Compare commits

..

93 Commits
v0.24.1 ... fft

Author SHA1 Message Date
Angelos Katharopoulos
83762691ba Fix four step fft 2025-05-08 14:14:59 -07:00
Angelos Katharopoulos
2a41caa00e Add single kernel bluestein 2025-05-08 13:23:11 -07:00
Angelos Katharopoulos
6593281d25 Refactored four-step 2025-05-08 13:23:11 -07:00
Angelos Katharopoulos
da98e8bce8 Refactored stockham 2025-05-08 13:23:11 -07:00
Angelos Katharopoulos
be57a16a80 More tmp fft changes 2025-05-08 13:23:11 -07:00
Angelos Katharopoulos
1704809f29 Tmp FFT commit 2025-05-08 13:23:11 -07:00
Cheng
0cae0bdac8 CUDA backend: backbone (#2075) 2025-05-06 21:26:46 -07:00
Awni Hannun
5a1a5d5ed1 fix input coherent kernel launch (#2153) 2025-05-05 17:30:50 -07:00
Cheng
1683975acf Move common gpu primitives to backend/gpu (#2145) 2025-05-05 13:45:29 -07:00
Awni Hannun
af705590ac fix batched vector sdpa (#2152) 2025-05-05 13:13:03 -07:00
Awni Hannun
825124af8f fix bw for elementwise ops (#2151)
* fix bw for elementwise ops

* add compile

* fix

* fix

* fix

* fix
2025-05-05 06:15:04 -07:00
Awni Hannun
9c5e7da507 fix compile merging (#2150) 2025-05-02 15:08:50 -07:00
Angelos Katharopoulos
481349495b GPU Hadamard for large N (#1879) 2025-05-01 17:19:17 -07:00
Awni Hannun
9daa6b003f fix shapeless export (#2148) 2025-05-01 15:02:02 -07:00
Angelos Katharopoulos
a3a632d567 Fix the launcher when ran locally (#2147) 2025-05-01 12:56:09 -07:00
Awni Hannun
e496c5a4b4 fix integer overflow in qmm (#2143) 2025-04-30 09:28:56 -07:00
Cheng
ea890d8710 Remove metal-only tests (#2139) 2025-04-30 09:08:39 -07:00
Awni Hannun
aa5d84f102 Allow quant layer to be unfrozen (#2142) 2025-04-30 09:08:29 -07:00
Awni Hannun
f1606486d2 Generalize gpu backend (#2138)
* generalize gpu backend

* fix no_gpu build

* fix no_gpu build

* generalize gpu backend
2025-04-30 09:08:17 -07:00
Cheng
87720a8908 Fix building with uv (#2141) 2025-04-30 06:04:07 -07:00
Aashiq Dheeraj
bb6565ef14 add fftshift and ifftshift fft helpers (#2135)
* add fftshift and ifftshift fft helpers

* address comments

* axes have to be iterable

* fix fp error in roll + add test

---------

Co-authored-by: Aashiq Dheeraj <aashiq@aashiq-mbp-m4.local>
2025-04-29 22:13:45 -07:00
Awni Hannun
7bb063bcb3 Enable vjp for quantized scale and bias (#2129)
* Enable vjp for quantized scale and bias

* higher tol
2025-04-29 13:03:09 -07:00
Alex Chi Z.
b36dd472bb return library if it is successfully loaded (#2131) 2025-04-29 07:30:36 -07:00
hdeng-apple
167b759a38 Fix typos (#2136) 2025-04-29 07:26:05 -07:00
charan-003
99b9868859 Clarify dimension notation in conv1d, conv2d, and conv3d docstrings (#2123)
* Clarify dimension notation in conv1d, conv2d, and conv3d docstrings

* Updating transposed convs in conv1d, conv2d, and conv3d

---------

Co-authored-by: Sai Charan Arvapally <saicharan@Sais-MacBook-Pro.local>
2025-04-25 12:18:30 -07:00
1ndig0
6b2d5448f2 Fix the error message in mx.right_shift and mx.left_shift (#2121)
* update right_shift and lef_shift

* simplify

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-04-25 09:14:28 -07:00
Awni Hannun
eaf709b83e patch (#2119) 2025-04-24 16:11:07 -07:00
Angelos Katharopoulos
f0e70afff0 Fix swift pm load (#2117) 2025-04-24 10:58:29 -07:00
hdeng-apple
86984cad68 Remove static initializers (#2059)
* Remove static initializers in device.cpp, load.cpp, pocketfft.h

* Remove static initializer InTracing::trace_stack

* Remove static initializer of CompilerCache cache

* Revert changes in pocketfft.h

* Remove duplicate private section of thread_pool()
2025-04-24 06:14:49 -07:00
Awni Hannun
fbc89e3ced fix pinv (#2110) 2025-04-23 13:08:28 -07:00
hdeng-apple
38c1e720c2 Search mlx.metallib in macOS framework "Resources" dir (#2061)
---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-04-23 09:53:13 -07:00
Param Thakkar
600e87e03c Added output_padding parameters in conv_transpose (#2092) 2025-04-23 09:26:33 -07:00
Hyunsung Lee
3836445241 Add broadcast_shapes in python API (#2091) 2025-04-22 18:57:39 -07:00
Yury Popov
1d2c9d6a07 Complex scan (#2094) 2025-04-22 18:56:28 -07:00
Awni Hannun
e8ac6bd2f5 irfft throws instead of segfaults on scalars (#2109) 2025-04-22 10:25:55 -07:00
Awni Hannun
fdadc4f22c Add more complex unary ops (#2101) 2025-04-21 13:04:54 -07:00
Awni Hannun
79b527f45f conv vmap (#2102) 2025-04-21 13:04:39 -07:00
Awni Hannun
dc4eada7f0 Use unordered map for kwargs in export/import (#2087)
* use unordered map for kwargs in export/import

* comment
2025-04-21 07:17:22 -07:00
Cheng
70ebc3b598 Return const ref in array::data_shared_ptr (#2100) 2025-04-21 07:17:09 -07:00
Cheng
b13f2aed16 Introduce macros for dispatching dynamic dtypes as static types (#2073) 2025-04-19 06:16:30 -07:00
Param Thakkar
5f04c0f818 Fixed shift operations issue (#2080)
* Fixed shift operations issue

* Added tests and fixes

* Fixed loop syntax error

* Added tests for bool

* Fixed typo
2025-04-18 14:28:33 -07:00
Awni Hannun
55935ccae7 fix py gc edge case (#2079) 2025-04-18 12:46:53 -07:00
Awni Hannun
b529515eb1 minor bump (#2081) 2025-04-17 14:57:11 -07:00
Angelos Katharopoulos
3cde719eb7 Route to gather qmm only for many tokens per expert (#2082) 2025-04-17 14:53:08 -07:00
Angelos Katharopoulos
5de6d94a90 Gather qmm batched kernel and refactoring of quantized (#2078) 2025-04-17 13:53:11 -07:00
Angelos Katharopoulos
99eefd2ec0 Gather mm new kernel and small refactoring (#2040) 2025-04-14 16:37:36 -07:00
Yury Popov
e9e268336b LogCumSumExp (#2069) 2025-04-13 01:27:29 -07:00
Awni Hannun
7275ac7523 Fix release build (#2072) 2025-04-12 20:41:58 -07:00
Angelos Katharopoulos
c4189a38e4 Add float mask to sdpa vector (#2068) 2025-04-11 17:29:40 -07:00
Awni Hannun
68d1b3256b nit: fix exception handling (#2066) 2025-04-11 14:12:08 -07:00
Awni Hannun
9c6953bda7 Fix stubgen (#2065)
* Fix stubgen

* add multi optim to docs
2025-04-11 12:02:54 -07:00
Awni Hannun
ef7ece9851 fix fft bug (#2062) 2025-04-10 19:41:27 -07:00
Angelos Katharopoulos
ddaa4b7dcb Fix the test and add custom min/max reductions for uncommon MPI types (#2060) 2025-04-10 17:01:17 -07:00
Cheng
dfae2c6989 Fix MSVC build due to use of M_LN2 (#2058) 2025-04-10 07:41:41 -07:00
Anastasiia Filippova
515f104926 Min / max reductions (#2041) 2025-04-09 23:22:20 -07:00
Angelos Katharopoulos
9ecefd56db Do not load the default lib if another is requested (#2055) 2025-04-09 13:31:38 -07:00
Awni Hannun
e5d35aa187 no sdpa in grad (#2054) 2025-04-08 19:13:54 -07:00
Awni Hannun
00794c42bc Fix causal mask sdpa vec (#2053)
* fix sdpa vector causal mask

* test
2025-04-08 09:11:23 -07:00
Cheng
08a1bf3f10 Remove Event::Signal() (#2052) 2025-04-08 06:20:27 -07:00
Awni Hannun
60c4154346 Only request residency once (#2051) 2025-04-07 10:47:51 -07:00
Awni Hannun
f2c85308c1 add a half simd gemm fallback (#2046)
* add a half simd gemm fallback

* nit
2025-04-07 09:31:29 -07:00
Awni Hannun
1a28b69ee2 only add to residency set once (#2049) 2025-04-06 17:38:25 -07:00
Cheng
ba09f01ce8 Remove test of converting negative float to uint (#2048) 2025-04-06 06:21:46 -07:00
Cheng
6cf48872b7 wait_for_one should wait for task to finish (#2047) 2025-04-05 20:05:16 -07:00
Angelos Katharopoulos
7b3b8fa000 Fix ci release (#2045) 2025-04-04 20:25:01 -07:00
Awni Hannun
ec5e2aae61 nit in doc (#2044) 2025-04-04 12:04:17 -07:00
Awni Hannun
86389bf970 patch bump (#2043) 2025-04-03 13:15:18 -07:00
Jagrit Digani
3290bfa690 Add new sdpa function overload (#2035)
* Add new sdpa function overload

* Address comments

* Remove std::varaint from cpp sdpa function
2025-04-03 11:58:28 -07:00
Jagrit Digani
8777fd104f Depthwise Conv2D optimization (#2036)
- Add new specialized kernel for small kernel (kernels size <= 7), small strides (strides <= 2) depthwise 2d convolutions
- Add related tests
2025-04-03 09:42:04 -07:00
Awni Hannun
c41f7565ed fix softmax / logsumexp (#2042) 2025-04-03 08:32:59 -07:00
Awni Hannun
9ba81e3da4 tune quant dispatch (#2031) 2025-04-02 20:05:54 -07:00
Awni Hannun
c23888acd7 Fix build warning (#2033) 2025-04-01 14:42:27 -07:00
Awni Hannun
f98ce25ab9 fix residency set for real (#2032) 2025-04-01 12:59:48 -07:00
Awni Hannun
de5f38fd48 Custom logsumexp (#2028)
* initial custom logsumexp

* more tests

* comments + fix
2025-03-31 07:36:55 -07:00
Angelos Katharopoulos
ec2854b13a Swap -inf for finite_minimum value (#2029) 2025-03-30 21:55:04 -07:00
Stephen Panaro
90823d2938 Add missing funcs to docs (#2021) 2025-03-30 18:29:33 -07:00
Jesper Stemann Andersen
5f5770e3a2 Fix CPU sign for unsigned ints (#2024)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-03-30 17:56:59 -07:00
Awni Hannun
28f39e9038 Log for complex numbers in Metal (#2025)
* Log for complex numbers in Metal

* fix log2
2025-03-30 17:04:38 -07:00
Awni Hannun
b2d2b37888 fix residency set clearing (#2027) 2025-03-30 16:27:26 -07:00
Awni Hannun
fe597e141c add pinv to doc (#2020) 2025-03-30 15:54:18 -07:00
Yi Wang
72ca1539e0 Remove unused variable in /setup.py (#2026)
This is a follow up of https://github.com/ml-explore/mlx/pull/2011
2025-03-30 12:52:33 -07:00
Awni Hannun
13b26775f1 use minimum deployment target (#2016) 2025-03-28 14:31:53 -07:00
Awni Hannun
05d7118561 causal vector sdpa (#2018)
* causal vector sdpa

* get rid of memory threshold
2025-03-28 12:36:13 -07:00
Awni Hannun
98b901ad66 enable complex gemm (#2017) 2025-03-28 10:45:13 -07:00
Awni Hannun
5580b47291 iinfo and scalar overflow detection (#2009) 2025-03-27 19:54:56 -07:00
Awni Hannun
bc62932984 sdpa specialization for head dim 256 (#2007) 2025-03-27 19:31:25 -07:00
Awni Hannun
a6b5d6e759 revise cmake minimum for doctest (#2014) 2025-03-27 19:30:58 -07:00
Yi Wang
a8931306e1 Remove unused variable in CMakeBuild (#2011)
Fix https://github.com/ml-explore/mlx/issues/2010
2025-03-27 16:00:51 -07:00
Yi Wang
fecdb8717e Polish CONTRIBUTING>md (#2005) 2025-03-25 19:06:34 -07:00
Awni Hannun
916fd273ea wire cache (#2006) 2025-03-25 18:54:01 -07:00
Yi Wang
0da8506552 Update docs for extensions (#2004) 2025-03-25 18:35:03 -07:00
Cheng
eda7a7b43e Do not join threads during process exit on Windows (#1738) 2025-03-25 06:33:08 -07:00
Chunyang Wen
022eabb734 Remove unused import (#1987) 2025-03-24 20:19:32 -07:00
235 changed files with 10463 additions and 2541 deletions

View File

@@ -24,8 +24,8 @@ jobs:
type: boolean
default: false
macos:
xcode: "15.2.0"
resource_class: macos.m1.medium.gen1
xcode: "16.2.0"
resource_class: m2pro.medium
steps:
- checkout
- run:
@@ -93,12 +93,10 @@ jobs:
- run:
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF
CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF \
CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
- run:
@@ -127,10 +125,15 @@ jobs:
parameters:
xcode_version:
type: string
default: "15.2.0"
default: "16.2.0"
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.medium.gen1
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
resource_class: m2pro.medium
steps:
- checkout
- run:
@@ -152,7 +155,7 @@ jobs:
command: |
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
pip install -e . -v
- run:
name: Generate package stubs
@@ -216,13 +219,18 @@ jobs:
default: "3.9"
xcode_version:
type: string
default: "15.2.0"
default: "16.2.0"
build_env:
type: string
default: ""
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.medium.gen1
resource_class: m2pro.medium
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
steps:
- checkout
- run:
@@ -243,7 +251,7 @@ jobs:
name: Install Python package
command: |
source env/bin/activate
DEV_RELEASE=1 \
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
pip install . -v
- run:
@@ -338,7 +346,7 @@ workflows:
- mac_build_and_test:
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- build_documentation
@@ -358,8 +366,70 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["PYPI_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- build_documentation:
filters:
tags:
@@ -382,7 +452,7 @@ workflows:
requires: [ hold ]
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
@@ -395,7 +465,54 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
weekly_build:
when:
and:
@@ -406,8 +523,70 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
linux_test_release:
when:
and:

1
.gitignore vendored
View File

@@ -36,6 +36,7 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
uv.lock
# vim
*.swp

View File

@@ -34,6 +34,7 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
option(MLX_BUILD_METAL "Build metal backend" ON)
option(MLX_BUILD_CPU "Build cpu backend" ON)
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
@@ -83,6 +84,10 @@ if(MLX_BUILD_METAL)
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)

View File

@@ -5,26 +5,26 @@ possible.
## Pull Requests
1. Fork and submit pull requests to the repo.
1. Fork and submit pull requests to the repo.
2. If you've added code that should be tested, add tests.
3. If a change is likely to impact efficiency, run some of the benchmarks before
and after the change. Examples of benchmarks can be found in `benchmarks/python/`.
4. If you've changed APIs, update the documentation.
5. Every PR should have passing tests and at least one review.
5. Every PR should have passing tests and at least one review.
6. For code formatting install `pre-commit` using something like `pip install pre-commit` and run `pre-commit install`.
This should install hooks for running `black` and `clang-format` to ensure
consistent style for C++ and python code.
You can also run the formatters manually as follows:
```
clang-format -i file.cpp
```
```
black file.py
```
```shell
clang-format -i file.cpp
```
```shell
black file.py
```
or run `pre-commit run --all-files` to check all files in the repo.
## Issues

View File

@@ -1,4 +1,6 @@
include CMakeLists.txt
include mlx.pc.in
recursive-include mlx/ *
include cmake/*
include python/src/*
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -0,0 +1,74 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate([x[i] @ w[j].T for i, j in enumerate(idx.tolist())], axis=0)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_mm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_mm(x, w1.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
x = mx.gather_mm(x, w2.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = x @ w1.T
x = x @ w2.T
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_mm()

View File

@@ -0,0 +1,84 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate(
[
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
for i, j in enumerate(idx.tolist())
],
axis=0,
)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_qmm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = mx.quantized_matmul(x, *w1, transpose=True)
x = mx.quantized_matmul(x, *w2, transpose=True)
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_qmm()

View File

@@ -93,9 +93,9 @@ Primitives
^^^^^^^^^^^
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
defines how to create outputs arrays given a input arrays. Further, a
defines how to create output arrays given input arrays. Further, a
:class:`Primitive` has methods to run on the CPU or GPU and for function
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
more concrete:
.. code-block:: C++
@@ -128,7 +128,7 @@ more concrete:
/** The vector-Jacobian product. */
std::vector<array> vjp(
const std::vector<array>& primals,
const array& cotan,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) override;
@@ -469,7 +469,7 @@ one we just defined:
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the primitive can built with ops
// The jvp transform on the primitive can be built with ops
// that are scheduled on the same stream as the primitive
// If argnums = {0}, we only push along x in which case the
@@ -481,7 +481,7 @@ one we just defined:
auto scale_arr = array(scale, tangents[0].dtype());
return {multiply(scale_arr, tangents[0], stream())};
}
// If, argnums = {0, 1}, we take contributions from both
// If argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
else {
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
@@ -735,7 +735,7 @@ Let's look at a simple script and its results:
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")
print(f"c is correct: {mx.all(c == 6.0).item()}")
Output:
@@ -743,7 +743,7 @@ Output:
c shape: [3, 4]
c dtype: float32
c correctness: True
c is correct: True
Results
^^^^^^^

View File

@@ -38,6 +38,7 @@ Array
array.log10
array.log1p
array.log2
array.logcumsumexp
array.logsumexp
array.max
array.mean

