Compare commits

..

71 Commits

Author SHA1 Message Date
Suryash Malviya
0408ba0a76 Optimizing Complex Matrix Multiplication using Karatsuba’s Algorithm (#2220)
* Implementing Complex Matmul using Karatsuba Algorithm

* Implemented Karatsuba's Algorithm for complex matmul and pre-commit them

* fix

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-02 15:58:46 -07:00
Awni Hannun
cbad6c3093 version (#2237) 2025-06-02 15:58:33 -07:00
Cheng
1b021f6984 Fast primitives decide when to use the fallback (#2216) 2025-06-02 13:26:37 -07:00
Cheng
95b7551d65 Do not check event.is_signaled() in eval_impl (#2230) 2025-06-02 13:23:34 -07:00
Cheng
db5a7c6192 Add memory cache to CUDA backend (#2221)
* Move BufferCache out of allocator

* Add memory cache to cuda backend allocator

* Simplify BufferCache assuming buf can not be null
2025-05-30 12:12:54 -07:00
Awni Hannun
6ef2f67e7f 5bit quants (#2226)
* 5bit quants

* 5bit quants
2025-05-30 12:12:10 -07:00
Cheng
f76ee1ffd2 Move some dims utils to common (#2223) 2025-05-29 06:48:30 -07:00
Cheng
54a71f270a Remove unused defines (#2217) 2025-05-23 06:14:58 -07:00
Awni Hannun
55b4062dd8 copyright in docs (#2214) 2025-05-21 17:13:04 -07:00
Cheng
79071bfba4 Fix out-of-bounds default value in logsumexp/softmax (#2213) 2025-05-21 07:25:16 -07:00
Cheng
7774b87cbd Remove redundant simd_sum in logsumexp (#2210) 2025-05-21 07:25:03 -07:00
Cheng
35c87741cf Build for compute capability 70 instead of 75 (#2209) 2025-05-20 19:42:48 -07:00
Jack Wind
4cbe605214 Feat: Allow per-target Metal debug flags (#2201)
* feat: allow per-target Metal debug flags

* formatting fix
2025-05-20 10:22:26 -07:00
Clement Liaw
ab8883dd55 include mlx::core::version() symbols in the mlx static library (#2207) 2025-05-20 07:39:11 -07:00
Awni Hannun
eebe73001a fix large arg reduce (#2206) 2025-05-19 13:10:44 -07:00
Angelos Katharopoulos
0359bf02c9 Nearest upsample (#2202) 2025-05-19 11:23:38 -07:00
Cheng
237f9e58a8 Fix BEFORE keyword in target_include_directories (#2204) 2025-05-19 06:10:44 -07:00
Awni Hannun
8576e6fe36 fix conv2d bug + faster conv 1d (#2195)
* fix conv2d bug + faster conv 1d

* revert sort + flaky test
2025-05-18 06:05:11 -07:00
Angelos Katharopoulos
0654543dcc Add complex eigh (#2191) 2025-05-18 00:18:43 -07:00
Awni Hannun
48ef3e74e2 reduce vjp for all and any (#2193) 2025-05-16 08:38:49 -07:00
Cheng
7d4b378952 Include cuda_bf16.h for bfloat16 overloads (#2192)
* Include cuda_bf16.h for bfloat16 overloads

* Add NO_GPU_MULTI(Eig) in cuda backend
2025-05-16 06:44:42 -07:00
Jack Wind
7ff5c41e06 Add set_threadgroup_memory_length to CommandEncoder (#2183) 2025-05-16 00:28:03 -07:00
Awni Hannun
602f43e3d1 fix conv grad (#2187) 2025-05-15 19:20:36 -07:00
Awni Hannun
a2cadb8218 real and imag properties (#2189) 2025-05-15 18:17:50 -07:00
Awni Hannun
c1eb9d05d9 non-symmetric eig and eigh (#2188) 2025-05-15 13:01:44 -07:00
Angelos Katharopoulos
cf6c939e86 Fix some complex vjps (#2178) 2025-05-14 23:37:12 -07:00
Angelos Katharopoulos
130df35e1b Add random normal distribution for complex numbers (#2182) 2025-05-13 22:43:45 -07:00
Cheng
0751263dec Fix typo in row_reduce_small (#2179) 2025-05-13 20:19:54 -07:00
Cheng
eca2f3eb97 Add remove_index utility (#2173) 2025-05-13 17:09:56 -07:00
Angelos Katharopoulos
3aa9cf3f9e Fix put_along_axis for empty arrays (#2181) 2025-05-13 14:27:53 -07:00
Awni Hannun
8f3d208dce Close a couple edge case bugs: hadamard and addmm on empty inputs (#2177)
* handle hadamard and addmm on empty inputs

* fix
2025-05-12 10:48:57 -07:00
Ivan Fioravanti
caaa3f1f8c Small typos in mx.metal deprecations (#2176) 2025-05-11 06:03:47 -07:00
Awni Hannun
659a51919f patch bump (#2162) 2025-05-09 14:35:14 -07:00
Awni Hannun
6661387066 Fix fft for integer overflow (#2161) 2025-05-09 14:25:12 -07:00
ATurker
a7fae8a176 fix: conv_general differences between gpu, cpu (#2070)
* fix general_conv padding

* fix bugs

* add test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-05-09 10:26:52 -07:00
Cheng
0cae0bdac8 CUDA backend: backbone (#2075) 2025-05-06 21:26:46 -07:00
Awni Hannun
5a1a5d5ed1 fix input coherent kernel launch (#2153) 2025-05-05 17:30:50 -07:00
Cheng
1683975acf Move common gpu primitives to backend/gpu (#2145) 2025-05-05 13:45:29 -07:00
Awni Hannun
af705590ac fix batched vector sdpa (#2152) 2025-05-05 13:13:03 -07:00
Awni Hannun
825124af8f fix bw for elementwise ops (#2151)
* fix bw for elementwise ops

* add compile

* fix

* fix

* fix

* fix
2025-05-05 06:15:04 -07:00
Awni Hannun
9c5e7da507 fix compile merging (#2150) 2025-05-02 15:08:50 -07:00
Angelos Katharopoulos
481349495b GPU Hadamard for large N (#1879) 2025-05-01 17:19:17 -07:00
Awni Hannun
9daa6b003f fix shapeless export (#2148) 2025-05-01 15:02:02 -07:00
Angelos Katharopoulos
a3a632d567 Fix the launcher when ran locally (#2147) 2025-05-01 12:56:09 -07:00
Awni Hannun
e496c5a4b4 fix integer overflow in qmm (#2143) 2025-04-30 09:28:56 -07:00
Cheng
ea890d8710 Remove metal-only tests (#2139) 2025-04-30 09:08:39 -07:00
Awni Hannun
aa5d84f102 Allow quant layer to be unfrozen (#2142) 2025-04-30 09:08:29 -07:00
Awni Hannun
f1606486d2 Generalize gpu backend (#2138)
* generalize gpu backend

* fix no_gpu build

* fix no_gpu build

* generalize gpu backend
2025-04-30 09:08:17 -07:00
Cheng
87720a8908 Fix building with uv (#2141) 2025-04-30 06:04:07 -07:00
Aashiq Dheeraj
bb6565ef14 add fftshift and ifftshift fft helpers (#2135)
* add fftshift and ifftshift fft helpers

* address comments

* axes have to be iterable

* fix fp error in roll + add test

---------

Co-authored-by: Aashiq Dheeraj <aashiq@aashiq-mbp-m4.local>
2025-04-29 22:13:45 -07:00
Awni Hannun
7bb063bcb3 Enable vjp for quantized scale and bias (#2129)
* Enable vjp for quantized scale and bias

* higher tol
2025-04-29 13:03:09 -07:00
Alex Chi Z.
b36dd472bb return library if it is successfully loaded (#2131) 2025-04-29 07:30:36 -07:00
hdeng-apple
167b759a38 Fix typos (#2136) 2025-04-29 07:26:05 -07:00
charan-003
99b9868859 Clarify dimension notation in conv1d, conv2d, and conv3d docstrings (#2123)
* Clarify dimension notation in conv1d, conv2d, and conv3d docstrings

* Updating transposed convs in conv1d, conv2d, and conv3d

---------

Co-authored-by: Sai Charan Arvapally <saicharan@Sais-MacBook-Pro.local>
2025-04-25 12:18:30 -07:00
1ndig0
6b2d5448f2 Fix the error message in mx.right_shift and mx.left_shift (#2121)
* update right_shift and lef_shift

* simplify

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-04-25 09:14:28 -07:00
Awni Hannun
eaf709b83e patch (#2119) 2025-04-24 16:11:07 -07:00
Angelos Katharopoulos
f0e70afff0 Fix swift pm load (#2117) 2025-04-24 10:58:29 -07:00
hdeng-apple
86984cad68 Remove static initializers (#2059)
* Remove static initializers in device.cpp, load.cpp, pocketfft.h

