To see the full list of functions check-out the :ref:`API documentation
<export>`.
Basics of Exporting
-------------------
Let's start with a simple example:
.. code-block:: python
def fun(x, y):
return x + y
x = mx.array(1.0)
y = mx.array(1.0)
mx.export_function("add.mlxfn", fun, x, y)
To export a function, provide sample input arrays that the function
can be called with. The data doesn't matter, but the shapes and types of the
arrays do. In the above example we exported ``fun`` with two ``float32``
scalar arrays. We can then import the function and run it:
.. code-block:: python
add_fun = mx.import_function("add.mlxfn")
out, = add_fun(mx.array(1.0), mx.array(2.0))
# Prints: array(3, dtype=float32)
print(out)
out, = add_fun(mx.array(1.0), mx.array(3.0))
# Prints: array(4, dtype=float32)
print(out)
# Raises an exception
add_fun(mx.array(1), mx.array(3.0))
# Raises an exception
add_fun(mx.array([1.0, 2.0]), mx.array(3.0))
Notice the third and fourth calls to ``add_fun`` raise exceptions because the
shapes and types of the inputs are different than the shapes and types of the
example inputs we exported the function with.
Also notice that even though the original ``fun`` returns a single output
array, the imported function always returns a tuple of one or more arrays.
The inputs to :func:`export_function` and to an imported function can be
specified as variable positional arguments or as a tuple of arrays:
.. code-block:: python
def fun(x, y):
return x + y
x = mx.array(1.0)
y = mx.array(1.0)
# Both arguments to fun are positional
mx.export_function("add.mlxfn", fun, x, y)
# Same as above
mx.export_function("add.mlxfn", fun, (x, y))
imported_fun = mx.import_function("add.mlxfn")
# Ok
out, = imported_fun(x, y)
# Also ok
out, = imported_fun((x, y))
You can pass example inputs to functions as positional or keyword arguments. If
you use keyword arguments to export the function, then you have to use the same
keyword arguments when calling the imported function.
.. code-block:: python
def fun(x, y):
return x + y
# One argument to fun is positional, the other is a kwarg
mx.export_function("add.mlxfn", fun, x, y=y)
imported_fun = mx.import_function("add.mlxfn")
# Ok
out, = imported_fun(x, y=y)
# Also ok
out, = imported_fun((x,), {"y": y})
# Raises since the keyword argument is missing
out, = imported_fun(x, y)
# Raises since the keyword argument has the wrong key
out, = imported_fun(x, z=y)
Exporting Modules
-----------------
An :obj:`mlx.nn.Module` can be exported with or without the parameters included
in the exported function. Here's an example:
.. code-block:: python
model = nn.Linear(4, 4)
mx.eval(model.parameters())
def call(x):
return model(x)
mx.export_function("model.mlxfn", call, mx.zeros(4))
In the above example, the :obj:`mlx.nn.Linear` module is exported. Its
parameters are also saved to the ``model.mlxfn`` file.
.. note::
For enclosed arrays inside an exported function, be extra careful to ensure
they are evaluated. The computation graph that gets exported will include
the computation that produces enclosed inputs.
If the above example was missing ``mx.eval(model.parameters()``, the
exported function would include the random initialization of the
:obj:`mlx.nn.Module` parameters.
If you only want to export the ``Module.__call__`` function without the
parameters, pass them as inputs to the ``call`` wrapper:
.. code-block:: python
model = nn.Linear(4, 4)
mx.eval(model.parameters())
def call(x, **params):
# Set the model's parameters to the input parameters
model.update(tree_unflatten(list(params.items())))
return model(x)
params = dict(tree_flatten(model.parameters()))
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
Shapeless Exports
-----------------
Just like :func:`compile`, functions can also be exported for dynamically shaped
inputs. Pass ``shapeless=True`` to :func:`export_function` or :func:`exporter`
to export a function which can be used for inputs with variable shapes:
.. code-block:: python
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
imported_abs = mx.import_function("fun.mlxfn")
# Ok
out, = imported_abs(mx.array(-1.0))
# Also ok
out, = imported_abs(mx.array([-1.0, -2.0]))
With ``shapeless=False`` (which is the default), the second call to
``imported_abs`` would raise an exception with a shape mismatch.
Shapeless exporting works the same as shapeless compilation and should be
used carefully. See the :ref:`documentation on shapeless compilation
<shapeless_compile>` for more information.
Exporting Multiple Traces
-------------------------
In some cases, functions build different computation graphs for different
input arguments. A simple way to manage this is to export to a new file with
each set of inputs. This is a fine option in many cases. But it can be
suboptimal if the exported functions have a large amount of duplicate constant
data (for example the parameters of a :obj:`mlx.nn.Module`).
The export API in MLX lets you export multiple traces of the same function to
a single file by creating an exporting context manager with :func:`exporter`:
.. code-block:: python
def fun(x, y=None):
constant = mx.array(3.0)
if y is not None:
x += y
return x + constant
with mx.exporter("fun.mlxfn", fun) as exporter:
exporter(mx.array(1.0))
exporter(mx.array(1.0), y=mx.array(0.0))
imported_function = mx.import_function("fun.mlxfn")
# Call the function with y=None
out, = imported_function(mx.array(1.0))
print(out)
# Call the function with y specified
out, = imported_function(mx.array(1.0), y=mx.array(1.0))
print(out)
In the above example the function constant data, (i.e. ``constant``), is only
saved once.
Transformations with Imported Functions
---------------------------------------
Function transformations like :func:`grad`, :func:`vmap`, and :func:`compile` work
on imported functions just like regular Python functions:
.. code-block:: python
def fun(x):
return mx.sin(x)
x = mx.array(0.0)
mx.export_function("sine.mlxfn", fun, x)
imported_fun = mx.import_function("sine.mlxfn")
# Take the derivative of the imported function
dfdx = mx.grad(lambda x: imported_fun(x)[0])
# Prints: array(1, dtype=float32)
print(dfdx(x))
# Compile the imported function
mx.compile(imported_fun)
# Prints: array(0, dtype=float32)
print(compiled_fun(x)[0])
Importing Functions in C++
--------------------------
Importing and running functions in C++ is basically the same as importing and
running them in Python. First, follow the :ref:`instructions <mlx_in_cpp>` to
setup a simple C++ project that uses MLX as a library.
Next, export a simple function from Python:
.. code-block:: python
def fun(x, y):
return mx.exp(x + y)
x = mx.array(1.0)
y = mx.array(1.0)
mx.export_function("fun.mlxfn", fun, x, y)
Import and run the function in C++ with only a few lines of code:
.. code-block:: c++
auto fun = mx::import_function("fun.mlxfn");
auto inputs = {mx::array(1.0), mx::array(1.0)};
auto outputs = fun(inputs);
// Prints: array(2, dtype=float32)
std::cout << outputs[0] << std::endl;
Imported functions can be transformed in C++ just like in Python. Use
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
mx::array>`` for keyword arguments when calling imported functions in C++.
More Examples
-------------
Here are a few more complete examples exporting more complex functions from
Python and importing and running them in C++:
* `Inference and training a multi-layer perceptron <https://github.com/ml-explore/mlx/tree/main/examples/export>`_

View File

@@ -1,22 +0,0 @@
cmake_minimum_required(VERSION 3.27)
project(example LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Comment the following two commands only the MLX C++ library is installed and
# set(MLX_ROOT "/path/to/mlx") directly if needed.
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
find_package(MLX CONFIG REQUIRED)
add_executable(example example.cpp)
target_link_libraries(example PRIVATE mlx)

View File

@@ -1,26 +0,0 @@
## Build and Run
Install MLX with Python:
```bash
pip install mlx>=0.22
```
Build the C++ example:
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Run the C++ example:
```
./build/example
```
which should output:
```
array([2, 4, 6], dtype=int32)
```

View File

@@ -1,14 +0,0 @@
// Copyright © 2024 Apple Inc.
#include <iostream>
#include "mlx/mlx.h"
namespace mx = mlx::core;
int main() {
auto x = mx::array({1, 2, 3});
auto y = mx::array({1, 2, 3});
std::cout << x + y << std::endl;
return 0;
}

View File

@@ -4,19 +4,19 @@
#include "mlx/mlx.h"
namespace mx = mlx::core;
using namespace mlx::core;
int main() {
if (!mx::distributed::is_available()) {
if (!distributed::is_available()) {
std::cout << "No communication backend found" << std::endl;
return 1;
}
auto global_group = mx::distributed::init();
auto global_group = distributed::init();
std::cout << global_group.rank() << " / " << global_group.size() << std::endl;
mx::array x = mx::ones({10});
mx::array out = mx::distributed::all_sum(x, global_group);
array x = ones({10});
array out = distributed::all_sum(x, global_group);
std::cout << out << std::endl;
}

View File

@@ -10,7 +10,7 @@
/**
* An example of linear regression with MLX.
*/
namespace mx = mlx::core;
using namespace mlx::core;
int main() {
int num_features = 100;
@@ -19,35 +19,35 @@ int main() {
float learning_rate = 0.01;
// True parameters
auto w_star = mx::random::normal({num_features});
auto w_star = random::normal({num_features});
// The input examples (design matrix)
auto X = mx::random::normal({num_examples, num_features});
auto X = random::normal({num_examples, num_features});
// Noisy labels
auto eps = 1e-2 * mx::random::normal({num_examples});
auto y = mx::matmul(X, w_star) + eps;
auto eps = 1e-2 * random::normal({num_examples});
auto y = matmul(X, w_star) + eps;
// Initialize random parameters
mx::array w = 1e-2 * mx::random::normal({num_features});
array w = 1e-2 * random::normal({num_features});
auto loss_fn = [&](mx::array w) {
auto yhat = mx::matmul(X, w);
return (0.5f / num_examples) * mx::sum(mx::square(yhat - y));
auto loss_fn = [&](array w) {
auto yhat = matmul(X, w);
return (0.5f / num_examples) * sum(square(yhat - y));
};
auto grad_fn = mx::grad(loss_fn);
auto grad_fn = grad(loss_fn);
auto tic = timer::time();
for (int it = 0; it < num_iters; ++it) {
auto grads = grad_fn(w);
w = w - learning_rate * grads;
mx::eval(w);
auto grad = grad_fn(w);
w = w - learning_rate * grad;
eval(w);
}
auto toc = timer::time();
auto loss = loss_fn(w);
auto error_norm = std::sqrt(mx::sum(mx::square(w - w_star)).item<float>());
auto error_norm = std::sqrt(sum(square(w - w_star)).item<float>());
auto throughput = num_iters / timer::seconds(toc - tic);
std::cout << "Loss " << loss << ", |w - w*| = " << error_norm
<< ", Throughput " << throughput << " (it/s)." << std::endl;

View File

@@ -10,7 +10,7 @@
/**
* An example of logistic regression with MLX.
*/
namespace mx = mlx::core;
using namespace mlx::core;
int main() {
int num_features = 100;
@@ -19,35 +19,35 @@ int main() {
float learning_rate = 0.1;
// True parameters
auto w_star = mx::random::normal({num_features});
auto w_star = random::normal({num_features});
// The input examples
auto X = mx::random::normal({num_examples, num_features});
auto X = random::normal({num_examples, num_features});
// Labels
auto y = mx::matmul(X, w_star) > 0;
auto y = matmul(X, w_star) > 0;
// Initialize random parameters
mx::array w = 1e-2 * mx::random::normal({num_features});
array w = 1e-2 * random::normal({num_features});
auto loss_fn = [&](mx::array w) {
auto logits = mx::matmul(X, w);
auto loss_fn = [&](array w) {
auto logits = matmul(X, w);
auto scale = (1.0f / num_examples);
return scale * mx::sum(mx::logaddexp(mx::array(0.0f), logits) - y * logits);
return scale * sum(logaddexp(array(0.0f), logits) - y * logits);
};
auto grad_fn = mx::grad(loss_fn);
auto grad_fn = grad(loss_fn);
auto tic = timer::time();
for (int it = 0; it < num_iters; ++it) {
auto grads = grad_fn(w);
w = w - learning_rate * grads;
mx::eval(w);
auto grad = grad_fn(w);
w = w - learning_rate * grad;
eval(w);
}
auto toc = timer::time();
auto loss = loss_fn(w);
auto acc = mx::sum((mx::matmul(X, w) > 0) == y) / num_examples;
auto acc = sum((matmul(X, w) > 0) == y) / num_examples;
auto throughput = num_iters / timer::seconds(toc - tic);
std::cout << "Loss " << loss << ", Accuracy, " << acc << ", Throughput "
<< throughput << " (it/s)." << std::endl;

View File

@@ -5,27 +5,27 @@
#include "mlx/mlx.h"
namespace mx = mlx::core;
using namespace mlx::core;
int main() {
// To use Metal debugging and profiling:
// 1. Build with the MLX_METAL_DEBUG CMake option (i.e. -DMLX_METAL_DEBUG=ON).
// 2. Run with MTL_CAPTURE_ENABLED=1.
mx::metal::start_capture("mlx_trace.gputrace");
metal::start_capture("mlx_trace.gputrace");
// Start at index two because the default GPU and CPU streams have indices
// zero and one, respectively. This naming matches the label assigned to each
// stream's command queue.
auto s2 = new_stream(mx::Device::gpu);
auto s3 = new_stream(mx::Device::gpu);
auto s2 = new_stream(Device::gpu);
auto s3 = new_stream(Device::gpu);
auto a = mx::arange(1.f, 10.f, 1.f, mx::float32, s2);
auto b = mx::arange(1.f, 10.f, 1.f, mx::float32, s3);
auto x = mx::add(a, a, s2);
auto y = mx::add(b, b, s3);
auto a = arange(1.f, 10.f, 1.f, float32, s2);
auto b = arange(1.f, 10.f, 1.f, float32, s3);
auto x = add(a, a, s2);
auto y = add(b, b, s3);
// The multiply will happen on the default stream.
std::cout << mx::multiply(x, y) << std::endl;
std::cout << multiply(x, y) << std::endl;
mx::metal::stop_capture();
metal::stop_capture();
}

View File

@@ -5,11 +5,11 @@
#include "mlx/mlx.h"
namespace mx = mlx::core;
using namespace mlx::core;
void array_basics() {
// Make a scalar array:
mx::array x(1.0);
array x(1.0);
// Get the value out of it:
auto s = x.item<float>();
@@ -29,31 +29,31 @@ void array_basics() {
// The datatype should be float32:
auto dtype = x.dtype();
assert(dtype == mx::float32);
assert(dtype == float32);
// Specify the dtype when constructing the array:
x = mx::array(1, mx::int32);
assert(x.dtype() == mx::int32);
x = array(1, int32);
assert(x.dtype() == int32);
x.item<int>(); // OK
// x.item<float>(); // Undefined!
// Make a multidimensional array:
x = mx::array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
x = array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
// mlx is row-major by default so the first row of this array
// is [1.0, 2.0] and the second row is [3.0, 4.0]
// Make an array of shape {2, 2} filled with ones:
auto y = mx::ones({2, 2});
auto y = ones({2, 2});
// Pointwise add x and y:
auto z = mx::add(x, y);
auto z = add(x, y);
// Same thing:
z = x + y;
// mlx is lazy by default. At this point `z` only
// has a shape and a type but no actual data:
assert(z.dtype() == mx::float32);
assert(z.dtype() == float32);
assert(z.shape(0) == 2);
assert(z.shape(1) == 2);
@@ -63,33 +63,33 @@ void array_basics() {
// and inputs. When `eval` is called on an array (or arrays), the array and
// all of its dependencies are recursively evaluated to produce the result.
// Once an array is evaluated, it has data and is detached from its inputs.
mx::eval(z);
eval(z);
// Of course the array can still be an input to other operations. You can
// even call eval on the array again, this will just be a no-op:
mx::eval(z); // no-op
// Of course the array can still be an input to other operations. You can even
// call eval on the array again, this will just be a no-op:
eval(z); // no-op
// Some functions or methods on arrays implicitly evaluate them. For example
// accessing a value in an array or printing the array implicitly evaluate it:
z = mx::ones({1});
z = ones({1});
z.item<float>(); // implicit evaluation
z = mx::ones({2, 2});
z = ones({2, 2});
std::cout << z << std::endl; // implicit evaluation
}
void automatic_differentiation() {
auto fn = [](mx::array x) { return mx::square(x); };
auto fn = [](array x) { return square(x); };
// Computing the derivative function of a function
auto grad_fn = mx::grad(fn);
auto grad_fn = grad(fn);
// Call grad_fn on the input to get the derivative
auto x = mx::array(1.5);
auto x = array(1.5);
auto dfdx = grad_fn(x);
// dfdx is 2 * x
// Get the second derivative by composing grad with grad
auto d2fdx2 = mx::grad(mx::grad(fn))(x);
auto d2fdx2 = grad(grad(fn))(x);
// d2fdx2 is 2
}

View File

@@ -1,22 +0,0 @@
cmake_minimum_required(VERSION 3.27)
project(import_mlx LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(
Python 3.9
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE MLX_ROOT)
find_package(MLX CONFIG REQUIRED)
add_executable(eval_mlp eval_mlp.cpp)
target_link_libraries(eval_mlp PRIVATE mlx)
add_executable(train_mlp train_mlp.cpp)
target_link_libraries(train_mlp PRIVATE mlx)

View File

@@ -1,49 +0,0 @@
## Setup
Install MLX:
```bash
pip install mlx>=0.22
```
Build the C++ examples:
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
## Run
### Eval MLP
Run the Python script to export the eval function:
```bash
python eval_mlp.py
```
Then run the C++ program to import and run the function:
```
./build/eval_mlp
```
The Python and C++ programs should output the same result.
### Train MLP
Run the Python script to export the model initialization and training
functions:
```bash
python train_mlp.py
```
Then run the C++ program to import and run the functions:
```
./build/train_mlp
```
The Python and C++ programs should output the same results.