View File

@@ -20,3 +20,5 @@ FFT
irfft2
rfftn
irfftn
fftshift
ifftshift

View File

@@ -20,5 +20,6 @@ Linear Algebra
eigh
lu
lu_factor
pinv
solve
solve_triangular

View File

@@ -36,10 +36,12 @@ Operations
bitwise_or
bitwise_xor
block_masked_mm
broadcast_arrays
broadcast_to
ceil
clip
concatenate
contiguous
conj
conjugate
convolve
@@ -101,6 +103,7 @@ Operations
log10
log1p
logaddexp
logcumsumexp
logical_not
logical_and
logical_or

View File

@@ -18,3 +18,4 @@ Common Optimizers
AdamW
Adamax
Lion
MultiOptimizer

View File

@@ -9,6 +9,7 @@ Transforms
:toctree: _autosummary
eval
async_eval
compile
custom_function
disable_compile

View File

@@ -5,6 +5,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
@@ -48,5 +49,16 @@ add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
endif()
if(MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
endif()
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
endif()

View File

@@ -339,11 +339,11 @@ class array {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
// Return the shared pointer to the array::Data struct
const std::shared_ptr<Data>& data_shared_ptr() const {
return array_desc_->data;
}
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
@@ -356,7 +356,7 @@ class array {
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// The output of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,

View File

@@ -1,8 +1,10 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/broadcasting.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transpose.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)

View File

@@ -0,0 +1,24 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@@ -0,0 +1,11 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
void broadcast(const array& in, array& out);
} // namespace mlx::core

View File

@@ -1,6 +1,8 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/broadcasting.h"
#include "mlx/backend/common/transpose.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
@@ -18,47 +20,23 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
"AsStrided must be used with row contiguous arrays only.");
}
// Compute the flags given the shape and strides
bool row_contiguous = true, col_contiguous = true;
size_t r = 1, c = 1;
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
r *= shape_[i];
c *= shape_[j];
}
// Calculate the contiguity based on the given shape and strides
auto [ds, rc, cc] = check_contiguity(shape_, strides_);
auto flags = in.flags();
// TODO: Compute the contiguous flag in a better way cause now we are
// unnecessarily strict.
flags.contiguous = row_contiguous || col_contiguous;
flags.row_contiguous = row_contiguous;
flags.col_contiguous = col_contiguous;
flags.contiguous = rc || cc;
flags.row_contiguous = rc;
flags.col_contiguous = cc;
// There is no easy way to compute the actual data size so we use out.size().
// The contiguous flag will almost certainly not be set so no code should
// rely on data_size anyway.
size_t data_size = out.size();
// There is no easy way to compute the actual data size so we use out.size()
// when the array is not contiguous.
size_t data_size = flags.contiguous ? ds : out.size();
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
}
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
@@ -286,36 +264,7 @@ void StopGradient::eval(const std::vector<array>& inputs, array& out) {
void Transpose::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
Strides out_strides(out.ndim());
auto& in = inputs[0];
for (int ax = 0; ax < axes_.size(); ++ax) {
out_strides[ax] = in.strides()[axes_[ax]];
}
// Conditions for {row/col}_contiguous
// - array must be contiguous (no gaps)
// - underlying buffer size should have the same size as the array
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
// - vectors are both row and col contiguous (hence if both row/col are
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
int64_t f_stride = 1;
int64_t b_stride = 1;
flags.col_contiguous = true;
flags.row_contiguous = true;
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
flags.col_contiguous &= (out_strides[i] == f_stride || out.shape(i) == 1);
f_stride *= out.shape(i);
flags.row_contiguous &=
(out_strides[ri] == b_stride || out.shape(ri) == 1);
b_stride *= out.shape(ri);
}
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
transpose(inputs[0], out, axes_);
}
} // namespace mlx::core

View File

@@ -99,7 +99,11 @@ inline std::pair<int, int> decompose_hadamard(int n) {
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
}
}
if (n > (1 << 26)) {
throw std::invalid_argument(
"[hadamard] Only supports n = m*2^k where k <= 26");
}
return {n, m};
}
} // namespace mlx::core
} // namespace mlx::core

View File

@@ -0,0 +1,57 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void transpose(const array& in, array& out, const std::vector<int>& axes) {
Strides out_strides(out.ndim());
for (int ax = 0; ax < axes.size(); ++ax) {
out_strides[ax] = in.strides()[axes[ax]];
}
// Conditions for {row/col}_contiguous
// - array must be contiguous (no gaps)
// - underlying buffer size should have the same size as the array
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
// - vectors are both row and col contiguous (hence if both row/col are
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
auto [_, rc, cc] = check_contiguity(out.shape(), out_strides);
flags.row_contiguous = rc;
flags.col_contiguous = cc;
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
}
void as_transposed(array& out, const std::vector<int>& axes) {
assert(out.data_size() == out.size() && out.flags().contiguous);
// Calculate the contiguous strides.
Strides strides(out.ndim(), 1);
for (int i = out.ndim() - 2; i >= 0; i--) {
strides[i] = strides[i + 1] * out.shape(i);
}
// Calculate the new strides for transposing.
Strides new_strides;
new_strides.reserve(out.ndim());
for (auto ax : axes) {
new_strides.push_back(strides[ax]);
}
auto [ds, rc, cc] = check_contiguity(out.shape(), new_strides);
auto flags = out.flags();
flags.row_contiguous = rc;
flags.col_contiguous = cc;
out.copy_shared_buffer(out, new_strides, flags, ds);
}
} // namespace mlx::core

View File

@@ -0,0 +1,12 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
void transpose(const array& in, array& out, const std::vector<int>& axes);
void as_transposed(array& out, const std::vector<int>& axes);
} // namespace mlx::core

View File

@@ -132,6 +132,11 @@ struct ContiguousIterator {
};
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
// Conditions for {row/col}_contiguous
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
size_t no_broadcast_data_size = 1;
int64_t f_stride = 1;
int64_t b_stride = 1;

View File

@@ -40,7 +40,8 @@ add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/available.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
@@ -58,6 +59,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
@@ -73,8 +75,8 @@ target_sources(
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_bf16.cpp)
endif()
if(IOS)

View File

@@ -0,0 +1,11 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/available.h"
namespace mlx::core::cpu {
bool is_available() {
return true;
}
} // namespace mlx::core::cpu

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cpu {
bool is_available();
} // namespace mlx::core::cpu

View File

@@ -172,9 +172,12 @@ void binary_float(
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports non-complex floating point types.");
"[binary_float] Only supports floating point types.");
}
});
}

View File

@@ -40,7 +40,10 @@ struct CompilerCache {
std::shared_mutex mtx;
};
static CompilerCache cache{};
static CompilerCache& cache() {
static CompilerCache cache_;
return cache_;
};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
@@ -56,14 +59,16 @@ void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::shared_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::unique_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
@@ -120,10 +125,10 @@ void* compile(
}
// load library
cache.libs.emplace_back(shared_lib_path);
cache().libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
void* fun = dlsym(cache().libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -131,7 +136,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
cache.kernels.insert({kernel_name, fun});
cache().kernels.insert({kernel_name, fun});
return fun;
}

View File

@@ -46,8 +46,15 @@ void AllReduce::eval_cpu(
case Sum:
distributed::detail::all_sum(group(), in, outputs[0], stream());
break;
case Max:
distributed::detail::all_max(group(), in, outputs[0], stream());
break;
case Min:
distributed::detail::all_min(group(), in, outputs[0], stream());
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
throw std::runtime_error(
"Only all reduce sum, min and max are supported for now");
}
}

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t*,
const bfloat16_t*,
bfloat16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] bfloat16 not supported.");
}
} // namespace mlx::core

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t*,
const float16_t*,
float16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] float16 not supported.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t* a,
const bfloat16_t* b,
bfloat16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<bfloat16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t* a,
const float16_t* b,
float16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<float16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,139 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
inline int ceildiv(int a, int b) {
return (a + b - 1) / b;
}
template <int block_size, typename T, typename AccT>
void load_block(
const T* in,
AccT* out,
int M,
int N,
int i,
int j,
bool transpose) {
if (transpose) {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[jj * block_size + ii] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
} else {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[ii * block_size + jj] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
}
}
template <typename T, typename AccT>
void simd_gemm(
const T* a,
const T* b,
T* c,
bool a_trans,
bool b_trans,
int M,
int N,
int K,
float alpha,
float beta) {
constexpr int block_size = 16;
constexpr int simd_size = simd::max_size<AccT>;
static_assert(
(block_size % simd_size) == 0,
"Block size must be divisible by SIMD size");
int last_k_block_size = K - block_size * (K / block_size);
int last_k_simd_block = (last_k_block_size / simd_size) * simd_size;
for (int i = 0; i < ceildiv(M, block_size); i++) {
for (int j = 0; j < ceildiv(N, block_size); j++) {
AccT c_block[block_size * block_size] = {0.0};
AccT a_block[block_size * block_size];
AccT b_block[block_size * block_size];
int k = 0;
for (; k < K / block_size; k++) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
for (int kk = 0; kk < block_size; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
}
}
}
if (last_k_block_size) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
int kk = 0;
for (; kk < last_k_simd_block; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
for (; kk < last_k_block_size; ++kk) {
c_block[ii * block_size + jj] +=
a_block[ii * block_size + kk] * b_block[jj * block_size + kk];
}
}
}
}
// Store
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
auto c_idx = (i * block_size + ii) * N + j * block_size + jj;
if (beta != 0) {
c[c_idx] = static_cast<T>(
alpha * c_block[ii * block_size + jj] + beta * c[c_idx]);
} else {
c[c_idx] = static_cast<T>(alpha * c_block[ii * block_size + jj]);
}
}
}
}
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,140 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <cmath>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/primitives.h"
#include "mlx/types/limits.h"
namespace mlx::core {
namespace {
using namespace mlx::core::simd;
template <typename T, typename AccT>
void logsumexp(const array& in, array& out, Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(in);
encoder.set_output_array(out);
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
int M = in.shape().back();
int L = in.data_size() / M;
encoder.dispatch([in_ptr, out_ptr, M, L]() mutable {
constexpr int N = std::min(max_size<AccT>, max_size<T>);
const T* current_in_ptr;
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += 1) {
// Find the maximum
current_in_ptr = in_ptr;
Simd<AccT, N> vmaximum(-numeric_limits<AccT>::infinity());
size_t s = M;
while (s >= N) {
Simd<AccT, N> vals = load<T, N>(current_in_ptr);
vmaximum = maximum(vals, vmaximum);
current_in_ptr += N;
s -= N;
}
AccT maximum = max(vmaximum);
while (s-- > 0) {
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
current_in_ptr++;
}
// Compute the normalizer and the exponentials
Simd<AccT, N> vnormalizer(0.0);
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
Simd<AccT, N> vexp = load<T, N>(current_in_ptr);
vexp = exp(vexp - maximum);
vnormalizer = vnormalizer + vexp;
current_in_ptr += N;
s -= N;
}
AccT normalizer = sum(vnormalizer);
while (s-- > 0) {
AccT _exp = std::exp(*current_in_ptr - maximum);
normalizer += _exp;
current_in_ptr++;
}
// Normalize
*out_ptr = std::isinf(maximum)
? static_cast<T>(maximum)
: static_cast<T>(std::log(normalizer) + maximum);
}
});
}
} // namespace
void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// Make sure that the last dimension is contiguous
auto s = stream();
auto& encoder = cpu::get_command_encoder(s);
auto ensure_contiguous = [&s, &encoder](const array& x) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}
};
auto in = ensure_contiguous(inputs[0]);
if (in.flags().row_contiguous) {
out.set_data(allocator::malloc(out.nbytes()));
} else {
auto n = in.shape(-1);
auto flags = in.flags();
auto strides = in.strides();
for (auto& s : strides) {
s /= n;
}
bool col_contig = strides[0] == 1;
for (int i = 1; col_contig && i < strides.size(); ++i) {
col_contig &=
(out.shape(i) == 1 || strides[i - 1] == out.shape(i) * strides[i]);
}
flags.col_contiguous = col_contig;
out.set_data(
allocator::malloc(in.nbytes() / n),
in.data_size() / n,
std::move(strides),
flags);
}
switch (in.dtype()) {
case float32:
logsumexp<float, float>(in, out, stream());
break;
case float16:
logsumexp<float16_t, float>(in, out, stream());
break;
case bfloat16:
logsumexp<bfloat16_t, float>(in, out, stream());
break;
case float64:
logsumexp<double, double>(in, out, stream());
break;
default:
throw std::runtime_error(
"[logsumexp] only supports floating point types");
break;
}
}
} // namespace mlx::core

View File

@@ -3,6 +3,7 @@
#include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
@@ -226,6 +227,16 @@ void scan_dispatch(
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
case Scan::LogAddExp: {
auto op = [](U a, T b) {
return detail::LogAddExp{}(a, static_cast<U>(b));
};
auto init = (issubdtype(in.dtype(), floating))
? static_cast<U>(-std::numeric_limits<float>::infinity())
: std::numeric_limits<U>::min();
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
}
}
@@ -319,7 +330,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case complex64:
throw std::runtime_error("Scan ops do not support complex types yet");
scan_dispatch<complex64_t, complex64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
}
});

View File

@@ -17,7 +17,7 @@ struct ScalarT<float16_t, N> {
#endif
template <>
static constexpr int max_size<float16_t> = N;
inline constexpr int max_size<float16_t> = N;
#define SIMD_FP16_DEFAULT_UNARY(op) \
template <> \

View File

@@ -83,25 +83,25 @@ struct Simd {
// Values chosen based on benchmarks on M3 Max
// TODO: consider choosing these more optimally
template <>
static constexpr int max_size<int8_t> = 16;
inline constexpr int max_size<int8_t> = 16;
template <>
static constexpr int max_size<int16_t> = 16;
inline constexpr int max_size<int16_t> = 16;
template <>
static constexpr int max_size<int> = 8;
inline constexpr int max_size<int> = 8;
template <>
static constexpr int max_size<int64_t> = 4;
inline constexpr int max_size<int64_t> = 4;
template <>
static constexpr int max_size<uint8_t> = 16;
inline constexpr int max_size<uint8_t> = 16;
template <>
static constexpr int max_size<uint16_t> = 16;
inline constexpr int max_size<uint16_t> = 16;
template <>
static constexpr int max_size<uint32_t> = 8;
inline constexpr int max_size<uint32_t> = 8;
template <>
static constexpr int max_size<uint64_t> = 4;
inline constexpr int max_size<uint64_t> = 4;
template <>
static constexpr int max_size<float> = 8;
inline constexpr int max_size<float> = 8;
template <>
static constexpr int max_size<double> = 4;
inline constexpr int max_size<double> = 4;
#define SIMD_DEFAULT_UNARY(name, op) \
template <typename T, int N> \

View File

@@ -87,14 +87,45 @@ DEFAULT_UNARY(cosh, std::cosh)
DEFAULT_UNARY(expm1, std::expm1)
DEFAULT_UNARY(floor, std::floor)
DEFAULT_UNARY(log, std::log)
DEFAULT_UNARY(log2, std::log2)
DEFAULT_UNARY(log10, std::log10)
DEFAULT_UNARY(log1p, std::log1p)
DEFAULT_UNARY(sinh, std::sinh)
DEFAULT_UNARY(sqrt, std::sqrt)
DEFAULT_UNARY(tan, std::tan)
DEFAULT_UNARY(tanh, std::tanh)
template <typename T>
Simd<T, 1> log1p(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto x = in.value.real();
auto y = in.value.imag();
auto zabs = std::abs(in.value);
auto theta = std::atan2(y, x + 1);
if (zabs < 0.5) {
auto r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return Simd<T, 1>{T{x, theta}};
}
return Simd<T, 1>{T{((typeof(x))(0.5)) * std::log1p(r), theta}};
} else {
auto z0 = std::hypot(x + 1, y);
return Simd<T, 1>{T{std::log(z0), theta}};
}
} else {
return Simd<T, 1>{std::log1p(in.value)};
}
}
template <typename T>
Simd<T, 1> log2(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto out = std::log(in.value);
auto scale = decltype(out.real())(M_LN2);
return Simd<T, 1>{T{out.real() / scale, out.imag() / scale}};
} else {
return Simd<T, 1>{std::log2(in.value)};
}
}
template <typename T>
Simd<T, 1> operator~(Simd<T, 1> in) {
return ~in.value;

View File

@@ -119,12 +119,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto set_output = [s = stream(), &out](const array& x) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
if (x.is_donatable()) {
out.copy_shared_buffer(x);
} else {
@@ -146,18 +141,6 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
auto in = set_output(inputs[0]);
switch (in.dtype()) {
case bool_:
case uint8:
case uint16:
case uint32:
case uint64:
case int8:
case int16:
case int32:
case int64:
throw std::runtime_error(
"Softmax is defined only for floating point types");
break;
case float32:
softmax<float, float>(in, out, stream());
break;
@@ -178,9 +161,9 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
case float64:
softmax<double, double>(in, out, stream());
break;
case complex64:
throw std::invalid_argument(
"[Softmax] Not yet implemented for complex64");
default:
throw std::runtime_error(
"[softmax] Only defined for floating point types.");
break;
}
}

View File

@@ -1,5 +1,8 @@
// Copyright © 2024 Apple Inc.
// Required for using M_LN2 in MSVC.
#define _USE_MATH_DEFINES
#include <cassert>
#include "mlx/backend/cpu/unary.h"

View File

@@ -86,13 +86,14 @@ struct Sign {
template <int N, typename T>
Simd<T, N> operator()(Simd<T, N> x) {
auto z = Simd<T, N>{0};
auto o = Simd<T, N>{1};
auto m = Simd<T, N>{-1};
if constexpr (std::is_unsigned_v<T>) {
return x != z;
return simd::select(x == z, z, o);
} else if constexpr (std::is_same_v<T, complex64_t>) {
return simd::select(x == z, x, Simd<T, N>(x / simd::abs(x)));
} else {
return simd::select(
x < z, Simd<T, N>{-1}, simd::select(x > z, Simd<T, N>{1}, z));
return simd::select(x < z, m, simd::select(x > z, o, z));
}
}
SINGLE()