* Remove static initializer InTracing::trace_stack

* Remove static initializer of CompilerCache cache

* Revert changes in pocketfft.h

* Remove duplicate private section of thread_pool()
2025-04-24 06:14:49 -07:00
Awni Hannun
fbc89e3ced fix pinv (#2110) 2025-04-23 13:08:28 -07:00
hdeng-apple
38c1e720c2 Search mlx.metallib in macOS framework "Resources" dir (#2061)
---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-04-23 09:53:13 -07:00
Param Thakkar
600e87e03c Added output_padding parameters in conv_transpose (#2092) 2025-04-23 09:26:33 -07:00
Hyunsung Lee
3836445241 Add broadcast_shapes in python API (#2091) 2025-04-22 18:57:39 -07:00
Yury Popov
1d2c9d6a07 Complex scan (#2094) 2025-04-22 18:56:28 -07:00
Awni Hannun
e8ac6bd2f5 irfft throws instead of segfaults on scalars (#2109) 2025-04-22 10:25:55 -07:00
Awni Hannun
fdadc4f22c Add more complex unary ops (#2101) 2025-04-21 13:04:54 -07:00
Awni Hannun
79b527f45f conv vmap (#2102) 2025-04-21 13:04:39 -07:00
Awni Hannun
dc4eada7f0 Use unordered map for kwargs in export/import (#2087)
* use unordered map for kwargs in export/import

* comment
2025-04-21 07:17:22 -07:00
Cheng
70ebc3b598 Return const ref in array::data_shared_ptr (#2100) 2025-04-21 07:17:09 -07:00
Cheng
b13f2aed16 Introduce macros for dispatching dynamic dtypes as static types (#2073) 2025-04-19 06:16:30 -07:00
Param Thakkar
5f04c0f818 Fixed shift operations issue (#2080)
* Fixed shift operations issue

* Added tests and fixes

* Fixed loop syntax error

* Added tests for bool

* Fixed typo
2025-04-18 14:28:33 -07:00
Awni Hannun
55935ccae7 fix py gc edge case (#2079) 2025-04-18 12:46:53 -07:00
197 changed files with 6841 additions and 2119 deletions

1
.gitignore vendored
View File

@@ -36,6 +36,7 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
uv.lock
# vim
*.swp

View File

@@ -34,6 +34,7 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
option(MLX_BUILD_METAL "Build metal backend" ON)
option(MLX_BUILD_CPU "Build cpu backend" ON)
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
@@ -83,6 +84,10 @@ if(MLX_BUILD_METAL)
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
@@ -226,6 +231,9 @@ target_include_directories(
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>)
# Do not add mlx_EXPORTS define for shared library.
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git

View File

@@ -1,4 +1,6 @@
include CMakeLists.txt
include mlx.pc.in
recursive-include mlx/ *
include cmake/*
include python/src/*
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -11,13 +11,14 @@ include(CMakeParseArguments)
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
# files (like headers)
# files (like headers) DEBUG: Boolean, if true, enables debug compile options
# for this specific library. If not provided, uses global MLX_METAL_DEBUG.
#
# clang format on
macro(mlx_build_metallib)
# Parse args
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY DEBUG)
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
@@ -26,6 +27,10 @@ macro(mlx_build_metallib)
# Collect compile options
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math -Wno-c++17-extensions)
if(MLX_METAL_DEBUG OR MTLLIB_DEBUG)
set(MTLLIB_COMPILE_OPTIONS ${MTLLIB_COMPILE_OPTIONS} -gline-tables-only
-frecord-sources)
endif()
# Prepare metallib build command
add_custom_command(

View File

@@ -10,7 +10,7 @@ import mlx.core as mx
# -- Project information -----------------------------------------------------
project = "MLX"
copyright = "2023, MLX Contributors"
copyright = "2023, Apple"
author = "MLX Contributors"
version = ".".join(mx.__version__.split(".")[:3])
release = version

View File

@@ -19,6 +19,8 @@ Array
array.ndim
array.shape
array.size
array.real
array.imag
array.abs
array.all
array.any

View File

@@ -20,3 +20,5 @@ FFT
irfft2
rfftn
irfftn
fftshift
ifftshift

View File

@@ -16,6 +16,8 @@ Linear Algebra
cross
qr
svd
eigvals
eig
eigvalsh
eigh
lu

View File

@@ -5,6 +5,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
@@ -20,7 +21,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
# Define MLX_VERSION only in the version.cpp file.
add_library(mlx_version STATIC ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
add_library(mlx_version OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
target_compile_definitions(mlx_version PRIVATE MLX_VERSION="${MLX_VERSION}")
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:mlx_version>)
@@ -48,5 +49,16 @@ add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
endif()
if(MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
endif()
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
endif()

View File

@@ -224,6 +224,10 @@ class array {
// Not copyable
Data(const Data& d) = delete;
Data& operator=(const Data& d) = delete;
Data(Data&& o) : buffer(o.buffer), d(o.d) {
o.buffer = allocator::Buffer(nullptr);
o.d = [](allocator::Buffer) {};
}
~Data() {
d(buffer);
}
@@ -339,11 +343,11 @@ class array {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
// Return the shared pointer to the array::Data struct
const std::shared_ptr<Data>& data_shared_ptr() const {
return array_desc_->data;
}
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
@@ -356,7 +360,7 @@ class array {
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// The output of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,

View File

@@ -0,0 +1,157 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cassert>
#include <functional>
#include <map>
namespace mlx::core {
template <typename T>
class BufferCache {
public:
BufferCache(
size_t page_size,
std::function<size_t(T*)> get_size,
std::function<void(T*)> free)
: page_size_(page_size),
get_size_(std::move(get_size)),
free_(std::move(free)) {}
~BufferCache() {
clear();
}
BufferCache(const BufferCache&) = delete;
BufferCache& operator=(const BufferCache&) = delete;
T* reuse_from_cache(size_t size) {
// Find the closest buffer in pool.
auto it = buffer_pool_.lower_bound(size);
if (it == buffer_pool_.end() ||
it->first >= std::min(2 * size, size + 2 * page_size_)) {
return nullptr;
}
// Collect from the cache.
T* buf = it->second->buf;
pool_size_ -= it->first;
// Remove from record.
remove_from_list(it->second);
buffer_pool_.erase(it);
return buf;
}
void recycle_to_cache(T* buf) {
assert(buf);
// Add to cache.
BufferHolder* bh = new BufferHolder(buf);
add_at_head(bh);
size_t size = get_size_(buf);
pool_size_ += size;
buffer_pool_.emplace(size, bh);
}
int release_cached_buffers(size_t min_bytes_to_free) {
if (min_bytes_to_free >= 0.9 * pool_size_) {
return clear();
} else {
int n_release = 0;
size_t total_bytes_freed = 0;
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
// Release buffer.
size_t size = get_size_(tail_->buf);
total_bytes_freed += size;
free_(tail_->buf);
n_release++;
// Remove from record.
auto its = buffer_pool_.equal_range(size);
auto it = std::find_if(its.first, its.second, [this](const auto& el) {
return el.second == tail_;
});
assert(it != buffer_pool_.end());
buffer_pool_.erase(it);
remove_from_list(tail_);
}
pool_size_ -= total_bytes_freed;
return n_release;
}
}
int clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
free_(holder->buf);
n_release++;
delete holder;
}
buffer_pool_.clear();
pool_size_ = 0;
head_ = nullptr;
tail_ = nullptr;
return n_release;
}
size_t cache_size() const {
return pool_size_;
}
size_t page_size() const {
return page_size_;
}
private:
struct BufferHolder {
public:
explicit BufferHolder(T* buf_) : buf(buf_) {}
BufferHolder* prev{nullptr};
BufferHolder* next{nullptr};
T* buf;
};
void add_at_head(BufferHolder* to_add) {
if (!head_) {
head_ = to_add;
tail_ = to_add;
} else {
head_->prev = to_add;
to_add->next = head_;
head_ = to_add;
}
}
void remove_from_list(BufferHolder* to_remove) {
if (to_remove->prev && to_remove->next) { // if middle
to_remove->prev->next = to_remove->next;
to_remove->next->prev = to_remove->prev;
} else if (to_remove->prev && to_remove == tail_) { // if tail
tail_ = to_remove->prev;
tail_->next = nullptr;
} else if (to_remove == head_ && to_remove->next) { // if head
head_ = to_remove->next;
head_->prev = nullptr;
} else if (to_remove == head_ && to_remove == tail_) { // if only element
head_ = nullptr;
tail_ = nullptr;
}
delete to_remove;
}
std::multimap<size_t, BufferHolder*> buffer_pool_;
BufferHolder* head_{nullptr};
BufferHolder* tail_{nullptr};
size_t pool_size_{0};
const size_t page_size_;
std::function<size_t(T*)> get_size_;
std::function<void(T*)> free_;
};
} // namespace mlx::core