View File

@@ -1,25 +0,0 @@
// Copyright © 2024 Apple Inc.
#include <mlx/mlx.h>
#include <iostream>
namespace mx = mlx::core;
int main() {
int batch_size = 8;
int input_dim = 32;
// Make the input
mx::random::seed(42);
auto example_x = mx::random::uniform({batch_size, input_dim});
// Import the function
auto forward = mx::import_function("eval_mlp.mlxfn");
// Call the imported function
auto out = forward({example_x})[0];
std::cout << out << std::endl;
return 0;
}

View File

@@ -1,52 +0,0 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
import mlx.utils
class MLP(nn.Module):
"""A simple MLP."""
def __init__(
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
):
super().__init__()
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
self.layers = [
nn.Linear(idim, odim)
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
]
def __call__(self, x):
for l in self.layers[:-1]:
x = nn.relu(l(x))
return self.layers[-1](x)
if __name__ == "__main__":
batch_size = 8
input_dim = 32
output_dim = 10
# Load the model
mx.random.seed(0) # Seed for params
model = MLP(num_layers=5, input_dim=input_dim, hidden_dim=64, output_dim=output_dim)
mx.eval(model)
# Note, the model parameters are saved in the export function
def forward(x):
return model(x)
mx.random.seed(42) # Seed for input
example_x = mx.random.uniform(shape=(batch_size, input_dim))
mx.export_function("eval_mlp.mlxfn", forward, example_x)
# Import in Python
imported_forward = mx.import_function("eval_mlp.mlxfn")
expected = forward(example_x)
(out,) = imported_forward(example_x)
assert mx.allclose(expected, out)
print(out)

View File

@@ -1,35 +0,0 @@
// Copyright © 2024 Apple Inc.
#include <mlx/mlx.h>
#include <iostream>
namespace mx = mlx::core;
int main() {
int batch_size = 8;
int input_dim = 32;
int output_dim = 10;
auto state = mx::import_function("init_mlp.mlxfn")({});
// Make the input
mx::random::seed(42);
auto example_X = mx::random::normal({batch_size, input_dim});
auto example_y = mx::random::randint(0, output_dim, {batch_size});
// Import the function
auto step = mx::import_function("train_mlp.mlxfn");
// Call the imported function
for (int it = 0; it < 100; ++it) {
state.insert(state.end(), {example_X, example_y});
state = step(state);
eval(state);
auto loss = state.back();
state.pop_back();
if (it % 10 == 0) {
std::cout << "Loss " << loss.item<float>() << std::endl;
}
}
return 0;
}

View File

@@ -1,76 +0,0 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import mlx.utils
class MLP(nn.Module):
"""A simple MLP."""
def __init__(
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
):
super().__init__()
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
self.layers = [
nn.Linear(idim, odim)
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
]
def __call__(self, x):
for l in self.layers[:-1]:
x = nn.relu(l(x))
return self.layers[-1](x)
if __name__ == "__main__":
batch_size = 8
input_dim = 32
output_dim = 10
def init():
# Seed for the parameter initialization
mx.random.seed(0)
model = MLP(
num_layers=3, input_dim=input_dim, hidden_dim=64, output_dim=output_dim
)
optimizer = optim.SGD(learning_rate=1e-1)
optimizer.init(model.parameters())
state = [model.parameters(), optimizer.state]
tree_structure, state = zip(*mlx.utils.tree_flatten(state))
return model, optimizer, tree_structure, state
# Export the model parameter initialization
model, optimizer, tree_structure, state = init()
mx.eval(state)
mx.export_function("init_mlp.mlxfn", lambda: init()[-1])
def loss_fn(params, X, y):
model.update(params)
return nn.losses.cross_entropy(model(X), y, reduction="mean")
def step(*inputs):
*state, X, y = inputs
params, opt_state = mlx.utils.tree_unflatten(list(zip(tree_structure, state)))
optimizer.state = opt_state
loss, grads = mx.value_and_grad(loss_fn)(params, X, y)
params = optimizer.apply_gradients(grads, params)
_, state = zip(*mlx.utils.tree_flatten([params, optimizer.state]))
return *state, loss
# Make some random data
mx.random.seed(42)
example_X = mx.random.normal(shape=(batch_size, input_dim))
example_y = mx.random.randint(low=0, high=output_dim, shape=(batch_size,))
mx.export_function("train_mlp.mlxfn", step, *state, example_X, example_y)
# Export one step of SGD
imported_step = mx.import_function("train_mlp.mlxfn")
for it in range(100):
*state, loss = imported_step(*state, example_X, example_y)
if it % 10 == 0:
print(f"Loss {loss.item():.6}")

View File

@@ -18,7 +18,8 @@ find_package(
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE nanobind_ROOT)
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
# ----------------------------- Extensions -----------------------------

View File

@@ -6,7 +6,6 @@
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/utils.h"
#include "axpby/axpby.h"
@@ -20,7 +19,7 @@
#include "mlx/backend/metal/utils.h"
#endif
namespace my_ext {
namespace mlx::core {
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
@@ -33,24 +32,24 @@ namespace my_ext {
* Follow numpy style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
mx::array axpby(
const mx::array& x, // Input mx::array x
const mx::array& y, // Input mx::array y
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
mx::StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
// Promote dtypes between x and y as needed
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
// Upcast to float32 for non-floating point inputs x and y
auto out_dtype = mx::issubdtype(promoted_dtype, mx::float32)
auto out_dtype = issubdtype(promoted_dtype, float32)
? promoted_dtype
: promote_types(promoted_dtype, mx::float32);
: promote_types(promoted_dtype, float32);
// Cast x and y up to the determined dtype (on the same stream s)
auto x_casted = mx::astype(x, out_dtype, s);
auto y_casted = mx::astype(y, out_dtype, s);
auto x_casted = astype(x, out_dtype, s);
auto y_casted = astype(y, out_dtype, s);
// Broadcast the shapes of x and y (on the same stream s)
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
@@ -58,12 +57,12 @@ mx::array axpby(
// Construct the array as the output of the Axpby primitive
// with the broadcasted and upcasted arrays as inputs
return mx::array(
/* const mx::Shape& shape = */ out_shape,
/* mx::Dtype dtype = */ out_dtype,
/* std::shared_ptr<mx::Primitive> primitive = */
return array(
/* const std::vector<int>& shape = */ out_shape,
/* Dtype dtype = */ out_dtype,
/* std::unique_ptr<Primitive> primitive = */
std::make_shared<Axpby>(to_stream(s), alpha, beta),
/* const std::vector<mx::array>& inputs = */ broadcasted_inputs);
/* const std::vector<array>& inputs = */ broadcasted_inputs);
}
///////////////////////////////////////////////////////////////////////////////
@@ -72,16 +71,16 @@ mx::array axpby(
template <typename T>
void axpby_impl(
const mx::array& x,
const mx::array& y,
mx::array& out,
const array& x,
const array& y,
array& out,
float alpha_,
float beta_) {
// We only allocate memory when we are ready to fill the output
// malloc_or_wait synchronously allocates available memory
// There may be a wait executed here if the allocation is requested
// under memory-pressured conditions
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc_or_wait(out.nbytes()));
// Collect input and output data pointers
const T* x_ptr = x.data<T>();
@@ -95,8 +94,8 @@ void axpby_impl(
// Do the element-wise operation for each output
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
// Map linear indices to offsets in x and y
auto x_offset = mx::elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = mx::elem_to_loc(out_idx, y.shape(), y.strides());
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
// We allocate the output to be contiguous and regularly strided
// (defaults to row major) and hence it doesn't need additional mapping
@@ -106,8 +105,8 @@ void axpby_impl(
/** Fall back implementation for evaluation on CPU */
void Axpby::eval(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Check the inputs (registered in the op while constructing the out array)
assert(inputs.size() == 2);
auto& x = inputs[0];
@@ -115,14 +114,14 @@ void Axpby::eval(
auto& out = outputs[0];
// Dispatch to the correct dtype
if (out.dtype() == mx::float32) {
if (out.dtype() == float32) {
return axpby_impl<float>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::float16) {
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::bfloat16) {
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == mx::complex64) {
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == float16) {
return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == bfloat16) {
return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == complex64) {
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
} else {
throw std::runtime_error(
"Axpby is only supported for floating point types.");
@@ -137,9 +136,9 @@ void Axpby::eval(
template <typename T>
void axpby_impl_accelerate(
const mx::array& x,
const mx::array& y,
mx::array& out,
const array& x,
const array& y,
array& out,
float alpha_,
float beta_) {
// Accelerate library provides catlas_saxpby which does
@@ -151,10 +150,10 @@ void axpby_impl_accelerate(
// The data in the output array is allocated to match the strides in y
// such that x, y, and out are contiguous in the same mode and
// no transposition is needed
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc_or_wait(out.nbytes()));
// We then copy over the elements using the contiguous vector specialization
copy_inplace(y, out, mx::CopyType::Vector);
copy_inplace(y, out, CopyType::Vector);
// Get x and y pointers for catlas_saxpby
const T* x_ptr = x.data<T>();
@@ -176,15 +175,15 @@ void axpby_impl_accelerate(
/** Evaluate primitive on CPU using accelerate specializations */
void Axpby::eval_cpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
auto& out = outputs[0];
// Accelerate specialization for contiguous single precision float arrays
if (out.dtype() == mx::float32 &&
if (out.dtype() == float32 &&
((x.flags().row_contiguous && y.flags().row_contiguous) ||
(x.flags().col_contiguous && y.flags().col_contiguous))) {
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
@@ -199,8 +198,8 @@ void Axpby::eval_cpu(
/** Evaluate primitive on CPU falling back to common backend */
void Axpby::eval_cpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
const std::vector<array>& inputs,
const std::vector<array>& outputs) {
eval(inputs, outputs);
}
@@ -214,8 +213,8 @@ void Axpby::eval_cpu(
/** Evaluate primitive on GPU */
void Axpby::eval_gpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Prepare inputs
assert(inputs.size() == 2);
auto& x = inputs[0];
@@ -226,7 +225,7 @@ void Axpby::eval_gpu(
// and each stream carries its device identifiers
auto& s = stream();
// We get the needed metal device using the stream
auto& d = mx::metal::device(s.device);
auto& d = metal::device(s.device);
// Prepare to specialize based on contiguity
bool contiguous_kernel =
@@ -236,12 +235,12 @@ void Axpby::eval_gpu(
// Allocate output memory with strides based on specialization
if (contiguous_kernel) {
out.set_data(
mx::allocator::malloc_or_wait(x.data_size() * out.itemsize()),
allocator::malloc_or_wait(x.data_size() * out.itemsize()),
x.data_size(),
x.strides(),
x.flags());
} else {
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
// Resolve name of kernel (corresponds to axpby.metal)
@@ -280,7 +279,7 @@ void Axpby::eval_gpu(
if (!contiguous_kernel) {
compute_encoder.set_vector_bytes(x.shape(), 5);
compute_encoder.set_vector_bytes(x.strides(), 6);
compute_encoder.set_vector_bytes(y.strides(), 7);
compute_encoder.set_bytes(y.strides(), 7);
compute_encoder.set_bytes(ndim, 8);
}
@@ -303,8 +302,8 @@ void Axpby::eval_gpu(
/** Fail evaluation on GPU */
void Axpby::eval_gpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& out) {
const std::vector<array>& inputs,
std::vector<array>& out) {
throw std::runtime_error("Axpby has no GPU implementation.");
}
@@ -315,9 +314,9 @@ void Axpby::eval_gpu(
///////////////////////////////////////////////////////////////////////////////
/** The Jacobian-vector product. */
std::vector<mx::array> Axpby::jvp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& tangents,
std::vector<array> Axpby::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the primitive can built with ops
@@ -329,8 +328,8 @@ std::vector<mx::array> Axpby::jvp(
// scaled by beta
if (argnums.size() > 1) {
auto scale = argnums[0] == 0 ? alpha_ : beta_;
auto scale_arr = mx::array(scale, tangents[0].dtype());
return {mx::multiply(scale_arr, tangents[0], stream())};
auto scale_arr = array(scale, tangents[0].dtype());
return {multiply(scale_arr, tangents[0], stream())};
}
// If, argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
@@ -340,24 +339,24 @@ std::vector<mx::array> Axpby::jvp(
}
/** The vector-Jacobian product. */
std::vector<mx::array> Axpby::vjp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& cotangents,
std::vector<array> Axpby::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<mx::array>&) {
const std::vector<array>&) {
// Reverse mode diff
std::vector<mx::array> vjps;
std::vector<array> vjps;
for (auto arg : argnums) {
auto scale = arg == 0 ? alpha_ : beta_;
auto scale_arr = mx::array(scale, cotangents[0].dtype());
vjps.push_back(mx::multiply(scale_arr, cotangents[0], stream()));
auto scale_arr = array(scale, cotangents[0].dtype());
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
}
return vjps;
}
/** Vectorize primitive along given axis */
std::pair<std::vector<mx::array>, std::vector<int>> Axpby::vmap(
const std::vector<mx::array>& inputs,
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("Axpby has no vmap implementation.");
}
@@ -368,4 +367,4 @@ bool Axpby::is_equivalent(const Primitive& other) const {
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
}
} // namespace my_ext
} // namespace mlx::core

View File

@@ -5,9 +5,7 @@
#include "mlx/ops.h"
#include "mlx/primitives.h"
namespace mx = mlx::core;
namespace my_ext {
namespace mlx::core {
///////////////////////////////////////////////////////////////////////////////
// Operation
@@ -20,22 +18,22 @@ namespace my_ext {
* Follow numpy style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
mx::array axpby(
const mx::array& x, // Input array x
const mx::array& y, // Input array y
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
mx::StreamOrDevice s = {} // Stream on which to schedule the operation
StreamOrDevice s = {} // Stream on which to schedule the operation
);
///////////////////////////////////////////////////////////////////////////////
// Primitive
///////////////////////////////////////////////////////////////////////////////
class Axpby : public mx::Primitive {
class Axpby : public Primitive {
public:
explicit Axpby(mx::Stream stream, float alpha, float beta)
: mx::Primitive(stream), alpha_(alpha), beta_(beta) {};
explicit Axpby(Stream stream, float alpha, float beta)
: Primitive(stream), alpha_(alpha), beta_(beta) {};
/**
* A primitive must know how to evaluate itself on the CPU/GPU
@@ -44,25 +42,23 @@ class Axpby : public mx::Primitive {
* To avoid unnecessary allocations, the evaluation function
* is responsible for allocating space for the array.
*/
void eval_cpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) override;
void eval_gpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) override;
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
/** The Jacobian-vector product. */
std::vector<mx::array> jvp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& tangents,
std::vector<array> jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) override;
/** The vector-Jacobian product. */
std::vector<mx::array> vjp(
const std::vector<mx::array>& primals,
const std::vector<mx::array>& cotangents,
std::vector<array> vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<mx::array>& outputs) override;
const std::vector<array>& outputs) override;
/**
* The primitive must know how to vectorize itself across
@@ -70,8 +66,8 @@ class Axpby : public mx::Primitive {
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<std::vector<mx::array>, std::vector<int>> vmap(
const std::vector<mx::array>& inputs,
std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
/** Print the primitive. */
@@ -80,16 +76,14 @@ class Axpby : public mx::Primitive {
}
/** Equivalence check **/
bool is_equivalent(const mx::Primitive& other) const override;
bool is_equivalent(const Primitive& other) const override;
private:
float alpha_;
float beta_;
/** Fall back implementation for evaluation on CPU */
void eval(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs);
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
};
} // namespace my_ext
} // namespace mlx::core

View File

@@ -8,12 +8,14 @@
namespace nb = nanobind;
using namespace nb::literals;
using namespace mlx::core;
NB_MODULE(_ext, m) {
m.doc() = "Sample extension for MLX";
m.def(
"axpby",
&my_ext::axpby,
&axpby,
"x"_a,
"y"_a,
"alpha"_a,

View File

@@ -1,8 +1,8 @@
[build-system]
requires = [
"setuptools>=42",
"cmake>=3.25",
"cmake>=3.24",
"mlx>=0.18.0",
"nanobind==2.4.0",
"nanobind==2.2.0",
]
build-backend = "setuptools.build_meta"

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.25
cmake>=3.24
mlx>=0.21.0
nanobind==2.2.0

View File

@@ -5,7 +5,6 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
@@ -19,26 +18,21 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
if(MSVC)
# Disable some MSVC warnings to speed up compilation.
target_compile_options(mlx PUBLIC /wd4068 /wd4244 /wd4267 /wd4804)
endif()
if(WIN32)
# Export symbols by default to behave like macOS/linux.
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
endif()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
if(MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cpu)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
endif()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_ACCELERATE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
elseif(MLX_BUILD_CPU)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
endif()
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)

View File

@@ -10,8 +10,22 @@
namespace mlx::core {
namespace {
/** Return true if we are currently performing a function transformation in
* order to keep the graph when evaluating tracer arrays. */
bool in_tracing() {
return detail::InTracing::in_tracing();
}
bool retain_graph() {
return detail::RetainGraph::retain_graph();
}
} // namespace
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
: array_desc_(std::make_shared<ArrayDesc>(Shape{}, dtype)) {
: array_desc_(std::make_shared<ArrayDesc>(std::vector<int>{}, dtype)) {
auto cval = static_cast<complex64_t>(val);
init(&cval);
}
@@ -47,14 +61,14 @@ std::vector<array> array::make_arrays(
array::array(std::initializer_list<float> data)
: array_desc_(std::make_shared<ArrayDesc>(
Shape{static_cast<ShapeElem>(data.size())},
std::vector<int>{static_cast<int>(data.size())},
float32)) {
init(data.begin());
}
array::array(std::initializer_list<int> data, Dtype dtype)
: array_desc_(std::make_shared<ArrayDesc>(
Shape{static_cast<ShapeElem>(data.size())},
std::vector<int>{static_cast<int>(data.size())},
dtype)) {
init(data.begin());
}
@@ -105,8 +119,7 @@ void array::eval() {
}
bool array::is_tracer() const {
return (array_desc_->is_tracer && detail::in_tracing()) ||
detail::retain_graph();
return array_desc_->is_tracer && in_tracing() || retain_graph();
}
void array::set_data(allocator::Buffer buffer, Deleter d) {
@@ -264,19 +277,7 @@ array::ArrayDesc::~ArrayDesc() {
}
ad.inputs.clear();
for (auto& [_, a] : input_map) {
bool is_deletable =
(a.array_desc_.use_count() <= a.siblings().size() + 1);
// An array with siblings is deletable only if all of its siblings
// are deletable
for (auto& s : a.siblings()) {
if (!is_deletable) {
break;
}
int is_input = (input_map.find(s.id()) != input_map.end());
is_deletable &=
s.array_desc_.use_count() <= a.siblings().size() + is_input;
}
if (is_deletable) {
if (a.array_desc_.use_count() <= a.siblings().size() + 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
@@ -309,7 +310,7 @@ array::ArrayIterator::ArrayIterator(const array& arr, int idx)
}
array::ArrayIterator::reference array::ArrayIterator::operator*() const {
auto start = Shape(arr.ndim(), 0);
auto start = std::vector<int>(arr.ndim(), 0);
auto end = arr.shape();
auto shape = arr.shape();
shape.erase(shape.begin());

View File

@@ -17,8 +17,7 @@ namespace mlx::core {
class Primitive;
using Deleter = std::function<void(allocator::Buffer)>;
using ShapeElem = int32_t;
using Shape = std::vector<ShapeElem>;
using Shape = std::vector<int32_t>;
using Strides = std::vector<int64_t>;
class array {
@@ -35,29 +34,29 @@ class array {
explicit array(const std::complex<float>& val, Dtype dtype = complex64);
template <typename It>
explicit array(
array(
It data,
Shape shape,
Dtype dtype =
TypeToDtype<typename std::iterator_traits<It>::value_type>());
template <typename T>
explicit array(std::initializer_list<T> data, Dtype dtype = TypeToDtype<T>());
array(std::initializer_list<T> data, Dtype dtype = TypeToDtype<T>());
/* Special case so empty lists default to float32. */
explicit array(std::initializer_list<float> data);
array(std::initializer_list<float> data);
/* Special case so array({}, type) is an empty array. */
explicit array(std::initializer_list<int> data, Dtype dtype);
array(std::initializer_list<int> data, Dtype dtype);
template <typename T>
explicit array(
array(
std::initializer_list<T> data,
Shape shape,
Dtype dtype = TypeToDtype<T>());
/* Build an array from a buffer */
explicit array(
array(
allocator::Buffer data,
Shape shape,
Dtype dtype,
@@ -499,7 +498,7 @@ class array {
template <typename T>
array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
: array_desc_(std::make_shared<ArrayDesc>(Shape{}, dtype)) {
: array_desc_(std::make_shared<ArrayDesc>(std::vector<int>{}, dtype)) {
init(&val);
}
@@ -517,7 +516,7 @@ array::array(
std::initializer_list<T> data,
Dtype dtype /* = TypeToDtype<T>() */)
: array_desc_(std::make_shared<ArrayDesc>(
Shape{static_cast<ShapeElem>(data.size())},
std::vector<int>{static_cast<int>(data.size())},
dtype)) {
init(data.begin());
}

View File

@@ -0,0 +1,8 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)

View File

@@ -0,0 +1,20 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <Accelerate/Accelerate.h>
#include <simd/vector.h>
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
// TODO: Add accelerate based optimizations for CPU conv
}
} // namespace mlx::core