View File

@@ -0,0 +1,57 @@
# Filename rules in cuda backend:
#
# * Use .cu/.cuh if code contains device code, and .cpp/.h if not.
# * Device-only kernel code should be put in kernels/ subdir.
# * Files in kernels/ subdir should not include files outside.
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
target_compile_definitions(mlx PUBLIC MLX_USE_CUDA)
# Enable defining device lambda functions.
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"75;80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
# Use fixed version of CCCL.
FetchContent_Declare(
cccl
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
FetchContent_MakeAvailable(cccl)
target_include_directories(mlx PRIVATE BEFORE "${cccl_SOURCE_DIR}/include")
# Use fixed version of NVTX.
FetchContent_Declare(
nvtx3
GIT_REPOSITORY https://github.com/NVIDIA/NVTX.git
GIT_TAG v3.1.1
GIT_SHALLOW TRUE
SOURCE_SUBDIR c EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(nvtx3)
target_link_libraries(mlx PUBLIC $<BUILD_INTERFACE:nvtx3-cpp>)
# Make cuda runtime APIs available in non-cuda files.
find_package(CUDAToolkit REQUIRED)
target_include_directories(mlx PRIVATE ${CUDAToolkit_INCLUDE_DIRS})
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)

View File

@@ -0,0 +1,154 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/worker.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
#include <cassert>
namespace mlx::core {
namespace cu {
CudaAllocator::CudaAllocator() {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.8;
}
Buffer CudaAllocator::malloc(size_t size) {
// TODO: Check memory limit.
auto* buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(
fmt::format("cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
std::lock_guard lock(mutex_);
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
return Buffer{buf};
}
void CudaAllocator::free(Buffer buffer) {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return;
}
// If free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([buffer]() { allocator().free(buffer); });
worker_->end_batch();
worker_->commit();
return;
}
}
size_t size = buf->size;
cudaFree(buf->data);
delete buf;
std::lock_guard lock(mutex_);
active_memory_ -= size;
}
size_t CudaAllocator::size(Buffer buffer) const {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return 0;
}
return buf->size;
}
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
size_t CudaAllocator::get_active_memory() const {
return active_memory_;
}
size_t CudaAllocator::get_peak_memory() const {
return peak_memory_;
}
void CudaAllocator::reset_peak_memory() {
std::lock_guard lock(mutex_);
peak_memory_ = 0;
}
size_t CudaAllocator::get_memory_limit() {
return memory_limit_;
}
size_t CudaAllocator::set_memory_limit(size_t limit) {
std::lock_guard lock(mutex_);
std::swap(limit, memory_limit_);
return limit;
}
CudaAllocator& allocator() {
// By creating the |allocator_| on heap, the destructor of CudaAllocator
// will not be called on exit and buffers in the cache will be leaked. This
// can save some time at program exit.
static CudaAllocator* allocator_ = new CudaAllocator;
return *allocator_;
}
} // namespace cu
namespace allocator {
Allocator& allocator() {
return cu::allocator();
}
void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
return static_cast<cu::CudaBuffer*>(ptr_)->data;
}
} // namespace allocator
size_t get_active_memory() {
return cu::allocator().get_active_memory();
}
size_t get_peak_memory() {
return cu::allocator().get_peak_memory();
}
void reset_peak_memory() {
return cu::allocator().reset_peak_memory();
}
size_t set_memory_limit(size_t limit) {
return cu::allocator().set_memory_limit(limit);
}
size_t get_memory_limit() {
return cu::allocator().get_memory_limit();
}
// TODO: Implement buffer cache.
size_t get_cache_memory() {
return 0;
}
size_t set_cache_limit(size_t) {
return 0;
}
size_t set_wired_limit(size_t) {
return 0;
}
void clear_cache() {}
} // namespace mlx::core

View File

@@ -0,0 +1,58 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
struct CudaBuffer {
void* data;
size_t size;
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
size_t get_memory_limit();
size_t set_memory_limit(size_t limit);
private:
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t active_memory_{0};
size_t peak_memory_{0};
};
CudaAllocator& allocator();
} // namespace mlx::core::cu

26
mlx/backend/cuda/copy.cpp Normal file
View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/copy.h"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) {
throw std::runtime_error("copy_gpu_inplace not implemented in CUDA backend.");
}
void fill_gpu(const array& val, array& out, const Stream& s) {
throw std::runtime_error("fill_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

117
mlx/backend/cuda/device.cpp Normal file
View File

@@ -0,0 +1,117 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
Device::Device(int device) : device_(device) {
// Validate the requirements of device.
int attr = 0;
cudaDeviceGetAttribute(&attr, cudaDevAttrConcurrentManagedAccess, device_);
if (attr != 1) {
throw std::runtime_error(fmt::format(
"Device {} does not support synchronization in managed memory.",
device_));
}
}
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
}
}
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
// Put completion handlers in a batch.
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::commit() {
worker_.commit(stream_.last_cuda_stream());
}
Device& device(mlx::core::Device device) {
static std::unordered_map<int, Device> devices;
auto it = devices.find(device.index);
if (it == devices.end()) {
it = devices.try_emplace(device.index, device.index).first;
}
return it->second;
}
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core

131
mlx/backend/cuda/device.h Normal file
View File

@@ -0,0 +1,131 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
#include <thrust/execution_policy.h>
#include <unordered_map>
namespace mlx::core::cu {
class Device;
class CommandEncoder;
class DeviceStream {
public:
explicit DeviceStream(Device& device);
DeviceStream(const DeviceStream&) = delete;
DeviceStream& operator=(const DeviceStream&) = delete;
// Wait until kernels in the stream complete.
void synchronize();
// Return a cuda stream for launching kernels.
cudaStream_t schedule_cuda_stream();
// Return the last cuda stream used.
cudaStream_t last_cuda_stream();
CommandEncoder& get_encoder();
Device& device() {
return device_;
}
private:
Device& device_;
CudaStream stream_;
std::unique_ptr<CommandEncoder> encoder_;
};
class Device {
public:
explicit Device(int device);
Device(const Device&) = delete;
Device& operator=(const Device&) = delete;
// Make this device the current cuda device, required by some cuda calls.
void make_current();
DeviceStream& get_stream(Stream s);
int cuda_device() const {
return device_;
}
private:
int device_;
std::unordered_map<int, DeviceStream> streams_;
};
class CommandEncoder {
public:
explicit CommandEncoder(DeviceStream& stream);
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
void set_input_array(const array& arr) {}
void set_output_array(const array& arr) {}
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void end_encoding();
void commit();
// Schedule a cuda stream for |fun| to launch kernels, and check error
// afterwards.
template <typename F>
void launch_kernel(F&& fun) {
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
}
template <typename F>
void launch_kernel(cudaStream_t stream, F&& fun) {
device_.make_current();
fun(stream);
check_cuda_error("kernel launch", cudaGetLastError());
has_gpu_work_ = true;
}
Device& device() {
return device_;
}
DeviceStream& stream() {
return stream_;
}
bool has_gpu_work() const {
return has_gpu_work_;
}
private:
Device& device_;
DeviceStream& stream_;
Worker worker_;
bool has_gpu_work_{false};
std::vector<std::shared_ptr<array::Data>> temporaries_;
};
Device& device(mlx::core::Device device);
DeviceStream& get_stream(Stream s);
CommandEncoder& get_command_encoder(Stream s);
// Return an execution policy that does not sync for result.
// Note that not all thrust APIs support async policy, confirm before using.
inline auto thrust_policy(cudaStream_t stream) {
// TODO: Connect thrust's custom allocator with mlx's allocator.
return thrust::cuda::par_nosync.on(stream);
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,35 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
namespace mlx::core {
// Maps CPU types to CUDA types.
template <typename T>
struct CTypeToCudaType {
using type = T;
};
template <>
struct CTypeToCudaType<float16_t> {
using type = __half;
};
template <>
struct CTypeToCudaType<bfloat16_t> {
using type = __nv_bfloat16;
};
template <>
struct CTypeToCudaType<complex64_t> {
using type = cuComplex;
};
template <typename T>
using cuda_type_t = typename CTypeToCudaType<T>::type;
} // namespace mlx::core

68
mlx/backend/cuda/eval.cpp Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/eval.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/available.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core::gpu {
bool is_available() {
return true;
}
void new_stream(Stream s) {
// Force initalization of cuda, so cuda runtime get destroyed at last.
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {
nvtx3::scoped_range r("gpu::eval");
auto outputs = arr.outputs();
{
// If the array is a tracer hold a reference
// to its inputs so they don't get donated
std::vector<array> inputs;
if (arr.is_tracer()) {
inputs = arr.inputs();
}
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
if (encoder.has_gpu_work()) {
// Keep used buffers alive until kernel finishes running.
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input.
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
}
encoder.end_encoding();
}
void finalize(Stream s) {
nvtx3::scoped_range r("gpu::finalize");
cu::get_command_encoder(s).commit();
}
void synchronize(Stream s) {
nvtx3::scoped_range r("gpu::synchronize");
cu::get_stream(s).synchronize();
}
} // namespace mlx::core::gpu

265
mlx/backend/cuda/event.cu Normal file
View File

@@ -0,0 +1,265 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/event.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
///////////////////////////////////////////////////////////////////////////////
// CudaEvent implementations
///////////////////////////////////////////////////////////////////////////////
// Cuda event managed with RAII.
class CudaEventHandle {
public:
CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
}
~CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
}
CudaEventHandle(const CudaEventHandle&) = delete;
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
operator cudaEvent_t() const {
return event_;
}
private:
cudaEvent_t event_;
};
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
void CudaEvent::wait() {
nvtx3::scoped_range r("cu::CudaEvent::wait");
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaEventSynchronize(*event_);
}
void CudaEvent::wait(cudaStream_t stream) {
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaStreamWaitEvent(stream, *event_);
}
void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
wait(cu::get_stream(s).last_cuda_stream());
}
}
void CudaEvent::record(cudaStream_t stream) {
cudaEventRecord(*event_, stream);
recorded_ = true;
}
void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
record(cu::get_stream(s).last_cuda_stream());
}
}
bool CudaEvent::completed() const {
return cudaEventQuery(*event_) == cudaSuccess;
}
///////////////////////////////////////////////////////////////////////////////
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
ac->wait(current);
}
}
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
ac->store(value);
ac->notify_all();
}
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_wait(ac, value);
}
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
} // namespace
SharedEvent::SharedEvent() {
// Allocate cuda::atomic on managed memory.
allocator::Buffer buffer = allocator::malloc(sizeof(Atomic));
Atomic* ac = static_cast<Atomic*>(buffer.raw_ptr());
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [buffer](Atomic* ptr) {
ptr->~Atomic();
allocator::free(buffer);
});
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { wait(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { signal(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { signal(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return ac_->load();
}
} // namespace cu
///////////////////////////////////////////////////////////////////////////////
// Event implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
struct EventImpl {
// CudaEvent is preferred when possible because it is fast, however we have
// to fallback to SharedEvent in following cases:
// 1. the event is used to wait/signal a cpu stream;
// 2. signal value other than 1 has been specified.
std::unique_ptr<cu::CudaEvent> cuda;
std::unique_ptr<cu::SharedEvent> shared;
bool is_created() const {
return cuda || shared;
}
void ensure_created(Stream s, uint64_t signal_value) {
if (is_created()) {
return;
}
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
nvtx3::mark("Using slow SharedEvent");
shared = std::make_unique<cu::SharedEvent>();
} else {
cuda = std::make_unique<cu::CudaEvent>();
}
}
};
} // namespace
Event::Event(Stream s) : stream_(s) {
event_ = std::shared_ptr<void>(
new EventImpl(), [](void* ptr) { delete static_cast<EventImpl*>(ptr); });
}
void Event::wait() {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait();
} else {
event->shared->wait(value());
}
}
void Event::wait(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait(s);
} else {
event->shared->wait(s, value());
}
}
void Event::signal(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
event->ensure_created(s, value());
if (event->cuda) {
assert(value() == 1);
event->cuda->record(s);
} else {
event->shared->signal(s, value());
}
}
bool Event::is_signaled() const {
auto* event = static_cast<EventImpl*>(event_.get());
if (!event->is_created()) {
return false;
}
if (event->cuda) {
assert(value() == 1);
return event->cuda->recorded() && event->cuda->completed();
} else {
return event->shared->is_signaled(value());
}
}
} // namespace mlx::core

66
mlx/backend/cuda/event.h Normal file
View File

@@ -0,0 +1,66 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/stream.h"
#include <cuda_runtime.h>
#include <cuda/atomic>
#include <memory>
namespace mlx::core::cu {
class CudaEventHandle;
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
// on GPU stream in CPU stream, but can not wait on CPU stream.
class CudaEvent {
public:
CudaEvent();
void wait();
void wait(cudaStream_t stream);
void wait(Stream s);
void record(cudaStream_t stream);
void record(Stream s);
// Return whether the recorded kernels have completed. Note that this method
// returns true if record() has not been called.
bool completed() const;
bool recorded() const {
return recorded_;
}
private:
bool recorded_{false};
std::shared_ptr<CudaEventHandle> event_;
};
// Event that can synchronize between CPU and GPU. It is much slower than
// CudaEvent so the latter should always be preferred when possible.
class SharedEvent {
public:
using Atomic = cuda::atomic<uint64_t>;
SharedEvent();
void wait(uint64_t value);
void wait(cudaStream_t stream, uint64_t value);
void wait(Stream s, uint64_t value);
void signal(uint64_t value);
void signal(cudaStream_t stream, uint64_t value);
void signal(Stream s, uint64_t value);
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

70
mlx/backend/cuda/fence.cu Normal file
View File

@@ -0,0 +1,70 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/fence.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
__host__ __device__ void busy_wait(cuda::atomic<uint64_t>* ac, uint64_t value) {
while (true) {
// In theory the atomic_thread_fence is not needed, but for CUDA 11 without
// it the load() may never return new value.
cuda::atomic_thread_fence(cuda::memory_order_seq_cst);
uint64_t current = ac->load();
if (current >= value) {
break;
}
}
}
__global__ void busy_wait_kernel(cuda::atomic<uint64_t>* ac, uint64_t value) {
busy_wait(ac, value);
}
} // namespace
struct FenceImpl {
uint32_t count;
cu::SharedEvent event;
};
Fence::Fence(Stream s) {
fence_ = std::shared_ptr<void>(
new FenceImpl{0}, [](void* ptr) { delete static_cast<FenceImpl*>(ptr); });
}
void Fence::wait(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
// We can't use SharedEvent::wait because it could hang in CUDA 11, see also:
// https://github.com/ml-explore/mlx/issues/2137
const auto& ac = fence->event.atomic();
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [ac, count = fence->count]() {
nvtx3::scoped_range r("Fence::wait()");
busy_wait(ac.get(), count);
});
} else {
nvtx3::scoped_range r("Fence::wait(s)");
auto& encoder = cu::get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(), [&](cudaStream_t stream) {
busy_wait_kernel<<<1, 1, 0>>>(ac.get(), fence->count);
});
encoder.add_completed_handler([ac]() {});
encoder.end_encoding();
}
}
void Fence::update(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
fence->count++;
fence->event.signal(s, fence->count);
}
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,107 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuda_fp16.h>
#include <cuda/std/limits>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
///////////////////////////////////////////////////////////////////////////////
// Missing C++ operator overrides for CUDA 7.
///////////////////////////////////////////////////////////////////////////////
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
#define MLX_DEFINE_BF16_OP(OP) \
__forceinline__ __device__ __nv_bfloat16 operator OP( \
__nv_bfloat16 x, __nv_bfloat16 y) { \
return __float2bfloat16(__bfloat162float(x) OP __bfloat162float(y)); \
}
#define MLX_DEFINE_BF16_CMP(OP) \
__forceinline__ __device__ bool operator OP( \
__nv_bfloat16 x, __nv_bfloat16 y) { \
return __float2bfloat16(__bfloat162float(x) OP __bfloat162float(y)); \
}
MLX_DEFINE_BF16_OP(+)
MLX_DEFINE_BF16_OP(-)
MLX_DEFINE_BF16_OP(*)
MLX_DEFINE_BF16_OP(/)
MLX_DEFINE_BF16_CMP(>)
MLX_DEFINE_BF16_CMP(<)
MLX_DEFINE_BF16_CMP(>=)
MLX_DEFINE_BF16_CMP(<=)
#undef MLX_DEFINE_BF16_OP
#undef MLX_DEFINE_BF16_CMP
#endif // CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
///////////////////////////////////////////////////////////////////////////////
// Additional C++ operator overrides between half types and native types.
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U>
constexpr bool is_integral_except =
cuda::std::is_integral_v<T> && !cuda::std::is_same_v<T, U>;
template <typename T, typename U>
constexpr bool is_arithmetic_except =
cuda::std::is_arithmetic_v<T> && !cuda::std::is_same_v<T, U>;
#define MLX_DEFINE_HALF_OP(HALF, HALF2FLOAT, FLOAT2HALF, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(HALF x, T y) { \
return FLOAT2HALF(HALF2FLOAT(x) OP static_cast<float>(y)); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(T x, HALF y) { \
return FLOAT2HALF(static_cast<float>(x) OP HALF2FLOAT(y)); \
}
#define MLX_DEFINE_HALF_CMP(HALF, HALF2FLOAT, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(HALF x, T y) { \
return HALF2FLOAT(x) OP static_cast<float>(y); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(T x, HALF y) { \
return static_cast<float>(y) OP HALF2FLOAT(x); \
}
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, +)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, -)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, *)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, /)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, +)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, -)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, *)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, /)
MLX_DEFINE_HALF_CMP(__half, __half2float, <)
MLX_DEFINE_HALF_CMP(__half, __half2float, >)
MLX_DEFINE_HALF_CMP(__half, __half2float, <=)
MLX_DEFINE_HALF_CMP(__half, __half2float, >=)
MLX_DEFINE_HALF_CMP(__half, __half2float, ==)
MLX_DEFINE_HALF_CMP(__half, __half2float, !=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, ==)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, !=)
#undef MLX_DEFINE_HALF_OP
#undef MLX_DEFINE_HALF_CMP
} // namespace mlx::core::cu