View File

@@ -99,7 +99,11 @@ inline std::pair<int, int> decompose_hadamard(int n) {
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
}
}
if (n > (1 << 26)) {
throw std::invalid_argument(
"[hadamard] Only supports n = m*2^k where k <= 26");
}
return {n, m};
}
} // namespace mlx::core
} // namespace mlx::core

View File

@@ -1,9 +1,16 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
std::string get_primitive_string(Primitive* primitive) {
std::ostringstream op_t;
primitive->print(op_t);
return op_t.str();
}
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
@@ -101,4 +108,105 @@ std::pair<Shape, Strides> collapse_contiguous_dims(
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
}
Dims get_block_dims_common(int dim0, int dim1, int dim2, int pow2 /* = 10 */) {
int pows[3] = {0, 0, 0};
int sum = 0;
while (true) {
int presum = sum;
// Check all the pows
if (dim0 >= (1 << (pows[0] + 1))) {
pows[0]++;
sum++;
}
if (sum == 10) {
break;
}
if (dim1 >= (1 << (pows[1] + 1))) {
pows[1]++;
sum++;
}
if (sum == 10) {
break;
}
if (dim2 >= (1 << (pows[2] + 1))) {
pows[2]++;
sum++;
}
if (sum == presum || sum == pow2) {
break;
}
}
return std::make_tuple(1ul << pows[0], 1ul << pows[1], 1ul << pows[2]);
}
Dims get_2d_grid_dims_common(const Shape& shape, const Strides& strides) {
// Dims with strides of 0 are ignored as they
// correspond to broadcasted dimensions
size_t grid_x = 1;
size_t grid_y = 1;
for (int i = 0; i < shape.size(); ++i) {
if (strides[i] == 0) {
continue;
}
if (grid_x * shape[i] < UINT32_MAX) {
grid_x *= shape[i];
} else {
grid_y *= shape[i];
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
Dims get_2d_grid_dims_common(
const Shape& shape,
const Strides& strides,
size_t divisor) {
// Compute the 2d grid dimensions such that the total size of the grid is
// divided by divisor.
size_t grid_x = 1;
size_t grid_y = 1;
for (int i = 0; i < shape.size(); ++i) {
if (strides[i] == 0) {
continue;
}
// No need to add this shape we can just remove it from the divisor.
if (divisor % shape[i] == 0) {
divisor /= shape[i];
continue;
}
if (grid_x * shape[i] < UINT32_MAX) {
grid_x *= shape[i];
} else {
grid_y *= shape[i];
}
if (divisor > 1) {
if (grid_x % divisor == 0) {
grid_x /= divisor;
divisor = 1;
} else if (grid_y % divisor == 0) {
grid_y /= divisor;
divisor = 1;
}
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX || divisor > 1) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
} // namespace mlx::core

View File

@@ -2,12 +2,15 @@
#pragma once
#include <tuple>
#include <vector>
#include "mlx/array.h"
namespace mlx::core {
std::string get_primitive_string(Primitive* primitive);
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
int64_t loc = 0;
@@ -70,6 +73,28 @@ std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
int64_t size_cap = std::numeric_limits<int32_t>::max());
// Compute the thread block dimensions which fit the given
// input dimensions.
// - The thread block dimensions will be powers of two
// - The thread block size will be less than 2^pow2
using Dims = std::tuple<uint32_t, uint32_t, uint32_t>;
Dims get_block_dims_common(int dim0, int dim1, int dim2, int pow2 = 10);
// Computes a 2D grid where each element is < UINT_MAX
// Assumes:
// - overall size (product of non-broadcasted dimensions) is < UINT_MAX^2
// - shape and strides correspond to a contiguous (no holes) but
// possibly broadcasted array
Dims get_2d_grid_dims_common(const Shape& shape, const Strides& strides);
// Same as above but we do an implicit division with divisor.
// Basically, equivalent to factorizing
// Prod(s \forall s in shape if strides[s] > 0) / divisor.
Dims get_2d_grid_dims_common(
const Shape& shape,
const Strides& strides,
size_t divisor);
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
@@ -165,4 +190,11 @@ void shared_buffer_reshape(
const array& in,
const Strides& out_strides,
array& out);
template <typename T>
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
vec.erase(std::next(vec.begin(), index));
return vec;
}
} // namespace mlx::core

View File

@@ -40,11 +40,13 @@ add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/available.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eig.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/encoder.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp

View File

@@ -14,10 +14,8 @@ template <typename InT, typename OpT>
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
auto axis_size = in.shape()[axis];
auto axis_stride = in.strides()[axis];
Strides strides = in.strides();
Shape shape = in.shape();
strides.erase(strides.begin() + axis);
shape.erase(shape.begin() + axis);
Strides strides = remove_index(in.strides(), axis);
Shape shape = remove_index(in.shape(), axis);
auto in_ptr = in.data<InT>();
auto out_ptr = out.data<uint32_t>();

View File

@@ -0,0 +1,11 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/available.h"
namespace mlx::core::cpu {
bool is_available() {
return true;
}
} // namespace mlx::core::cpu

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cpu {
bool is_available();
} // namespace mlx::core::cpu

View File

@@ -172,9 +172,12 @@ void binary_float(
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports non-complex floating point types.");
"[binary_float] Only supports floating point types.");
}
});
}

View File

@@ -40,7 +40,10 @@ struct CompilerCache {
std::shared_mutex mtx;
};
static CompilerCache cache{};
static CompilerCache& cache() {
static CompilerCache cache_;
return cache_;
};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
@@ -56,14 +59,16 @@ void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::shared_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::unique_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
@@ -120,10 +125,10 @@ void* compile(
}
// load library
cache.libs.emplace_back(shared_lib_path);
cache().libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
void* fun = dlsym(cache().libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -131,7 +136,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
cache.kernels.insert({kernel_name, fun});
cache().kernels.insert({kernel_name, fun});
return fun;
}