View File

@@ -0,0 +1,253 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <Accelerate/Accelerate.h>
#include "mlx/backend/accelerate/utils.h"
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
namespace {
std::tuple<bool, size_t, array> check_transpose(const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (stx == arr.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, arr);
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
}
inline void matmul_cblas_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[matmul_cblas] on CPU currently only supports float32");
}
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
for (int i = 0; i < (a.size() / (M * K)); ++i) {
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
alpha, // alpha
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
lda,
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
ldb,
beta, // beta
out.data<float>() + M * N * i,
out.shape(-1) // ldc
);
}
}
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[matmul_cblas] on CPU currently only supports float32");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_cblas_general(a_pre, b_pre, out);
}
inline void matmul_bnns_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
// TODO: Update to utilize BNNS broadcasting
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
const BNNSLayerParametersBroadcastMatMul gemm_params{
/* float alpha = */ alpha,
/* float beta = */ beta,
/* bool transA = */ a_transposed,
/* bool transB = */ b_transposed,
/* bool quadratic = */ false,
/* bool a_is_weights = */ false,
/* bool b_is_weights = */ false,
/* BNNSNDArrayDescriptor iA_desc = */
BNNSNDArrayDescriptor{
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
{lda, (M * K) / lda, 0, 0, 0, 0, 0, 0},
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
{1, lda, 0, 0, 0, 0, 0, 0},
/* void * _Nullable data = */ nullptr,
/* BNNSDataType data_type = */ bnns_dtype,
/* void * _Nullable table_data = */ nullptr,
/* BNNSDataType table_data_type = */ bnns_dtype,
/* float data_scale = */ 1.0,
/* float data_bias = */ 0.0,
},
/* BNNSNDArrayDescriptor iB_desc = */
BNNSNDArrayDescriptor{
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
{ldb, (K * N) / ldb, 0, 0, 0, 0, 0, 0},
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
{1, ldb, 0, 0, 0, 0, 0, 0},
/* void * _Nullable data = */ nullptr,
/* BNNSDataType data_type = */ bnns_dtype,
/* void * _Nullable table_data = */ nullptr,
/* BNNSDataType table_data_type = */ bnns_dtype,
/* float data_scale = */ 1.0,
/* float data_bias = */ 0.0,
},
/* BNNSNDArrayDescriptor o_desc = */
BNNSNDArrayDescriptor{
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
{N, M, 0, 0, 0, 0, 0, 0},
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
{1, N, 0, 0, 0, 0, 0, 0},
/* void * _Nullable data = */ nullptr,
/* BNNSDataType data_type = */ bnns_dtype,
/* void * _Nullable table_data = */ nullptr,
/* BNNSDataType table_data_type = */ bnns_dtype,
/* float data_scale = */ 1.0,
/* float data_bias = */ 0.0,
},
};
auto bnns_filter =
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
for (int i = 0; i < (a.size() / (M * K)); ++i) {
BNNSFilterApplyTwoInput(
bnns_filter,
a.data<uint8_t>() +
elem_to_loc(M * K * i, a.shape(), a.strides()) * a.itemsize(),
b.data<uint8_t>() +
elem_to_loc(K * N * i, b.shape(), b.strides()) * b.itemsize(),
out.data<uint8_t>() + M * N * i * out.itemsize());
}
BNNSFilterDestroy(bnns_filter);
}
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
// TODO: Update to utilize BNNS broadcasting
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_bnns_general(a_pre, b_pre, out);
}
template <typename T>
inline void mask_matrix(
T* data,
const bool* mask,
int tile_size,
const int X,
const int Y,
const size_t X_data_str,
const size_t Y_data_str,
const size_t X_mask_str,
const size_t Y_mask_str) {
int tX = (X + tile_size - 1) / tile_size;
int tY = (Y + tile_size - 1) / tile_size;
for (int i = 0; i < tX; i++) {
for (int j = 0; j < tY; j++) {
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
if (!do_mask) {
int loc_x = i * tile_size;
int loc_y = j * tile_size;
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
int size_x = std::min(tile_size, X - loc_x);
int size_y = std::min(tile_size, Y - loc_y);
for (int ii = 0; ii < size_x; ii++) {
for (int jj = 0; jj < size_y; jj++) {
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
}
}
}
}
}
}
} // namespace
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() == float32) {
return matmul_cblas(inputs[0], inputs[1], out);
}
return matmul_bnns(inputs[0], inputs[1], out);
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy(c, out, ctype);
if (out.dtype() == float32) {
return matmul_cblas_general(inputs[0], inputs[1], out, alpha_, beta_);
}
return matmul_bnns_general(inputs[0], inputs[1], out, alpha_, beta_);
}
} // namespace mlx::core

View File

@@ -0,0 +1,601 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <cmath>
#include <Accelerate/Accelerate.h>
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/unary.h"
#include "mlx/primitives.h"
#define DEFAULT(primitive) \
void primitive::eval_cpu(const std::vector<array>& inputs, array& out) { \
primitive::eval(inputs, out); \
}
#define DEFAULT_MULTI(primitive) \
void primitive::eval_cpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
primitive::eval(inputs, outputs); \
}
namespace mlx::core {
// Use the default implementation for the following primitives
DEFAULT(Arange)
DEFAULT(ArgPartition)
DEFAULT(ArgReduce)
DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(BlockMaskedMM)
DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Conjugate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomTransforms)
DEFAULT_MULTI(Depends)
DEFAULT_MULTI(DivMod)
DEFAULT(NumberOfElements)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
DEFAULT(FFT)
DEFAULT(Floor)
DEFAULT(Gather)
DEFAULT(GatherMM)
DEFAULT(GatherQMM)
DEFAULT(Greater)
DEFAULT(GreaterEqual)
DEFAULT(Hadamard)
DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
DEFAULT(LogicalNot)
DEFAULT(LogicalAnd)
DEFAULT(LogicalOr)
DEFAULT(LogAddExp)
DEFAULT(Maximum)
DEFAULT(Minimum)
DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT_MULTI(QRF)
DEFAULT(RandomBits)
DEFAULT(Reshape)
DEFAULT(Remainder)
DEFAULT(Round)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Slice)
DEFAULT(SliceUpdate)
DEFAULT_MULTI(Split)
DEFAULT(Sort)
DEFAULT(StopGradient)
DEFAULT_MULTI(SVD)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else if (in.dtype() == int32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
} else {
eval(inputs, out);
}
}
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary_op<float>(
a,
b,
out,
[](auto x, auto y) { return x + y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary_op<int>(
a,
b,
out,
[](auto x, auto y) { return x + y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
});
} else {
eval(inputs, out);
}
}
void ArcCos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvacosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcCosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvacoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcSin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvasinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcSinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvasinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvatanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
if (a.is_donatable()) {
out.copy_shared_buffer(a);
} else if (b.is_donatable()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
int size = a.data_size();
vvatan2f(out.data<float>(), a.data<float>(), b.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvatanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().contiguous) {
// Use accelerate functions if possible
if (in.dtype() == float32 && out.dtype() == uint32) {
set_unary_output_data(in, out);
vDSP_vfixu32(
in.data<float>(), 1, out.data<uint32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == float32 && out.dtype() == int32) {
set_unary_output_data(in, out);
vDSP_vfix32(in.data<float>(), 1, out.data<int32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == uint32 && out.dtype() == float32) {
set_unary_output_data(in, out);
vDSP_vfltu32(
in.data<uint32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
} else if (in.dtype() == int32 && out.dtype() == float32) {
set_unary_output_data(in, out);
vDSP_vflt32(in.data<int32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
}
}
eval(inputs, out);
}
void Cos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvcosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Cosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvcoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == int32) {
binary_op<int>(
a,
b,
out,
[](auto x, auto y) { return x / y; },
UseDefaultBinaryOp(),
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsdivi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
});
} else if (a.dtype() == float32) {
binary_op<float>(
a,
b,
out,
[](auto x, auto y) { return x / y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_svdiv((const float*)s, (const float*)vec, 1, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsdiv((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else {
eval(inputs, out);
}
}
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else {
eval(inputs, out);
}
}
void Expm1::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvexpm1f(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else {
eval(inputs, out);
}
}
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
assert(in.dtype() == out.dtype());
if (in.data_size() == 1 && out.dtype() == float32) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
vDSP_vfill(in.data<float>(), out.data<float>(), 1, out.size());
} else {
eval(inputs, out);
}
}
void Log::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
switch (base_) {
case Base::e:
vvlogf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
case Base::two:
vvlog2f(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
case Base::ten:
vvlog10f(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
}
} else {
eval(inputs, out);
}
}
void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvlog1pf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else {
eval(inputs, out);
}
}
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary_op<float>(
a,
b,
out,
[](auto x, auto y) { return x * y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else {
eval(inputs, out);
}
}
void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else {
eval(inputs, out);
}
}
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
int size = a.size();
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
out.copy_shared_buffer(a);
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
vvpowf(out.data<float>(), b.data<float>(), a.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (reduce_type_ == Scan::Sum && out.dtype() == float32 &&
in.flags().row_contiguous && in.strides()[axis_] == 1 && !inclusive_) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
int stride = in.shape(axis_);
int count = in.size() / stride;
const float* input = in.data<float>();
float* output = out.data<float>();
float s = 1.0;
if (!reverse_) {
for (int i = 0; i < count; i++) {
vDSP_vrsum(input - 1, 1, &s, output, 1, stride);
input += stride;
output += stride;
}
} else {
for (int i = 0; i < count; i++) {
input += stride - 1;
output += stride - 1;
vDSP_vrsum(input + 1, -1, &s, output, -1, stride);
input++;
output++;
}
}
} else {
eval(inputs, out);
}
}
void Sin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvsinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Sinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvsinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
} else {
eval(inputs, out);
}
}
void Sqrt::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
if (recip_) {
vvrsqrtf(out.data<float>(), in.data<float>(), &size);
} else {
vvsqrtf(out.data<float>(), in.data<float>(), &size);
}
} else {
eval(inputs, out);
}
}
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary_op<float>(
a,
b,
out,
[](auto x, auto y) { return x - y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
float minus_1 = -1;
vDSP_vsmsa(
(const float*)vec, 1, &minus_1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
float val = -(*s);
vDSP_vsadd((const float*)vec, 1, &val, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary_op<int>(
a,
b,
out,
[](auto x, auto y) { return x - y; },
UseDefaultBinaryOp(),
[](const auto* vec, const auto* s, auto* o, auto n) {
int val = -(*s);
vDSP_vsaddi((const int*)vec, 1, &val, (int*)o, 1, n);
},
UseDefaultBinaryOp());
} else {
eval(inputs, out);
}
}
void Tan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvtanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Tanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvtanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,117 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include <simd/vector.h>
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
void _qmm_t_4_64(
float* result,
const float* x,
const uint32_t* w,
const float* scales,
const float* biases,
int M,
int N,
int K,
int B,
bool batched_w) {
constexpr int bits = 4;
constexpr int group_size = 64;
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
int w_els = N * K / pack_factor;
int g_els = w_els * pack_factor / group_size;
for (int i = 0; i < B; i++) {
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const float* scales_local = scales;
const float* biases_local = biases;
for (int n = 0; n < N; n++) {
const simd_float16* x_local = (simd_float16*)x;
simd_float16 sum = 0;
for (int k = 0; k < K; k += group_size) {
float scale = *scales_local++;
float bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw += 2) {
// TODO: vectorize this properly
simd_uint16 wi;
for (int e = 0; e < 2; e++) {
uint32_t wii = *w_local++;
for (int p = 0; p < 8; p++) {
wi[e * 8 + p] = wii & bitmask;
wii >>= bits;
}
}
simd_float16 wf = simd_float(wi);
wf *= scale;
wf += bias;
sum += (*x_local) * wf;
x_local++;
}
}
*result = simd_reduce_add(sum);
result++;
}
x += K;
}
if (batched_w) {
w += w_els;
scales += g_els;
biases += g_els;
}
}
}
} // namespace
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 4);
auto& x = inputs[0];
auto& w = inputs[1];
auto& scales = inputs[2];
auto& biases = inputs[3];
bool condition =
(transpose_ && x.flags().row_contiguous && w.flags().row_contiguous &&
scales.flags().row_contiguous && biases.flags().row_contiguous &&
x.dtype() == float32 && bits_ == 4 && group_size_ == 64);
if (condition) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
int K = x.shape(-1);
int M = x.shape(-2);
int N = out.shape(-1);
int B = x.size() / K / M;
bool batched_w = w.ndim() > 2;
_qmm_t_4_64(
out.data<float>(),
x.data<float>(),
w.data<uint32_t>(),
scales.data<float>(),
biases.data<float>(),
M,
N,
K,
B,
batched_w);
} else {
eval(inputs, out);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,139 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include <Accelerate/Accelerate.h>
#include <simd/vector.h>
#include "mlx/backend/common/reduce.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename T, typename VT>
struct MinReduction {
T operator()(const T& a, const T& b) {
return std::min(a, b);
}
VT operator()(VT a, VT b) {
return simd_min(a, b);
}
};
template <typename T, typename VT>
struct MaxReduction {
T operator()(const T& a, const T& b) {
return std::max(a, b);
}
VT operator()(VT a, VT b) {
return simd_max(a, b);
}
};
template <typename T, typename VT>
struct SumReduction {
T operator()(const T& a, const T& b) {
return a + b;
}
VT operator()(VT a, VT b) {
return a + b;
}
};
template <typename T, typename VT, int N, typename Reduction>
struct StridedReduce {
void operator()(const T* x, T* accum, int size, size_t stride) {
Reduction op;
for (int i = 0; i < size; i++) {
size_t s = stride;
T* a = accum;
while (s >= N) {
*(VT*)a = op((*(VT*)x), (*(VT*)a));
x += N;
a += N;
s -= N;
}
while (s-- > 0) {
*a = op(*a, *x);
a++;
x++;
}
}
}
};
} // namespace
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32) {
if (reduce_type_ == Reduce::Sum) {
reduction_op<float, float>(
in,
out,
axes_,
0,
StridedReduce<
float,
simd_float16,
16,
SumReduction<float, simd_float16>>(),
[](const auto* x, auto* accum, int size) {
float acc;
vDSP_sve((const float*)x, 1, &acc, size);
(*accum) += acc;
},
[](auto* accum, auto x) { *accum += x; });
return;
} else if (reduce_type_ == Reduce::Max) {
reduction_op<float, float>(
in,
out,
axes_,
-std::numeric_limits<float>::infinity(),
StridedReduce<
float,
simd_float16,
16,
MaxReduction<float, simd_float16>>(),
[](const auto* x, auto* accum, int size) {
float max;
vDSP_maxv((const float*)x, 1, &max, size);
(*accum) = (*accum < max) ? max : *accum;
},
[](auto* accum, auto x) { (*accum) = (*accum < x) ? x : *accum; });
return;
} else if (reduce_type_ == Reduce::Min) {
reduction_op<float, float>(
in,
out,
axes_,
std::numeric_limits<float>::infinity(),
StridedReduce<
float,
simd_float16,
16,
MinReduction<float, simd_float16>>(),
[](const auto* x, auto* accum, int size) {
float min;
vDSP_minv((const float*)x, 1, &min, size);
(*accum) = (*accum > min) ? min : *accum;
},
[](auto* accum, auto x) { (*accum) = (*accum > x) ? x : *accum; });
return;
}
}
// TODO: Add integer addition and min/max using the templates above and
// simd_int16 and friends.
eval(inputs, out);
}
} // namespace mlx::core

View File

@@ -0,0 +1,393 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <limits>
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include <arm_neon.h>
#endif
#include <simd/math.h>
#include <simd/vector.h>
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
/**
* Compute exp(x) in an optimizer friendly way as follows:
*
* First change the problem to computing 2**y where y = x / ln(2).
*
* Now we will compute 2**y as 2**y1 * 2**y2 where y1 is the integer part
* `ipart` and y2 is fractional part. For the integer part we perform bit
* shifting and for the fractional part we use a polynomial approximation.
*
* The algorithm and constants of the polynomial taken from
* https://github.com/akohlmey/fastermath/blob/master/src/exp.c which took them
* from Cephes math library.
*
* Note: The implementation below is a general fast exp. There could be faster
* implementations for numbers strictly < 0.
*/
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
auto x = x_init * 1.442695; // multiply with log_2(e)
simd_float16 ipart, fpart;
simd_int16 epart;
x = simd_clamp(x, -80, 80);
ipart = simd::floor(x + 0.5);
fpart = x - ipart;
x = 1.535336188319500e-4f;
x = x * fpart + 1.339887440266574e-3f;
x = x * fpart + 9.618437357674640e-3f;
x = x * fpart + 5.550332471162809e-2f;
x = x * fpart + 2.402264791363012e-1f;
x = x * fpart + 6.931472028550421e-1f;
x = x * fpart + 1.000000000000000f;
// generate 2**ipart in the floating point representation using integer
// bitshifting
epart = (simd_int(ipart) + 127) << 23;
// Avoid supressing NaNs
simd_int16 eq = (x_init == x_init);
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
}
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/**
* The ARM neon equivalent of the fast exp above.
*/
inline float16x8_t neon_fast_exp(float16x8_t x) {
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
float16x8_t fpart = vsubq_f16(x, ipart);
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
// generate 2**ipart in the floating point representation using integer
// bitshifting
int16x8_t epart = vcvtq_s16_f16(ipart);
epart = vaddq_s16(epart, vdupq_n_s16(15));
epart = vshlq_n_s16(epart, 10);
return vmulq_f16(vreinterpretq_f16_s16(epart), x);
}
/**
* Implementation of folding maximum for ARM neon. This should possibly be
* refactored out of softmax.cpp at some point.
*/
inline float16_t neon_reduce_max(float16x8_t x) {
float16x4_t y;
y = vpmax_f16(vget_low_f16(x), vget_high_f16(x));
y = vpmax_f16(y, y);
y = vpmax_f16(y, y);
return vget_lane_f16(y, 0);
}
/**
* Implementation of folding sum for ARM neon. This should possibly be
* refactored out of softmax.cpp at some point.
*/
inline float16_t neon_reduce_add(float16x8_t x) {
float16x4_t y;
float16x4_t zero = vdup_n_f16(0);
y = vpadd_f16(vget_low_f16(x), vget_high_f16(x));
y = vpadd_f16(y, zero);
y = vpadd_f16(y, zero);
return vget_lane_f16(y, 0);
}
template <typename T, typename VT>
struct NeonFp16SimdOps {
VT init(T a) {
return vdupq_n_f16(a);
}
VT load(const T* a) {
return vld1q_f16(a);
}
void store(T* dst, VT x) {
vst1q_f16(dst, x);
}
VT max(VT a, VT b) {
return vmaxq_f16(a, b);
}
VT exp(VT x) {
return neon_fast_exp(x);
}
VT add(VT a, VT b) {
return vaddq_f16(a, b);
}
VT sub(VT a, T b) {
return vsubq_f16(a, vdupq_n_f16(b));
}
VT mul(VT a, VT b) {
return vmulq_f16(a, b);
}
VT mul(VT a, T b) {
return vmulq_f16(a, vdupq_n_f16(b));
}
T reduce_max(VT x) {
return neon_reduce_max(x);
}
T reduce_add(VT x) {
return neon_reduce_add(x);
}
};
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <typename T, typename VT>
struct AccelerateSimdOps {
VT init(T a) {
return a;
}
VT load(const T* a) {
return *(VT*)a;
}
void store(T* dst, VT x) {
*(VT*)dst = x;
}
VT max(VT a, VT b) {
return simd_max(a, b);
}
VT exp(VT x) {
return simd_fast_exp(x);
}
VT add(VT a, VT b) {
return a + b;
}
VT sub(VT a, T b) {
return a - b;
}
VT mul(VT a, VT b) {
return a * b;
}
VT mul(VT a, T b) {
return a * b;
}
T reduce_max(VT x) {
return simd_reduce_max(x);
}
T reduce_add(VT x) {
return simd_reduce_add(x);
}
};
template <typename T, typename AccT, typename VT, typename Ops, int N>
void softmax(const array& in, array& out) {
Ops ops;
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
int M = in.shape().back();
int L = in.data_size() / M;
const T* current_in_ptr;
T* current_out_ptr;
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += M) {
// Find the maximum
current_in_ptr = in_ptr;
VT vmaximum = ops.init(-std::numeric_limits<float>::infinity());
size_t s = M;
while (s >= N) {
VT vals;
if constexpr (std::is_same<T, AccT>::value) {
vals = ops.load(current_in_ptr);
} else {
for (int i = 0; i < N; ++i) {
vals[i] = static_cast<AccT>(current_in_ptr[i]);
}
}
vmaximum = ops.max(vals, vmaximum);
current_in_ptr += N;
s -= N;
}
AccT maximum = ops.reduce_max(vmaximum);
while (s-- > 0) {
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
current_in_ptr++;
}
// Compute the normalizer and the exponentials
VT vnormalizer = ops.init(0.0);
current_out_ptr = out_ptr;
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
VT vexp;
if constexpr (std::is_same<T, AccT>::value) {
vexp = ops.load(current_in_ptr);
} else {
for (int i = 0; i < N; ++i) {
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
}
}
vexp = ops.exp(ops.sub(vexp, maximum));
if constexpr (std::is_same<T, AccT>::value) {
ops.store(current_out_ptr, vexp);
}
vnormalizer = ops.add(vnormalizer, vexp);
current_in_ptr += N;
current_out_ptr += N;
s -= N;
}
AccT normalizer = ops.reduce_add(vnormalizer);
while (s-- > 0) {
AccT _exp = std::exp(*current_in_ptr - maximum);
if (std::is_same<T, AccT>::value) {
*current_out_ptr = _exp;
}
normalizer += _exp;
current_in_ptr++;
current_out_ptr++;
}
normalizer = 1 / normalizer;
// Normalize
current_out_ptr = out_ptr;
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
if constexpr (std::is_same<T, AccT>::value) {
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
} else {
VT vexp;
for (int i = 0; i < N; ++i) {
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
}
vexp = ops.mul(ops.exp(ops.sub(vexp, maximum)), normalizer);
for (int i = 0; i < N; ++i) {
current_out_ptr[i] = vexp[i];
}
current_in_ptr += N;
}
current_out_ptr += N;
s -= N;
}
while (s-- > 0) {
if constexpr (std::is_same<T, AccT>::value) {
*current_out_ptr *= normalizer;
} else {
AccT _exp = std::exp(*current_in_ptr - maximum);
*current_out_ptr = static_cast<T>(_exp * normalizer);
current_in_ptr++;
}
current_out_ptr++;
}
}
}
} // namespace
void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// Make sure that the last dimension is contiguous
auto check_input = [](array x) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General);
return x_copy;
}
};
array in = check_input(std::move(inputs[0]));
out.set_data(
allocator::malloc_or_wait(in.data_size() * in.itemsize()),
in.data_size(),
in.strides(),
in.flags());
switch (in.dtype()) {
case bool_:
case uint8:
case uint16:
case uint32:
case uint64:
case int8:
case int16:
case int32:
case int64:
throw std::invalid_argument(
"Softmax is defined only for floating point types");
break;
case float32:
softmax<
float,
float,
simd_float16,
AccelerateSimdOps<float, simd_float16>,
16>(in, out);
break;
case float16:
if (precise_) {
softmax<
float16_t,
float,
simd_float16,
AccelerateSimdOps<float, simd_float16>,
16>(in, out);
} else {
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
softmax<
float16_t,
float16_t,
float16x8_t,
NeonFp16SimdOps<float16_t, float16x8_t>,
8>(in, out);
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
eval(inputs, out); // Redirect to common backend for consistency
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
}
break;
case bfloat16:
eval(inputs, out);
break;
case complex64:
eval(inputs, out);
break;
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,28 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <Accelerate/Accelerate.h>
#include "mlx/dtype.h"
namespace mlx::core {
BNNSDataType to_bnns_dtype(Dtype mlx_dtype) {
uint32_t size_bits = size_of(mlx_dtype) * 8;
switch (kindof(mlx_dtype)) {
case Dtype::Kind::b:
return BNNSDataTypeBoolean;
case Dtype::Kind::u:
return BNNSDataType(BNNSDataTypeUIntBit | size_bits);
case Dtype::Kind::i:
return BNNSDataType(BNNSDataTypeIntBit | size_bits);
case Dtype::Kind::f:
return BNNSDataType(BNNSDataTypeFloatBit | size_bits);
case Dtype::Kind::V:
return BNNSDataTypeBFloat16;
case Dtype::Kind::c:
throw std::invalid_argument("BNNS does not support complex types");
}
}
} // namespace mlx::core