View File

@@ -0,0 +1,163 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/dtype_utils.cuh"
#include "mlx/backend/cuda/kernels/arange.cuh"
#include "mlx/backend/cuda/kernels/fp16_math.cuh"
#include "mlx/distributed/primitives.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cassert>
namespace mlx::core {
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_output_array(out);
encoder.launch_kernel([&, this](cudaStream_t stream) {
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
});
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(Abs)
NO_GPU(Add)
NO_GPU(AddMM)
NO_GPU(ArcCos)
NO_GPU(ArcCosh)
NO_GPU(ArcSin)
NO_GPU(ArcSinh)
NO_GPU(ArcTan)
NO_GPU(ArcTan2)
NO_GPU(ArcTanh)
NO_GPU(ArgPartition)
NO_GPU(ArgReduce)
NO_GPU(ArgSort)
NO_GPU(BitwiseBinary)
NO_GPU(BitwiseInvert)
NO_GPU(BlockMaskedMM)
NO_GPU(Ceil)
NO_GPU_MULTI(Compiled)
NO_GPU(Conjugate)
NO_GPU(Convolution)
NO_GPU(Cos)
NO_GPU(Cosh)
NO_GPU(Divide)
NO_GPU_MULTI(DivMod)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(Remainder)
NO_GPU(Equal)
NO_GPU(Erf)
NO_GPU(ErfInv)
NO_GPU(Exp)
NO_GPU(Expm1)
NO_GPU(FFT)
NO_GPU(Floor)
NO_GPU(Gather)
NO_GPU(GatherAxis)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Greater)
NO_GPU(GreaterEqual)
NO_GPU(Hadamard)
NO_GPU(Imag)
NO_GPU(Less)
NO_GPU(LessEqual)
NO_GPU(Load)
NO_GPU(Log)
NO_GPU(Log1p)
NO_GPU(LogicalNot)
NO_GPU(LogicalAnd)
NO_GPU(LogicalOr)
NO_GPU(LogAddExp)
NO_GPU(LogSumExp)
NO_GPU_MULTI(LUF)
NO_GPU(Matmul)
NO_GPU(Maximum)
NO_GPU(Minimum)
NO_GPU(Multiply)
NO_GPU(Negative)
NO_GPU(NotEqual)
NO_GPU(Partition)
NO_GPU(Power)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(RandomBits)
NO_GPU(Real)
NO_GPU(Reduce)
NO_GPU(Round)
NO_GPU(Scan)
NO_GPU(Scatter)
NO_GPU(ScatterAxis)
NO_GPU(Select)
NO_GPU(Sigmoid)
NO_GPU(Sign)
NO_GPU(Sin)
NO_GPU(Sinh)
NO_GPU(SliceUpdate)
NO_GPU(Softmax)
NO_GPU(Sort)
NO_GPU(Square)
NO_GPU(Sqrt)
NO_GPU(Subtract)
NO_GPU_MULTI(SVD)
NO_GPU(Tan)
NO_GPU(Tanh)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_MULTI(LayerNorm)
NO_GPU_MULTI(LayerNormVJP)
NO_GPU_MULTI(RMSNorm)
NO_GPU_MULTI(RMSNormVJP)
NO_GPU_MULTI(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void concatenate_gpu(
const std::vector<array>& inputs,
array& out,
int axis,
const Stream& s) {
throw std::runtime_error("concatenate_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/device.h"
#include <fmt/format.h>
namespace mlx::core {
CudaStream::CudaStream(cu::Device& device) {
device.make_current();
CHECK_CUDA_ERROR(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking));
}
CudaStream::~CudaStream() {
CHECK_CUDA_ERROR(cudaStreamDestroy(stream_));
}
void check_cuda_error(const char* name, cudaError_t err) {
if (err != cudaSuccess) {
throw std::runtime_error(
fmt::format("{} failed: {}", name, cudaGetErrorString(err)));
}
}
} // namespace mlx::core

36
mlx/backend/cuda/utils.h Normal file
View File

@@ -0,0 +1,36 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuda_runtime.h>
namespace mlx::core {
namespace cu {
class Device;
}
// Cuda stream managed with RAII.
class CudaStream {
public:
explicit CudaStream(cu::Device& device);
~CudaStream();
CudaStream(const CudaStream&) = delete;
CudaStream& operator=(const CudaStream&) = delete;
operator cudaStream_t() const {
return stream_;
}
private:
cudaStream_t stream_;
};
// Throw exception if the cuda API does not succeed.
void check_cuda_error(const char* name, cudaError_t err);
// The macro version that prints the command that failed.
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
} // namespace mlx::core

View File

@@ -0,0 +1,90 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
Worker::Worker()
: signal_stream_(device(mlx::core::Device::gpu)),
worker_(&Worker::thread_fn, this) {}
Worker::~Worker() {
{
std::lock_guard lock(worker_mutex_);
stop_ = true;
}
worker_event_.signal(batch_ + 1);
worker_.join();
}
void Worker::add_task(std::function<void()> task) {
pending_tasks_.push_back(std::move(task));
}
void Worker::consume_in_this_thread() {
for (auto& task : pending_tasks_) {
task();
}
pending_tasks_.clear();
}
void Worker::end_batch() {
batch_++;
{
std::lock_guard lock(worker_mutex_);
worker_tasks_[batch_] = std::move(pending_tasks_);
}
uncommited_batches_++;
}
void Worker::commit() {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
worker_event_.signal(batch_);
}
void Worker::commit(cudaStream_t stream) {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
// Signal the |worker_event_| in |signal_stream_| after the kernels in
// |stream_| finish running.
signal_event_.record(stream);
signal_event_.wait(signal_stream_);
worker_event_.signal(signal_stream_, batch_);
}
void Worker::thread_fn() {
// The worker thread is safe to free buffers.
allocator().register_this_thread();
while (!stop_) {
uint64_t batch = worker_event_.value();
Tasks tasks;
{
std::lock_guard lock(worker_mutex_);
// Move tasks in signaled batches.
auto end = worker_tasks_.upper_bound(batch);
for (auto it = worker_tasks_.begin(); it != end; ++it) {
if (tasks.empty()) {
tasks = std::move(it->second);
} else {
std::move(
it->second.begin(), it->second.end(), std::back_inserter(tasks));
}
}
worker_tasks_.erase(worker_tasks_.begin(), end);
}
for (auto& task : tasks) {
task();
}
worker_event_.wait(batch + 1);
}
}
} // namespace mlx::core::cu

68
mlx/backend/cuda/worker.h Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include <functional>
#include <map>
#include <mutex>
#include <thread>
namespace mlx::core::cu {
// Run tasks in worker thread, synchronized with cuda stream.
class Worker {
public:
Worker();
~Worker();
Worker(const Worker&) = delete;
Worker& operator=(const Worker&) = delete;
// Add a pending |task| that will run when consumed or commited.
void add_task(std::function<void()> task);
// Run pending tasks immediately in current thread.
void consume_in_this_thread();
// Put pending tasks in a batch.
void end_batch();
// Inform worker thread to run current batches now.
void commit();
// Inform worker thread to run current batches after kernels in |stream|
// finish running.
void commit(cudaStream_t stream);
// Return how many batches have been added but not committed yet.
size_t uncommited_batches() const {
return uncommited_batches_;
}
private:
void thread_fn();
uint64_t batch_{0};
size_t uncommited_batches_{0};
// Cuda stream and event for signaling kernel completion.
CudaStream signal_stream_;
CudaEvent signal_event_;
// Worker thread.
SharedEvent worker_event_;
std::thread worker_;
std::mutex worker_mutex_;
bool stop_{false};
// Tasks are put in |pending_tasks_| first, and then moved to
// |worker_tasks_| when end_batch() is called.
using Tasks = std::vector<std::function<void()>>;
Tasks pending_tasks_;
std::map<uint64_t, Tasks> worker_tasks_;
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,5 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp)

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::gpu {
bool is_available();
} // namespace mlx::core::gpu

49
mlx/backend/gpu/copy.cpp Normal file
View File

@@ -0,0 +1,49 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h"
#include <cassert>
namespace mlx::core {
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
bool donated = set_copy_output_data(in, out, ctype);
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
void copy_gpu_inplace(
const array& in,
array& out,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), in.strides(), out.strides(), 0, 0, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
} // namespace mlx::core

View File

@@ -5,6 +5,8 @@
#include "mlx/backend/common/copy.h"
#include "mlx/stream.h"
#include <optional>
namespace mlx::core {
// Generic copy inplace

View File

@@ -8,14 +8,11 @@
#include "mlx/array.h"
#include "mlx/stream.h"
namespace mlx::core::metal {
namespace mlx::core::gpu {
void new_stream(Stream stream);
std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool();
void eval(array& arr);
void finalize(Stream s);
void synchronize(Stream s);
} // namespace mlx::core::metal
} // namespace mlx::core::gpu

View File

@@ -0,0 +1,222 @@
// Copyright © 2025 Apple Inc.
#include "mlx/primitives.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include <cassert>
#define MLX_PROFILER_RANGE(message)
namespace mlx::core {
namespace {
void reshape(const array& in, array& out, Stream s) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_gpu_inplace(
in,
out,
in.shape(),
in.strides(),
make_contiguous_strides(in.shape()),
0,
0,
CopyType::General,
s);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
} // namespace
void AsStrided::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsStrided::eval_gpu");
eval(inputs, out);
}
void AsType::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsType::eval_gpu");
CopyType ctype =
inputs[0].flags().contiguous ? CopyType::Vector : CopyType::General;
copy_gpu(inputs[0], out, ctype);
}
void Broadcast::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Broadcast::eval_gpu");
eval(inputs, out);
}
void BroadcastAxes::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("BroadcastAxes::eval_gpu");
eval(inputs, out);
}
void Concatenate::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Concatenate::eval_gpu");
concatenate_gpu(inputs, out, axis_, stream());
}
void Contiguous::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Contiguous::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
constexpr size_t extra_bytes = 16384;
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
(in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
out.set_data(allocator::malloc(out.nbytes()));
copy_gpu_inplace(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream());
}
}
void Copy::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Copy::eval_gpu");
eval(inputs, out);
}
void CustomTransforms::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("CustomTransforms::eval_gpu");
eval(inputs, outputs);
}
void Depends::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Depends::eval_gpu");
eval(inputs, outputs);
}
void ExpandDims::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("ExpandDims::eval_gpu");
eval(inputs, out);
}
void Full::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Full::eval_gpu");
auto in = inputs[0];
CopyType ctype;
if (in.data_size() == 1) {
ctype = CopyType::Scalar;
} else if (in.flags().contiguous) {
ctype = CopyType::Vector;
} else {
ctype = CopyType::General;
}
copy_gpu(in, out, ctype);
}
void Flatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Flatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void NumberOfElements::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("NumberOfElements::eval_gpu");
eval(inputs, out);
}
void Pad::eval_gpu(const std::vector<array>& inputs, array& out) {
// Inputs must be base input array and scalar val array
assert(inputs.size() == 2);
auto& in = inputs[0];
auto& val = inputs[1];
// Padding value must be a scalar
assert(val.size() == 1);
// Padding value, input and output must be of the same type
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
pad_gpu(in, val, out, axes_, low_pad_size_, stream());
}
void Reshape::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Reshape::eval_gpu");
reshape(inputs[0], out, stream());
}
void Split::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Split::eval_gpu");
eval(inputs, outputs);
}
void Slice::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Slice::eval_gpu");
assert(inputs.size() == 1);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
slice_gpu(in, out, start_indices_, strides_, stream());
}
void Squeeze::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Squeeze::eval_gpu");
eval(inputs, out);
}
void StopGradient::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("StopGradient::eval_gpu");
eval(inputs, out);
}
void Transpose::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Transpose::eval_gpu");
eval(inputs, out);
}
void Unflatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Unflatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void View::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("View::eval_gpu");
auto& in = inputs[0];
auto ibytes = size_of(in.dtype());
auto obytes = size_of(out.dtype());
// Conditions for buffer copying (disjunction):
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
} else {
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc(tmp.nbytes()));
copy_gpu_inplace(in, tmp, CopyType::General, stream());
auto flags = out.flags();
flags.contiguous = true;
flags.row_contiguous = true;
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
out.copy_shared_buffer(tmp, out.strides(), flags, out.size());
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,44 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void slice_gpu(
const array& in,
array& out,
const Shape& start_indices,
const Shape& strides,
const Stream& s) {
slice(in, out, start_indices, strides);
}
void pad_gpu(
const array& in,
const array& val,
array& out,
const std::vector<int>& axes,
const Shape& low_pad_size,
const Stream& s) {
// Fill output with val
fill_gpu(val, out, s);
// Find offset for start of input values
size_t data_offset = 0;
for (int i = 0; i < axes.size(); i++) {
auto ax = axes[i] < 0 ? out.ndim() + axes[i] : axes[i];
data_offset += out.strides()[ax] * low_pad_size[i];
}
// Extract slice from output where input will be pasted
array out_slice(in.shape(), out.dtype(), nullptr, {});
out_slice.copy_shared_buffer(
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_gpu_inplace(in, out_slice, CopyType::GeneralGeneral, s);
}
} // namespace mlx::core

View File

@@ -47,6 +47,7 @@ if(MLX_METAL_JIT)
make_jit_source(binary)
make_jit_source(binary_two)
make_jit_source(fft kernels/fft/radix.h kernels/fft/readwrite.h)
make_jit_source(logsumexp)
make_jit_source(ternary)
make_jit_source(softmax)
make_jit_source(scan)
@@ -60,6 +61,7 @@ if(MLX_METAL_JIT)
kernels/steel/gemm/transforms.h)
make_jit_source(steel/gemm/kernels/steel_gemm_fused)
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
make_jit_source(steel/gemm/kernels/steel_gemm_gather)
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
make_jit_source(
steel/conv/conv
@@ -91,10 +93,12 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp

View File

@@ -1,7 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/resident.h"
#include "mlx/memory.h"
@@ -33,8 +32,11 @@ namespace metal {
namespace {
BufferCache::BufferCache(MTL::Device* device)
: device_(device), head_(nullptr), tail_(nullptr), pool_size_(0) {}
BufferCache::BufferCache(ResidencySet& residency_set)
: head_(nullptr),
tail_(nullptr),
pool_size_(0),
residency_set_(residency_set) {}
BufferCache::~BufferCache() {
auto pool = metal::new_scoped_memory_pool();
@@ -45,6 +47,9 @@ int BufferCache::clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
if (holder->buf) {
if (!holder->buf->heap()) {
residency_set_.erase(holder->buf);
}
holder->buf->release();
n_release++;
}
@@ -102,6 +107,9 @@ int BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
if (tail_->buf) {
total_bytes_freed += tail_->buf->length();
if (!tail_->buf->heap()) {
residency_set_.erase(tail_->buf);
}
tail_->buf->release();
tail_->buf = nullptr;
n_release++;
@@ -156,7 +164,7 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
residency_set_(device_),
buffer_cache_(device_) {
buffer_cache_(residency_set_) {
auto pool = metal::new_scoped_memory_pool();
auto memsize = std::get<size_t>(device_info().at("memory_size"));
auto max_rec_size =
@@ -263,9 +271,13 @@ Buffer MetalAllocator::malloc(size_t size) {
if (!buf) {
buf = device_->newBuffer(size, resource_options);
}
if (!buf) {
return Buffer{nullptr};
}
lk.lock();
if (buf) {
num_resources_++;
num_resources_++;
if (!buf->heap()) {
residency_set_.insert(buf);
}
}
@@ -279,10 +291,6 @@ Buffer MetalAllocator::malloc(size_t size) {
get_cache_memory() - max_pool_size_);
}
if (!buf->heap()) {
residency_set_.insert(buf);
}
return Buffer{static_cast<void*>(buf)};
}
@@ -298,14 +306,14 @@ void MetalAllocator::free(Buffer buffer) {
return;
}
std::unique_lock lk(mutex_);
if (!buf->heap()) {
residency_set_.erase(buf);
}
active_memory_ -= buf->length();
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
num_resources_--;
if (!buf->heap()) {
residency_set_.erase(buf);
}
lk.unlock();
auto pool = metal::new_scoped_memory_pool();
buf->release();

View File

@@ -18,7 +18,7 @@ namespace {
class BufferCache {
public:
BufferCache(MTL::Device* device);
BufferCache(ResidencySet& residency_set);
~BufferCache();
MTL::Buffer* reuse_from_cache(size_t size);
@@ -42,13 +42,11 @@ class BufferCache {
void add_at_head(BufferHolder* to_add);
void remove_from_list(BufferHolder* to_remove);
MTL::Device* device_;
MTL::Heap* heap_{nullptr};
std::multimap<size_t, BufferHolder*> buffer_pool_;
BufferHolder* head_;
BufferHolder* tail_;
size_t pool_size_;
ResidencySet& residency_set_;
};
} // namespace

View File

@@ -90,7 +90,7 @@ void binary_op_gpu_inplace(
work_per_thread = large ? 4 : 2;
} else {
large = out.data_size() > UINT32_MAX;
work_per_thread = 1;
work_per_thread = get_work_per_thread(a.dtype());
}
std::string kernel_name =
get_kernel_name(bopt, op, a, large, shape.size(), work_per_thread);
@@ -137,13 +137,20 @@ void binary_op_gpu_inplace(
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), arg_idx++);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), arg_idx++);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}

View File

@@ -64,6 +64,7 @@ inline void build_kernel(
cnt++);
}
std::string idx_type = use_big_index ? "int64_t" : "uint";
if (add_indices) {
os += fmt::format(
" constant const int64_t* in_strides [[buffer({0})]],\n", cnt++);
@@ -83,6 +84,9 @@ inline void build_kernel(
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
os += fmt::format(
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
} else {
os += fmt::format(
" constant const {0}& size [[buffer({1})]],\n", idx_type, cnt++);
}
if (dynamic_dims) {
os += fmt::format(" constant const int& ndim [[buffer({0})]],\n", cnt++);
@@ -92,13 +96,14 @@ inline void build_kernel(
os += " uint3 pos [[thread_position_in_grid]],\n";
os += " uint3 grid [[threads_per_grid]]) {\n";
std::string idx_type = use_big_index ? "int64_t" : "uint";
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
if (contiguous && use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os += " int64_t index = pos.x + grid.x * int64_t(pos.y);\n";
os += " int64_t index = N_ * (pos.x + grid.x * int64_t(pos.y));\n";
} else if (contiguous) {
os += " uint index = N_ * pos.x;\n";
} else if (work_per_thread > 1) {
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
os += fmt::format(
" int xshape = output_shape[{0}];\n",
dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1));
@@ -110,6 +115,9 @@ inline void build_kernel(
" {0} index = pos.x + grid.x * (pos.y + {0}(grid.y) * pos.z);\n",
idx_type);
}
if (work_per_thread > 1 && contiguous) {
os += " for (int i = 0; i < N_ && index < size; ++i) {\n";
}
// Read constant / contiguous inputs in tmps
std::vector<array> nc_inputs;
@@ -193,7 +201,7 @@ inline void build_kernel(
}
// Open per-thread loop
if (work_per_thread > 1) {
if (work_per_thread > 1 && !contiguous) {
os +=
" for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
}
@@ -272,6 +280,7 @@ void Compiled::eval_gpu(
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_, [&]() {
int work_per_thread = get_work_per_thread(outputs_[0].dtype());
std::string kernel = metal::utils();
concatenate(
kernel, metal::unary_ops(), metal::binary_ops(), metal::ternary_ops());
@@ -284,7 +293,9 @@ void Compiled::eval_gpu(
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
/* dynamic_dims = */ false,
/* use_big_index = */ false,
/* work_per_thread = */ work_per_thread);
build_kernel(
kernel,
kernel_lib_ + "_contiguous_large",
@@ -295,7 +306,8 @@ void Compiled::eval_gpu(
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false,
/* use_big_index = */ true);
/* use_big_index = */ true,
/* work_per_thread = */ work_per_thread);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
@@ -468,6 +480,13 @@ void Compiled::eval_gpu(
if (!contiguous) {
compute_encoder.set_vector_bytes(strides[0], cnt++);
compute_encoder.set_vector_bytes(shape, cnt++);
} else {
auto size = outputs[0].data_size();
if (large) {
compute_encoder.set_bytes<int64_t>(size, cnt++);
} else {
compute_encoder.set_bytes<int>(size, cnt++);
}
}
// Put the number of dims in if it is dynamic
@@ -477,12 +496,13 @@ void Compiled::eval_gpu(
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].data_size();
int work_per_thread = get_work_per_thread(outputs[0].dtype());
size_t nthreads = ceildiv(outputs[0].data_size(), work_per_thread);
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
MTL::Size grid_dims = large
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
? get_2d_grid_dims(
outputs[0].shape(), outputs[0].strides(), work_per_thread)
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {

View File

@@ -5,7 +5,7 @@
#include <numeric>
#include <sstream>
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/kernels/defines.h"
@@ -712,6 +712,65 @@ void winograd_conv_2D_gpu(
}
}
void depthwise_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
std::ostringstream kname;
kname << "depthwise_conv_2d_" << type_to_name(out);
std::string base_name = kname.str();
const int N = conv_params.N;
const int ker_h = conv_params.wS[0];
const int ker_w = conv_params.wS[1];
const int str_h = conv_params.str[0];
const int str_w = conv_params.str[1];
const int tc = 8;
const int tw = 8;
const int th = 4;
const bool do_flip = conv_params.flip;
metal::MTLFCList func_consts = {
{&ker_h, MTL::DataType::DataTypeInt, 00},
{&ker_w, MTL::DataType::DataTypeInt, 01},
{&str_h, MTL::DataType::DataTypeInt, 10},
{&str_w, MTL::DataType::DataTypeInt, 11},
{&th, MTL::DataType::DataTypeInt, 100},
{&tw, MTL::DataType::DataTypeInt, 101},
{&do_flip, MTL::DataType::DataTypeBool, 200},
};
// clang-format off
kname << "_ker_h_" << ker_h
<< "_ker_w_" << ker_w
<< "_str_h_" << str_h
<< "_str_w_" << str_w
<< "_tgp_h_" << th
<< "_tgp_w_" << tw
<< "_do_flip_" << (do_flip ? 't' : 'n'); // clang-format on
std::string hash_name = kname.str();
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(base_name, "mlx", hash_name, func_consts);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(conv_params, 3);
MTL::Size group_dims = MTL::Size(tc, tw, th);
MTL::Size grid_dims = MTL::Size(
conv_params.C / tc, conv_params.oS[1] / tw, (conv_params.oS[0] / th) * N);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void conv_2D_gpu(
const Stream& s,
metal::Device& d,
@@ -754,11 +813,20 @@ void conv_2D_gpu(
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
if (groups > 1) {
if (is_idil_one && groups > 1) {
const int C_per_group = conv_params.C / groups;
const int O_per_group = conv_params.O / groups;
if (is_idil_one && (C_per_group <= 4 || C_per_group % 16 == 0) &&
if (C_per_group == 1 && O_per_group == 1 && is_kdil_one &&
conv_params.wS[0] <= 7 && conv_params.wS[1] <= 7 &&
conv_params.str[0] <= 2 && conv_params.str[1] <= 2 &&
conv_params.oS[0] % 8 == 0 && conv_params.oS[1] % 8 == 0 &&
conv_params.wt_strides[1] == conv_params.wS[1] &&
conv_params.C % 16 == 0 && conv_params.C == conv_params.O) {
return depthwise_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
if ((C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
} else {

View File

@@ -1,35 +1,15 @@
// Copyright © 2023-2024 Apple Inc.
#include <sstream>
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
constexpr int MAX_COPY_SPECIALIZED_DIMS = 3;
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
bool donated = set_copy_output_data(in, out, ctype);
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
void copy_gpu_inplace(
const array& in,
array& out,
@@ -104,6 +84,8 @@ void copy_gpu_inplace(
"[Copy::eval_gpu] Dynamic output offset requires GeneralGeneral copy");
}
}
} else {
work_per_thread = get_work_per_thread(in.dtype());
}
concatenate(kernel_name, "_copy", type_to_name(in), type_to_name(out));
auto kernel = dynamic ? get_dynamic_copy_kernel(d, kernel_name, in, out)
@@ -165,39 +147,23 @@ void copy_gpu_inplace(
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), 2);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), 2);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void copy_gpu_inplace(
const array& in,
array& out,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), in.strides(), out.strides(), 0, 0, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
void fill_gpu(const array& val, array& out, const Stream& s) {
if (out.size() == 0) {
return;
@@ -214,14 +180,21 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
compute_encoder.set_input_array(val, 0);
compute_encoder.set_output_array(out, 1);
int work_per_thread = get_work_per_thread(val.dtype());
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), 2);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), 2);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}

View File

@@ -1,6 +1,6 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/fast_primitives.h"

View File

@@ -1,20 +1,20 @@
// Copyright © 2023-2024 Apple Inc.
#include <cstdlib>
#include <filesystem>
#include <sstream>
#include <sys/sysctl.h>
#define NS_PRIVATE_IMPLEMENTATION
#define CA_PRIVATE_IMPLEMENTATION
#define MTL_PRIVATE_IMPLEMENTATION
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/utils.h"
namespace fs = std::filesystem;
namespace mlx::core::metal {
namespace {
@@ -55,7 +55,10 @@ std::pair<MTL::Library*, NS::Error*> load_library_from_path(
}
#ifdef SWIFTPM_BUNDLE
MTL::Library* try_load_bundle(MTL::Device* device, NS::URL* url) {
MTL::Library* try_load_bundle(
MTL::Device* device,
NS::URL* url,
const std::string& lib_name) {
std::string bundle_path = std::string(url->fileSystemRepresentation()) + "/" +
SWIFTPM_BUNDLE + ".bundle";
auto bundle = NS::Bundle::alloc()->init(
@@ -63,7 +66,7 @@ MTL::Library* try_load_bundle(MTL::Device* device, NS::URL* url) {
if (bundle != nullptr) {
std::string resource_path =
std::string(bundle->resourceURL()->fileSystemRepresentation()) + "/" +
"default.metallib";
lib_name + ".metallib";
auto [lib, error] = load_library_from_path(device, resource_path.c_str());
if (lib) {
return lib;
@@ -73,51 +76,133 @@ MTL::Library* try_load_bundle(MTL::Device* device, NS::URL* url) {
}
#endif
// Firstly, search for the metallib in the same path as this binary
std::pair<MTL::Library*, NS::Error*> load_colocated_library(
MTL::Device* device,
const std::string& relative_path) {
std::string binary_dir = get_binary_directory();
if (binary_dir.size() == 0) {
return {nullptr, nullptr};
}
auto path = fs::path(binary_dir) / relative_path;
if (!path.has_extension()) {
path.replace_extension(".metallib");
}
return load_library_from_path(device, path.c_str());
}
std::pair<MTL::Library*, NS::Error*> load_swiftpm_library(
MTL::Device* device,
const std::string& lib_name) {
#ifdef SWIFTPM_BUNDLE
MTL::Library* library =
try_load_bundle(device, NS::Bundle::mainBundle()->bundleURL(), lib_name);
if (library != nullptr) {
return {library, nullptr};
}
auto bundles = NS::Bundle::allBundles();
for (int i = 0, c = (int)bundles->count(); i < c; i++) {
auto bundle = reinterpret_cast<NS::Bundle*>(bundles->object(i));
library = try_load_bundle(device, bundle->resourceURL(), lib_name);
if (library != nullptr) {
return {library, nullptr};
}
}
#endif
return {nullptr, nullptr};
}
MTL::Library* load_default_library(MTL::Device* device) {
NS::Error* error[4];
MTL::Library* lib;
// First try the colocated mlx.metallib
std::tie(lib, error[0]) = load_colocated_library(device, "mlx");
if (lib) {
return lib;
}
std::tie(lib, error[1]) = load_colocated_library(device, "Resources/mlx");
if (lib) {
return lib;
}
// Then try default.metallib in a SwiftPM bundle if we have one
std::tie(lib, error[2]) = load_swiftpm_library(device, "default");
if (lib) {
return lib;
}
// Finally try default_mtllib_path
std::tie(lib, error[3]) = load_library_from_path(device, default_mtllib_path);
if (!lib) {
std::ostringstream msg;
msg << "Failed to load the default metallib. ";
for (int i = 0; i < 4; i++) {
if (error[i] != nullptr) {
msg << error[i]->localizedDescription()->utf8String() << " ";
}
}
throw std::runtime_error(msg.str());
}
return lib;
}
MTL::Library* load_library(
MTL::Device* device,
const std::string& lib_name = "mlx",
const char* lib_path = default_mtllib_path) {
// Firstly, search for the metallib in the same path as this binary
std::string first_path = get_colocated_mtllib_path(lib_name);
if (first_path.size() != 0) {
auto [lib, error] = load_library_from_path(device, first_path.c_str());
const std::string& lib_name,
const std::string& lib_path) {
// We have been given a path that ends in metallib so try to load it
if (lib_path.size() > 9 &&
std::equal(lib_path.end() - 9, lib_path.end(), ".metallib")) {
auto [lib, error] = load_library_from_path(device, lib_path.c_str());
if (!lib) {
std::ostringstream msg;
msg << "Failed to load the metallib from <" << lib_path << "> with error "
<< error->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
return lib;
}
// We have been given a path so try to load from lib_path / lib_name.metallib
if (lib_path.size() > 0) {
std::string full_path = lib_path + "/" + lib_name + ".metallib";
auto [lib, error] = load_library_from_path(device, full_path.c_str());
if (!lib) {
std::ostringstream msg;
msg << "Failed to load the metallib from <" << full_path
<< "> with error " << error->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
return lib;
}
// Try to load the colocated library
{
auto [lib, error] = load_colocated_library(device, lib_name);
if (lib) {
return lib;
}
}
#ifdef SWIFTPM_BUNDLE
// try to load from a swiftpm resource bundle -- scan the available bundles to
// find one that contains the named bundle
// Try to load the library from swiftpm
{
MTL::Library* library =
try_load_bundle(device, NS::Bundle::mainBundle()->bundleURL());
if (library != nullptr) {
return library;
}
auto bundles = NS::Bundle::allBundles();
for (int i = 0, c = (int)bundles->count(); i < c; i++) {
auto bundle = reinterpret_cast<NS::Bundle*>(bundles->object(i));
library = try_load_bundle(device, bundle->resourceURL());
if (library != nullptr) {
return library;
}
auto [lib, error] = load_swiftpm_library(device, lib_name);
if (lib) {
return lib;
}
}
#endif
// Couldn't find it so let's load it from default_mtllib_path
{
auto [lib, error] = load_library_from_path(device, lib_path);
if (!lib) {
std::ostringstream msg;
msg << error->localizedDescription()->utf8String() << "\n"
<< "Failed to load device library from <" << lib_path << ">"
<< " or <" << first_path << ">.";
throw std::runtime_error(msg.str());
}
return lib;
}
std::ostringstream msg;
msg << "Failed to load the metallib " << lib_name << ".metallib. "
<< "We attempted to load it from <" << get_binary_directory() << "/"
<< lib_name << ".metallib" << ">";
#ifdef SWIFTPM_BUNDLE
msg << " and from the Swift PM bundle.";
#endif
throw std::runtime_error(msg.str());
}
} // namespace
@@ -210,7 +295,7 @@ void CommandEncoder::barrier() {
Device::Device() {
auto pool = new_scoped_memory_pool();
device_ = load_device();
library_map_ = {{"mlx", load_library(device_)}};
library_map_ = {{"mlx", load_default_library(device_)}};
arch_ = std::string(device_->architecture()->name()->utf8String());
auto arch = arch_.back();
switch (arch) {
@@ -684,42 +769,4 @@ std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool() {
NS::AutoreleasePool::alloc()->init(), dtor);
}
void new_stream(Stream stream) {
if (stream.device == mlx::core::Device::gpu) {
device(stream.device).new_queue(stream.index);
}
}
const std::unordered_map<std::string, std::variant<std::string, size_t>>&
device_info() {
auto init_device_info = []()
-> std::unordered_map<std::string, std::variant<std::string, size_t>> {
auto pool = new_scoped_memory_pool();
auto raw_device = device(default_device()).mtl_device();
auto name = std::string(raw_device->name()->utf8String());
auto arch = std::string(raw_device->architecture()->name()->utf8String());
size_t memsize = 0;
size_t length = sizeof(memsize);
sysctlbyname("hw.memsize", &memsize, &length, NULL, 0);
size_t rsrc_limit = 0;
sysctlbyname("iogpu.rsrc_limit", &rsrc_limit, &length, NULL, 0);
if (rsrc_limit == 0) {
rsrc_limit = 499000;
}
return {
{"device_name", name},
{"architecture", arch},
{"max_buffer_length", raw_device->maxBufferLength()},
{"max_recommended_working_set_size",
raw_device->recommendedMaxWorkingSetSize()},
{"memory_size", memsize},
{"resource_limit", rsrc_limit}};
};
static auto device_info_ = init_device_info();
return device_info_;
}
} // namespace mlx::core::metal

View File

@@ -21,18 +21,14 @@ namespace mlx::core::metal {
// Note, this function must be left inline in a header so that it is not
// dynamically linked.
inline std::string get_colocated_mtllib_path(const std::string& lib_name) {
inline std::string get_binary_directory() {
Dl_info info;
std::string mtllib_path;
std::string lib_ext = lib_name + ".metallib";
int success = dladdr((void*)get_colocated_mtllib_path, &info);
std::string directory;
int success = dladdr((void*)get_binary_directory, &info);
if (success) {
auto mtllib = fs::path(info.dli_fname).remove_filename() / lib_ext;
mtllib_path = mtllib.c_str();
directory = fs::path(info.dli_fname).remove_filename().c_str();
}
return mtllib_path;
return directory;
}
using MTLFCList =
@@ -189,15 +185,7 @@ class Device {
void register_library(
const std::string& lib_name,
const std::string& lib_path);
// Note, this should remain in the header so that it is not dynamically
// linked
void register_library(const std::string& lib_name) {
if (auto it = library_map_.find(lib_name); it == library_map_.end()) {
register_library(lib_name, get_colocated_mtllib_path(lib_name));
}
}
const std::string& lib_path = "");
MTL::Library* get_library(
const std::string& name,
@@ -278,4 +266,6 @@ class Device {
Device& device(mlx::core::Device);
std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool();
} // namespace mlx::core::metal

View File

@@ -4,7 +4,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/distributed/ops.h"

102
mlx/backend/metal/eval.cpp Normal file
View File

@@ -0,0 +1,102 @@
// Copyright © 2023-2024 Apple Inc.
#include <memory>
#include "mlx/backend/gpu/available.h"
#include "mlx/backend/gpu/eval.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/scheduler.h"
namespace mlx::core::gpu {
bool is_available() {
return true;
}
void new_stream(Stream stream) {
if (stream.device == mlx::core::Device::gpu) {
metal::device(stream.device).new_queue(stream.index);
}
}
inline void check_error(MTL::CommandBuffer* cbuf) {
if (cbuf->status() == MTL::CommandBufferStatusError) {
std::ostringstream msg;
msg << "[METAL] Command buffer execution failed: "
<< cbuf->error()->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
}
void eval(array& arr) {
auto pool = metal::new_scoped_memory_pool();
auto s = arr.primitive().stream();
auto& d = metal::device(s.device);
auto command_buffer = d.get_command_buffer(s.index);
auto outputs = arr.outputs();
{
// If the array is a tracer hold a reference
// to its inputs so they don't get donated
std::vector<array> inputs;
if (arr.is_tracer()) {
inputs = arr.inputs();
}
debug_set_primitive_buffer_label(command_buffer, arr.primitive());
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
if (d.command_buffer_needs_commit(s.index)) {
d.end_encoding(s.index);
scheduler::notify_new_task(s);
command_buffer->addCompletedHandler(
[s, buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
scheduler::notify_task_completion(s);
check_error(cbuf);
});
d.commit_command_buffer(s.index);
d.get_command_buffer(s.index);
} else {
command_buffer->addCompletedHandler(
[s, buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
check_error(cbuf);
});
}
}
void finalize(Stream s) {
auto pool = metal::new_scoped_memory_pool();
auto& d = metal::device(s.device);
auto cb = d.get_command_buffer(s.index);
d.end_encoding(s.index);
cb->addCompletedHandler([s](MTL::CommandBuffer* cbuf) { check_error(cbuf); });
d.commit_command_buffer(s.index);
d.get_command_buffer(s.index);
}
void synchronize(Stream s) {
auto pool = metal::new_scoped_memory_pool();
auto& d = metal::device(s.device);
auto cb = d.get_command_buffer(s.index);
cb->retain();
d.end_encoding(s.index);
d.commit_command_buffer(s.index);
cb->waitUntilCompleted();
check_error(cb);
cb->release();
}
} // namespace mlx::core::gpu

View File

@@ -2,7 +2,6 @@
#include "mlx/event.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/scheduler.h"
namespace mlx::core {
@@ -24,10 +23,6 @@ void Event::wait() {
}
}
void Event::signal() {
static_cast<MTL::SharedEvent*>(event_.get())->setSignaledValue(value());
}
void Event::wait(Stream stream) {
if (stream.device == Device::cpu) {
scheduler::enqueue(stream, [*this]() mutable { wait(); });
@@ -42,7 +37,9 @@ void Event::wait(Stream stream) {
void Event::signal(Stream stream) {
if (stream.device == Device::cpu) {
scheduler::enqueue(stream, [*this]() mutable { signal(); });
scheduler::enqueue(stream, [*this]() mutable {
static_cast<MTL::SharedEvent*>(event_.get())->setSignaledValue(value());
});
} else {
auto& d = metal::device(stream.device);
d.end_encoding(stream.index);