View File

@@ -22,7 +22,8 @@ void slow_conv_1D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -60,7 +61,8 @@ void slow_conv_1D(
out_stride_O = out.strides()[2],
flip,
padding = padding[0],
padding_lo = padding_lo[0],
padding_hi = padding_hi[0],
wt_stride = wt_strides[0],
wt_dilation = wt_dilation[0],
in_dilation = in_dilation[0]]() mutable {
@@ -77,7 +79,7 @@ void slow_conv_1D(
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
int wh_flip = flip ? (wH - wh - 1) : wh;
int ih = oh * wt_stride - padding + wh_flip * wt_dilation;
int ih = oh * wt_stride - padding_lo + wh_flip * wt_dilation;
auto ih_div = std::div(ih, in_dilation);
@@ -109,7 +111,8 @@ void slow_conv_2D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -120,230 +123,235 @@ void slow_conv_2D(
encoder.set_input_array(wt);
encoder.set_output_array(out);
encoder.dispatch([st_wt_ptr = wt.data<T>(),
st_in_ptr = in.data<T>(),
st_out_ptr = out.data<T>(),
encoder.dispatch(
[st_wt_ptr = wt.data<T>(),
st_in_ptr = in.data<T>(),
st_out_ptr = out.data<T>(),
N = in.shape(
0), // Batch size, should be the same as out.shape(0)
iH = 1 +
in_dilation[0] * (in.shape(1) - 1), // Input spatial dim
iW = 1 +
in_dilation[1] * (in.shape(2) - 1), // Input spatial dim
C = in.shape(3), // In channels
oH = out.shape(1), // Output spatial dim
oW = out.shape(2), // Output spatial dim
O = wt.shape(0), // Out channels
wH = wt.shape(1), // Weight spatial dim
wW = wt.shape(2), // Weight spatial dim
N = in.shape(0), // Batch size, should be the same as out.shape(0)
iH = 1 + in_dilation[0] * (in.shape(1) - 1), // Input spatial dim
iW = 1 + in_dilation[1] * (in.shape(2) - 1), // Input spatial dim
C = in.shape(3), // In channels
oH = out.shape(1), // Output spatial dim
oW = out.shape(2), // Output spatial dim
O = wt.shape(0), // Out channels
wH = wt.shape(1), // Weight spatial dim
wW = wt.shape(2), // Weight spatial dim
groups = in.shape(3) / wt.shape(3),
C_per_group = wt.shape(3),
groups = in.shape(3) / wt.shape(3),
C_per_group = wt.shape(3),
in_stride_N = in.strides()[0],
in_stride_H = in.strides()[1],
in_stride_W = in.strides()[2],
in_stride_C = in.strides()[3],
in_stride_N = in.strides()[0],
in_stride_H = in.strides()[1],
in_stride_W = in.strides()[2],
in_stride_C = in.strides()[3],
wt_stride_O = wt.strides()[0],
wt_stride_H = wt.strides()[1],
wt_stride_W = wt.strides()[2],
wt_stride_C = wt.strides()[3],
wt_stride_O = wt.strides()[0],
wt_stride_H = wt.strides()[1],
wt_stride_W = wt.strides()[2],
wt_stride_C = wt.strides()[3],
out_stride_N = out.strides()[0],
out_stride_H = out.strides()[1],
out_stride_W = out.strides()[2],
out_stride_O = out.strides()[3],
out_stride_N = out.strides()[0],
out_stride_H = out.strides()[1],
out_stride_W = out.strides()[2],
out_stride_O = out.strides()[3],
padding,
wt_strides,
wt_dilation,
in_dilation,
flip]() mutable {
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip]() mutable {
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
const int O_per_group = O / groups;
auto pt_conv_no_checks = [&](const T* in_ptr,
const T* wt_ptr,
T* out_ptr,
int oh,
int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
const int O_per_group = O / groups;
auto pt_conv_no_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding_lo[0];
int iw_base = ow * wt_strides[1] - padding_lo[1];
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt =
in_ptr + ih * in_stride_H + iw * in_stride_W;
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ww
} // wh
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int f_wgt_jump_h =
std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w =
std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_wgt_jump_h =
std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w =
std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_out_jump_h = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
int f_out_jump_h =
std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w =
std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding[0] + init_h;
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding_lo[0] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
base_h[i] = wh_base;
}
base_h[i] = wh_base;
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding[1] + init_w;
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding_lo[1] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
base_w[j] = ww_base;
}
base_w[j] = ww_base;
}
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
int ih_base = oh * wt_strides[0] - padding_lo[0];
int iw_base = ow * wt_strides[1] - padding_lo[1];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
const T* in_ptr_pt =
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
const T* in_ptr_pt = in_ptr + ih_dil * in_stride_H +
iw_dil * in_stride_W;
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ih, iw check
} // ww
} // wh
} // ih, iw check
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int oH_border_0 = 0;
int oH_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oH_border_0 = 0;
int oH_border_1 = is_idil_one
? ((padding_lo[0] + wt_strides[0] - 1) / wt_strides[0])
: oH;
int oH_border_2 = std::max(
oH_border_1,
(iH + padding_lo[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
int oW_border_0 = 0;
int oW_border_1 = is_idil_one
? ((padding_lo[1] + wt_strides[1] - 1) / wt_strides[1])
: oW;
int oW_border_2 = std::max(
oW_border_1,
(iW + padding_lo[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
// Case 1: oh might put us out of bounds
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
for (int n = 0; n < N; ++n) {
// Case 1: oh might put us out of bounds
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
// Case 2: oh in bounds
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
// Case a: ow might put us out of bounds
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case 2: oh in bounds
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
// Case a: ow might put us out of bounds
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case b: ow in bounds
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case b: ow in bounds
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case c: ow might put us out of bounds
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case c: ow might put us out of bounds
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
} // oh
// Case 3: oh might put us out of bounds
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
// Case 3: oh might put us out of bounds
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
st_in_ptr += in_stride_N;
st_out_ptr += out_stride_N;
st_in_ptr += in_stride_N;
st_out_ptr += out_stride_N;
} // n
});
} // n
});
}
template <typename T>
@@ -351,7 +359,8 @@ void slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -400,7 +409,8 @@ void slow_conv_3D(
out_stride_H = out.strides()[2],
out_stride_W = out.strides()[3],
out_stride_O = out.strides()[4],
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -415,9 +425,9 @@ void slow_conv_3D(
int oh,
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
int id_base = od * wt_strides[0] - padding_lo[0];
int ih_base = oh * wt_strides[1] - padding_lo[1];
int iw_base = ow * wt_strides[2] - padding_lo[2];
for (int o = 0; o < O; ++o) {
float r = 0.;
@@ -478,7 +488,7 @@ void slow_conv_3D(
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_d; ++i) {
int id_loop = i * wt_strides[0] - padding[0] + init_d;
int id_loop = i * wt_strides[0] - padding_lo[0] + init_d;
int wd_base = 0;
while (wd_base < wD && id_loop % in_dilation[0] != 0) {
@@ -490,7 +500,7 @@ void slow_conv_3D(
}
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[1] - padding[1] + init_h;
int ih_loop = i * wt_strides[1] - padding_lo[1] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[1] != 0) {
@@ -502,7 +512,7 @@ void slow_conv_3D(
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[2] - padding[2] + init_w;
int iw_loop = j * wt_strides[2] - padding_lo[2] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[2] != 0) {
@@ -521,9 +531,9 @@ void slow_conv_3D(
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
int id_base = od * wt_strides[0] - padding_lo[0];
int ih_base = oh * wt_strides[1] - padding_lo[1];
int iw_base = ow * wt_strides[2] - padding_lo[2];
int wd_base = base_d[od % f_out_jump_d];
int wh_base = base_h[oh % f_out_jump_h];
@@ -573,24 +583,30 @@ void slow_conv_3D(
};
int oD_border_0 = 0;
int oD_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oD;
int oD_border_1 = is_idil_one
? ((padding_lo[0] + wt_strides[0] - 1) / wt_strides[0])
: oD;
int oD_border_2 = std::max(
oD_border_1, (iD + padding[0] - wD * wt_dilation[0]) / wt_strides[0]);
oD_border_1,
(iD + padding_lo[0] - wD * wt_dilation[0]) / wt_strides[0]);
int oD_border_3 = oD;
int oH_border_0 = 0;
int oH_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oH;
int oH_border_1 = is_idil_one
? ((padding_lo[1] + wt_strides[1] - 1) / wt_strides[1])
: oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[1] - wH * wt_dilation[1]) / wt_strides[1]);
oH_border_1,
(iH + padding_lo[1] - wH * wt_dilation[1]) / wt_strides[1]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 =
is_idil_one ? ((padding[2] + wt_strides[2] - 1) / wt_strides[2]) : oW;
int oW_border_1 = is_idil_one
? ((padding_lo[2] + wt_strides[2] - 1) / wt_strides[2])
: oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[2] - wW * wt_dilation[2]) / wt_strides[2]);
oW_border_1,
(iW + padding_lo[2] - wW * wt_dilation[2]) / wt_strides[2]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
@@ -658,7 +674,8 @@ void dispatch_slow_conv_1D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -669,7 +686,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -680,7 +698,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -691,7 +710,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -707,7 +727,8 @@ void dispatch_slow_conv_2D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -718,7 +739,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -729,7 +751,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -740,7 +763,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -756,7 +780,8 @@ void dispatch_slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -767,7 +792,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -778,7 +804,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -789,7 +816,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -829,7 +857,8 @@ void explicit_gemm_conv_1D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
@@ -848,7 +877,7 @@ void explicit_gemm_conv_1D_cpu(
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], C};
Shape padded_shape = {N, iH + padding_lo[0] + padding_hi[0], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -857,7 +886,7 @@ void explicit_gemm_conv_1D_cpu(
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding[0] * in_padded.strides()[1];
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -971,7 +1000,8 @@ void explicit_gemm_conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
@@ -989,7 +1019,11 @@ void explicit_gemm_conv_2D_cpu(
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], iW + 2 * padding[1], C};
Shape padded_shape = {
N,
iH + padding_lo[0] + padding_hi[0],
iW + padding_lo[1] + padding_hi[1],
C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -998,8 +1032,8 @@ void explicit_gemm_conv_2D_cpu(
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset =
padding[0] * in_padded.strides()[1] + padding[1] * in_padded.strides()[2];
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
padding_lo[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -1091,7 +1125,8 @@ void explicit_gemm_conv_ND_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const bool flip,
@@ -1114,7 +1149,7 @@ void explicit_gemm_conv_ND_cpu(
Shape padded_shape(in.shape().size());
padded_shape.front() = N;
for (size_t i = 0; i < iDim.size(); i++) {
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
padded_shape[i + 1] = iDim[i] + padding_lo[i] + padding_hi[i];
}
padded_shape.back() = C;
array in_padded(padded_shape, conv_dtype, nullptr, {});
@@ -1125,9 +1160,10 @@ void explicit_gemm_conv_ND_cpu(
// Pick input slice from padded
size_t data_offset = 0;
for (size_t i = 0; i < padding.size(); i++) {
data_offset += padding[i] * in_padded.strides()[i + 1];
for (size_t i = 0; i < padding_lo.size(); i++) {
data_offset += padding_lo[i] * in_padded.strides()[i + 1];
}
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -1261,7 +1297,8 @@ void conv_1D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1270,22 +1307,40 @@ void conv_1D_cpu(
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation, stream);
in, wt, out, padding_lo, padding_hi, wt_strides, wt_dilation, stream);
}
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
void conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1295,18 +1350,35 @@ void conv_2D_cpu(
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && in_dilation[0] == 1 &&
in_dilation[1] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
void conv_3D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1317,11 +1389,28 @@ void conv_3D_cpu(
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1 &&
groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_3D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
} // namespace
@@ -1338,7 +1427,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -1351,7 +1441,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -1364,7 +1455,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,