View File

@@ -1,8 +1,62 @@
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG}
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h)
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp)
endif()

View File

@@ -2,8 +2,8 @@
#include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
#include "utils.h"
namespace mlx::core {
@@ -61,7 +61,7 @@ void arg_reduce_dispatch(
} // namespace
void ArgReduce::eval_cpu(const std::vector<array>& inputs, array& out) {
void ArgReduce::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));

View File

@@ -5,9 +5,9 @@
#include <sstream>
#include "mlx/allocator.h"
#include "mlx/backend/cpu/binary.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/binary_two.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/binary_two.h"
#include "mlx/backend/common/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -15,61 +15,69 @@ namespace mlx::core {
namespace {
template <typename T, typename U, typename Op>
void comparison_op(const array& a, const array& b, array& out, Op op) {
DefaultScalarVector<T, U, Op> opsv(op);
DefaultVectorScalar<T, U, Op> opvs(op);
DefaultVectorVector<T, U, Op> opvv(op);
binary_op<T, U>(a, b, out, op, opsv, opvs, opvv);
}
template <typename Op>
void comparison_op(const array& a, const array& b, array& out, Op op) {
switch (a.dtype()) {
case bool_:
binary_op<bool, bool>(a, b, out, op);
comparison_op<bool, bool>(a, b, out, op);
break;
case uint8:
binary_op<uint8_t, bool>(a, b, out, op);
comparison_op<uint8_t, bool>(a, b, out, op);
break;
case uint16:
binary_op<uint16_t, bool>(a, b, out, op);
comparison_op<uint16_t, bool>(a, b, out, op);
break;
case uint32:
binary_op<uint32_t, bool>(a, b, out, op);
comparison_op<uint32_t, bool>(a, b, out, op);
break;
case uint64:
binary_op<uint64_t, bool>(a, b, out, op);
comparison_op<uint64_t, bool>(a, b, out, op);
break;
case int8:
binary_op<int8_t, bool>(a, b, out, op);
comparison_op<int8_t, bool>(a, b, out, op);
break;
case int16:
binary_op<int16_t, bool>(a, b, out, op);
comparison_op<int16_t, bool>(a, b, out, op);
break;
case int32:
binary_op<int32_t, bool>(a, b, out, op);
comparison_op<int32_t, bool>(a, b, out, op);
break;
case int64:
binary_op<int64_t, bool>(a, b, out, op);
comparison_op<int64_t, bool>(a, b, out, op);
break;
case float16:
binary_op<float16_t, bool>(a, b, out, op);
comparison_op<float16_t, bool>(a, b, out, op);
break;
case float32:
binary_op<float, bool>(a, b, out, op);
comparison_op<float, bool>(a, b, out, op);
break;
case bfloat16:
binary_op<bfloat16_t, bool>(a, b, out, op);
comparison_op<bfloat16_t, bool>(a, b, out, op);
break;
case complex64:
binary_op<complex64_t, bool>(a, b, out, op);
comparison_op<complex64_t, bool>(a, b, out, op);
break;
}
}
} // namespace
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
void Add::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Add());
}
void DivMod::eval_cpu(
void DivMod::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 2);
@@ -124,68 +132,50 @@ void DivMod::eval_cpu(
}
}
void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
void Divide::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Divide());
}
void Remainder::eval_cpu(const std::vector<array>& inputs, array& out) {
void Remainder::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Remainder());
}
void Equal::eval_cpu(const std::vector<array>& inputs, array& out) {
void Equal::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (equal_nan_) {
switch (a.dtype()) {
case float16:
binary_op<float16_t, bool>(a, b, out, detail::NaNEqual());
break;
case float32:
binary_op<float, bool>(a, b, out, detail::NaNEqual());
break;
case bfloat16:
binary_op<bfloat16_t, bool>(a, b, out, detail::NaNEqual());
break;
case complex64:
binary_op<complex64_t, bool>(a, b, out, detail::NaNEqual());
break;
default:
throw std::runtime_error(
"[NanEqual::eval_cpu] Only for floating point types.");
}
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
} else {
comparison_op(a, b, out, detail::Equal());
comparison_op(inputs[0], inputs[1], out, detail::Equal());
}
}
void Greater::eval_cpu(const std::vector<array>& inputs, array& out) {
void Greater::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::Greater());
}
void GreaterEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
}
void Less::eval_cpu(const std::vector<array>& inputs, array& out) {
void Less::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::Less());
}
void LessEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
}
void LogAddExp::eval_cpu(const std::vector<array>& inputs, array& out) {
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
@@ -206,54 +196,54 @@ void LogAddExp::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void LogicalAnd::eval_cpu(const std::vector<array>& inputs, array& out) {
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalAnd());
}
void LogicalOr::eval_cpu(const std::vector<array>& inputs, array& out) {
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalOr requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalOr());
}
void Maximum::eval_cpu(const std::vector<array>& inputs, array& out) {
void Maximum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Maximum());
}
void Minimum::eval_cpu(const std::vector<array>& inputs, array& out) {
void Minimum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Minimum());
}
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
void Multiply::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Multiply());
}
void NotEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
}
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
void Power::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Power());
}
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
void Subtract::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
@@ -317,7 +307,7 @@ void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
void ArcTan2::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
const auto& a = inputs[0];
const auto& b = inputs[1];

View File

@@ -1,6 +1,7 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/array.h"
@@ -8,6 +9,8 @@
namespace mlx::core {
namespace {
enum class BinaryOpType {
ScalarScalar,
ScalarVector,
@@ -16,7 +19,7 @@ enum class BinaryOpType {
General,
};
inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType bopt;
if (a.data_size() == 1 && b.data_size() == 1) {
bopt = BinaryOpType::ScalarScalar;
@@ -25,8 +28,8 @@ inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
} else if (b.data_size() == 1 && a.flags().contiguous) {
bopt = BinaryOpType::VectorScalar;
} else if (
(a.flags().row_contiguous && b.flags().row_contiguous) ||
(a.flags().col_contiguous && b.flags().col_contiguous)) {
a.flags().row_contiguous && b.flags().row_contiguous ||
a.flags().col_contiguous && b.flags().col_contiguous) {
bopt = BinaryOpType::VectorVector;
} else {
bopt = BinaryOpType::General;
@@ -34,7 +37,7 @@ inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
return bopt;
}
inline void set_binary_op_output_data(
void set_binary_op_output_data(
const array& a,
const array& b,
array& out,
@@ -119,4 +122,409 @@ inline void set_binary_op_output_data(
}
}
struct UseDefaultBinaryOp {};
template <typename T, typename U, typename Op>
struct DefaultVectorScalar {
Op op;
DefaultVectorScalar(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *b;
while (size-- > 0) {
*dst = op(*a, scalar);
dst++;
a++;
}
}
};
template <typename T, typename U, typename Op>
struct DefaultScalarVector {
Op op;
DefaultScalarVector(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *a;
while (size-- > 0) {
*dst = op(scalar, *b);
dst++;
b++;
}
}
};
template <typename T, typename U, typename Op>
struct DefaultVectorVector {
Op op;
DefaultVectorVector(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
while (size-- > 0) {
*dst = op(*a, *b);
dst++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
}
out += stride_out;
a += stride_a;
b += stride_b;
}
}
template <typename T, typename U, bool Strided, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
switch (dim) {
case 1:
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
}
}
template <
typename T,
typename U,
typename Op,
typename OpSV,
typename OpVS,
typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
break;
default:
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
break;
}
}
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv and opvs were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
}
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opvs was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
}
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));
} else {
// All ops provided
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
DefaultScalarVector<T, T, Op> opsv(op);
DefaultVectorScalar<T, T, Op> opvs(op);
DefaultVectorVector<T, T, Op> opvv(op);
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
}
template <typename... Ops>
void binary(const array& a, const array& b, array& out, Ops... ops) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, ops...);
break;
case uint8:
binary_op<uint8_t>(a, b, out, ops...);
break;
case uint16:
binary_op<uint16_t>(a, b, out, ops...);
break;
case uint32:
binary_op<uint32_t>(a, b, out, ops...);
break;
case uint64:
binary_op<uint64_t>(a, b, out, ops...);
break;
case int8:
binary_op<int8_t>(a, b, out, ops...);
break;
case int16:
binary_op<int16_t>(a, b, out, ops...);
break;
case int32:
binary_op<int32_t>(a, b, out, ops...);
break;
case int64:
binary_op<int64_t>(a, b, out, ops...);
break;
case float16:
binary_op<float16_t>(a, b, out, ops...);
break;
case float32:
binary_op<float>(a, b, out, ops...);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, out, ops...);
break;
case complex64:
binary_op<complex64_t>(a, b, out, ops...);
break;
}
}
} // namespace
} // namespace mlx::core

View File

@@ -2,8 +2,8 @@
#pragma once
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/binary.h"
namespace mlx::core {

View File

@@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
@@ -64,7 +64,7 @@ void cholesky_impl(const array& a, array& factor, bool upper) {
}
}
void Cholesky::eval_cpu(const std::vector<array>& inputs, array& output) {
void Cholesky::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Cholesky::eval] only supports float32.");
}

View File

@@ -42,7 +42,9 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
return move_or_copy(in, out, strides_, flags, data_size, offset_);
}
void broadcast(const array& in, array& out) {
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.size() == 0) {
out.set_data(nullptr);
return;
@@ -59,14 +61,6 @@ void broadcast(const array& in, array& out) {
move_or_copy(in, out, strides, flags, in.data_size());
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
void BroadcastAxes::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
void Copy::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
move_or_copy(inputs[0], out);
@@ -91,16 +85,6 @@ void Depends::eval(
}
}
void ExpandDims::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
auto strides = in.strides();
for (auto ax : axes_) {
strides.insert(strides.begin() + ax, 1);
}
move_or_copy(in, out, strides, in.flags(), in.data_size());
}
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
@@ -157,7 +141,9 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
}
}
std::pair<bool, Strides> prepare_reshape(const array& in, const array& out) {
std::pair<bool, Strides> Reshape::prepare_reshape(
const array& in,
const array& out) {
// Special case for empty arrays or row contiguous arrays
if (in.size() == 0 || in.flags().row_contiguous) {
return {false, out.strides()};
@@ -194,7 +180,7 @@ std::pair<bool, Strides> prepare_reshape(const array& in, const array& out) {
return {copy_necessary, out_strides};
}
void shared_buffer_reshape(
void Reshape::shared_buffer_reshape(
const array& in,
const Strides& out_strides,
array& out) {
@@ -262,20 +248,6 @@ void Split::eval(
}
}
void Squeeze::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
Strides strides;
for (int i = 0, j = 0; i < in.ndim(); ++i) {
if (j < axes_.size() && i == axes_[j]) {
j++;
} else {
strides.push_back(in.strides(i));
}
}
move_or_copy(in, out, strides, in.flags(), in.data_size());
}
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
move_or_copy(inputs[0], out);

View File

@@ -130,7 +130,7 @@ std::string build_lib_name(
bool compiled_check_contiguity(
const std::vector<array>& inputs,
const Shape& shape) {
const std::vector<int>& shape) {
bool contiguous = true;
bool all_contig = true;
bool all_row_contig = true;

View File

@@ -11,7 +11,9 @@
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (typeid(p) == typeid(Broadcast) || typeid(p) == typeid(AsType));
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
@@ -54,7 +56,7 @@ inline bool is_scalar(const array& x) {
// Check if we can use a contiguous operation given inputs and the output shape
bool compiled_check_contiguity(
const std::vector<array>& inputs,
const Shape& shape);
const std::vector<int>& shape);
// Allocate space for the outputs possibly with input donation
void compiled_allocate_outputs(

View File

@@ -7,11 +7,8 @@
#include <mutex>
#include <shared_mutex>
#include <fmt/format.h>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cpu/compiled_preamble.h"
#include "mlx/backend/cpu/jit_compiler.h"
#include "mlx/backend/common/compiled_preamble.h"
#include "mlx/device.h"
#include "mlx/graph_utils.h"
@@ -47,9 +44,12 @@ namespace detail {
bool compile_available_for_device(const Device& device) {
return true;
}
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name).string();
}
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
@@ -68,30 +68,24 @@ void* compile(
std::string source_code = source_builder();
std::string kernel_file_name;
// Deal with long kernel names. Maximum length for filename on macOS is 255
// characters, and on Windows the maximum length for whole path is 260. Clip
// file name with a little extra room and append a 16 character hash.
#ifdef _WIN32
constexpr int max_file_name_length = 140;
#else
// Deal with long kernel names. Maximum length for files on macOS is 255
// characters. Clip file name with a little extra room and append a 16
// character hash.
constexpr int max_file_name_length = 245;
#endif
if (kernel_name.size() > max_file_name_length) {
std::ostringstream file_name;
file_name
<< std::string_view(kernel_name).substr(0, max_file_name_length - 16);
auto file_id =
std::hash<std::string>{}(kernel_name.substr(max_file_name_length - 16));
auto file_id = std::hash<std::string>{}(kernel_name);
file_name << "_" << std::hex << std::setw(16) << file_id << std::dec;
kernel_file_name = file_name.str();
} else {
kernel_file_name = kernel_name;
}
auto output_dir = std::filesystem::temp_directory_path();
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
auto shared_lib_path = (output_dir / shared_lib_name).string();
std::ostringstream shared_lib_name;
shared_lib_name << "lib" << kernel_file_name << ".so";
auto shared_lib_path = get_temp_file(shared_lib_name.str());
bool lib_exists = false;
{
std::ifstream f(shared_lib_path.c_str());
@@ -100,21 +94,24 @@ void* compile(
if (!lib_exists) {
// Open source file and write source code to it
std::string source_file_name = kernel_file_name + ".cpp";
auto source_file_path = (output_dir / source_file_name).string();
std::ostringstream source_file_name;
source_file_name << kernel_file_name << ".cpp";
auto source_file_path = get_temp_file(source_file_name.str());
std::ofstream source_file(source_file_path);
source_file << source_code;
source_file.close();
try {
JitCompiler::exec(JitCompiler::build_command(
output_dir, source_file_name, shared_lib_name));
} catch (const std::exception& error) {
throw std::runtime_error(fmt::format(
"[Compile::eval_cpu] Failed to compile function {0}: {1}",
kernel_name,
error.what()));
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O3 -Wall -fPIC -shared '"
<< source_file_path << "' -o '" << shared_lib_path << "'";
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to compile function " << kernel_name
<< " with error code " << return_code << "." << std::endl;
throw std::runtime_error(msg.str());
}
}
@@ -154,11 +151,6 @@ inline void build_kernel(
NodeNamer namer;
#ifdef _MSC_VER
// Export the symbol
os << "__declspec(dllexport) ";
#endif
// Start the kernel
os << "void " << kernel_name << "(void** args) {" << std::endl;

View File

@@ -1,7 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/compile_impl.h"
#include "mlx/primitives.h"
#include "mlx/backend/common/compiled.h"
namespace mlx::core {

View File

@@ -5,8 +5,7 @@
// clang-format off
#include "mlx/types/half_types.h"
#include "mlx/types/complex.h"
#include "mlx/backend/cpu/unary_ops.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/common/ops.h"
// clang-format on
const char* get_kernel_preamble();

View File

@@ -3,8 +3,8 @@
#include <cassert>
#include <numeric>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -726,7 +726,7 @@ void explicit_gemm_conv_1D_cpu(
auto conv_dtype = float32;
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], C};
std::vector<int> padded_shape = {N, iH + 2 * padding[0], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -765,7 +765,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
Shape strided_reshape = {N * oH, wH * C};
std::vector<int> strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General);
@@ -843,7 +843,8 @@ void explicit_gemm_conv_2D_cpu(
auto conv_dtype = out.dtype();
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], iW + 2 * padding[1], C};
std::vector<int> padded_shape = {
N, iH + 2 * padding[0], iW + 2 * padding[1], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -880,7 +881,7 @@ void explicit_gemm_conv_2D_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
std::vector<int> strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General);
@@ -933,19 +934,19 @@ void explicit_gemm_conv_ND_cpu(
const std::vector<int>& wt_dilation,
const bool flip) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const auto iDim =
Shape(in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
const auto oDim = Shape(
const auto iDim = std::vector<int>(
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
const auto oDim = std::vector<int>(
out.shape().begin() + 1, out.shape().end() - 1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(-1); // In channels
const auto wDim =
Shape(wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
const auto wDim = std::vector<int>(
wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
auto conv_dtype = float32;
// Pad input
Shape padded_shape(in.shape().size());
std::vector<int> padded_shape(in.shape().size());
padded_shape.front() = N;
for (size_t i = 0; i < iDim.size(); i++) {
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
@@ -1128,7 +1129,7 @@ void conv_3D_cpu(
} // namespace
void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
void Convolution::eval(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& in = inputs[0];