View File

@@ -1,7 +1,6 @@
// Copyright © 2024 Apple Inc.
#include "mlx/fence.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/scheduler.h"
#include "mlx/utils.h"
@@ -139,7 +138,7 @@ void Fence::update(Stream stream, const array& x) {
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_bytes(nthreads, 1);
compute_encoder.dispatch_threadgroups(group_dims, grid_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
// Barrier on previous kernels
compute_encoder.barrier();

View File

@@ -1,16 +1,18 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include <complex>
#include <iostream>
#include <map>
#include <numeric>
#include <set>
#include "mlx/3rdparty/pocketfft.h"
#include "mlx/backend/common/transpose.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include "mlx/backend/metal/binary.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/slicing.h"
#include "mlx/backend/metal/unary.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/utils.h"
@@ -27,7 +29,7 @@ using MTLFC = std::tuple<const void*, MTL::DataType, NS::UInteger>;
// For strided reads/writes, coalesce at least this many complex64s
#define MIN_COALESCE_WIDTH 4
inline const std::vector<int> supported_radices() {
inline constexpr std::array<int, 9> supported_radices() {
// Ordered by preference in decomposition.
return {13, 11, 8, 7, 6, 5, 4, 3, 2};
}
@@ -49,6 +51,35 @@ std::vector<int> prime_factors(int n) {
return factors;
}
int next_fast_n(int n) {
return next_power_of_2(n);
}
std::vector<int> stockham_decompose(int n) {
auto radices = supported_radices();
std::vector<int> steps(radices.size(), 0);
int orig_n = n;
for (int i = 0; i < radices.size(); i++) {
int radix = radices[i];
// Manually tuned radices for powers of 2
if (is_power_of_2(orig_n) && orig_n < 512 && radix > 4) {
continue;
}
while (n % radix == 0) {
steps[i] += 1;
n /= radix;
if (n == 1) {
return steps;
}
}
}
return {};
}
struct FourStepParams {
bool required = false;
bool first_step = true;
@@ -65,9 +96,10 @@ void fft_op(
bool real,
const FourStepParams four_step_params,
bool inplace,
metal::Device& d,
const Stream& s);
struct FFTPlan {
struct OldFFTPlan {
int n = 0;
// Number of steps for each radix in the Stockham decomposition
std::vector<int> stockham;
@@ -82,9 +114,104 @@ struct FFTPlan {
int n2 = 0;
};
int next_fast_n(int n) {
return next_power_of_2(n);
}
class FFTPlan {
public:
enum FFTType {
UNSUPPORTED,
NOOP,
STOCKHAM,
RADER,
BLUESTEIN,
MULTIUPLOAD_BLUESTEIN,
SMALL_FOUR_STEP,
LARGE_FOUR_STEP
};
FFTPlan(int n) : n_(n) {
// NOOP
if (n == 1) {
type_ = NOOP;
}
// Too large for Stockham so do four step fft for powers of 2
else if (n > MAX_STOCKHAM_FFT_SIZE && is_power_of_2(n)) {
if (n <= 1 << 20) {
type_ = SMALL_FOUR_STEP;
n2_ = n > 65536 ? 1024 : 64;
n1_ = n / n2_;
steps1_ = stockham_decompose(n1_);
steps2_ = stockham_decompose(n2_);
} else {
type_ = LARGE_FOUR_STEP;
}
}
// Too large and not power of 2 so do multi-upload Bluestein fft
else if (n > MAX_STOCKHAM_FFT_SIZE) {
type_ = MULTIUPLOAD_BLUESTEIN;
bluestein_n_ = next_fast_n(2 * n - 1);
}
// Stockham fft
else if (auto steps = stockham_decompose(n); steps.size() > 0) {
type_ = STOCKHAM;
steps_ = steps;
}
// Add rader but for now simply fall back to bluestein when stockham not
// posssible
else if (n > MAX_BLUESTEIN_FFT_SIZE) {
type_ = MULTIUPLOAD_BLUESTEIN;
bluestein_n_ = next_fast_n(2 * n - 1);
} else {
type_ = BLUESTEIN;
bluestein_n_ = next_fast_n(2 * n - 1);
steps_ = stockham_decompose(bluestein_n_);
}
}
FFTType type() const {
return type_;
}
int size() const {
return n_;
}
const std::vector<int>& steps() const {
return steps_;
}
int first_size() const {
return n1_;
}
const std::vector<int>& first_steps() const {
return steps1_;
}
int second_size() const {
return n2_;
}
const std::vector<int>& second_steps() const {
return steps2_;
}
int bluestein_size() const {
return bluestein_n_;
}
private:
int n_;
FFTType type_;
std::vector<int> steps_;
int n1_;
std::vector<int> steps1_;
int n2_;
std::vector<int> steps2_;
int bluestein_n_;
};
std::vector<int> plan_stockham_fft(int n) {
auto radices = supported_radices();
@@ -110,15 +237,12 @@ std::vector<int> plan_stockham_fft(int n) {
throw std::runtime_error("Unplannable");
}
FFTPlan plan_fft(int n) {
OldFFTPlan plan_fft(int n) {
auto radices = supported_radices();
std::set<int> radices_set(radices.begin(), radices.end());
FFTPlan plan;
OldFFTPlan plan;
plan.n = n;
plan.rader = std::vector<int>(radices.size(), 0);
auto factors = prime_factors(n);
int remaining_n = n;
// Four Step FFT when N is too large for shared mem.
if (n > MAX_STOCKHAM_FFT_SIZE && is_power_of_2(n)) {
@@ -128,16 +252,20 @@ FFTPlan plan_fft(int n) {
plan.n2 = n > 65536 ? 1024 : 64;
plan.n1 = n / plan.n2;
return plan;
} else if (n > MAX_STOCKHAM_FFT_SIZE) {
}
if (n > MAX_STOCKHAM_FFT_SIZE) {
// Otherwise we use a multi-upload Bluestein's
plan.four_step = true;
plan.bluestein_n = next_fast_n(2 * n - 1);
return plan;
}
int remaining_n = n;
auto factors = prime_factors(n);
for (int factor : factors) {
// Make sure the factor is a supported radix
if (radices_set.find(factor) == radices_set.end()) {
if (std::find(radices.begin(), radices.end(), factor) == radices.end()) {
// We only support a single Rader factor currently
// TODO(alexbarron) investigate weirdness with large
// Rader sizes -- possibly a compiler issue?
@@ -154,7 +282,7 @@ FFTPlan plan_fft(int n) {
for (int rf : rader_factors) {
// We don't nest Rader's algorithm so if `factor - 1`
// isn't Stockham decomposable we give up and do Bluestein's.
if (radices_set.find(rf) == radices_set.end()) {
if (std::find(radices.begin(), radices.end(), rf) == radices.end()) {
plan.four_step = n > MAX_BLUESTEIN_FFT_SIZE;
plan.bluestein_n = next_fast_n(2 * n - 1);
plan.stockham = plan_stockham_fft(plan.bluestein_n);
@@ -172,7 +300,7 @@ FFTPlan plan_fft(int n) {
return plan;
}
int compute_elems_per_thread(FFTPlan plan) {
int compute_elems_per_thread(OldFFTPlan plan) {
// Heuristics for selecting an efficient number
// of threads to use for a particular mixed-radix FFT.
auto n = plan.n;
@@ -355,21 +483,17 @@ void multi_upload_bluestein_fft(
size_t axis,
bool inverse,
bool real,
FFTPlan& plan,
std::vector<array> copies,
OldFFTPlan& plan,
std::vector<array>& copies,
const Stream& s) {
auto& d = metal::device(s.device);
// TODO(alexbarron) Implement fused kernels for mutli upload bluestein's
// algorithm
int n = inverse ? out.shape(axis) : in.shape(axis);
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
// Broadcast w_q and w_k to the batch size
Strides b_strides(in.ndim(), 0);
b_strides[axis] = 1;
array w_k_broadcast({}, complex64, nullptr, {});
array w_q_broadcast({}, complex64, nullptr, {});
w_k_broadcast.copy_shared_buffer(w_k, b_strides, {}, w_k.data_size());
w_q_broadcast.copy_shared_buffer(w_q, b_strides, {}, w_q.data_size());
copies.push_back(w_k);
copies.push_back(w_q);
auto temp_shape = inverse ? out.shape() : in.shape();
array temp(temp_shape, complex64, nullptr, {});
@@ -378,13 +502,13 @@ void multi_upload_bluestein_fft(
if (real && !inverse) {
// Convert float32->complex64
copy_gpu(in, temp, CopyType::General, s);
copies.push_back(temp);
} else if (real && inverse) {
int back_offset = n % 2 == 0 ? 2 : 1;
auto slice_shape = in.shape();
slice_shape[axis] -= back_offset;
array slice_temp(slice_shape, complex64, nullptr, {});
array conj_temp(in.shape(), complex64, nullptr, {});
copies.push_back(slice_temp);
copies.push_back(conj_temp);
Shape rstarts(in.ndim(), 0);
@@ -394,19 +518,28 @@ void multi_upload_bluestein_fft(
unary_op_gpu({in}, conj_temp, "Conjugate", s);
slice_gpu(in, slice_temp, rstarts, rstrides, s);
concatenate_gpu({conj_temp, slice_temp}, temp, (int)axis, s);
copies.push_back(temp);
} else if (inverse) {
unary_op_gpu({in}, temp, "Conjugate", s);
copies.push_back(temp);
} else {
temp.copy_shared_buffer(in);
}
Strides b_strides(in.ndim(), 0);
b_strides[axis] = 1;
array w_k_broadcast(temp.shape(), complex64, nullptr, {});
w_k_broadcast.copy_shared_buffer(w_k, b_strides, {}, w_k.data_size());
binary_op_gpu({temp, w_k_broadcast}, temp1, "Multiply", s);
std::vector<std::pair<int, int>> pads;
auto padded_shape = out.shape();
padded_shape[axis] = plan.bluestein_n;
array pad_temp(padded_shape, complex64, nullptr, {});
pad_gpu(temp1, array(complex64_t{0.0f, 0.0f}), pad_temp, {(int)axis}, {0}, s);
auto zero = array(complex64_t{0.0f, 0.0f});
copies.push_back(zero);
pad_gpu(temp1, zero, pad_temp, {(int)axis}, {0}, s);
copies.push_back(pad_temp);
array pad_temp1(padded_shape, complex64, nullptr, {});
fft_op(
@@ -417,8 +550,12 @@ void multi_upload_bluestein_fft(
/*real=*/false,
FourStepParams(),
/*inplace=*/false,
d,
s);
copies.push_back(pad_temp1);
array w_q_broadcast(pad_temp1.shape(), complex64, nullptr, {});
w_q_broadcast.copy_shared_buffer(w_q, b_strides, {}, w_q.data_size());
binary_op_gpu_inplace({pad_temp1, w_q_broadcast}, pad_temp, "Multiply", s);
fft_op(
@@ -429,15 +566,18 @@ void multi_upload_bluestein_fft(
/* real= */ false,
FourStepParams(),
/*inplace=*/true,
d,
s);
int offset = plan.bluestein_n - (2 * n - 1);
Shape starts(in.ndim(), 0);
Shape strides(in.ndim(), 1);
starts[axis] = plan.bluestein_n - offset - n;
slice_gpu(pad_temp1, temp, starts, strides, s);
binary_op_gpu_inplace({temp, w_k_broadcast}, temp1, "Multiply", s);
array temp2(temp_shape, complex64, nullptr, {});
slice_gpu(pad_temp1, temp2, starts, strides, s);
binary_op_gpu_inplace({temp2, w_k_broadcast}, temp1, "Multiply", s);
if (real && !inverse) {
Shape rstarts(in.ndim(), 0);
@@ -449,26 +589,21 @@ void multi_upload_bluestein_fft(
array temp_float(out.shape(), out.dtype(), nullptr, {});
copies.push_back(temp_float);
copies.push_back(inv_n);
copies.push_back(temp1);
copy_gpu(temp1, temp_float, CopyType::General, s);
binary_op_gpu({temp_float, inv_n}, out, "Multiply", s);
} else if (inverse) {
auto inv_n = array({1.0f / n}, {1}, complex64);
unary_op_gpu({temp1}, temp, "Conjugate", s);
binary_op_gpu({temp, inv_n}, out, "Multiply", s);
array temp3(temp_shape, complex64, nullptr, {});
unary_op_gpu({temp1}, temp3, "Conjugate", s);
binary_op_gpu({temp3, inv_n}, out, "Multiply", s);
copies.push_back(inv_n);
copies.push_back(temp1);
copies.push_back(temp3);
} else {
out.copy_shared_buffer(temp1);
}
copies.push_back(w_k);
copies.push_back(w_q);
copies.push_back(w_k_broadcast);
copies.push_back(w_q_broadcast);
copies.push_back(temp);
copies.push_back(temp1);
copies.push_back(pad_temp);
copies.push_back(pad_temp1);
}
void four_step_fft(
@@ -477,9 +612,10 @@ void four_step_fft(
size_t axis,
bool inverse,
bool real,
FFTPlan& plan,
std::vector<array> copies,
const Stream& s) {
OldFFTPlan& plan,
std::vector<array>& copies,
const Stream& s,
bool in_place) {
auto& d = metal::device(s.device);
if (plan.bluestein_n == -1) {
@@ -489,10 +625,26 @@ void four_step_fft(
auto temp_shape = (real && inverse) ? out.shape() : in.shape();
array temp(temp_shape, complex64, nullptr, {});
fft_op(
in, temp, axis, inverse, real, four_step_params, /*inplace=*/false, s);
in,
temp,
axis,
inverse,
real,
four_step_params,
/*inplace=*/false,
d,
s);
four_step_params.first_step = false;
fft_op(
temp, out, axis, inverse, real, four_step_params, /*inplace=*/false, s);
temp,
out,
axis,
inverse,
real,
four_step_params,
/*inplace=*/in_place,
d,
s);
copies.push_back(temp);
} else {
multi_upload_bluestein_fft(in, out, axis, inverse, real, plan, copies, s);
@@ -507,9 +659,8 @@ void fft_op(
bool real,
const FourStepParams four_step_params,
bool inplace,
metal::Device& d,
const Stream& s) {
auto& d = metal::device(s.device);
size_t n = out.dtype() == float32 ? out.shape(axis) : in.shape(axis);
if (n == 1) {
out.copy_shared_buffer(in);
@@ -574,7 +725,7 @@ void fft_op(
auto plan = plan_fft(n);
if (plan.four_step) {
four_step_fft(in, out, axis, inverse, real, plan, copies, s);
four_step_fft(in, out, axis, inverse, real, plan, copies, s, inplace);
d.add_temporaries(std::move(copies), s.index);
return;
}
@@ -744,57 +895,517 @@ void fft_op(
d.add_temporaries(std::move(copies), s.index);
}
void fft_op(
inline int compute_elems_per_thread(int n, const std::vector<int>& steps) {
auto radices = supported_radices();
std::set<int> used_radices;
for (int i = 0; i < steps.size(); i++) {
if (steps[i] > 0) {
used_radices.insert(radices[i % radices.size()]);
}
}
// Manual tuning for 7/11/13
if (used_radices.find(7) != used_radices.end() &&
(used_radices.find(11) != used_radices.end() ||
used_radices.find(13) != used_radices.end())) {
return 7;
} else if (
used_radices.find(11) != used_radices.end() &&
used_radices.find(13) != used_radices.end()) {
return 11;
}
// TODO(alexbarron) Some really weird stuff is going on
// for certain `elems_per_thread` on large composite n.
// Possibly a compiler issue?
if (n == 3159)
return 13;
if (n == 3645)
return 5;
if (n == 3969)
return 7;
if (n == 1982)
return 5;
if (used_radices.size() == 1) {
return *(used_radices.begin());
}
if (used_radices.size() == 2 &&
(used_radices.find(11) != used_radices.end() ||
used_radices.find(13) != used_radices.end())) {
return std::accumulate(used_radices.begin(), used_radices.end(), 0) / 2;
}
// In all other cases use the second smallest radix.
return *(++used_radices.begin());
}
inline array ensure_fastest_moving_axis(
const array& x,
int axis,
metal::Device& d,
const Stream& s) {
// The axis is already with a stride of 1 so check that we have no overlaps
// and broadcasting and avoid the copy.
if (x.strides(axis) == 1) {
// This is a fairly strict test perhaps consider relaxing it in the future.
if (x.flags().row_contiguous || x.flags().col_contiguous) {
return x;
}
}
// To make it the fastest moving axis simply transpose it, then copy it and
// then transpose it back.
// Transpose it
std::vector<int> axes(x.ndim(), 0);
for (int ax = 0; ax < axes.size(); ax++) {
axes[ax] = (ax < axis) ? ax : ax + 1;
}
axes.back() = axis;
Shape xtshape;
xtshape.reserve(axes.size());
for (auto ax : axes) {
xtshape.push_back(x.shape(ax));
}
array xt(xtshape, x.dtype(), nullptr, {});
transpose(x, xt, axes);
// Copy it
array xtc(xt.shape(), x.dtype(), nullptr, {});
copy_gpu(
xt,
xtc,
xt.flags().row_contiguous ? CopyType::Vector : CopyType::General,
s);
d.add_temporary(xtc, s.index);
// Transpose it
for (int ax = 0; ax < axes.size(); ax++) {
axes[ax] = (ax < axis) ? ax : ((ax == axis) ? axes.size() - 1 : ax - 1);
}
array y(x.shape(), x.dtype(), nullptr, {});
transpose(xtc, y, axes);
return y;
}
inline void prepare_output_array(const array& in, array& out, int axis) {
// Prepare the output array such that it matches the input in terms of
// stride ordering. Namely we might have moved `axis` around in the `in`
// array. We must do the same in `out`. The difference is that we don't have
// to copy anything because `out` contains garbage at the moment.
if (in.flags().row_contiguous && out.flags().row_contiguous) {
return;
}
std::vector<int> axes(out.ndim(), 0);
for (int ax = 0; ax < axes.size(); ax++) {
axes[ax] = (ax < axis) ? ax : ax + 1;
}
axes.back() = axis;
as_transposed(out, axes);
}
void fft_stockham_inplace(
const FFTPlan& plan,
const array& in_,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Prepare the input and output arrays such that `axis` has stride 1.
// Possibly copy the input but never the output as it doesn't have anything
// useful in it yet.
array in = ensure_fastest_moving_axis(in_, axis, d, s);
prepare_output_array(in, out, axis);
// Prepare the arguments for stockham fft
int n = plan.size();
bool power_of_2 = is_power_of_2(n);
int total_batch_size =
out.dtype() == float32 ? out.size() / n : in.size() / n;
auto& steps = plan.steps();
int elems_per_thread = compute_elems_per_thread(n, steps);
int threads_per_fft = ceildiv(n, elems_per_thread);
int tg_batch_size = std::max(MIN_THREADGROUP_MEM_SIZE / n, 1);
int tg_mem_size = next_power_of_2(tg_batch_size * n);
int batch_size = ceildiv(total_batch_size, tg_batch_size);
batch_size = real ? ceildiv(batch_size, 2) : batch_size; // 2 RFFTs at once
std::vector<MTLFC> func_consts = {
{&inverse, MTL::DataType::DataTypeBool, 0},
{&power_of_2, MTL::DataType::DataTypeBool, 1},
{&elems_per_thread, MTL::DataType::DataTypeInt, 2}};
for (int i = 0; i < steps.size(); i++) {
func_consts.emplace_back(&steps[i], MTL::DataType::DataTypeInt, 4 + i);
}
// Get the kernel
auto in_type = in.dtype() == float32 ? "float" : "float2";
auto out_type = out.dtype() == float32 ? "float" : "float2";
std::string hash_name;
std::string kname;
kname.reserve(64);
hash_name.reserve(64);
concatenate(kname, "fft_mem_", tg_mem_size, "_", in_type, "_", out_type);
concatenate(hash_name, kname, "_n", n, "_inv_", inverse);
auto template_def =
get_template_definition(kname, "fft", tg_mem_size, in_type, out_type);
auto kernel = get_fft_kernel(d, kname, hash_name, func_consts, template_def);
// Launch it
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(n, 2);
compute_encoder.set_bytes(total_batch_size, 3);
MTL::Size group_dims(1, tg_batch_size, threads_per_fft);
MTL::Size grid_dims(batch_size, tg_batch_size, threads_per_fft);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void fft_four_step_inplace(
const FFTPlan& plan,
const array& in_,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Prepare the input and output arrays such that `axis` has stride 1.
// Possibly copy the input but never the output as it doesn't have anything
// useful in it yet.
array in = ensure_fastest_moving_axis(in_, axis, d, s);
prepare_output_array(in, out, axis);
// Also prepare the intermediate array for the four-step fft which is
// implemented with 2 kernel calls.
array intermediate(
(real && inverse) ? out.shape() : in.shape(), complex64, nullptr, {});
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
prepare_output_array(in, intermediate, axis);
d.add_temporary(intermediate, s.index);
// Make the two calls
for (int step = 0; step < 2; step++) {
// Create the parameters
int n1 = plan.first_size();
int n2 = plan.second_size();
int n = (step == 0) ? n1 : n2;
bool power_of_2 = true;
int total_batch_size =
out.dtype() == float32 ? out.size() / n : in.size() / n;
auto& steps = (step == 0) ? plan.first_steps() : plan.second_steps();
int elems_per_thread = compute_elems_per_thread(n, steps);
int threads_per_fft = ceildiv(n, elems_per_thread);
int tg_batch_size =
std::max(MIN_THREADGROUP_MEM_SIZE / n, MIN_COALESCE_WIDTH);
int tg_mem_size = next_power_of_2(tg_batch_size * n);
int batch_size = ceildiv(total_batch_size, tg_batch_size);
std::vector<MTLFC> func_consts = {
{&inverse, MTL::DataType::DataTypeBool, 0},
{&power_of_2, MTL::DataType::DataTypeBool, 1},
{&elems_per_thread, MTL::DataType::DataTypeInt, 2}};
for (int i = 0; i < steps.size(); i++) {
func_consts.emplace_back(&steps[i], MTL::DataType::DataTypeInt, 4 + i);
}
// Get the kernel
auto to_type = [](const array& x) {
return x.dtype() == float32 ? "float" : "float2";
};
auto in_type = step == 0 ? to_type(in) : to_type(intermediate);
auto out_type = step == 0 ? to_type(intermediate) : to_type(out);
std::string hash_name;
std::string kname;
kname.reserve(64);
hash_name.reserve(64);
concatenate(
kname,
"four_step_mem_",
tg_mem_size,
"_",
in_type,
"_",
out_type,
"_",
step,
(real ? "_true" : "_false"));
concatenate(hash_name, kname, "_n", n, "_inv_", inverse);
auto template_def = get_template_definition(
kname, "four_step_fft", tg_mem_size, in_type, out_type, step, real);
auto kernel =
get_fft_kernel(d, kname, hash_name, func_consts, template_def);
// Launch it
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array((step == 0) ? in : intermediate, 0);
compute_encoder.set_output_array((step == 0) ? intermediate : out, 1);
compute_encoder.set_bytes(n1, 2);
compute_encoder.set_bytes(n2, 3);
compute_encoder.set_bytes(total_batch_size, 4);
MTL::Size group_dims(1, tg_batch_size, threads_per_fft);
MTL::Size grid_dims(batch_size, tg_batch_size, threads_per_fft);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void fft_bluestein(
const FFTPlan& plan,
const array& in_,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Prepare the input and output arrays such that `axis` has stride 1.
// Possibly copy the input but never the output as it doesn't have anything
// useful in it yet.
array in = ensure_fastest_moving_axis(in_, axis, d, s);
prepare_output_array(in, out, axis);
// Prepare the arguments for bluestein fft
int n = plan.bluestein_size();
bool power_of_2 = true;
int total_batch_size = out.dtype() == float32 ? out.size() / plan.size()
: in.size() / plan.size();
auto& steps = plan.steps();
int elems_per_thread = compute_elems_per_thread(n, steps);
int threads_per_fft = ceildiv(n, elems_per_thread);
int tg_batch_size = std::max(MIN_THREADGROUP_MEM_SIZE / n, 1);
int tg_mem_size = next_power_of_2(tg_batch_size * n);
int batch_size = ceildiv(total_batch_size, tg_batch_size);
batch_size = real ? ceildiv(batch_size, 2) : batch_size; // 2 RFFTs at once
std::vector<MTLFC> func_consts = {
{&inverse, MTL::DataType::DataTypeBool, 0},
{&power_of_2, MTL::DataType::DataTypeBool, 1},
{&elems_per_thread, MTL::DataType::DataTypeInt, 2}};
for (int i = 0; i < steps.size(); i++) {
func_consts.emplace_back(&steps[i], MTL::DataType::DataTypeInt, 4 + i);
}
// Get the kernel
auto in_type = in.dtype() == float32 ? "float" : "float2";
auto out_type = out.dtype() == float32 ? "float" : "float2";
std::string hash_name;
std::string kname;
kname.reserve(64);
hash_name.reserve(64);
concatenate(
kname, "bluestein_fft_mem_", tg_mem_size, "_", in_type, "_", out_type);
concatenate(hash_name, kname, "_n", n, "_inv_", inverse);
auto template_def = get_template_definition(
kname, "bluestein_fft", tg_mem_size, in_type, out_type);
auto kernel = get_fft_kernel(d, kname, hash_name, func_consts, template_def);
// Get the bluestein constants
auto [w_k, w_q] =
compute_bluestein_constants(plan.size(), plan.bluestein_size());
d.add_temporary(w_k, s.index);
d.add_temporary(w_q, s.index);
// Launch it
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_input_array(w_q, 2);
compute_encoder.set_input_array(w_k, 3);
compute_encoder.set_bytes(plan.size(), 4);
compute_encoder.set_bytes(n, 5);
compute_encoder.set_bytes(total_batch_size, 6);
MTL::Size group_dims(1, tg_batch_size, threads_per_fft);
MTL::Size grid_dims(batch_size, tg_batch_size, threads_per_fft);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void fft_multi_upload_bluestein(
const FFTPlan& plan,
const array& in_,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Get Bluestein's constants using the CPU (this is done in the submission
// thread which is pretty bad).
auto [w_k, w_q] =
compute_bluestein_constants(plan.size(), plan.bluestein_size());
d.add_temporary(w_k, s.index);
d.add_temporary(w_q, s.index);
// Prepare the input
auto in_shape = inverse ? out.shape() : in_.shape();
array in(std::move(in_shape), complex64, nullptr, {});
if (real && !inverse) {
copy_gpu(
in_,
in,
in_.flags().row_contiguous ? CopyType::Vector : CopyType::General,
s);
d.add_temporary(in, s.index);
} else if (real && inverse) {
int back_offset = plan.size() % 2 == 0 ? 2 : 1;
auto slice_shape = in.shape();
slice_shape[axis] -= back_offset;
array slice_temp(slice_shape, complex64, nullptr, {});
array conj_temp(in.shape(), complex64, nullptr, {});
Shape rstarts(in.ndim(), 0);
Shape rstrides(in.ndim(), 1);
rstarts[axis] = in.shape(axis) - back_offset;
rstrides[axis] = -1;
unary_op_gpu({in_}, conj_temp, "Conjugate", s);
slice_gpu(in_, slice_temp, rstarts, rstrides, s);
concatenate_gpu({conj_temp, slice_temp}, in, (int)axis, s);
d.add_temporary(conj_temp, s.index);
} else if (inverse) {
unary_op_gpu({in_}, in, "Conjugate", s);
d.add_temporary(in, s.index);
} else {
in.copy_shared_buffer(in_);
}
// Multiply with
Strides b_strides(in.ndim(), 0);
b_strides[axis] = 1;
array w_k_broadcast(in.shape(), complex64, nullptr, {});
w_k_broadcast.copy_shared_buffer(w_k, b_strides, {}, w_k.data_size());
array x(in.shape(), complex64, nullptr, {});
binary_op_gpu({in, w_k_broadcast}, x, "Multiply", s);
d.add_temporary(x, s.index);
// Pad
auto padded_shape = out.shape();
padded_shape[axis] = plan.bluestein_size();
array padded_x(padded_shape, complex64, nullptr, {});
auto zero = array(complex64_t{0.0f, 0.0f});
pad_gpu(x, zero, padded_x, {(int)axis}, {0}, s);
d.add_temporary(zero, s.index);
d.add_temporary(padded_x, s.index);
// First fft
}
void fft_op_inplace(
const array& in,
array& out,
size_t axis,
bool inverse,
bool real,
bool inplace,
metal::Device& d,
const Stream& s) {
fft_op(in, out, axis, inverse, real, FourStepParams(), inplace, s);
// Get the FFT size and plan it
auto plan =
FFTPlan(out.dtype() == float32 ? out.shape(axis) : in.shape(axis));
switch (plan.type()) {
case FFTPlan::NOOP:
std::cout << "--------------> 1-size FFT <-----------------" << std::endl;
break;
case FFTPlan::STOCKHAM:
return fft_stockham_inplace(plan, in, out, axis, inverse, real, d, s);
case FFTPlan::SMALL_FOUR_STEP:
return fft_four_step_inplace(plan, in, out, axis, inverse, real, d, s);
case FFTPlan::BLUESTEIN:
return fft_bluestein(plan, in, out, axis, inverse, real, d, s);
case FFTPlan::UNSUPPORTED: {
std::string msg;
concatenate(msg, "FFT of size ", plan.size(), " not supported");
throw std::runtime_error(msg);
}
default:
std::cout << "----- NYI ----" << std::endl;
break;
}
}
void nd_fft_op(
void nd_fft_op_inplace(
const array& in,
array& out,
const std::vector<size_t>& axes,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Perform ND FFT on GPU as a series of 1D FFTs
auto temp_shape = inverse ? in.shape() : out.shape();
array temp1(temp_shape, complex64, nullptr, {});
array temp2(temp_shape, complex64, nullptr, {});
std::vector<array> temp_arrs = {temp1, temp2};
for (int i = axes.size() - 1; i >= 0; i--) {
int reverse_index = axes.size() - i - 1;
// For 5D and above, we don't want to reallocate our two temporary arrays
bool inplace = reverse_index >= 3 && i != 0;
// Opposite order for fft vs ifft
int index = inverse ? reverse_index : i;
size_t axis = axes[index];
// Mirror np.fft.(i)rfftn and perform a real transform
// only on the final axis.
bool step_real = (real && index == axes.size() - 1);
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
}
// We are going to make and possibly reuse some intermediate arrays that will
// hold the intermediate fft results.
auto shape = inverse ? in.shape() : out.shape();
std::vector<array> intermediates;
intermediates.reserve(2);
auto& d = metal::device(s.device);
d.add_temporaries(std::move(temp_arrs), s.index);
// Utility to return either in or one of the intermediates.
auto get_input_array = [&](int step) -> const array& {
// The first step so use the input array
if (step == 0) {
return in;
}
return intermediates[(step - 1) % 2];
};
// Utility to return either out or one of the intermediates. It also informs
// us if we should allocate memory for that output or there is already some
// allocated.
auto get_output_array = [&](int step) -> array& {
// It is the final step so return the output array
if (step == axes.size() - 1) {
return out;
}
// We already have made an array that we can use so go ahead and use it and
// don't reallocate the memory.
if (step % 2 < intermediates.size()) {
return intermediates[step % 2];
}
array x(shape, complex64, nullptr, {});
x.set_data(allocator::malloc(x.nbytes()));
intermediates.emplace_back(std::move(x));
d.add_temporary(intermediates.back(), s.index);
return intermediates.back();
};
// Perform ND FFT on GPU as a series of 1D FFTs
for (int step = 0; step < axes.size(); step++) {
auto x = get_input_array(step);
auto y = get_output_array(step);
auto step_axis = axes[inverse ? step : axes.size() - step - 1];
auto step_real = real && (inverse ? step == axes.size() - 1 : step == 0);
fft_op_inplace(x, y, step_axis, inverse, step_real, d, s);
}
}
void FFT::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = metal::device(s.device);
auto& in = inputs[0];
// The FFT ops above have the *_inplace suffix. This means that the memory
// needs to be already allocated in the output array. Similar to
// copy_gpu_inplace and so on.
//
// Even though we allocate the memory, we do not necessarily want the
// contiguous strides so the *_inplace ops may change the strides and flags
// of the array but will not reallocate the memory.
out.set_data(allocator::malloc(out.nbytes()));
if (axes_.size() > 1) {
nd_fft_op(in, out, axes_, inverse_, real_, s);
nd_fft_op_inplace(in, out, axes_, inverse_, real_, d, s);
} else {
fft_op(in, out, axes_[0], inverse_, real_, /*inplace=*/false, s);
fft_op_inplace(in, out, axes_[0], inverse_, real_, d, s);
}
}