174
mlx/backend/cpu/eig.cpp Normal file
View File

@@ -0,0 +1,174 @@
// Copyright © 2025 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename T>
void eig_impl(
array& a,
array& vectors,
array& values,
bool compute_eigenvectors,
Stream stream) {
using OT = std::complex<T>;
auto a_ptr = a.data<T>();
auto eig_ptr = values.data<OT>();
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_output_array(values);
OT* vec_ptr = nullptr;
if (compute_eigenvectors) {
encoder.set_output_array(vectors);
vec_ptr = vectors.data<OT>();
}
encoder.dispatch([a_ptr,
vec_ptr,
eig_ptr,
compute_eigenvectors,
N = vectors.shape(-1),
size = vectors.size()]() mutable {
// Work query
char jobr = 'N';
char jobl = compute_eigenvectors ? 'V' : 'N';
int n_vecs_r = 1;
int n_vecs_l = compute_eigenvectors ? N : 1;
int lwork = -1;
int info;
{
T work;
int iwork;
geev<T>(
&jobl,
&jobr,
&N,
nullptr,
&N,
nullptr,
nullptr,
nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
&work,
&lwork,
&info);
lwork = static_cast<int>(work);
}
auto eig_tmp_data = array::Data{allocator::malloc(sizeof(T) * N * 2)};
auto vec_tmp_data =
array::Data{allocator::malloc(vec_ptr ? sizeof(T) * N * N * 2 : 0)};
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
for (size_t i = 0; i < size / (N * N); ++i) {
geev<T>(
&jobl,
&jobr,
&N,
a_ptr,
&N,
eig_tmp,
eig_tmp + N,
vec_tmp,
&n_vecs_l,
nullptr,
&n_vecs_r,
static_cast<T*>(work_buf.buffer.raw_ptr()),
&lwork,
&info);
for (int i = 0; i < N; ++i) {
eig_ptr[i] = {eig_tmp[i], eig_tmp[N + i]};
}
if (vec_ptr) {
for (int i = 0; i < N; ++i) {
if (eig_ptr[i].imag() != 0) {
// This vector and the next are a pair
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {
vec_tmp[i * N + j], -vec_tmp[(i + 1) * N + j]};
vec_ptr[(i + 1) * N + j] = {
vec_tmp[i * N + j], vec_tmp[(i + 1) * N + j]};
}
i += 1;
} else {
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {vec_tmp[i * N + j], 0};
}
}
}
vec_ptr += N * N;
}
a_ptr += N * N;
eig_ptr += N;
if (info != 0) {
std::stringstream msg;
msg << "[Eig::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
}
});
encoder.add_temporary(a);
}
} // namespace
void Eig::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
const auto& a = inputs[0];
auto& values = outputs[0];
auto vectors = compute_eigenvectors_
? outputs[1]
: array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy(
a,
a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream());
values.set_data(allocator::malloc(values.nbytes()));
if (compute_eigenvectors_) {
// Set the strides and flags so the eigenvectors
// are in the columns of the output
auto flags = vectors.flags();
auto strides = vectors.strides();
auto ndim = a.ndim();
std::swap(strides[ndim - 1], strides[ndim - 2]);
if (a.size() > 1) {
flags.row_contiguous = false;
if (ndim > 2) {
flags.col_contiguous = false;
} else {
flags.col_contiguous = true;
}
}
vectors.set_data(
allocator::malloc(vectors.nbytes()), vectors.size(), strides, flags);
}
switch (a.dtype()) {
case float32:
eig_impl<float>(a_copy, vectors, values, compute_eigenvectors_, stream());
break;
default:
throw std::runtime_error("[Eig::eval_cpu] only supports float32.");
}
}
} // namespace mlx::core

View File

@@ -12,6 +12,133 @@ namespace mlx::core {
namespace {
template <typename T, class Enable = void>
struct EighWork {};
template <typename T>
struct EighWork<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
using R = T;
char jobz;
char uplo;
int N;
int lwork;
int liwork;
int info;
std::vector<array::Data> buffers;
EighWork(char jobz_, char uplo_, int N_)
: jobz(jobz_), uplo(uplo_), N(N_), lwork(-1), liwork(-1) {
T work;
int iwork;
syevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work);
liwork = iwork;
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
buffers.emplace_back(allocator::malloc(sizeof(int) * liwork));
}
void run(T* vectors, T* values) {
syevd<T>(
&jobz,
&uplo,
&N,
vectors,
&N,
values,
static_cast<T*>(buffers[0].buffer.raw_ptr()),
&lwork,
static_cast<int*>(buffers[1].buffer.raw_ptr()),
&liwork,
&info);
}
};
template <>
struct EighWork<std::complex<float>> {
using T = std::complex<float>;
using R = float;
char jobz;
char uplo;
int N;
int lwork;
int lrwork;
int liwork;
int info;
std::vector<array::Data> buffers;
EighWork(char jobz_, char uplo_, int N_)
: jobz(jobz_), uplo(uplo_), N(N_), lwork(-1), lrwork(-1), liwork(-1) {
T work;
R rwork;
int iwork;
heevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&rwork,
&lrwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work.real());
lrwork = static_cast<int>(rwork);
liwork = iwork;
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
buffers.emplace_back(allocator::malloc(sizeof(R) * lrwork));
buffers.emplace_back(allocator::malloc(sizeof(int) * liwork));
}
void run(T* vectors, R* values) {
heevd<T>(
&jobz,
&uplo,
&N,
vectors,
&N,
values,
static_cast<T*>(buffers[0].buffer.raw_ptr()),
&lwork,
static_cast<R*>(buffers[1].buffer.raw_ptr()),
&lrwork,
static_cast<int*>(buffers[2].buffer.raw_ptr()),
&liwork,
&info);
if (jobz == 'V') {
// We have pre-transposed the vectors but we also must conjugate them
// when they are complex.
//
// We could vectorize this but it is so fast in comparison to heevd that
// it doesn't really matter.
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
*vectors = std::conj(*vectors);
vectors++;
}
}
}
}
};
template <typename T>
void eigh_impl(
array& vectors,
@@ -19,8 +146,10 @@ void eigh_impl(
const std::string& uplo,
bool compute_eigenvectors,
Stream stream) {
using R = typename EighWork<T>::R;
auto vec_ptr = vectors.data<T>();
auto eig_ptr = values.data<T>();
auto eig_ptr = values.data<R>();
char jobz = compute_eigenvectors ? 'V' : 'N';
auto& encoder = cpu::get_command_encoder(stream);
@@ -33,49 +162,17 @@ void eigh_impl(
N = vectors.shape(-1),
size = vectors.size()]() mutable {
// Work query
int lwork = -1;
int liwork = -1;
int info;
{
T work;
int iwork;
syevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work);
liwork = iwork;
}
EighWork<T> work(jobz, uplo, N);
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
auto iwork_buf = array::Data{allocator::malloc(sizeof(int) * liwork)};
// Work loop
for (size_t i = 0; i < size / (N * N); ++i) {
syevd<T>(
&jobz,
&uplo,
&N,
vec_ptr,
&N,
eig_ptr,
static_cast<T*>(work_buf.buffer.raw_ptr()),
&lwork,
static_cast<int*>(iwork_buf.buffer.raw_ptr()),
&liwork,
&info);
work.run(vec_ptr, eig_ptr);
vec_ptr += N * N;
eig_ptr += N;
if (info != 0) {
if (work.info != 0) {
std::stringstream msg;
msg << "[Eigh::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
<< work.info;
throw std::runtime_error(msg.str());
}
}
@@ -131,6 +228,10 @@ void Eigh::eval_cpu(
eigh_impl<double>(
vectors, values, uplo_, compute_eigenvectors_, stream());
break;
case complex64:
eigh_impl<std::complex<float>>(
vectors, values, uplo_, compute_eigenvectors_, stream());
break;
default:
throw std::runtime_error(
"[Eigh::eval_cpu] only supports float32 or float64.");

View File

@@ -257,15 +257,11 @@ void gather_axis(
const array& ind,
array& out,
const int axis) {
auto strides = ind.strides();
strides.erase(strides.begin() + axis);
auto shape = ind.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator ind_it(shape, strides, src.ndim() - 1);
strides = src.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator src_it(shape, strides, src.ndim() - 1);
auto shape = remove_index(ind.shape(), axis);
ContiguousIterator ind_it(
shape, remove_index(ind.strides(), axis), src.ndim() - 1);
ContiguousIterator src_it(
shape, remove_index(src.strides(), axis), src.ndim() - 1);
auto ind_ptr = ind.data<IdxT>();
auto src_ptr = src.data<T>();
@@ -585,15 +581,11 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
template <typename T, typename IdxT, typename OpT>
void scatter_axis(array& out, const array idx, const array& upd, int axis) {
auto strides = idx.strides();
strides.erase(strides.begin() + axis);
auto shape = idx.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator idx_it(shape, strides, upd.ndim() - 1);
strides = upd.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator upd_it(shape, strides, upd.ndim() - 1);
auto shape = remove_index(idx.shape(), axis);
ContiguousIterator idx_it(
shape, remove_index(idx.strides(), axis), upd.ndim() - 1);
ContiguousIterator upd_it(
shape, remove_index(upd.strides(), axis), upd.ndim() - 1);
auto idx_ptr = idx.data<IdxT>();
auto upd_ptr = upd.data<T>();