View File

@@ -3,9 +3,8 @@
#include <numeric>
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
@@ -24,7 +23,6 @@ template <typename SrcT, typename DstT>
void copy_vector(const array& src, array& dst) {
auto src_ptr = src.data<SrcT>();
auto dst_ptr = dst.data<DstT>();
size_t size = src.data_size();
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
}

View File

@@ -3,6 +3,7 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
@@ -22,4 +23,17 @@ enum class CopyType {
GeneralGeneral
};
void copy(const array& src, array& dst, CopyType ctype);
void copy_inplace(const array& src, array& dst, CopyType ctype);
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
} // namespace mlx::core

View File

@@ -0,0 +1,196 @@
// Copyright © 2023-2024 Apple Inc.
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
#define DEFAULT(primitive) \
void primitive::eval_cpu(const std::vector<array>& inputs, array& out) { \
primitive::eval(inputs, out); \
}
#define DEFAULT_MULTI(primitive) \
void primitive::eval_cpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
primitive::eval(inputs, outputs); \
}
namespace mlx::core {
DEFAULT(Abs)
DEFAULT(Add)
DEFAULT(Arange)
DEFAULT(ArcCos)
DEFAULT(ArcCosh)
DEFAULT(ArcSin)
DEFAULT(ArcSinh)
DEFAULT(ArcTan)
DEFAULT(ArcTan2)
DEFAULT(ArcTanh)
DEFAULT(ArgPartition)
DEFAULT(ArgReduce)
DEFAULT(ArgSort)
DEFAULT(AsType)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(BlockMaskedMM)
DEFAULT(GatherMM)
DEFAULT(GatherQMM)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Conjugate)
DEFAULT(Convolution)
DEFAULT(Copy)
DEFAULT(Cos)
DEFAULT(Cosh)
DEFAULT_MULTI(CustomTransforms)
DEFAULT_MULTI(Depends)
DEFAULT(Divide)
DEFAULT(NumberOfElements)
DEFAULT(Remainder)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
DEFAULT(Exp)
DEFAULT(Expm1)
DEFAULT(FFT)
DEFAULT(Floor)
DEFAULT(Full)
DEFAULT(Gather)
DEFAULT(Greater)
DEFAULT(GreaterEqual)
DEFAULT(Hadamard)
DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
DEFAULT(Log)
DEFAULT(Log1p)
DEFAULT(LogicalNot)
DEFAULT(LogicalAnd)
DEFAULT(LogicalOr)
DEFAULT(LogAddExp)
DEFAULT(Maximum)
DEFAULT(Minimum)
DEFAULT(Multiply)
DEFAULT(Negative)
DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT(Power)
DEFAULT_MULTI(QRF)
DEFAULT(QuantizedMatmul)
DEFAULT(RandomBits)
DEFAULT(Reduce)
DEFAULT(Reshape)
DEFAULT(Round)
DEFAULT(Scan)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Sin)
DEFAULT(Sinh)
DEFAULT(Slice)
DEFAULT(SliceUpdate)
DEFAULT(Softmax)
DEFAULT(Sort)
DEFAULT_MULTI(Split)
DEFAULT(Square)
DEFAULT(Sqrt)
DEFAULT(StopGradient)
DEFAULT(Subtract)
DEFAULT_MULTI(SVD)
DEFAULT(Tan)
DEFAULT(Tanh)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
namespace {
inline void matmul_common_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
auto check_transpose = [](const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (stx == arr.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, arr);
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
for (int i = 0; i < (a.size() / (M * K)); ++i) {
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
alpha, // alpha
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
lda,
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
ldb,
beta, // beta
out.data<float>() + M * N * i,
out.shape(-1) // ldc
);
}
}
} // namespace
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[Matmul::eval_cpu] Currently only supports float32.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_common_general(inputs[0], inputs[1], out);
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy(c, out, ctype);
return matmul_common_general(inputs[0], inputs[1], out, alpha_, beta_);
}
} // namespace mlx::core

View File

@@ -2,8 +2,8 @@
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
@@ -45,9 +45,7 @@ void ssyevd(
} // namespace
void Eigh::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
void Eigh::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
const auto& a = inputs[0];
auto& values = outputs[0];

View File

@@ -0,0 +1,40 @@
// Copyright © 2023 Apple Inc.
#include <cmath>
namespace mlx::core {
/* Approximation to the inverse error function.
* Based on code from:
* https://stackoverflow.com/questions/27229371/inverse-error-function-in-c#answer-49743348
*/
float erfinv(float a) {
auto t = std::fma(a, 0.0f - a, 1.0f);
t = std::log(t);
float p;
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
p = 3.03697567e-10f; // 0x1.4deb44p-32
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
} else { // maximum ulp error = 2.35002
p = 5.43877832e-9f; // 0x1.75c000p-28
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
}
return a * p;
}
} // namespace mlx::core

View File

@@ -8,7 +8,7 @@
namespace mlx::core {
void FFT::eval_cpu(const std::vector<array>& inputs, array& out) {
void FFT::eval(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
std::vector<std::ptrdiff_t> strides_in(
in.strides().begin(), in.strides().end());

View File

@@ -2,8 +2,8 @@
#include <cassert>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/hadamard.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -82,7 +82,7 @@ void hadamard(array& out, int n, int m, float scale) {
}
}
void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
void Hadamard::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -104,4 +104,4 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
} // namespace mlx::core
} // namespace mlx::core

View File

@@ -6,8 +6,8 @@
#include "mlx/allocator.h"
#include "mlx/primitives.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
namespace mlx::core {
@@ -16,6 +16,11 @@ inline size_t offset_neg_idx(IdxT idx, size_t size) {
return (idx < 0) ? idx + size : idx;
}
template <>
inline size_t offset_neg_idx(bool idx, size_t) {
return idx;
}
template <>
inline size_t offset_neg_idx(uint32_t idx, size_t) {
return idx;
@@ -157,18 +162,21 @@ void dispatch_gather(
}
}
void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
void Gather::eval(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& src = inputs[0];
std::vector<array> inds(inputs.begin() + 1, inputs.end());
if (inds.empty()) {
dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
dispatch_gather<bool>(src, inds, out, axes_, slice_sizes_);
return;
}
switch (inds[0].dtype()) {
case bool_:
dispatch_gather<bool>(src, inds, out, axes_, slice_sizes_);
break;
case uint8:
dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
break;
@@ -193,142 +201,12 @@ void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
case int64:
dispatch_gather<int64_t>(src, inds, out, axes_, slice_sizes_);
break;
default:
throw std::runtime_error(
"[Gather::eval_cpu] Cannot gather with indices type.");
break;
}
}
template <typename T, typename IdxT>
void gather_axis(
const array& src,
const array& ind,
array& out,
const int axis) {
auto strides = ind.strides();
strides.erase(strides.begin() + axis);
auto shape = ind.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator ind_it(shape, strides, src.ndim() - 1);
strides = src.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator src_it(shape, strides, src.ndim() - 1);
auto ind_ptr = ind.data<IdxT>();
auto src_ptr = src.data<T>();
auto dst_ptr = out.data<T>();
auto ind_ax_stride = ind.strides(axis);
auto src_ax_stride = src.strides(axis);
auto dst_ax_stride = out.strides(axis);
auto ind_ax_size = ind.shape(axis);
auto src_ax_size = src.shape(axis);
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis; ++i) {
size_pre *= ind.shape(i);
}
for (int i = axis + 1; i < ind.ndim(); ++i) {
size_post *= ind.shape(i);
}
size_t stride_pre = size_post * ind_ax_size;
for (size_t i = 0; i < size_pre; i++) {
for (size_t k = 0; k < size_post; k++) {
for (int j = 0; j < ind_ax_size; ++j) {
auto ind_val = offset_neg_idx(
ind_ptr[ind_it.loc + j * ind_ax_stride], src_ax_size);
dst_ptr[k + j * dst_ax_stride] =
src_ptr[src_it.loc + ind_val * src_ax_stride];
}
ind_it.step();
src_it.step();
}
dst_ptr += stride_pre;
}
}
template <typename IdxT>
void dispatch_gather_axis(
const array& src,
const array& inds,
array& out,
const int axis) {
switch (out.dtype()) {
case bool_:
gather_axis<bool, IdxT>(src, inds, out, axis);
break;
case uint8:
gather_axis<uint8_t, IdxT>(src, inds, out, axis);
break;
case uint16:
gather_axis<uint16_t, IdxT>(src, inds, out, axis);
break;
case uint32:
gather_axis<uint32_t, IdxT>(src, inds, out, axis);
break;
case uint64:
gather_axis<uint64_t, IdxT>(src, inds, out, axis);
break;
case int8:
gather_axis<int8_t, IdxT>(src, inds, out, axis);
break;
case int16:
gather_axis<int16_t, IdxT>(src, inds, out, axis);
break;
case int32:
gather_axis<int32_t, IdxT>(src, inds, out, axis);
break;
case int64:
gather_axis<int64_t, IdxT>(src, inds, out, axis);
break;
case float16:
gather_axis<float16_t, IdxT>(src, inds, out, axis);
break;
case float32:
gather_axis<float, IdxT>(src, inds, out, axis);
break;
case bfloat16:
gather_axis<bfloat16_t, IdxT>(src, inds, out, axis);
break;
case complex64:
gather_axis<complex64_t, IdxT>(src, inds, out, axis);
break;
}
}
void GatherAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& src = inputs[0];
auto& inds = inputs[1];
switch (inds.dtype()) {
case uint8:
dispatch_gather_axis<uint8_t>(src, inds, out, axis_);
break;
case uint16:
dispatch_gather_axis<uint16_t>(src, inds, out, axis_);
break;
case uint32:
dispatch_gather_axis<uint32_t>(src, inds, out, axis_);
break;
case uint64:
dispatch_gather_axis<uint64_t>(src, inds, out, axis_);
break;
case int8:
dispatch_gather_axis<int8_t>(src, inds, out, axis_);
break;
case int16:
dispatch_gather_axis<int16_t>(src, inds, out, axis_);
break;
case int32:
dispatch_gather_axis<int32_t>(src, inds, out, axis_);
break;
case int64:
dispatch_gather_axis<int64_t>(src, inds, out, axis_);
break;
default:
throw std::runtime_error(
"[GatherAxis::eval_cpu] Cannot gather with indices type.");
"[Gather::eval] Cannot gather with floating point indices.");
break;
}
}
@@ -418,11 +296,14 @@ void dispatch_scatter(
const std::vector<int>& axes,
Scatter::ReduceType rtype) {
if (inds.empty()) {
dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
dispatch_scatter_inds<InT, bool>(out, inds, updates, axes, rtype);
return;
}
switch (inds[0].dtype()) {
case bool_:
dispatch_scatter_inds<InT, bool>(out, inds, updates, axes, rtype);
break;
case uint8:
dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
break;
@@ -447,13 +328,16 @@ void dispatch_scatter(
case int64:
dispatch_scatter_inds<InT, int64_t>(out, inds, updates, axes, rtype);
break;
default:
case float16:
case float32:
case bfloat16:
case complex64:
throw std::runtime_error(
"[Scatter::eval_cpu] Cannot scatter with indices type.");
"[Scatter::eval_cpu] Cannot scatter with floating point indices.");
}
}
void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
void Scatter::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() >= 2);
auto& src = inputs[0];
@@ -461,9 +345,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& updates = inputs.back();
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype);
copy(src, out, CopyType::General);
switch (src.dtype()) {
case bool_:
@@ -508,167 +390,4 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
template <typename T, typename IdxT, typename OpT>
void scatter_axis(
array& out,
const array idx,
const array& upd,
int axis,
const OpT& op) {
auto strides = idx.strides();
strides.erase(strides.begin() + axis);
auto shape = idx.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator idx_it(shape, strides, upd.ndim() - 1);
strides = upd.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator upd_it(shape, strides, upd.ndim() - 1);
auto idx_ptr = idx.data<IdxT>();
auto upd_ptr = upd.data<T>();
auto dst_ptr = out.data<T>();
auto idx_ax_stride = idx.strides(axis);
auto upd_ax_stride = upd.strides(axis);
auto dst_ax_stride = out.strides(axis);
auto idx_ax_size = idx.shape(axis);
auto dst_ax_size = out.shape(axis);
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis; ++i) {
size_pre *= idx.shape(i);
}
for (int i = axis + 1; i < idx.ndim(); ++i) {
size_post *= idx.shape(i);
}
size_t stride_pre = size_post * dst_ax_size;
for (size_t i = 0; i < size_pre; i++) {
for (size_t k = 0; k < size_post; k++) {
for (int j = 0; j < idx_ax_size; ++j) {
auto ind_val = offset_neg_idx(
idx_ptr[idx_it.loc + j * idx_ax_stride], dst_ax_size);
op(upd_ptr[upd_it.loc + j * upd_ax_stride],
dst_ptr + k + ind_val * dst_ax_stride);
}
idx_it.step();
upd_it.step();
}
dst_ptr += stride_pre;
}
}
template <typename InT, typename IdxT>
void dispatch_scatter_axis_op(
array& out,
const array& idx,
const array& updates,
int axis,
ScatterAxis::ReduceType rtype) {
switch (rtype) {
case ScatterAxis::None:
scatter_axis<InT, IdxT>(
out, idx, updates, axis, [](auto x, auto* y) { (*y) = x; });
break;
case ScatterAxis::Sum:
scatter_axis<InT, IdxT>(
out, idx, updates, axis, [](auto x, auto* y) { (*y) += x; });
break;
}
}
template <typename InT>
void dispatch_scatter_axis(
array& out,
const array& idx,
const array& updates,
int axis,
ScatterAxis::ReduceType rtype) {
switch (idx.dtype()) {
case uint8:
dispatch_scatter_axis_op<InT, uint8_t>(out, idx, updates, axis, rtype);
break;
case uint16:
dispatch_scatter_axis_op<InT, uint16_t>(out, idx, updates, axis, rtype);
break;
case uint32:
dispatch_scatter_axis_op<InT, uint32_t>(out, idx, updates, axis, rtype);
break;
case uint64:
dispatch_scatter_axis_op<InT, uint64_t>(out, idx, updates, axis, rtype);
break;
case int8:
dispatch_scatter_axis_op<InT, int8_t>(out, idx, updates, axis, rtype);
break;
case int16:
dispatch_scatter_axis_op<InT, int16_t>(out, idx, updates, axis, rtype);
break;
case int32:
dispatch_scatter_axis_op<InT, int32_t>(out, idx, updates, axis, rtype);
break;
case int64:
dispatch_scatter_axis_op<InT, int64_t>(out, idx, updates, axis, rtype);
break;
default:
throw std::runtime_error(
"[ScatterAxis::eval_cpu] Cannot scatter with indices type.");
}
}
void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() >= 2);
auto& src = inputs[0];
auto& idx = inputs[1];
auto& updates = inputs[2];
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype);
switch (src.dtype()) {
case bool_:
dispatch_scatter_axis<bool>(out, idx, updates, axis_, reduce_type_);
break;
case uint8:
dispatch_scatter_axis<uint8_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint16:
dispatch_scatter_axis<uint16_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint32:
dispatch_scatter_axis<uint32_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint64:
dispatch_scatter_axis<uint64_t>(out, idx, updates, axis_, reduce_type_);
break;
case int8:
dispatch_scatter_axis<int8_t>(out, idx, updates, axis_, reduce_type_);
break;
case int16:
dispatch_scatter_axis<int16_t>(out, idx, updates, axis_, reduce_type_);
break;
case int32:
dispatch_scatter_axis<int32_t>(out, idx, updates, axis_, reduce_type_);
break;
case int64:
dispatch_scatter_axis<int64_t>(out, idx, updates, axis_, reduce_type_);
break;
case float16:
dispatch_scatter_axis<float16_t>(out, idx, updates, axis_, reduce_type_);
break;
case float32:
dispatch_scatter_axis<float>(out, idx, updates, axis_, reduce_type_);
break;
case bfloat16:
dispatch_scatter_axis<bfloat16_t>(out, idx, updates, axis_, reduce_type_);
break;
case complex64:
dispatch_scatter_axis<complex64_t>(
out, idx, updates, axis_, reduce_type_);
break;
}
}
} // namespace mlx::core

View File

@@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
@@ -110,7 +110,7 @@ void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
}
}
void Inverse::eval_cpu(const std::vector<array>& inputs, array& output) {
void Inverse::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Inverse::eval] only supports float32.");
}

View File

@@ -11,7 +11,7 @@
#define lapack_complex_double std::complex<double>
#endif
#ifdef MLX_USE_ACCELERATE
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>

View File

@@ -1,9 +1,12 @@
// Copyright © 2023 Apple Inc.
#include <algorithm>
#include <cassert>
#include <utility>
#include "mlx/allocator.h"
#include "mlx/backend/common/load.h"
#include "mlx/primitives.h"
namespace {
@@ -48,4 +51,11 @@ void load(
}
}
void Load::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
load(out, offset_, reader_, swap_endianness_);
}
} // namespace mlx::core

View File

@@ -10,21 +10,20 @@ OUTPUT_FILE=$1
GCC=$2
SRCDIR=$3
CLANG=$4
ARCH=$5
if [ "$CLANG" = "TRUE" ]; then
read -r -d '' INCLUDES <<- EOM
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
EOM
CC_FLAGS="-arch ${ARCH}"
CC_FLAGS=""
else
CC_FLAGS="-std=c++17"
fi
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/cpu/compiled_preamble.h" 2>/dev/null)
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null)
cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() {

View File

@@ -3,9 +3,9 @@
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -53,7 +53,7 @@ inline void mask_matrix(
} // namespace
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[BlockMaskedMM::eval] Currently only supports float32.");
@@ -210,7 +210,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
void GatherMM::eval(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[GatherMM::eval] Currently only supports float32.");