View File

@@ -1,11 +1,9 @@
// Copyright © 2024 Apple Inc.
#include <map>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/hadamard.h"
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/kernels.h"
@@ -15,7 +13,6 @@
namespace mlx::core {
constexpr int MAX_HADAMARD_THREADS_PER_GROUP = 256;
constexpr int MAX_HADAMARD_BYTES = 32768; // 32KB
std::string gen_hadamard_codelet(int m) {
// Generate a O(m^2) hadamard codelet for a given M
@@ -60,121 +57,142 @@ std::string gen_hadamard_codelet(int m) {
return source.str();
}
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
void hadamard_mn_contiguous(
const array& x,
array& y,
int m,
int n1,
int n2,
float scale,
metal::Device& d,
const Stream& s) {
int n = n1 * n2;
int read_width_n1 = n1 == 2 ? 2 : 4;
int read_width_n2 = n2 == 2 ? 2 : 4;
int read_width_m = (n == 2 || m == 28) ? 2 : 4;
int max_radix_1 = std::min(n1, 16);
int max_radix_2 = std::min(n2, 16);
float scale_n1 = 1.0;
float scale_n2 = (m == 1) ? scale : 1.0;
float scale_m = scale;
auto& in = inputs[0];
// n2 is a row contiguous power of 2 hadamard transform
MTL::Size group_dims_n2(n2 / max_radix_2, 1, 1);
MTL::Size grid_dims_n2(n2 / max_radix_2, x.size() / n2, 1);
std::vector<array> copies;
// Only support the last axis for now
int axis = in.ndim() - 1;
auto check_input = [&copies, &s](const array& x) {
// TODO(alexbarron) pass strides to kernel to relax this constraint
bool no_copy = x.flags().row_contiguous;
if (no_copy) {
return x;
} else {
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
copy_gpu(x, copies.back(), CopyType::General, s);
return copies.back();
// n1 is a strided power of 2 hadamard transform with stride n2
MTL::Size group_dims_n1(n1 / max_radix_1, 1, 1);
MTL::Size grid_dims_n1(n1 / max_radix_1, x.size() / n, n2);
// m is a strided hadamard transform with stride n = n1 * n2
MTL::Size group_dims_m(
std::min(n / read_width_m, MAX_HADAMARD_THREADS_PER_GROUP), 1, 1);
MTL::Size grid_dims_m(
group_dims_m.width, x.size() / m / read_width_m / group_dims_m.width, 1);
// Make the kernel
std::string kname;
kname.reserve(32);
concatenate(kname, "hadamard_", n * m, "_", type_to_name(x));
auto lib = d.get_library(kname, [&]() {
std::string kernel;
concatenate(
kernel,
metal::utils(),
gen_hadamard_codelet(m),
metal::hadamard(),
get_template_definition(
"n2" + kname,
"hadamard_n",
get_type_string(x.dtype()),
n2,
max_radix_2,
read_width_n2));
if (n1 > 1) {
kernel += get_template_definition(
"n1" + kname,
"hadamard_n",
get_type_string(x.dtype()),
n1,
max_radix_1,
read_width_n1,
n2);
}
};
const array& in_contiguous = check_input(in);
if (in_contiguous.is_donatable()) {
out.copy_shared_buffer(in_contiguous);
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
int n, m;
std::tie(n, m) = decompose_hadamard(in.shape(axis));
if (n * (int)size_of(in.dtype()) > MAX_HADAMARD_BYTES) {
throw std::invalid_argument(
"[hadamard] For n = m*2^k, 2^k > 8192 for FP32 or 2^k > 16384 for FP16/BF16 NYI");
}
int max_radix = std::min(n, 16);
// Use read_width 2 for m = 28 to avoid register spilling
int read_width = (n == 2 || m == 28) ? 2 : 4;
std::ostringstream kname;
kname << "hadamard_" << n * m << "_" << type_to_name(out);
auto kernel_name = kname.str();
auto& d = metal::device(s.device);
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
auto codelet = gen_hadamard_codelet(m);
kernel_source << metal::utils() << codelet << metal::hadamard();
kernel_source << get_template_definition(
"n" + kernel_name,
"hadamard_n",
get_type_string(in.dtype()),
n,
max_radix,
read_width);
kernel_source << get_template_definition(
"m" + kernel_name,
"hadamard_m",
get_type_string(in.dtype()),
n,
m,
read_width);
return kernel_source.str();
if (m > 1) {
kernel += get_template_definition(
"m" + kname,
"hadamard_m",
get_type_string(x.dtype()),
n,
m,
read_width_m);
}
return kernel;
});
int batch_size = in.size() / n;
int threads_per = n / max_radix;
auto& compute_encoder = d.get_command_encoder(s.index);
auto launch_hadamard = [&](const array& in,
array& out,
const std::string& kernel_name,
float scale) {
auto kernel = d.get_kernel(kernel_name, lib);
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
// Launch the strided transform for n1
if (n1 > 1) {
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel("n1" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(scale, 2);
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
};
if (m > 1) {
// When m is greater than 1, we decompose the
// computation into two uploads to the GPU:
//
// e.g. len(x) = 12*4 = 48, m = 12, n = 4
//
// y = h48 @ x
//
// Upload 1:
// tmp = a.reshape(12, 4) @ h4
//
// Upload 2:
// y = h12 @ tmp
array temp(in.shape(), in.dtype(), nullptr, {});
temp.set_data(allocator::malloc(temp.nbytes()));
copies.push_back(temp);
launch_hadamard(in_contiguous, temp, "n" + kernel_name, 1.0);
// Metal sometimes reports 256 max threads per group for hadamard_m kernel
threads_per = std::min(n / read_width, MAX_HADAMARD_THREADS_PER_GROUP);
batch_size = in.size() / m / read_width / threads_per;
launch_hadamard(temp, out, "m" + kernel_name, scale_);
} else {
launch_hadamard(in_contiguous, out, "n" + kernel_name, scale_);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_n1, 2);
compute_encoder.dispatch_threads(grid_dims_n1, group_dims_n1);
}
d.add_temporaries(std::move(copies), s.index);
// Launch the transform for n2
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel("n2" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(n1 > 1 ? y : x, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_n2, 2);
compute_encoder.dispatch_threads(grid_dims_n2, group_dims_n2);
// Launch the strided transform for m
if (m > 1) {
auto kernel = d.get_kernel("m" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(y, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_m, 2);
compute_encoder.dispatch_threads(grid_dims_m, group_dims_m);
}
}
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = metal::device(s.device);
auto& in = inputs[0];
// Split the hadamard transform so that all of them work on vectors smaller
// than 8192 elements.
//
// We decompose it in the following way:
//
// n = m * n1 * n2 = m * 2^k1 * 2^k2
//
// where m is in (1, 12, 20, 28) and n1 and n2 <= 8192
auto [n, m] = decompose_hadamard(in.shape().back());
int n1 = 1, n2 = n;
if (n > 8192) {
for (n2 = 2; n2 * n2 < n; n2 *= 2) {
}
n1 = n / n2;
}
if (in.flags().row_contiguous) {
if (in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
hadamard_mn_contiguous(in, out, m, n1, n2, scale_, d, s);
} else {
copy_gpu(in, out, CopyType::General, s);
hadamard_mn_contiguous(out, out, m, n1, n2, scale_, d, s);
}
}
} // namespace mlx::core