View File

@@ -2,14 +2,14 @@
#pragma once
// Required for Visual Studio.
// https://github.com/OpenMathLib/OpenBLAS/blob/develop/docs/install.md
#ifdef _MSC_VER
#include <complex>
#define LAPACK_COMPLEX_CUSTOM
#define lapack_complex_float std::complex<float>
#define lapack_complex_double std::complex<double>
#endif
#define lapack_complex_float_real(z) ((z).real())
#define lapack_complex_float_imag(z) ((z).imag())
#define lapack_complex_double_real(z) ((z).real())
#define lapack_complex_double_imag(z) ((z).imag())
#ifdef MLX_USE_ACCELERATE
#include <Accelerate/Accelerate.h>
@@ -32,7 +32,7 @@
#endif
#define INSTANTIATE_LAPACK_TYPES(FUNC) \
#define INSTANTIATE_LAPACK_REAL(FUNC) \
template <typename T, typename... Args> \
void FUNC(Args... args) { \
if constexpr (std::is_same_v<T, float>) { \
@@ -42,11 +42,24 @@
} \
}
INSTANTIATE_LAPACK_TYPES(geqrf)
INSTANTIATE_LAPACK_TYPES(orgqr)
INSTANTIATE_LAPACK_TYPES(syevd)
INSTANTIATE_LAPACK_TYPES(potrf)
INSTANTIATE_LAPACK_TYPES(gesvdx)
INSTANTIATE_LAPACK_TYPES(getrf)
INSTANTIATE_LAPACK_TYPES(getri)
INSTANTIATE_LAPACK_TYPES(trtri)
INSTANTIATE_LAPACK_REAL(geqrf)
INSTANTIATE_LAPACK_REAL(orgqr)
INSTANTIATE_LAPACK_REAL(syevd)
INSTANTIATE_LAPACK_REAL(geev)
INSTANTIATE_LAPACK_REAL(potrf)
INSTANTIATE_LAPACK_REAL(gesvdx)
INSTANTIATE_LAPACK_REAL(getrf)
INSTANTIATE_LAPACK_REAL(getri)
INSTANTIATE_LAPACK_REAL(trtri)
#define INSTANTIATE_LAPACK_COMPLEX(FUNC) \
template <typename T, typename... Args> \
void FUNC(Args... args) { \
if constexpr (std::is_same_v<T, std::complex<float>>) { \
MLX_LAPACK_FUNC(c##FUNC)(std::forward<Args>(args)...); \
} else if constexpr (std::is_same_v<T, std::complex<double>>) { \
MLX_LAPACK_FUNC(z##FUNC)(std::forward<Args>(args)...); \
} \
}
INSTANTIATE_LAPACK_COMPLEX(heevd)

View File

@@ -132,6 +132,10 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
if (out.size() == 0) {
out.set_data(allocator::malloc(out.nbytes()));
return;
}
// Fill output with C
auto& c = inputs[2];
@@ -139,7 +143,9 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
}

View File

@@ -13,9 +13,18 @@ namespace mlx::core {
namespace {
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
inline constexpr short get_bytes_per_pack(int bits, int wsize = 8) {
auto power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, int bits>
void extract_bits(const uint8_t* w_in, T* w_out) {
assert(bits == 3 || bits == 6);
static_assert(bits == 3 || bits == 5 || bits == 6);
if (bits == 3) {
w_out[0] = static_cast<T>(w_in[0] & 0x7);
w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
@@ -25,6 +34,16 @@ void extract_bits(const uint8_t* w_in, T* w_out) {
w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
} else if (bits == 5) {
w_out[0] = static_cast<T>(w_in[0] & 0x1f);
w_out[1] = static_cast<T>(((w_in[0] & 0xe0) >> 5) + ((w_in[1] & 0x3) << 3));
w_out[2] = static_cast<T>((w_in[1] & 0x7c) >> 2);
w_out[3] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0xf) << 1));
w_out[4] = static_cast<T>(((w_in[2] & 0xf0) >> 4) + ((w_in[3] & 0x1) << 4));
w_out[5] = static_cast<T>((w_in[3] & 0x3e) >> 1);
w_out[6] = static_cast<T>(((w_in[3] & 0xc0) >> 6) + ((w_in[4] & 0x7) << 2));
w_out[7] = static_cast<T>((w_in[4] & 0xf8) >> 3);
} else if (bits == 6) {
w_out[0] = static_cast<T>(w_in[0] & 0x3f);
w_out[1] =
@@ -46,8 +65,8 @@ void _qmm(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int pack_factor = get_pack_factor(bits, 8);
constexpr int bytes_per_pack = get_bytes_per_pack(bits);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
@@ -65,7 +84,7 @@ void _qmm(
T scale = *scales_local++;
T bias = *biases_local++;
for (int ng = 0; ng < packs_in_group; ng++) {
if (bits == 3 || bits == 6) {
if constexpr (bits == 3 || bits == 5 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
@@ -104,8 +123,9 @@ void _qmm_t(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int pack_factor = get_pack_factor(bits, 8);
constexpr int bytes_per_pack = get_bytes_per_pack(bits);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
@@ -121,7 +141,7 @@ void _qmm_t(
T bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw++) {
if (bits == 3 || bits == 6) {
if constexpr (bits == 3 || bits == 5 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
@@ -304,6 +324,10 @@ void _qmm_dispatch_typed(
_qmm_dispatch_group<T, 4>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 5:
_qmm_dispatch_group<T, 5>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 6:
_qmm_dispatch_group<T, 6>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
@@ -613,9 +637,8 @@ void quantize(
float eps = 1e-7;
bool power_of_2_bits = is_power_of_2(bits);
int el_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
// For 3/6 bits we read 3 uint8s at a time instead of 1 uint32
int bytes_per_pack = power_of_2_bits ? 1 : 3;
int el_per_int = get_pack_factor(bits, 32);
int bytes_per_pack = get_bytes_per_pack(bits);
int int_per_group = group_size * bytes_per_pack / el_per_int;
size_t n_groups = w_size / group_size;
@@ -640,15 +663,21 @@ void quantize(
}
size_t out_idx = i * int_per_group;
for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
uint32_t out_el = 0;
uint64_t out_el = 0;
for (int k = 0; k < el_per_int; ++k) {
float w_el = w[w_idx + j * el_per_int + k];
w_el = std::rint((w_el - bias) / scale);
w_el = std::min(std::max(w_el, 0.0f), n_bins);
out_el |= static_cast<uint32_t>(w_el) << (k * bits);
out_el |= static_cast<uint64_t>(w_el) << (k * bits);
}
if (power_of_2_bits) {
out[out_idx + j] = out_el;
} else if (bits == 5) {
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
out[out_idx + bytes_per_pack * j + 3] = (out_el & 0xff000000) >> 24;
out[out_idx + bytes_per_pack * j + 4] = (out_el & 0xff00000000) >> 32;
} else {
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;

View File

@@ -330,7 +330,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case complex64:
throw std::runtime_error("Scan ops do not support complex types yet");
scan_dispatch<complex64_t, complex64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
}
});

View File

@@ -88,12 +88,33 @@ DEFAULT_UNARY(expm1, std::expm1)
DEFAULT_UNARY(floor, std::floor)
DEFAULT_UNARY(log, std::log)
DEFAULT_UNARY(log10, std::log10)
DEFAULT_UNARY(log1p, std::log1p)
DEFAULT_UNARY(sinh, std::sinh)
DEFAULT_UNARY(sqrt, std::sqrt)
DEFAULT_UNARY(tan, std::tan)
DEFAULT_UNARY(tanh, std::tanh)
template <typename T>
Simd<T, 1> log1p(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto x = in.value.real();
auto y = in.value.imag();
auto zabs = std::abs(in.value);
auto theta = std::atan2(y, x + 1);
if (zabs < 0.5) {
auto r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return Simd<T, 1>{T{x, theta}};
}
return Simd<T, 1>{T{((typeof(x))(0.5)) * std::log1p(r), theta}};
} else {
auto z0 = std::hypot(x + 1, y);
return Simd<T, 1>{T{std::log(z0), theta}};
}
} else {
return Simd<T, 1>{std::log1p(in.value)};
}
}
template <typename T>
Simd<T, 1> log2(Simd<T, 1> in) {
if constexpr (is_complex<T>) {