680
mlx/backend/common/ops.h Normal file
View File

@@ -0,0 +1,680 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <stdint.h>
#include <cmath>
#include <complex>
namespace mlx::core::detail {
namespace {
constexpr float inf = std::numeric_limits<float>::infinity();
} // namespace
typedef union {
int i;
float f;
} IntOrFloat;
inline float fast_exp(float x) {
if (x == -std::numeric_limits<float>::infinity()) {
return 0.0f;
} else if (x == std::numeric_limits<float>::infinity() || std::isnan(x)) {
return x;
}
x *= 1.442695; // multiply with log_2(e)
float ipart, fpart;
IntOrFloat epart;
x = std::max(-80.f, std::min(x, 80.f));
ipart = std::floor(x + 0.5);
fpart = x - ipart;
x = 1.535336188319500e-4f;
x = x * fpart + 1.339887440266574e-3f;
x = x * fpart + 9.618437357674640e-3f;
x = x * fpart + 5.550332471162809e-2f;
x = x * fpart + 2.402264791363012e-1f;
x = x * fpart + 6.931472028550421e-1f;
x = x * fpart + 1.000000000000000f;
// generate 2**ipart in the floating point representation using integer
// bitshifting
epart.i = (int(ipart) + 127) << 23;
return epart.f * x;
}
inline float fast_erf(float a) {
float r, s, t, u;
t = std::abs(a);
s = a * a;
if (t > 0.927734375f) {
// maximum error 0.99527 ulp
r = std::fma(
-1.72853470e-5f, t, 3.83197126e-4f); // -0x1.220000p-16,0x1.91cfb2p-12
u = std::fma(
-3.88396438e-3f, t, 2.42546219e-2f); // -0x1.fd1438p-9, 0x1.8d6342p-6
r = std::fma(r, s, u);
r = std::fma(r, t, -1.06777877e-1f); // -0x1.b55cb8p-4
r = std::fma(r, t, -6.34846687e-1f); // -0x1.450aa0p-1
r = std::fma(r, t, -1.28717512e-1f); // -0x1.079d0cp-3
r = std::fma(r, t, -t);
// TODO, replace with expm1 when implemented
r = 1.0f - std::exp(r);
r = std::copysign(r, a);
} else {
// maximum error 0.98929 ulp
r = -5.96761703e-4f; // -0x1.38e000p-11
r = std::fma(r, s, 4.99119423e-3f); // 0x1.471a58p-8
r = std::fma(r, s, -2.67681349e-2f); // -0x1.b691b2p-6
r = std::fma(r, s, 1.12819925e-1f); // 0x1.ce1c44p-4
r = std::fma(r, s, -3.76125336e-1f); // -0x1.812700p-2
r = std::fma(r, s, 1.28379166e-1f); // 0x1.06eba8p-3
r = std::fma(r, a, a);
}
return r;
}
inline float fast_erfinv(float a) {
auto t = std::fma(a, 0.0f - a, 1.0f);
t = std::log(t);
float p;
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
p = 3.03697567e-10f; // 0x1.4deb44p-32
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
} else { // maximum ulp error = 2.35002
p = 5.43877832e-9f; // 0x1.75c000p-28
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
}
return a * p;
}
struct Abs {
template <typename T>
T operator()(T x) {
return std::abs(x);
}
uint8_t operator()(uint8_t x) {
return x;
}
uint16_t operator()(uint16_t x) {
return x;
}
uint32_t operator()(uint32_t x) {
return x;
}
uint64_t operator()(uint64_t x) {
return x;
}
bool operator()(bool x) {
return x;
}
};
struct ArcCos {
template <typename T>
T operator()(T x) {
return std::acos(x);
}
};
struct ArcCosh {
template <typename T>
T operator()(T x) {
return std::acosh(x);
}
};
struct ArcSin {
template <typename T>
T operator()(T x) {
return std::asin(x);
}
};
struct ArcSinh {
template <typename T>
T operator()(T x) {
return std::asinh(x);
}
};
struct ArcTan {
template <typename T>
T operator()(T x) {
return std::atan(x);
}
};
struct ArcTan2 {
template <typename T>
T operator()(T y, T x) {
return std::atan2(y, x);
}
};
struct ArcTanh {
template <typename T>
T operator()(T x) {
return std::atanh(x);
}
};
struct Ceil {
template <typename T>
T operator()(T x) {
return std::ceil(x);
}
int8_t operator()(int8_t x) {
return x;
}
int16_t operator()(int16_t x) {
return x;
}
int32_t operator()(int32_t x) {
return x;
}
int64_t operator()(int64_t x) {
return x;
}
uint8_t operator()(uint8_t x) {
return x;
}
uint16_t operator()(uint16_t x) {
return x;
}
uint32_t operator()(uint32_t x) {
return x;
}
uint64_t operator()(uint64_t x) {
return x;
}
bool operator()(bool x) {
return x;
}
};
struct Conjugate {
complex64_t operator()(complex64_t x) {
return std::conj(x);
}
};
struct Cos {
template <typename T>
T operator()(T x) {
return std::cos(x);
}
};
struct Cosh {
template <typename T>
T operator()(T x) {
return std::cosh(x);
}
};
struct Erf {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erf(static_cast<float>(x)));
}
};
struct ErfInv {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erfinv(static_cast<float>(x)));
}
};
struct Exp {
template <typename T>
T operator()(T x) {
return fast_exp(x);
}
complex64_t operator()(complex64_t x) {
return std::exp(x);
}
};
struct Expm1 {
template <typename T>
T operator()(T x) {
return expm1(x);
}
};
struct Floor {
template <typename T>
T operator()(T x) {
return std::floor(x);
}
int8_t operator()(int8_t x) {
return x;
}
int16_t operator()(int16_t x) {
return x;
}
int32_t operator()(int32_t x) {
return x;
}
int64_t operator()(int64_t x) {
return x;
}
uint8_t operator()(uint8_t x) {
return x;
}
uint16_t operator()(uint16_t x) {
return x;
}
uint32_t operator()(uint32_t x) {
return x;
}
uint64_t operator()(uint64_t x) {
return x;
}
bool operator()(bool x) {
return x;
}
};
struct Imag {
template <typename T>
T operator()(T x) {
return std::imag(x);
}
};
struct Log {
template <typename T>
T operator()(T x) {
return std::log(x);
}
};
struct Log2 {
template <typename T>
T operator()(T x) {
return std::log2(x);
}
};
struct Log10 {
template <typename T>
T operator()(T x) {
return std::log10(x);
}
};
struct Log1p {
template <typename T>
T operator()(T x) {
return log1p(x);
}
};
struct LogicalNot {
template <typename T>
T operator()(T x) {
return !x;
}
};
struct Negative {
template <typename T>
T operator()(T x) {
return -x;
}
};
struct Real {
template <typename T>
T operator()(T x) {
return std::real(x);
}
};
struct Round {
template <typename T>
T operator()(T x) {
return std::rint(x);
}
complex64_t operator()(complex64_t x) {
return {std::rint(x.real()), std::rint(x.imag())};
}
};
struct Sigmoid {
template <typename T>
T operator()(T x) {
auto one = static_cast<decltype(x)>(1.0);
return one / (one + fast_exp(-x));
}
};
struct Sign {
template <typename T>
T operator()(T x) {
return (x > T(0)) - (x < T(0));
}
uint8_t operator()(uint8_t x) {
return x != 0;
}
uint16_t operator()(uint16_t x) {
return x != 0;
}
uint32_t operator()(uint32_t x) {
return x != 0;
}
uint64_t operator()(uint64_t x) {
return x != 0;
}
complex64_t operator()(complex64_t x) {
return x == complex64_t(0) ? x : x / std::abs(x);
}
};
struct Sin {
template <typename T>
T operator()(T x) {
return std::sin(x);
}
};
struct Sinh {
template <typename T>
T operator()(T x) {
return std::sinh(x);
}
};
struct Square {
template <typename T>
T operator()(T x) {
return x * x;
}
};
struct Sqrt {
template <typename T>
T operator()(T x) {
return std::sqrt(x);
}
};
struct Rsqrt {
template <typename T>
T operator()(T x) {
return static_cast<decltype(x)>(1.0) / std::sqrt(x);
}
};
struct Tan {
template <typename T>
T operator()(T x) {
return std::tan(x);
}
};
struct Tanh {
template <typename T>
T operator()(T x) {
return std::tanh(x);
}
};
struct Add {
template <typename T>
T operator()(T x, T y) {
return x + y;
}
};
struct Divide {
template <typename T>
T operator()(T x, T y) {
return x / y;
}
};
struct Remainder {
template <typename T>
std::enable_if_t<std::is_integral_v<T> & !std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
template <typename T>
std::enable_if_t<std::is_integral_v<T> & std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = numerator % denominator;
if (r != 0 && (r < 0 != denominator < 0))
r += denominator;
return r;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = std::fmod(numerator, denominator);
if (r != 0 && (r < 0 != denominator < 0)) {
r += denominator;
}
return r;
}
complex64_t operator()(complex64_t numerator, complex64_t denominator) {
return numerator % denominator;
}
};
struct Equal {
template <typename T>
bool operator()(T x, T y) {
return x == y;
}
};
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
if constexpr (std::is_integral_v<T>) {
// isnan always returns false for integers, and MSVC refuses to compile.
return x == y;
} else {
return x == y || (std::isnan(x) && std::isnan(y));
}
}
};
struct Greater {
template <typename T>
bool operator()(T x, T y) {
return x > y;
}
};
struct GreaterEqual {
template <typename T>
bool operator()(T x, T y) {
return x >= y;
}
};
struct Less {
template <typename T>
bool operator()(T x, T y) {
return x < y;
}
};
struct LessEqual {
template <typename T>
bool operator()(T x, T y) {
return x <= y;
}
};
struct Maximum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return (x > y) ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return (x > y) ? x : y;
}
};
struct Minimum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return x < y ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return x < y ? x : y;
}
};
struct LogAddExp {
template <typename T>
T operator()(T x, T y) {
constexpr float inf = std::numeric_limits<float>::infinity();
auto maxval = Maximum()(x, y);
auto minval = Minimum()(x, y);
return (minval == -inf || maxval == inf)
? maxval
: static_cast<decltype(x)>(
maxval + std::log1p(fast_exp(minval - maxval)));
}
};
struct Multiply {
template <typename T>
T operator()(T x, T y) {
return x * y;
}
};
struct NotEqual {
template <typename T>
bool operator()(T x, T y) {
return x != y;
}
};
struct Power {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
return std::pow(base, exp);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
};
struct Subtract {
template <typename T>
T operator()(T x, T y) {
return x - y;
}
};
struct LogicalAnd {
template <typename T>
T operator()(T x, T y) {
return x && y;
}
};
struct LogicalOr {
template <typename T>
T operator()(T x, T y) {
return x || y;
}
};
struct Select {
template <typename T>
T operator()(bool condition, T x, T y) {
return condition ? x : y;
}
};
struct BitwiseAnd {
template <typename T>
T operator()(T x, T y) {
return x & y;
}
};
struct BitwiseOr {
template <typename T>
T operator()(T x, T y) {
return x | y;
}
};
struct BitwiseXor {
template <typename T>
T operator()(T x, T y) {
return x ^ y;
}
};
struct LeftShift {
template <typename T>
T operator()(T x, T y) {
return x << y;
}
};
struct RightShift {
template <typename T>
T operator()(T x, T y) {
return x >> y;
}
};
} // namespace mlx::core::detail

View File

@@ -0,0 +1,648 @@
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <sstream>
#include "mlx/allocator.h"
#include "mlx/backend/common/arange.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/common/threefry.h"
#include "mlx/backend/common/unary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
void Abs::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (issubdtype(in.dtype(), unsignedinteger)) {
// No-op for unsigned types
out.copy_shared_buffer(in);
} else {
unary(in, out, detail::Abs());
}
}
void Arange::eval(const std::vector<array>& inputs, array& out) {
arange(inputs, out, start_, step_);
}
void ArcCos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcCos());
} else {
throw std::invalid_argument(
"[arccos] Cannot compute inverse cosine of elements in array"
" with non floating point type.");
}
}
void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcCosh());
} else {
throw std::invalid_argument(
"[arccosh] Cannot compute inverse hyperbolic cosine of elements in"
" array with non floating point type.");
}
}
void ArcSin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcSin());
} else {
throw std::invalid_argument(
"[arcsin] Cannot compute inverse sine of elements in array"
" with non floating point type.");
}
}
void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcSinh());
} else {
throw std::invalid_argument(
"[arcsinh] Cannot compute inverse hyperbolic sine of elements in"
" array with non floating point type.");
}
}
void ArcTan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcTan());
} else {
throw std::invalid_argument(
"[arctan] Cannot compute inverse tangent of elements in array"
" with non floating point type.");
}
}
void ArcTanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::ArcTanh());
} else {
throw std::invalid_argument(
"[arctanh] Cannot compute inverse hyperbolic tangent of elements in"
" array with non floating point type.");
}
}
void AsType::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype);
}
void Ceil::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (issubdtype(in.dtype(), inexact)) {
unary_fp(in, out, detail::Ceil());
} else {
// No-op integer types
out.copy_shared_buffer(in);
}
}
void Concatenate::eval(const std::vector<array>& inputs, array& out) {
std::vector<int> sizes;
sizes.push_back(0);
for (auto& p : inputs) {
sizes.push_back(p.shape(axis_));
}
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto strides = out.strides();
auto flags = out.flags();
flags.row_contiguous = false;
flags.col_contiguous = false;
flags.contiguous = false;
for (int i = 0; i < inputs.size(); i++) {
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral);
}
}
void Conjugate::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == complex64) {
unary_fp(in, out, detail::Conjugate());
} else {
throw std::invalid_argument(
"[conjugate] conjugate must be called on complex input.");
}
}
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous)) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General);
}
}
void Cos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Cos());
} else {
throw std::invalid_argument(
"[cos] Cannot compute cosine of elements in array"
" with non floating point type.");
}
}
void Cosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Cosh());
} else {
throw std::invalid_argument(
"[cosh] Cannot compute hyperbolic cosine of elements in array"
" with non floating point type.");
}
}
void Erf::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
unary_op<float>(in, out, detail::Erf());
break;
case float16:
unary_op<float16_t>(in, out, detail::Erf());
break;
case bfloat16:
unary_op<bfloat16_t>(in, out, detail::Erf());
break;
default:
throw std::invalid_argument(
"[erf] Error function only defined for arrays"
" with real floating point type.");
}
}
void ErfInv::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
unary_op<float>(in, out, detail::ErfInv());
break;
case float16:
unary_op<float16_t>(in, out, detail::ErfInv());
break;
case bfloat16:
unary_op<bfloat16_t>(in, out, detail::ErfInv());
break;
default:
throw std::invalid_argument(
"[erf_inv] Inverse error function only defined for arrays"
" with real floating point type.");
}
}
void Exp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Exp());
} else {
throw std::invalid_argument(
"[exp] Cannot exponentiate elements in array"
" with non floating point type.");
}
}
void Expm1::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Expm1());
} else {
throw std::invalid_argument(
"[expm1] Cannot exponentiate elements in array"
" with non floating point type.");
}
}
void Floor::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (issubdtype(in.dtype(), inexact)) {
unary_fp(in, out, detail::Floor());
} else {
// No-op integer types
out.copy_shared_buffer(in);
}
}
void Full::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
assert(in.dtype() == out.dtype());
CopyType ctype;
if (in.data_size() == 1) {
ctype = CopyType::Scalar;
} else if (in.flags().contiguous) {
ctype = CopyType::Vector;
} else {
ctype = CopyType::General;
}
copy(in, out, ctype);
}
void Imag::eval_cpu(const std::vector<array>& inputs, array& out) {
unary_op<complex64_t, float>(inputs[0], out, detail::Imag());
}
void Log::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
switch (base_) {
case Base::e:
unary_fp(in, out, detail::Log());
break;
case Base::two:
unary_fp(in, out, detail::Log2());
break;
case Base::ten:
unary_fp(in, out, detail::Log10());
break;
}
} else {
throw std::invalid_argument(
"[log] Cannot compute log of elements in array with"
" non floating point type.");
}
}
void Log1p::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Log1p());
} else {
throw std::invalid_argument(
"[log1p] Cannot compute log of elements in array with"
" non floating point type.");
}
}
void LogicalNot::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, detail::LogicalNot());
}
void Negative::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, detail::Negative());
}
void Pad::eval(const std::vector<array>& inputs, array& out) {
// Inputs must be base input array and scalar val array
assert(inputs.size() == 2);
auto& in = inputs[0];
auto& val = inputs[1];
// Padding value must be a scalar
assert(val.size() == 1);
// Padding value, input and output must be of the same type
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy(val, out, CopyType::Scalar);
// Find offset for start of input values
size_t data_offset = 0;
for (int i = 0; i < axes_.size(); i++) {
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
data_offset += out.strides()[ax] * low_pad_size_[i];
}
// Extract slice from output where input will be pasted
array out_slice(in.shape(), out.dtype(), nullptr, {});
out_slice.copy_shared_buffer(
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_inplace(in, out_slice, CopyType::GeneralGeneral);
}
void RandomBits::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// keys has shape (N1, ..., NK, 2)
// out has shape (N1, ..., NK, M1, M2, ...)
auto& keys = inputs[0];
size_t num_keys = keys.size() / 2;
size_t elems_per_key = out.size() / num_keys;
size_t bytes_per_key = out.itemsize() * elems_per_key;
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto kptr = inputs[0].data<uint32_t>();
auto cptr = out.data<char>();
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
auto half_size = out_skip / 2;
bool even = out_skip % 2 == 0;
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
auto ptr = reinterpret_cast<uint32_t*>(cptr);
// Get ith key
auto kidx = 2 * i;
auto k1_elem = elem_to_loc(kidx, keys.shape(), keys.strides());
auto k2_elem = elem_to_loc(kidx + 1, keys.shape(), keys.strides());
auto key = std::make_pair(kptr[k1_elem], kptr[k2_elem]);
std::pair<uintptr_t, uintptr_t> count{0, half_size + !even};
for (; count.first + 1 < half_size; count.first++, count.second++) {
std::tie(ptr[count.first], ptr[count.second]) =
random::threefry2x32_hash(key, count);
}
if (count.first < half_size) {
auto rb = random::threefry2x32_hash(key, count);
ptr[count.first++] = rb.first;
if (bytes_per_key % 4 > 0) {
std::copy(
reinterpret_cast<char*>(&rb.second),
reinterpret_cast<char*>(&rb.second) + bytes_per_key % 4,
cptr + 4 * count.second);
} else {
ptr[count.second] = rb.second;
}
}
if (!even) {
count.second = 0;
ptr[half_size] = random::threefry2x32_hash(key, count).first;
}
}
}
void Real::eval_cpu(const std::vector<array>& inputs, array& out) {
unary_op<complex64_t, float>(inputs[0], out, detail::Real());
}
void Reshape::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
copy_inplace(in, out, CopyType::General);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
void Round::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (issubdtype(in.dtype(), inexact)) {
unary_fp(in, out, detail::Round());
} else {
// No-op integer types
out.copy_shared_buffer(in);
}
}
void Sigmoid::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Sigmoid());
} else {
throw std::invalid_argument(
"[sigmoid] Cannot sigmoid of elements in array with"
" non floating point type.");
}
}
void Sign::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == bool_) {
out.copy_shared_buffer(in);
} else {
unary(in, out, detail::Sign());
}
}
void Sin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Sin());
} else {
throw std::invalid_argument(
"[sin] Cannot compute sine of elements in array"
" with non floating point type.");
}
}
void Sinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Sinh());
} else {
throw std::invalid_argument(
"[sinh] Cannot compute hyperbolic sine of elements in array"
" with non floating point type.");
}
}
void Slice::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, inp_strides] = prepare_slice(in, start_indices_, strides_);
auto copy_needed = std::any_of(
strides_.begin(), strides_.end(), [](auto i) { return i < 0; });
// Do copy if needed
if (copy_needed) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
Strides ostrides{out.strides().begin(), out.strides().end()};
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ out.shape(),
/* const std::vector<stride_t>& i_strides = */ inp_strides,
/* const std::vector<stride_t>& o_strides = */ ostrides,
/* int64_t i_offset = */ data_offset,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::General);
} else {
size_t data_end = 1;
for (int i = 0; i < end_indices_.size(); ++i) {
if (in.shape()[i] > 1) {
auto end_idx = start_indices_[i] + out.shape()[i] * strides_[i] - 1;
data_end += end_idx * in.strides()[i];
}
}
size_t data_size = data_end - data_offset;
Strides ostrides{inp_strides.begin(), inp_strides.end()};
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
}
}
void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
if (upd.size() == 0) {
out.copy_shared_buffer(in);
return;
}
// Check if materialization is needed
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] = prepare_slice(in, start_indices_, strides_);
// Do copy
Strides upd_strides{upd.strides().begin(), upd.strides().end()};
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
/* const std::vector<stride_t>& i_strides = */ upd_strides,
/* const std::vector<stride_t>& o_strides = */ out_strides,
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ data_offset,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void Square::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, detail::Square());
}
void Sqrt::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (recip_) {
unary_fp(in, out, detail::Rsqrt());
} else {
unary_fp(in, out, detail::Sqrt());
}
}
void Tan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Tan());
} else {
throw std::invalid_argument(
"[tan] Cannot compute tangent of elements in array"
" with non floating point type.");
}
}
void Tanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, detail::Tanh());
} else {
throw std::invalid_argument(
"[tanh] Cannot compute hyperbolic tangent of elements in array"
" with non floating point type.");
}
}
void View::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
auto ibytes = size_of(in.dtype());
auto obytes = size_of(out.dtype());
// Conditions for buffer copying (disjunction):
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
} else {
auto tmp = array(
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General);
} else {
copy_inplace(in, tmp, CopyType::General);
}
auto flags = out.flags();
flags.contiguous = true;
flags.row_contiguous = true;
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
out.move_shared_buffer(tmp, out.strides(), flags, out.size());
}
}
} // namespace mlx::core