View File

@@ -2,7 +2,7 @@
#include <fmt/format.h>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/jit/indexing.h"

View File

@@ -1,9 +0,0 @@
// Copyright © 2024 Apple Inc.
constexpr std::string_view arange_kernels = R"(
template [[host_name("{0}")]] [[kernel]] void arange<{1}>(
constant const {1}& start,
constant const {1}& step,
device {1}* out,
uint index [[thread_position_in_grid]]);
)";

View File

@@ -20,6 +20,7 @@ const char* copy();
const char* fft();
const char* gather_axis();
const char* hadamard();
const char* logsumexp();
const char* quantized();
const char* ternary();
const char* scan();
@@ -32,6 +33,7 @@ const char* gemm();
const char* steel_gemm_fused();
const char* steel_gemm_masked();
const char* steel_gemm_splitk();
const char* steel_gemm_gather();
const char* conv();
const char* steel_conv();
const char* steel_conv_general();

View File

@@ -1,23 +0,0 @@
// Copyright © 2024 Apple Inc.
constexpr std::string_view softmax_kernels = R"(
template [[host_name("block_{0}")]] [[kernel]] void
softmax_single_row<{1}, {2}>(
const device {1}* in,
device {1}* out,
constant int& axis_size,
uint gid [[thread_position_in_grid]],
uint _lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
template [[host_name("looped_{0}")]] [[kernel]] void
softmax_looped<{1}, {2}>(
const device {1}* in,
device {1}* out,
constant int& axis_size,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
)";

View File

@@ -1,8 +1,6 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/jit/arange.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/jit/softmax.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
@@ -21,13 +19,11 @@ MTL::ComputePipelineState* get_arange_kernel(
const std::string& kernel_name,
const array& out) {
auto lib = d.get_library(kernel_name, [&]() {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::arange()
<< fmt::format(
arange_kernels,
kernel_name,
get_type_string(out.dtype()));
return kernel_source.str();
std::string kernel_source = metal::utils();
kernel_source += metal::arange();
kernel_source += get_template_definition(
kernel_name, "arange", get_type_string(out.dtype()));
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -259,14 +255,34 @@ MTL::ComputePipelineState* get_softmax_kernel(
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&] {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::softmax()
<< fmt::format(
softmax_kernels,
lib_name,
get_type_string(out.dtype()),
get_type_string(precise ? float32 : out.dtype()));
return kernel_source.str();
std::string kernel_source = metal::utils();
auto in_type = get_type_string(out.dtype());
auto acc_type = get_type_string(precise ? float32 : out.dtype());
kernel_source += metal::softmax();
kernel_source += get_template_definition(
"block_" + lib_name, "softmax_single_row", in_type, acc_type);
kernel_source += get_template_definition(
"looped_" + lib_name, "softmax_looped", in_type, acc_type);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_logsumexp_kernel(
metal::Device& d,
const std::string& kernel_name,
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&] {
auto t_str = get_type_string(out.dtype());
std::string kernel_source;
kernel_source = metal::utils();
kernel_source += metal::logsumexp();
kernel_source +=
get_template_definition("block_" + lib_name, "logsumexp", t_str);
kernel_source += get_template_definition(
"looped_" + lib_name, "logsumexp_looped", t_str);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -568,6 +584,44 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& out,
bool transpose_a,
bool transpose_b,
int bm,
int bn,
int bk,
int wm,
int wn,
bool rhs) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source;
concatenate(
kernel_source,
metal::utils(),
metal::gemm(),
metal::steel_gemm_gather(),
get_template_definition(
lib_name,
rhs ? "gather_mm_rhs" : "gather_mm",
get_type_string(out.dtype()),
bm,
bn,
bk,
wm,
wn,
transpose_a,
transpose_b));
return kernel_source;
});
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
}
MTL::ComputePipelineState* get_gemv_masked_kernel(
metal::Device& d,
const std::string& kernel_name,
@@ -698,4 +752,43 @@ MTL::ComputePipelineState* get_quantized_kernel(
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_gather_qmm_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& x,
int group_size,
int bits,
int bm,
int bn,
int bk,
int wm,
int wn,
bool transpose) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source;
concatenate(
kernel_source,
metal::utils(),
metal::gemm(),
metal::quantized(),
get_template_definition(
lib_name,
"gather_qmm_rhs",
get_type_string(x.dtype()),
group_size,
bits,
bm,
bn,
bk,
wm,
wn,
transpose));
return kernel_source;
});
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
}
} // namespace mlx::core

View File

@@ -59,6 +59,11 @@ MTL::ComputePipelineState* get_softmax_kernel(
bool precise,
const array& out);
MTL::ComputePipelineState* get_logsumexp_kernel(
metal::Device& d,
const std::string& kernel_name,
const array& out);
MTL::ComputePipelineState* get_scan_kernel(
metal::Device& d,
const std::string& kernel_name,
@@ -155,6 +160,21 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
bool mn_aligned,
bool k_aligned);
MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& out,
bool transpose_a,
bool transpose_b,
int bm,
int bn,
int bk,
int wm,
int wn,
bool rhs);
MTL::ComputePipelineState* get_steel_conv_kernel(
metal::Device& d,
const std::string& kernel_name,
@@ -204,6 +224,21 @@ MTL::ComputePipelineState* get_quantized_kernel(
const std::string& kernel_name,
const std::string& template_def);
MTL::ComputePipelineState* get_gather_qmm_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& x,
int group_size,
int bits,
int bm,
int bn,
int bk,
int wm,
int wn,
bool transpose);
// Create a GPU kernel template definition for JIT compilation
template <typename... Args>
std::string

View File

@@ -13,6 +13,10 @@ function(build_kernel_base TARGET SRCFILE DEPS)
if(MLX_METAL_DEBUG)
set(METAL_FLAGS ${METAL_FLAGS} -gline-tables-only -frecord-sources)
endif()
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
set(METAL_FLAGS ${METAL_FLAGS}
"-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
endif()
if(MLX_METAL_VERSION GREATER_EQUAL 310)
set(VERSION_INCLUDES
${PROJECT_SOURCE_DIR}/mlx/backend/metal/kernels/metal_3_1)
@@ -65,6 +69,7 @@ set(STEEL_HEADERS
steel/gemm/loader.h
steel/gemm/transforms.h
steel/gemm/kernels/steel_gemm_fused.h
steel/gemm/kernels/steel_gemm_gather.h
steel/gemm/kernels/steel_gemm_masked.h
steel/gemm/kernels/steel_gemm_splitk.h
steel/utils/type_traits.h
@@ -105,12 +110,14 @@ if(NOT MLX_METAL_JIT)
build_kernel(quantized quantized.h ${STEEL_HEADERS})
build_kernel(scan scan.h)
build_kernel(softmax softmax.h)
build_kernel(logsumexp logsumexp.h)
build_kernel(sort sort.h)
build_kernel(ternary ternary.h ternary_ops.h)
build_kernel(unary unary.h unary_ops.h)
build_kernel(steel/conv/kernels/steel_conv ${STEEL_HEADERS})
build_kernel(steel/conv/kernels/steel_conv_general ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_fused ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_gather ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_masked ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_splitk ${STEEL_HEADERS})
build_kernel(gemv_masked steel/utils.h)

View File

@@ -5,11 +5,7 @@
#include "mlx/backend/metal/kernels/arange.h"
#define instantiate_arange(tname, type) \
template [[host_name("arange" #tname)]] [[kernel]] void arange<type>( \
constant const type& start, \
constant const type& step, \
device type* out, \
uint index [[thread_position_in_grid]]);
instantiate_kernel("arange" #tname, arange, type)
instantiate_arange(uint8, uint8_t)
instantiate_arange(uint16, uint16_t)

View File

@@ -9,64 +9,85 @@ template <typename T, typename U, typename Op>
c[index] = Op()(a[0], b[0]);
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[0], b[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[0], b[index + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[index], b[0]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[index + i], b[0]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[index], b[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[index + i], b[index + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[0], b[offset]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[0], b[offset + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[0]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[offset + i], b[0]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[offset]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[offset + i], b[offset + i]);
}
}
template <typename T, typename U, typename Op, typename IdxT = int64_t>

View File

@@ -71,6 +71,7 @@ instantiate_binary_types_bool(Less)
instantiate_binary_types_bool(LessEqual)
instantiate_binary_types_bool(NotEqual)
instantiate_binary_float(LogAddExp)
instantiate_binary_all(LogAddExp, complex64, complex64_t, complex64_t)
instantiate_binary_types(Maximum)
instantiate_binary_types(Minimum)
instantiate_binary_types(Multiply)

View File

@@ -130,6 +130,24 @@ struct LogAddExp {
? maxval
: (maxval + log1p(metal::exp(minval - maxval)));
};
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag) || metal::isnan(y.real) ||
metal::isnan(y.imag)) {
return metal::numeric_limits<float>::quiet_NaN();
}
constexpr float inf = metal::numeric_limits<float>::infinity();
complex64_t maxval = x > y ? x : y;
complex64_t minval = x < y ? x : y;
if (minval.real == -inf || maxval.real == inf)
return maxval;
float m = metal::exp(minval.real - maxval.real);
complex64_t dexp{
m * metal::cos(minval.imag - maxval.imag),
m * metal::sin(minval.imag - maxval.imag),
};
return maxval + log1p(dexp);
}
};
struct Maximum {

View File

@@ -12,82 +12,103 @@ template <typename T, typename U, typename Op>
d[index] = out[1];
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[0], b[index]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[0], b[index + i]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[index], b[0]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[index + i], b[0]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[index], b[index]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[index + i], b[index + i]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[0], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[0], b[offset + i]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[0]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[offset + i], b[0]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[offset + i], b[offset + i]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op, typename IdxT = int64_t>

View File

@@ -104,10 +104,22 @@ constexpr bool operator==(complex64_t a, complex64_t b) {
constexpr complex64_t operator+(complex64_t a, complex64_t b) {
return {a.real + b.real, a.imag + b.imag};
}
constexpr complex64_t operator+(float a, complex64_t b) {
return {a + b.real, b.imag};
}
constexpr complex64_t operator+(complex64_t a, float b) {
return {a.real + b, a.imag};
}
constexpr complex64_t operator-(complex64_t a, complex64_t b) {
return {a.real - b.real, a.imag - b.imag};
}
constexpr complex64_t operator-(float a, complex64_t b) {
return {a - b.real, -b.imag};
}
constexpr complex64_t operator-(complex64_t a, float b) {
return {a.real - b, a.imag};
}
constexpr complex64_t operator*(complex64_t a, complex64_t b) {
return {a.real * b.real - a.imag * b.imag, a.real * b.imag + a.imag * b.real};
@@ -120,6 +132,13 @@ constexpr complex64_t operator/(complex64_t a, complex64_t b) {
return {x / denom, y / denom};
}
constexpr complex64_t operator/(float a, complex64_t b) {
auto denom = b.real * b.real + b.imag * b.imag;
auto x = a * b.real;
auto y = -a * b.imag;
return {x / denom, y / denom};
}
constexpr complex64_t operator%(complex64_t a, complex64_t b) {
auto real = a.real - (b.real * static_cast<int64_t>(a.real / b.real));
auto imag = a.imag - (b.imag * static_cast<int64_t>(a.imag / b.imag));

View File

@@ -275,6 +275,128 @@ instantiate_naive_conv_2d_blocks(float32, float);
instantiate_naive_conv_2d_blocks(float16, half);
instantiate_naive_conv_2d_blocks(bfloat16, bfloat16_t);
///////////////////////////////////////////////////////////////////////////////
/// Depthwise convolution kernels
///////////////////////////////////////////////////////////////////////////////
constant int ker_h [[function_constant(00)]];
constant int ker_w [[function_constant(01)]];
constant int str_h [[function_constant(10)]];
constant int str_w [[function_constant(11)]];
constant int tgp_h [[function_constant(100)]];
constant int tgp_w [[function_constant(101)]];
constant bool do_flip [[function_constant(200)]];
constant int span_h = tgp_h * str_h + ker_h - 1;
constant int span_w = tgp_w * str_w + ker_w - 1;
constant int span_hw = span_h * span_w;
template <typename T>
[[kernel]] void depthwise_conv_2d(
const device T* in [[buffer(0)]],
const device T* wt [[buffer(1)]],
device T* out [[buffer(2)]],
const constant MLXConvParams<2>& params [[buffer(3)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 gid [[thread_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int tc = 8;
constexpr int tw = 8;
constexpr int th = 4;
constexpr int c_per_thr = 8;
constexpr int TGH = th * 2 + 6;
constexpr int TGW = tw * 2 + 6;
constexpr int TGC = tc;
threadgroup T ins[TGH * TGW * TGC];
const int n_tgblocks_h = params.oS[0] / th;
const int n = tid.z / n_tgblocks_h;
const int tghid = tid.z % n_tgblocks_h;
const int oh = tghid * th + lid.z;
const int ow = gid.y;
const int c = gid.x;
in += n * params.in_strides[0];
// Load in
{
constexpr int n_threads = th * tw * tc;
const int tg_oh = (tghid * th) * str_h - params.pad[0];
const int tg_ow = (tid.y * tw) * str_w - params.pad[1];
const int tg_c = tid.x * tc;
const int thread_idx = simd_gid * 32 + simd_lid;
constexpr int thr_per_hw = tc / c_per_thr;
constexpr int hw_per_group = n_threads / thr_per_hw;
const int thr_c = thread_idx % thr_per_hw;
const int thr_hw = thread_idx / thr_per_hw;
for (int hw = thr_hw; hw < span_hw; hw += hw_per_group) {
const int h = hw / span_w;
const int w = hw % span_w;
const int ih = tg_oh + h;
const int iw = tg_ow + w;
const int in_s_offset = h * span_w * TGC + w * TGC;
if (ih >= 0 && ih < params.iS[0] && iw >= 0 && iw < params.iS[1]) {
const auto in_load =
in + ih * params.in_strides[1] + iw * params.in_strides[2] + tg_c;
MLX_MTL_PRAGMA_UNROLL
for (int cc = 0; cc < c_per_thr; ++cc) {
ins[in_s_offset + c_per_thr * thr_c + cc] =
in_load[c_per_thr * thr_c + cc];
}
} else {
MLX_MTL_PRAGMA_UNROLL
for (int cc = 0; cc < c_per_thr; ++cc) {
ins[in_s_offset + c_per_thr * thr_c + cc] = T(0);
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
wt += c * params.wt_strides[0];
const auto ins_ptr =
&ins[lid.z * str_h * span_w * TGC + lid.y * str_w * TGC + lid.x];
float o = 0.;
for (int h = 0; h < ker_h; ++h) {
for (int w = 0; w < ker_w; ++w) {
int wt_h = h;
int wt_w = w;
if (do_flip) {
wt_h = ker_h - h - 1;
wt_w = ker_w - w - 1;
}
auto inv = ins_ptr[h * span_w * TGC + w * TGC];
auto wtv = wt[wt_h * ker_w + wt_w];
o += inv * wtv;
}
}
threadgroup_barrier(mem_flags::mem_none);
out += n * params.out_strides[0] + oh * params.out_strides[1] +
ow * params.out_strides[2];
out[c] = static_cast<T>(o);
}
#define instantiate_depthconv2d(iname, itype) \
instantiate_kernel("depthwise_conv_2d_" #iname, depthwise_conv_2d, itype)
instantiate_depthconv2d(float32, float);
instantiate_depthconv2d(float16, half);
instantiate_depthconv2d(bfloat16, bfloat16_t);
///////////////////////////////////////////////////////////////////////////////
/// Winograd kernels
///////////////////////////////////////////////////////////////////////////////

Some files were not shown because too many files have changed in this diff Show More