View File

@@ -0,0 +1,56 @@
# Filename rules in cuda backend:
#
# * Use .cu/.cuh if code contains device code, and .cpp/.h if not.
# * Device-only kernel code should be put in kernels/ subdir.
# * Files in kernels/ subdir should not include files outside.
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cu
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
# Enable defining device lambda functions.
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"70;80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
# Use fixed version of CCCL.
FetchContent_Declare(
cccl
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
FetchContent_MakeAvailable(cccl)
target_include_directories(mlx BEFORE PRIVATE "${cccl_SOURCE_DIR}/include")
# Use fixed version of NVTX.
FetchContent_Declare(
nvtx3
GIT_REPOSITORY https://github.com/NVIDIA/NVTX.git
GIT_TAG v3.1.1
GIT_SHALLOW TRUE
SOURCE_SUBDIR c EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(nvtx3)
target_link_libraries(mlx PUBLIC $<BUILD_INTERFACE:nvtx3-cpp>)
# Make cuda runtime APIs available in non-cuda files.
find_package(CUDAToolkit REQUIRED)
target_include_directories(mlx PRIVATE ${CUDAToolkit_INCLUDE_DIRS})
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)

View File

@@ -0,0 +1,203 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/worker.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
#include <unistd.h>
#include <cassert>
namespace mlx::core {
namespace cu {
CudaAllocator::CudaAllocator()
: buffer_cache_(
getpagesize(),
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.8;
max_pool_size_ = memory_limit_;
}
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
std::unique_lock lock(mutex_);
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache.
size_t mem_required = get_active_memory() + get_cache_memory() + size;
if (mem_required >= memory_limit_) {
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
}
lock.unlock();
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
lock.lock();
}
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
// Maintain the cache below the requested limit.
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{buf};
}
void CudaAllocator::free(Buffer buffer) {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return;
}
std::unique_lock lock(mutex_);
active_memory_ -= buf->size;
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
lock.unlock();
cuda_free(buf);
}
}
size_t CudaAllocator::size(Buffer buffer) const {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return 0;
}
return buf->size;
}
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
size_t CudaAllocator::get_active_memory() const {
return active_memory_;
}
size_t CudaAllocator::get_peak_memory() const {
return peak_memory_;
}
void CudaAllocator::reset_peak_memory() {
std::lock_guard lock(mutex_);
peak_memory_ = 0;
}
size_t CudaAllocator::get_memory_limit() {
return memory_limit_;
}
size_t CudaAllocator::set_memory_limit(size_t limit) {
std::lock_guard lock(mutex_);
std::swap(limit, memory_limit_);
return limit;
}
size_t CudaAllocator::get_cache_memory() const {
return buffer_cache_.cache_size();
}
size_t CudaAllocator::set_cache_limit(size_t limit) {
std::lock_guard lk(mutex_);
std::swap(limit, max_pool_size_);
return limit;
}
void CudaAllocator::clear_cache() {
std::lock_guard lk(mutex_);
buffer_cache_.clear();
}
void CudaAllocator::cuda_free(CudaBuffer* buf) {
// If cuda_free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([this, buf]() { this->cuda_free(buf); });
worker_->end_batch();
worker_->commit();
return;
}
}
cudaFree(buf->data);
delete buf;
}
CudaAllocator& allocator() {
// By creating the |allocator_| on heap, the destructor of CudaAllocator
// will not be called on exit and buffers in the cache will be leaked. This
// can save some time at program exit.
static CudaAllocator* allocator_ = new CudaAllocator;
return *allocator_;
}
} // namespace cu
namespace allocator {
Allocator& allocator() {
return cu::allocator();
}
void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
return static_cast<cu::CudaBuffer*>(ptr_)->data;
}
} // namespace allocator
size_t get_active_memory() {
return cu::allocator().get_active_memory();
}
size_t get_peak_memory() {
return cu::allocator().get_peak_memory();
}
void reset_peak_memory() {
return cu::allocator().reset_peak_memory();
}
size_t set_memory_limit(size_t limit) {
return cu::allocator().set_memory_limit(limit);
}
size_t get_memory_limit() {
return cu::allocator().get_memory_limit();
}
size_t get_cache_memory() {
return cu::allocator().get_cache_memory();
}
size_t set_cache_limit(size_t limit) {
return cu::allocator().set_cache_limit(limit);
}
void clear_cache() {
cu::allocator().clear_cache();
}
// Not supported in CUDA.
size_t set_wired_limit(size_t) {
return 0;
}
} // namespace mlx::core

View File

@@ -0,0 +1,66 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/backend/common/buffer_cache.h"
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
struct CudaBuffer {
void* data;
size_t size;
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
size_t get_memory_limit();
size_t set_memory_limit(size_t limit);
size_t get_cache_memory() const;
size_t set_cache_limit(size_t limit);
void clear_cache();
private:
CudaAllocator();
friend CudaAllocator& allocator();
void cuda_free(CudaBuffer* buf);
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t max_pool_size_;
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
};
CudaAllocator& allocator();
} // namespace mlx::core::cu

26
mlx/backend/cuda/copy.cpp Normal file
View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/copy.h"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) {
throw std::runtime_error("copy_gpu_inplace not implemented in CUDA backend.");
}
void fill_gpu(const array& val, array& out, const Stream& s) {
throw std::runtime_error("fill_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

117
mlx/backend/cuda/device.cpp Normal file
View File

@@ -0,0 +1,117 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
Device::Device(int device) : device_(device) {
// Validate the requirements of device.
int attr = 0;
cudaDeviceGetAttribute(&attr, cudaDevAttrConcurrentManagedAccess, device_);
if (attr != 1) {
throw std::runtime_error(fmt::format(
"Device {} does not support synchronization in managed memory.",
device_));
}
}
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
}
}
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
// Put completion handlers in a batch.
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::commit() {
worker_.commit(stream_.last_cuda_stream());
}
Device& device(mlx::core::Device device) {
static std::unordered_map<int, Device> devices;
auto it = devices.find(device.index);
if (it == devices.end()) {
it = devices.try_emplace(device.index, device.index).first;
}
return it->second;
}
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core

131
mlx/backend/cuda/device.h Normal file
View File

@@ -0,0 +1,131 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
#include <thrust/execution_policy.h>
#include <unordered_map>
namespace mlx::core::cu {
class Device;
class CommandEncoder;
class DeviceStream {
public:
explicit DeviceStream(Device& device);
DeviceStream(const DeviceStream&) = delete;
DeviceStream& operator=(const DeviceStream&) = delete;
// Wait until kernels in the stream complete.
void synchronize();
// Return a cuda stream for launching kernels.
cudaStream_t schedule_cuda_stream();
// Return the last cuda stream used.
cudaStream_t last_cuda_stream();
CommandEncoder& get_encoder();
Device& device() {
return device_;
}
private:
Device& device_;
CudaStream stream_;
std::unique_ptr<CommandEncoder> encoder_;
};
class Device {
public:
explicit Device(int device);
Device(const Device&) = delete;
Device& operator=(const Device&) = delete;
// Make this device the current cuda device, required by some cuda calls.
void make_current();
DeviceStream& get_stream(Stream s);
int cuda_device() const {
return device_;
}
private:
int device_;
std::unordered_map<int, DeviceStream> streams_;
};
class CommandEncoder {
public:
explicit CommandEncoder(DeviceStream& stream);
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
void set_input_array(const array& arr) {}
void set_output_array(const array& arr) {}
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void end_encoding();
void commit();
// Schedule a cuda stream for |fun| to launch kernels, and check error
// afterwards.
template <typename F>
void launch_kernel(F&& fun) {
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
}
template <typename F>
void launch_kernel(cudaStream_t stream, F&& fun) {
device_.make_current();
fun(stream);
check_cuda_error("kernel launch", cudaGetLastError());
has_gpu_work_ = true;
}
Device& device() {
return device_;
}
DeviceStream& stream() {
return stream_;
}
bool has_gpu_work() const {
return has_gpu_work_;
}
private:
Device& device_;
DeviceStream& stream_;
Worker worker_;
bool has_gpu_work_{false};
std::vector<std::shared_ptr<array::Data>> temporaries_;
};
Device& device(mlx::core::Device device);
DeviceStream& get_stream(Stream s);
CommandEncoder& get_command_encoder(Stream s);
// Return an execution policy that does not sync for result.
// Note that not all thrust APIs support async policy, confirm before using.
inline auto thrust_policy(cudaStream_t stream) {
// TODO: Connect thrust's custom allocator with mlx's allocator.
return thrust::cuda::par_nosync.on(stream);
}
} // namespace mlx::core::cu