View File

@@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -41,7 +41,7 @@ template <typename T>
void qrf_impl(const array& a, array& q, array& r) {
const int M = a.shape(-2);
const int N = a.shape(-1);
const int lda = M;
const int lda = std::max(M, N);
size_t num_matrices = a.size() / (M * N);
int num_reflectors = std::min(M, N);
auto tau =
@@ -89,16 +89,13 @@ void qrf_impl(const array& a, array& q, array& r) {
allocator::free(work);
r.set_data(allocator::malloc_or_wait(r.nbytes()));
copy_inplace(in, r, CopyType::General);
for (int i = 0; i < num_matrices; ++i) {
/// num_reflectors x N
// Zero lower triangle
for (int j = 0; j < r.shape(-2); ++j) {
for (int k = 0; k < j; ++k) {
r.data<T>()[i * N * num_reflectors + j * N + k] = 0;
}
for (int k = j; k < r.shape(-1); ++k) {
r.data<T>()[i * N * num_reflectors + j * N + k] =
in.data<T>()[i * N * M + j + k * M];
r.data<T>()[i * N * M + j * N + k] = 0;
}
}
}
@@ -107,7 +104,7 @@ void qrf_impl(const array& a, array& q, array& r) {
lwork = -1;
lpack<T>::xorgqr(
&M,
&num_reflectors,
&N,
&num_reflectors,
nullptr,
&lda,
@@ -123,7 +120,7 @@ void qrf_impl(const array& a, array& q, array& r) {
// Compute Q
lpack<T>::xorgqr(
&M,
&num_reflectors,
&N,
&num_reflectors,
in.data<float>() + M * N * i,
&lda,
@@ -134,24 +131,14 @@ void qrf_impl(const array& a, array& q, array& r) {
}
q.set_data(allocator::malloc_or_wait(q.nbytes()));
for (int i = 0; i < num_matrices; ++i) {
// M x num_reflectors
for (int j = 0; j < q.shape(-2); ++j) {
for (int k = 0; k < q.shape(-1); ++k) {
q.data<T>()[i * M * num_reflectors + j * num_reflectors + k] =
in.data<T>()[i * N * M + j + k * M];
}
}
}
copy_inplace(in, q, CopyType::General);
// Cleanup
allocator::free(work);
allocator::free(tau);
}
void QRF::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
void QRF::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
if (!(inputs[0].dtype() == float32)) {
throw std::runtime_error("[QRF::eval] only supports float32.");
}

View File

@@ -2,8 +2,8 @@
#include <cassert>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/ops.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -151,78 +151,6 @@ void _qmm_t(
}
}
template <int bits, int S>
simd::Simd<uint32_t, S> extract_bits_simd(const uint32_t* w) {
constexpr int bitmask = (1 << bits) - 1;
simd::Simd<uint32_t, S> wi;
if constexpr (bits == 4 && S == 8) {
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
wi = simd::Simd<uint32_t, S>(*w);
wi = wi >> shifts;
wi = wi & bitmask;
} else if constexpr (bits == 8 && S == 8) {
constexpr std::array<uint32_t, 8> shifts_ = {{0, 8, 16, 24, 0, 8, 16, 24}};
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
auto l = simd::Simd<uint32_t, 4>(*w++);
auto r = simd::Simd<uint32_t, 4>(*w);
wi = simd::Simd<uint32_t, S>(l, r);
wi = wi >> shifts;
wi = wi & bitmask;
} else {
// Appease compiler.. but should never get here
throw std::runtime_error("Unsupported combination for simd qmm.");
}
return wi;
}
template <typename T, int bits, int group_size>
void _qmm_t_simd(
T* result,
const T* x,
const uint32_t* w,
const T* scales,
const T* biases,
int M,
int N,
int K) {
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
constexpr int S = simd::max_size<T>;
static_assert(
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
constexpr int packs_per_simd = S / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const T* scales_local = scales;
const T* biases_local = biases;
for (int n = 0; n < N; n++) {
simd::Simd<float, S> acc(0);
auto x_local = x;
for (int k = 0; k < K; k += group_size) {
T scale = *scales_local++;
T bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
auto wf = simd::Simd<float, S>(extract_bits_simd<bits, S>(w_local));
w_local += packs_per_simd;
wf = wf * scale;
wf = wf + bias;
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
acc = acc + x_simd * wf;
x_local += S;
}
}
*result = T(simd::sum(acc));
result++;
}
x += K;
}
}
template <typename T, int bits, int group_size>
void _qmm_dispatch_transpose(
T* result,
@@ -235,14 +163,9 @@ void _qmm_dispatch_transpose(
int K,
bool transposed_w) {
if (transposed_w) {
// the simd size must be a multiple of the number of elements per word
if constexpr (32 % bits == 0 && simd::max_size<T> % (32 / bits) == 0) {
_qmm_t_simd<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
} else {
_qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
}
return _qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
} else {
_qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
return _qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
}
}
@@ -326,13 +249,13 @@ void _qmm_dispatch(
int group_size,
bool transposed_w) {
int K = x.shape(-1);
int M = x.ndim() > 1 ? x.shape(-2) : 1;
int M = x.shape(-2);
int N = out.shape(-1);
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
int batch_size = x.size() / (K * M);
int batch_size = x.size() / x.shape(-1) / x.shape(-2);
for (int i = 0; i < batch_size; i++) {
switch (x.dtype()) {
case float32:
@@ -461,7 +384,7 @@ void _bs_qmm_dispatch(
} // namespace
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 4);
auto& x_pre = inputs[0];
@@ -488,7 +411,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
}
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
void GatherQMM::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
auto& x_pre = inputs[0];

View File

@@ -1,147 +1,312 @@
// Copyright © 2024 Apple Inc.
// Copyright © 2023 Apple Inc.
#include <cassert>
#include <functional>
#include <limits>
#include "mlx/backend/common/reduce.h"
#include "mlx/primitives.h"
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
namespace {
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
strides.erase(strides.begin() + a);
template <typename U>
struct Limits {
static const U max;
static const U min;
};
#define instantiate_default_limit(type) \
template <> \
struct Limits<type> { \
static constexpr type max = std::numeric_limits<type>::max(); \
static constexpr type min = std::numeric_limits<type>::min(); \
};
instantiate_default_limit(uint8_t);
instantiate_default_limit(uint16_t);
instantiate_default_limit(uint32_t);
instantiate_default_limit(uint64_t);
instantiate_default_limit(int8_t);
instantiate_default_limit(int16_t);
instantiate_default_limit(int32_t);
instantiate_default_limit(int64_t);
#define instantiate_float_limit(type) \
template <> \
struct Limits<type> { \
static const type max; \
static const type min; \
};
instantiate_float_limit(float16_t);
instantiate_float_limit(bfloat16_t);
instantiate_float_limit(float);
instantiate_float_limit(complex64_t);
template <>
struct Limits<bool> {
static constexpr bool max = true;
static constexpr bool min = false;
};
const float Limits<float>::max = std::numeric_limits<float>::infinity();
const float Limits<float>::min = -std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::max =
std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::min =
-std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::max = std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::min =
-std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::max =
std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::min =
-std::numeric_limits<float>::infinity();
struct AndReduce {
template <typename T>
void operator()(bool* a, T b) {
(*a) &= (b != 0);
}
return std::make_pair(shape, strides);
void operator()(bool* y, bool x) {
(*y) &= x;
}
};
struct OrReduce {
template <typename T>
void operator()(bool* a, T b) {
(*a) |= (b != 0);
}
void operator()(bool* y, bool x) {
(*y) |= x;
}
};
struct MaxReduce {
template <typename T>
std::enable_if_t<std::is_integral_v<T>> operator()(T* y, T x) {
(*y) = (*y > x) ? *y : x;
};
template <typename T>
std::enable_if_t<!std::is_integral_v<T>> operator()(T* y, T x) {
if (std::isnan(x)) {
*y = x;
} else {
(*y) = (*y > x) ? *y : x;
}
};
};
struct MinReduce {
template <typename T>
std::enable_if_t<std::is_integral_v<T>> operator()(T* y, T x) {
(*y) = (*y < x) ? *y : x;
};
template <typename T>
std::enable_if_t<!std::is_integral_v<T>> operator()(T* y, T x) {
if (std::isnan(x)) {
*y = x;
} else {
(*y) = (*y < x) ? *y : x;
}
};
};
template <typename InT>
void reduce_dispatch_and_or(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::And) {
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
} else {
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
}
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
x.flags().contiguous) {
return ContiguousAllReduce;
template <typename InT>
void reduce_dispatch_sum_prod(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Sum) {
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 0, op);
} else {
reduction_op<InT, InT>(in, out, axes, 0, op);
}
} else {
auto op = [](auto y, auto x) { (*y) *= x; };
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 1, op);
} else {
reduction_op<InT, InT>(in, out, axes, 1, op);
}
}
}
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
strides.back() = x.strides()[axes[i]];
} else {
shape.push_back(x.shape(axes[i]));
strides.push_back(x.strides()[axes[i]]);
template <typename InT>
void reduce_dispatch_min_max(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Max) {
auto init = Limits<InT>::min;
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
} else {
auto init = Limits<InT>::max;
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
}
}
} // namespace
void nd_loop(
std::function<void(int)> callback,
const Shape& shape,
const Strides& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
}
} else {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}
}
};
loop_inner(0, 0);
}
// Remove singleton axes from the plan
for (int i = shape.size() - 1; i >= 0; i--) {
if (shape[i] == 1) {
shape.erase(shape.begin() + i);
strides.erase(strides.begin() + i);
void Reduce::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
switch (reduce_type_) {
case Reduce::And:
case Reduce::Or: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
case float16:
case bfloat16:
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
case int32:
case float32:
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
case int64:
case complex64:
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
if (strides.back() == 1) {
return ReductionPlan(ContiguousReduce, shape, strides);
} else if (strides.back() > 1) {
return ReductionPlan(ContiguousStridedReduce, shape, strides);
}
}
// Let's check if we can optimize our access patterns
//
// 1. We have a reduction axis with stride 1. Simply call
// GeneralContiguousReduce and be done with it.
// 2. We have transpositions and we are not reducing over the axis with
// stride 1. However, we are reducing over an axis where everything is
// contiguous in memory to the right of that axis. We can call strided
// reduce and be done with it.
// 2. We have weird transpositions and expands. Copy the strides to the
// output, then call strided reduce.
// Sort reduction axes by stride in order to merge them and figure out if we
// have a contiguous reduction.
std::vector<std::pair<int, int64_t>> reductions;
for (auto a : axes) {
if (x.shape(a) > 1) {
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
}
}
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
bool a_is_zero = a.second == 0;
bool b_is_zero = b.second == 0;
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
});
// Extract the two smallest and try to merge them in case the contiguous
// reduction can be bigger than just the last axis.
for (int i = reductions.size() - 1; i >= 1; i--) {
auto a = reductions[i];
auto b = reductions[i - 1];
// b.stride = a.shape * a.stride then a and b are contiguous
if (b.second == a.first * a.second) {
reductions.erase(reductions.begin() + i);
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
}
}
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
}
// We can call the contiguous reduction op for every weird way the input is
// structured in the rest of the axes.
if (strides.back() == 1) {
return ReductionPlan(GeneralContiguousReduce, shape, strides);
}
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
case Reduce::Sum:
case Reduce::Prod: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
break;
}
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;
}
have_expand = true;
break;
}
if (stride_i != size && shape_i != 1) {
break;
}
size *= shape_i;
break;
}
// In the case of an expanded dimension we are being conservative and
// require the smallest reduction stride to be smaller than the maximum row
// contiguous size. The reason is that we can't easily know if the reduced
// axis is before or after an expanded dimension.
if (size > strides.back() || (size == strides.back() && !have_expand)) {
return ReductionPlan(GeneralStridedReduce, shape, strides);
case Reduce::Max:
case Reduce::Min: {
switch (in.dtype()) {
case bool_:
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
break;
case uint8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
}
return ReductionPlan(GeneralReduce, shape, strides);
}
} // namespace mlx::core

View File

@@ -48,8 +48,186 @@ struct ReductionPlan {
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
// Helper for the ndimensional strided loop
// Should this be in utils?
void nd_loop(
std::function<void(int)> callback,
const Shape& shape,
const Strides& strides);
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
template <typename T, typename U, typename Op>
struct DefaultStridedReduce {
Op op;
DefaultStridedReduce(Op op_) : op(op_) {}
void operator()(const T* x, U* accumulator, int size, size_t stride) {
for (int i = 0; i < size; i++) {
U* moving_accumulator = accumulator;
for (int j = 0; j < stride; j++) {
op(moving_accumulator, *x);
moving_accumulator++;
x++;
}
}
}
};
template <typename T, typename U, typename Op>
struct DefaultContiguousReduce {
Op op;
DefaultContiguousReduce(Op op_) : op(op_) {}
void operator()(const T* x, U* accumulator, int size) {
while (size-- > 0) {
op(accumulator, *x);
x++;
}
}
};
template <typename T, typename U, typename OpS, typename OpC, typename Op>
void reduction_op(
const array& x,
array& out,
const std::vector<int>& axes,
U init,
OpS ops,
OpC opc,
Op op) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
ReductionPlan plan = get_reduction_plan(x, axes);
if (plan.type == ContiguousAllReduce) {
U* out_ptr = out.data<U>();
*out_ptr = init;
opc(x.data<T>(), out_ptr, x.size());
return;
}
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape[0];
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i++, out_ptr++, x_ptr += reduction_size) {
*out_ptr = init;
opc(x_ptr, out_ptr, reduction_size);
}
return;
}
if (plan.type == GeneralContiguousReduce || plan.type == ContiguousReduce) {
int reduction_size = plan.shape.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
// Unrolling the following loop (and implementing it in order for
// ContiguousReduce) should hold extra performance boost.
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
opc(x_ptr + offset, out_ptr, reduction_size);
}
} else {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
nd_loop(
[&](int extra_offset) {
opc(x_ptr + offset + extra_offset, out_ptr, reduction_size);
},
plan.shape,
plan.strides);
}
}
return;
}
if (plan.type == ContiguousStridedReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i += reduction_stride) {
std::fill_n(out_ptr, reduction_stride, init);
ops(x_ptr, out_ptr, reduction_size, reduction_stride);
x_ptr += reduction_stride * reduction_size;
out_ptr += reduction_stride;
}
return;
}
if (plan.type == GeneralStridedReduce ||
plan.type == ContiguousStridedReduce) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
ops(x_ptr + offset, out_ptr, reduction_size, reduction_stride);
out_ptr += reduction_stride;
}
} else {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
nd_loop(
[&](int extra_offset) {
ops(x_ptr + offset + extra_offset,
out_ptr,
reduction_size,
reduction_stride);
},
plan.shape,
plan.strides);
out_ptr += reduction_stride;
}
}
return;
}
if (plan.type == GeneralReduce) {
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
U val = init;
nd_loop(
[&](int extra_offset) { op(&val, *(x_ptr + offset + extra_offset)); },
plan.shape,
plan.strides);
*out_ptr = val;
}
}
}
template <typename T, typename U, typename Op>
void reduction_op(
const array& x,
array& out,
const std::vector<int>& axes,
U init,
Op op) {
DefaultStridedReduce<T, U, Op> ops(op);
DefaultContiguousReduce<T, U, Op> opc(op);
reduction_op<T, U>(x, out, axes, init, ops, opc, op);
}
} // namespace mlx::core

View File

@@ -0,0 +1,147 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/reduce.h"
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
strides.erase(strides.begin() + a);
}
return std::make_pair(shape, strides);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
x.flags().contiguous) {
return ContiguousAllReduce;
}
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
strides.back() = x.strides()[axes[i]];
} else {
shape.push_back(x.shape(axes[i]));
strides.push_back(x.strides()[axes[i]]);
}
}
// Remove singleton axes from the plan
for (int i = shape.size() - 1; i >= 0; i--) {
if (shape[i] == 1) {
shape.erase(shape.begin() + i);
strides.erase(strides.begin() + i);
}
}
if (strides.back() == 1) {
return ReductionPlan(ContiguousReduce, shape, strides);
} else if (strides.back() > 1) {
return ReductionPlan(ContiguousStridedReduce, shape, strides);
}
}
// Let's check if we can optimize our access patterns
//
// 1. We have a reduction axis with stride 1. Simply call
// GeneralContiguousReduce and be done with it.
// 2. We have transpositions and we are not reducing over the axis with
// stride 1. However, we are reducing over an axis where everything is
// contiguous in memory to the right of that axis. We can call strided
// reduce and be done with it.
// 2. We have weird transpositions and expands. Copy the strides to the
// output, then call strided reduce.
// Sort reduction axes by stride in order to merge them and figure out if we
// have a contiguous reduction.
std::vector<std::pair<int, int64_t>> reductions;
for (auto a : axes) {
if (x.shape(a) > 1) {
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
}
}
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
bool a_is_zero = a.second == 0;
bool b_is_zero = b.second == 0;
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
});
// Extract the two smallest and try to merge them in case the contiguous
// reduction can be bigger than just the last axis.
for (int i = reductions.size() - 1; i >= 1; i--) {
auto a = reductions[i];
auto b = reductions[i - 1];
// b.stride = a.shape * a.stride then a and b are contiguous
if (b.second == a.first * a.second) {
reductions.erase(reductions.begin() + i);
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
}
}
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
}
// We can call the contiguous reduction op for every weird way the input is
// structured in the rest of the axes.
if (strides.back() == 1) {
return ReductionPlan(GeneralContiguousReduce, shape, strides);
}
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
}
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;
}
have_expand = true;
break;
}
if (stride_i != size && shape_i != 1) {
break;
}
size *= shape_i;
}
// In the case of an expanded dimension we are being conservative and
// require the smallest reduction stride to be smaller than the maximum row
// contiguous size. The reason is that we can't easily know if the reduced
// axis is before or after an expanded dimension.
if (size > strides.back() || (size == strides.back() && !have_expand)) {
return ReductionPlan(GeneralStridedReduce, shape, strides);
}
}
return ReductionPlan(GeneralReduce, shape, strides);
}
} // namespace mlx::core

325
mlx/backend/common/scan.cpp Normal file
View File

@@ -0,0 +1,325 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename T, typename U, typename Op>
struct DefaultContiguousScan {
Op op;
U init;
DefaultContiguousScan(Op op_, U init_) : op(op_), init(init_) {}
void operator()(
const T* input,
U* output,
int count,
int stride,
bool reverse,
bool inclusive) {
if (!reverse) {
if (inclusive) {
for (int i = 0; i < count; i++) {
*output = *input;
for (int j = 1; j < stride; j++) {
input++;
output++;
op(output, output - 1, input);
}
output++;
input++;
}
} else {
for (int i = 0; i < count; i++) {
*output = init;
for (int j = 1; j < stride; j++) {
op(output + 1, output, input);
input++;
output++;
}
output++;
input++;
}
}
} else {
if (inclusive) {
for (int i = 0; i < count; i++) {
output += stride - 1;
input += stride - 1;
*output = *input;
for (int j = 1; j < stride; j++) {
input--;
output--;
op(output, output + 1, input);
}
output += stride;
input += stride;
}
} else {
for (int i = 0; i < count; i++) {
output += stride - 1;
input += stride - 1;
*output = init;
for (int j = 1; j < stride; j++) {
op(output - 1, output, input);
input--;
output--;
}
output += stride;
input += stride;
}
}
}
}
};
template <typename T, typename U, typename Op>
struct DefaultStridedScan {
Op op;
U init;
DefaultStridedScan(Op op_, U init_) : op(op_), init(init_) {}
void operator()(
const T* input,
U* output,
int count,
int size,
int stride,
bool reverse,
bool inclusive) {
// TODO: Vectorize the following naive implementation
if (!reverse) {
if (inclusive) {
for (int i = 0; i < count; i++) {
std::copy(input, input + stride, output);
output += stride;
input += stride;
for (int j = 1; j < size; j++) {
for (int k = 0; k < stride; k++) {
op(output, output - stride, input);
output++;
input++;
}
}
}
} else {
for (int i = 0; i < count; i++) {
std::fill(output, output + stride, init);
output += stride;
input += stride;
for (int j = 1; j < size; j++) {
for (int k = 0; k < stride; k++) {
op(output, output - stride, input - stride);
output++;
input++;
}
}
}
}
} else {
if (inclusive) {
for (int i = 0; i < count; i++) {
output += (size - 1) * stride;
input += (size - 1) * stride;
std::copy(input, input + stride, output);
for (int j = 1; j < size; j++) {
for (int k = 0; k < stride; k++) {
output--;
input--;
op(output, output + stride, input);
}
}
output += size * stride;
input += size * stride;
}
} else {
for (int i = 0; i < count; i++) {
output += (size - 1) * stride;
input += (size - 1) * stride;
std::fill(output, output + stride, init);
for (int j = 1; j < size; j++) {
for (int k = 0; k < stride; k++) {
output--;
input--;
op(output, output + stride, input + stride);
}
}
output += size * stride;
input += size * stride;
}
}
}
}
};
template <typename T, typename U, typename OpCS, typename OpSS>
void scan_op(
OpCS opcs,
OpSS opss,
const array& input,
array& output,
int axis,
bool reverse,
bool inclusive) {
output.set_data(allocator::malloc_or_wait(output.nbytes()));
if (input.flags().row_contiguous) {
if (input.strides()[axis] == 1) {
opcs(
input.data<T>(),
output.data<U>(),
input.size() / input.shape(axis),
input.shape(axis),
reverse,
inclusive);
} else {
opss(
input.data<T>(),
output.data<U>(),
input.size() / input.shape(axis) / input.strides()[axis],
input.shape(axis),
input.strides()[axis],
reverse,
inclusive);
}
} else {
throw std::runtime_error("Scan op supports only contiguous inputs");
}
}
template <typename T, typename U>
void scan_dispatch(
Scan::ReduceType rtype,
const array& input,
array& output,
int axis,
bool reverse,
bool inclusive) {
switch (rtype) {
case Scan::Sum: {
auto op = [](U* o, const U* y, const T* x) { *o = *y + *x; };
auto init = static_cast<U>(0);
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
auto opss = DefaultStridedScan<T, U, decltype(op)>(op, init);
scan_op<T, U>(opcs, opss, input, output, axis, reverse, inclusive);
break;
}
case Scan::Prod: {
auto op = [](U* o, const U* y, const T* x) { *o = *y * (*x); };
auto init = static_cast<U>(1);
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
auto opss = DefaultStridedScan<T, U, decltype(op)>(op, init);
scan_op<T, U>(opcs, opss, input, output, axis, reverse, inclusive);
break;
}
case Scan::Min: {
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *x : *y; };
auto init = (issubdtype(input.dtype(), floating))
? static_cast<U>(std::numeric_limits<float>::infinity())
: std::numeric_limits<U>::max();
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
auto opss = DefaultStridedScan<T, U, decltype(op)>(op, init);
scan_op<T, U>(opcs, opss, input, output, axis, reverse, inclusive);
break;
}
case Scan::Max: {
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *y : *x; };
auto init = (issubdtype(input.dtype(), floating))
? static_cast<U>(-std::numeric_limits<float>::infinity())
: std::numeric_limits<U>::min();
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
auto opss = DefaultStridedScan<T, U, decltype(op)>(op, init);
scan_op<T, U>(opcs, opss, input, output, axis, reverse, inclusive);
break;
}
}
}
} // namespace
void Scan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// Ensure contiguity
auto in = inputs[0];
if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General);
in = arr_copy;
}
switch (in.dtype()) {
case bool_: {
// We could do a full dtype x dtype switch but this is the only case
// where we accumulate in a different type, for now.
//
// TODO: If we add the option to accumulate floats in higher precision
// floats perhaps we should add the full all-to-all dispatch.
if (reduce_type_ == Scan::Sum && out.dtype() == int32) {
scan_dispatch<bool, int32_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
} else {
scan_dispatch<bool, bool>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
}
break;
}
case uint8:
scan_dispatch<uint8_t, uint8_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case uint16:
scan_dispatch<uint16_t, uint16_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case uint32:
scan_dispatch<uint32_t, uint32_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case uint64:
scan_dispatch<uint64_t, uint64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case int8:
scan_dispatch<int8_t, int8_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case int16:
scan_dispatch<int16_t, int16_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case int32:
scan_dispatch<int32_t, int32_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case int64:
scan_dispatch<int64_t, int64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case float16:
scan_dispatch<float16_t, float16_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case float32:
scan_dispatch<float, float>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case bfloat16:
scan_dispatch<bfloat16_t, bfloat16_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case complex64:
throw std::runtime_error("Scan ops do not support complex types yet");
break;
}
}
} // namespace mlx::core

View File

@@ -2,8 +2,7 @@
#include <cassert>
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/ternary.h"
#include "mlx/backend/common/ternary.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -62,7 +61,7 @@ void select_op(
} // namespace
void Select::eval_cpu(const std::vector<array>& inputs, array& out) {
void Select::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
const auto& condition = inputs[0];
const auto& a = inputs[1];

View File

@@ -35,29 +35,4 @@ void shared_buffer_slice(
move_or_copy(in, out, out_strides, flags, data_size, data_offset);
}
void slice(
const array& in,
array& out,
const Shape& start_indices,
const Shape& strides) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
// Calculate out strides, initial offset
auto [data_offset, inp_strides] = prepare_slice(in, start_indices, strides);
int64_t data_end = 1;
for (int i = 0; i < start_indices.size(); ++i) {
if (in.shape()[i] > 1) {
auto end_idx = start_indices[i] + out.shape()[i] * strides[i] - 1;
data_end += end_idx * in.strides()[i];
}
}
// data_end can be -1
size_t data_size =
data_end < 0 ? (data_offset - data_end) : (data_end - data_offset);
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
}
} // namespace mlx::core

View File

@@ -11,10 +11,11 @@ std::tuple<int64_t, Strides> prepare_slice(
const Shape& start_indices,
const Shape& strides);
void slice(
void shared_buffer_slice(
const array& in,
array& out,
const Shape& start_indices,
const Shape& strides);
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out);
} // namespace mlx::core

View File

@@ -3,108 +3,62 @@
#include <cassert>
#include <cmath>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
using namespace mlx::core::simd;
template <typename T, typename AccT>
void softmax(const array& in, array& out) {
constexpr bool same_t = std::is_same_v<T, AccT>;
constexpr int N = std::min(max_size<AccT>, max_size<T>);
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
int M = in.shape().back();
int L = in.data_size() / M;
int N = in.shape().back();
int M = in.data_size() / N;
const T* current_in_ptr;
T* current_out_ptr;
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += M) {
for (int i = 0; i < M; i++, in_ptr += N, out_ptr += N) {
// Find the maximum
current_in_ptr = in_ptr;
Simd<AccT, N> vmaximum(-std::numeric_limits<float>::infinity());
size_t s = M;
while (s >= N) {
Simd<AccT, N> vals = load<T, N>(current_in_ptr);
vmaximum = maximum(vals, vmaximum);
current_in_ptr += N;
s -= N;
}
AccT maximum = max(vmaximum);
while (s-- > 0) {
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
current_in_ptr++;
AccT maximum = *current_in_ptr;
for (int j = 0; j < N; j++, current_in_ptr++) {
maximum = (maximum < *current_in_ptr) ? static_cast<AccT>(*current_in_ptr)
: maximum;
}
// Compute the normalizer and the exponentials
Simd<AccT, N> vnormalizer(0.0);
AccT normalizer = 0;
current_out_ptr = out_ptr;
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
Simd<AccT, N> vexp = load<T, N>(current_in_ptr);
vexp = exp(vexp - maximum);
if constexpr (same_t) {
store(current_out_ptr, vexp);
for (int j = 0; j < N; j++, current_out_ptr++, current_in_ptr++) {
AccT expv = std::exp(*current_in_ptr - maximum);
normalizer += expv;
if constexpr (std::is_same<T, AccT>::value) {
*current_out_ptr = expv;
}
vnormalizer = vnormalizer + vexp;
current_in_ptr += N;
current_out_ptr += N;
s -= N;
}
AccT normalizer = sum(vnormalizer);
while (s-- > 0) {
AccT _exp = std::exp(*current_in_ptr - maximum);
if constexpr (same_t) {
*current_out_ptr = _exp;
}
normalizer += _exp;
current_in_ptr++;
current_out_ptr++;
}
normalizer = 1 / normalizer;
// Normalize
current_out_ptr = out_ptr;
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
if constexpr (same_t) {
store(
current_out_ptr,
Simd<T, N>(load<T, N>(current_out_ptr) * normalizer));
} else {
Simd<AccT, N> vexp = load<T, N>(current_in_ptr);
vexp = exp(vexp - maximum) * normalizer;
store(current_out_ptr, Simd<T, N>(vexp));
current_in_ptr += N;
}
current_out_ptr += N;
s -= N;
}
while (s-- > 0) {
if constexpr (same_t) {
current_out_ptr = out_ptr;
for (int j = 0; j < N; j++, current_out_ptr++) {
if constexpr (std::is_same<T, AccT>::value) {
*current_out_ptr *= normalizer;
} else {
AccT _exp = std::exp(*current_in_ptr - maximum);
*current_out_ptr = static_cast<T>(_exp * normalizer);
auto v = std::exp(*current_in_ptr - maximum);
*current_out_ptr = static_cast<T>(v * normalizer);
current_in_ptr++;
}
current_out_ptr++;
}
}
}
} // namespace
void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
void Softmax::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// Make sure that the last dimension is contiguous
@@ -143,7 +97,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
case int16:
case int32:
case int64:
throw std::runtime_error(
throw std::invalid_argument(
"Softmax is defined only for floating point types");
break;
case float32:

View File

@@ -5,8 +5,8 @@
#include <cmath>
#include <numeric>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/primitives.h"
@@ -14,10 +14,10 @@ namespace mlx::core {
namespace {
template <typename T>
template <typename T, typename IdxT = int32_t>
struct StridedIterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = int32_t;
using difference_type = IdxT;
using value_type = T;
using reference = value_type&;
using pointer = value_type*;
@@ -287,7 +287,7 @@ void argpartition(const array& in, array& out, int axis, int kth) {
} // namespace
void ArgSort::eval_cpu(const std::vector<array>& inputs, array& out) {
void ArgSort::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -321,7 +321,7 @@ void ArgSort::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
void Sort::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -355,7 +355,7 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
void ArgPartition::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
@@ -389,7 +389,7 @@ void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
void Partition::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];

View File

@@ -1,8 +1,8 @@
// Copyright © 2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -137,9 +137,7 @@ void svd_impl(const array& a, array& u, array& s, array& vt) {
}
}
void SVD::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
void SVD::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
if (!(inputs[0].dtype() == float32)) {
throw std::runtime_error("[SVD::eval] only supports float32.");
}

View File

@@ -3,10 +3,12 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
namespace {
// TODO: Add support for more combinations of input types.
enum class TernaryOpType {
ScalarScalarScalar,
@@ -14,7 +16,7 @@ enum class TernaryOpType {
General,
};
inline TernaryOpType
TernaryOpType
get_ternary_op_type(const array& a, const array& b, const array& c) {
TernaryOpType topt;
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
@@ -31,7 +33,7 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
return topt;
}
inline void set_ternary_op_output_data(
void set_ternary_op_output_data(
const array& a,
const array& b,
const array& c,
@@ -65,14 +67,156 @@ inline void set_ternary_op_output_data(
}
break;
case TernaryOpType::General:
// Try to donate an input which is row_contiguous
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
(b.flags().row_contiguous && maybe_donate(b)) ||
(c.flags().row_contiguous && maybe_donate(c)))) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
break;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
void ternary_op_dims(
const T1* a,
const T2* b,
const T3* c,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_c = c_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
a,
b,
c,
out,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
axis + 1);
} else {
*out = op(*a, *b, *c);
}
a += stride_a;
b += stride_b;
c += stride_c;
out += stride_out;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& c_strides = strides[2];
const auto& out_strides = strides[3];
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<T3>();
int ndim = shape.size();
switch (ndim) {
case 1:
ternary_op_dims<T1, T2, T3, U, Op, 1>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
case 2:
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
c_ptr + c_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
c_it.step();
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
} else if (topt == TernaryOpType::VectorVectorVector) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<U>();
for (size_t i = 0; i < out.size(); ++i) {
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
a_ptr++;
b_ptr++;
c_ptr++;
out_ptr++;
}
} else {
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
}
} // namespace
} // namespace mlx::core

View File

@@ -1,6 +1,6 @@
// Copyright © 2023 Apple Inc.
#include "mlx/backend/cpu/threefry.h"
#include "mlx/backend/common/threefry.h"
namespace mlx::core::random {

View File

@@ -5,11 +5,12 @@
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/utils.h"
namespace mlx::core {
namespace {
void set_unary_output_data(const array& in, array& out) {
if (is_donatable(in, out)) {
out.copy_shared_buffer(in);
@@ -37,19 +38,8 @@ void unary_op(const array& a, array& out, Op op) {
if (a.flags().contiguous) {
set_unary_output_data(a, out);
U* dst = out.data<U>();
constexpr int N = simd::max_size<T>;
size_t size = a.data_size();
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a_ptr)));
size -= N;
a_ptr += N;
dst += N;
}
while (size > 0) {
*dst = op(*a_ptr);
size--;
dst++;
a_ptr++;
for (size_t i = 0; i < a.data_size(); ++i) {
dst[i] = op(a_ptr[i]);
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
@@ -135,4 +125,6 @@ void unary_fp(const array& a, array& out, Op op) {
}
}
} // namespace
} // namespace mlx::core

View File

@@ -107,7 +107,7 @@ struct ContiguousIterator {
: shape_(a.shape()), strides_(a.strides()) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = Shape(shape_.size(), 0);
pos_ = std::vector<int>(shape_.size(), 0);
}
}
@@ -168,10 +168,4 @@ void move_or_copy(
size_t data_size,
size_t offset = 0);
std::pair<bool, Strides> prepare_reshape(const array& in, const array& out);
void shared_buffer_reshape(
const array& in,
const Strides& out_strides,
array& out);
} // namespace mlx::core

View File

@@ -1,81 +0,0 @@
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
set(COMPILE_DEPS
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
simd/simd.h
simd/base_simd.h
simd/math.h
simd/type.h
unary_ops.h
binary_ops.h)
if(MSVC)
set(SHELL_EXT ps1)
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
else()
set(SHELL_EXT sh)
set(SHELL_CMD bash)
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
DEPENDS make_compiled_preamble.${SHELL_EXT} compiled_preamble.h
${COMPILE_DEPS})
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cblas.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
endif()
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../no_cpu/compiled.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
endif()

View File

@@ -1,370 +0,0 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
template <typename Op>
struct VectorScalar {
Op op;
VectorScalar(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *b;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
dst += N;
a += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, scalar);
dst++;
a++;
}
}
};
template <typename Op>
struct ScalarVector {
Op op;
ScalarVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *a;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
dst += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(scalar, *b);
dst++;
b++;
}
}
};
template <typename Op>
struct VectorVector {
Op op;
VectorVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::load<T, N>(b)));
dst += N;
a += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, *b);
dst++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
}
out += stride_out;
a += stride_a;
b += stride_b;
}
}
template <typename T, typename U, bool Strided, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
switch (dim) {
case 1:
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
}
}
template <typename T, typename U, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
ScalarVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
VectorScalar{op}(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
VectorVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorScalar{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
ScalarVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
default:
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
break;
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
binary_op<T, T>(a, b, out, op);
}
template <typename Op>
void binary(const array& a, const array& b, array& out, Op op) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, op);
break;
case uint8:
binary_op<uint8_t>(a, b, out, op);
break;
case uint16:
binary_op<uint16_t>(a, b, out, op);
break;
case uint32:
binary_op<uint32_t>(a, b, out, op);
break;
case uint64:
binary_op<uint64_t>(a, b, out, op);
break;
case int8:
binary_op<int8_t>(a, b, out, op);
break;
case int16:
binary_op<int16_t>(a, b, out, op);
break;
case int32:
binary_op<int32_t>(a, b, out, op);
break;
case int64:
binary_op<int64_t>(a, b, out, op);
break;
case float16:
binary_op<float16_t>(a, b, out, op);
break;
case float32:
binary_op<float>(a, b, out, op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, out, op);
break;
case complex64:
binary_op<complex64_t>(a, b, out, op);
break;
}
}
} // namespace mlx::core

View File

@@ -1,98 +0,0 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core::detail {
using namespace mlx::core::simd;
#define BINARY_SINGLE() \
template <typename T> \
T operator()(T x, T y) { \
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value; \
}
#define DEFAULT_BINARY_OP(Op, op) \
struct Op { \
template <int N, typename T> \
Simd<T, N> operator()(Simd<T, N> x, Simd<T, N> y) { \
return op(x, y); \
} \
BINARY_SINGLE() \
};
DEFAULT_BINARY_OP(Add, operator+)
DEFAULT_BINARY_OP(ArcTan2, atan2)
DEFAULT_BINARY_OP(Divide, operator/)
DEFAULT_BINARY_OP(Multiply, operator*)
DEFAULT_BINARY_OP(Subtract, operator-)
DEFAULT_BINARY_OP(LogicalAnd, operator&&)
DEFAULT_BINARY_OP(LogicalOr, operator||)
DEFAULT_BINARY_OP(BitwiseAnd, operator&)
DEFAULT_BINARY_OP(BitwiseOr, operator|)
DEFAULT_BINARY_OP(BitwiseXor, operator^)
DEFAULT_BINARY_OP(LeftShift, operator<<)
DEFAULT_BINARY_OP(RightShift, operator>>)
DEFAULT_BINARY_OP(Remainder, remainder)
DEFAULT_BINARY_OP(Maximum, maximum)
DEFAULT_BINARY_OP(Minimum, minimum)
DEFAULT_BINARY_OP(Power, pow)
#define DEFAULT_BOOL_OP(Op, op) \
struct Op { \
template <int N, typename T> \
Simd<bool, N> operator()(Simd<T, N> x, Simd<T, N> y) { \
return op(x, y); \
} \
template <typename T> \
bool operator()(T x, T y) { \
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value; \
} \
};
DEFAULT_BOOL_OP(Equal, operator==)
DEFAULT_BOOL_OP(Greater, operator>)
DEFAULT_BOOL_OP(GreaterEqual, operator>=)
DEFAULT_BOOL_OP(Less, operator<)
DEFAULT_BOOL_OP(LessEqual, operator<=)
DEFAULT_BOOL_OP(NotEqual, operator!=)
struct NaNEqual {
template <int N, typename T>
Simd<bool, N> operator()(Simd<T, N> x, Simd<T, N> y) {
return x == y || (isnan(x) && isnan(y));
}
template <typename T>
bool operator()(T x, T y) {
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value;
}
};
struct LogAddExp {
template <int N, typename T>
Simd<T, N> operator()(Simd<T, N> x, Simd<T, N> y) {
auto maxval = maximum(x, y);
auto minval = minimum(x, y);
auto mask = minval == -inf || maxval == inf;
auto out = maxval + log1p(exp(minval - maxval));
return select(mask, Simd<T, N>(maxval), Simd<T, N>(out));
}
BINARY_SINGLE()
};
struct Select {
template <typename T>
T operator()(bool condition, T x, T y) {
return (*this)(Simd<bool, 1>(condition), Simd<T, 1>(x), Simd<T, 1>(y))
.value;
}
template <int N, typename T>
Simd<T, N> operator()(Simd<bool, N> condition, Simd<T, N> x, Simd<T, N> y) {
return select(condition, x, y);
}
};
} // namespace mlx::core::detail

Some files were not shown because too many files have changed in this diff Show More