68
mlx/backend/cuda/eval.cpp Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/eval.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/available.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core::gpu {
bool is_available() {
return true;
}
void new_stream(Stream s) {
// Force initalization of cuda, so cuda runtime get destroyed at last.
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {
nvtx3::scoped_range r("gpu::eval");
auto outputs = arr.outputs();
{
// If the array is a tracer hold a reference
// to its inputs so they don't get donated
std::vector<array> inputs;
if (arr.is_tracer()) {
inputs = arr.inputs();
}
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
if (encoder.has_gpu_work()) {
// Keep used buffers alive until kernel finishes running.
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input.
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
}
encoder.end_encoding();
}
void finalize(Stream s) {
nvtx3::scoped_range r("gpu::finalize");
cu::get_command_encoder(s).commit();
}
void synchronize(Stream s) {
nvtx3::scoped_range r("gpu::synchronize");
cu::get_stream(s).synchronize();
}
} // namespace mlx::core::gpu

265
mlx/backend/cuda/event.cu Normal file
View File

@@ -0,0 +1,265 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/event.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
///////////////////////////////////////////////////////////////////////////////
// CudaEvent implementations
///////////////////////////////////////////////////////////////////////////////
// Cuda event managed with RAII.
class CudaEventHandle {
public:
CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
}
~CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
}
CudaEventHandle(const CudaEventHandle&) = delete;
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
operator cudaEvent_t() const {
return event_;
}
private:
cudaEvent_t event_;
};
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
void CudaEvent::wait() {
nvtx3::scoped_range r("cu::CudaEvent::wait");
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaEventSynchronize(*event_);
}
void CudaEvent::wait(cudaStream_t stream) {
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaStreamWaitEvent(stream, *event_);
}
void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
wait(cu::get_stream(s).last_cuda_stream());
}
}
void CudaEvent::record(cudaStream_t stream) {
cudaEventRecord(*event_, stream);
recorded_ = true;
}
void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
record(cu::get_stream(s).last_cuda_stream());
}
}
bool CudaEvent::completed() const {
return cudaEventQuery(*event_) == cudaSuccess;
}
///////////////////////////////////////////////////////////////////////////////
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
ac->wait(current);
}
}
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
ac->store(value);
ac->notify_all();
}
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_wait(ac, value);
}
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
} // namespace
SharedEvent::SharedEvent() {
// Allocate cuda::atomic on managed memory.
allocator::Buffer buffer = allocator::malloc(sizeof(Atomic));
Atomic* ac = static_cast<Atomic*>(buffer.raw_ptr());
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [buffer](Atomic* ptr) {
ptr->~Atomic();
allocator::free(buffer);
});
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { wait(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { signal(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { signal(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return ac_->load();
}
} // namespace cu
///////////////////////////////////////////////////////////////////////////////
// Event implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
struct EventImpl {
// CudaEvent is preferred when possible because it is fast, however we have
// to fallback to SharedEvent in following cases:
// 1. the event is used to wait/signal a cpu stream;
// 2. signal value other than 1 has been specified.
std::unique_ptr<cu::CudaEvent> cuda;
std::unique_ptr<cu::SharedEvent> shared;
bool is_created() const {
return cuda || shared;
}
void ensure_created(Stream s, uint64_t signal_value) {
if (is_created()) {
return;
}
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
nvtx3::mark("Using slow SharedEvent");
shared = std::make_unique<cu::SharedEvent>();
} else {
cuda = std::make_unique<cu::CudaEvent>();
}
}
};
} // namespace
Event::Event(Stream s) : stream_(s) {
event_ = std::shared_ptr<void>(
new EventImpl(), [](void* ptr) { delete static_cast<EventImpl*>(ptr); });
}
void Event::wait() {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait();
} else {
event->shared->wait(value());
}
}
void Event::wait(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait(s);
} else {
event->shared->wait(s, value());
}
}
void Event::signal(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
event->ensure_created(s, value());
if (event->cuda) {
assert(value() == 1);
event->cuda->record(s);
} else {
event->shared->signal(s, value());
}
}
bool Event::is_signaled() const {
auto* event = static_cast<EventImpl*>(event_.get());
if (!event->is_created()) {
return false;
}
if (event->cuda) {
assert(value() == 1);
return event->cuda->recorded() && event->cuda->completed();
} else {
return event->shared->is_signaled(value());
}
}
} // namespace mlx::core

66
mlx/backend/cuda/event.h Normal file
View File

@@ -0,0 +1,66 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/stream.h"
#include <cuda_runtime.h>
#include <cuda/atomic>
#include <memory>
namespace mlx::core::cu {
class CudaEventHandle;
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
// on GPU stream in CPU stream, but can not wait on CPU stream.
class CudaEvent {
public:
CudaEvent();
void wait();
void wait(cudaStream_t stream);
void wait(Stream s);
void record(cudaStream_t stream);
void record(Stream s);
// Return whether the recorded kernels have completed. Note that this method
// returns true if record() has not been called.
bool completed() const;
bool recorded() const {
return recorded_;
}
private:
bool recorded_{false};
std::shared_ptr<CudaEventHandle> event_;
};
// Event that can synchronize between CPU and GPU. It is much slower than
// CudaEvent so the latter should always be preferred when possible.
class SharedEvent {
public:
using Atomic = cuda::atomic<uint64_t>;
SharedEvent();
void wait(uint64_t value);
void wait(cudaStream_t stream, uint64_t value);
void wait(Stream s, uint64_t value);
void signal(uint64_t value);
void signal(cudaStream_t stream, uint64_t value);
void signal(Stream s, uint64_t value);
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

70
mlx/backend/cuda/fence.cu Normal file
View File

@@ -0,0 +1,70 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/fence.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
__host__ __device__ void busy_wait(cuda::atomic<uint64_t>* ac, uint64_t value) {
while (true) {
// In theory the atomic_thread_fence is not needed, but for CUDA 11 without
// it the load() may never return new value.
cuda::atomic_thread_fence(cuda::memory_order_seq_cst);
uint64_t current = ac->load();
if (current >= value) {
break;
}
}
}
__global__ void busy_wait_kernel(cuda::atomic<uint64_t>* ac, uint64_t value) {
busy_wait(ac, value);
}
} // namespace
struct FenceImpl {
uint32_t count;
cu::SharedEvent event;
};
Fence::Fence(Stream s) {
fence_ = std::shared_ptr<void>(
new FenceImpl{0}, [](void* ptr) { delete static_cast<FenceImpl*>(ptr); });
}
void Fence::wait(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
// We can't use SharedEvent::wait because it could hang in CUDA 11, see also:
// https://github.com/ml-explore/mlx/issues/2137
const auto& ac = fence->event.atomic();
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [ac, count = fence->count]() {
nvtx3::scoped_range r("Fence::wait()");
busy_wait(ac.get(), count);
});
} else {
nvtx3::scoped_range r("Fence::wait(s)");
auto& encoder = cu::get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(), [&](cudaStream_t stream) {
busy_wait_kernel<<<1, 1, 0>>>(ac.get(), fence->count);
});
encoder.add_completed_handler([ac]() {});
encoder.end_encoding();
}
}
void Fence::update(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
fence->count++;
fence->event.signal(s, fence->count);
}
} // namespace mlx::core

View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
namespace mlx::core {
dim3 get_block_dims(int dim0, int dim1, int dim2, int pow2) {
Dims dims = get_block_dims_common(dim0, dim1, dim2, pow2);
return dim3(std::get<0>(dims), std::get<1>(dims), std::get<2>(dims));
}
dim3 get_2d_grid_dims(const Shape& shape, const Strides& strides) {
Dims dims = get_2d_grid_dims_common(shape, strides);
return dim3(std::get<0>(dims), std::get<1>(dims), std::get<2>(dims));
}
dim3 get_2d_grid_dims(
const Shape& shape,
const Strides& strides,
size_t divisor) {
Dims dims = get_2d_grid_dims_common(shape, strides, divisor);
return dim3(std::get<0>(dims), std::get<1>(dims), std::get<2>(dims));
}
} // namespace mlx::core

View File

@@ -0,0 +1,49 @@
// Copyright © 2025 Apple Inc.
// This file includes host-only utilies for writing CUDA kernels, the difference
// from backend/cuda/kernels/utils.cuh is that the latter file only include
// device-only code.
#pragma once
#include "mlx/array.h"
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
namespace mlx::core {
// Maps CPU types to CUDA types.
template <typename T>
struct CTypeToCudaType {
using type = T;
};
template <>
struct CTypeToCudaType<float16_t> {
using type = __half;
};
template <>
struct CTypeToCudaType<bfloat16_t> {
using type = __nv_bfloat16;
};
template <>
struct CTypeToCudaType<complex64_t> {
using type = cuComplex;
};
template <typename T>
using cuda_type_t = typename CTypeToCudaType<T>::type;
// Compute the grid and block dimensions, check backend/common/utils.h for docs.
dim3 get_block_dims(int dim0, int dim1, int dim2, int pow2 = 10);
dim3 get_2d_grid_dims(const Shape& shape, const Strides& strides);
dim3 get_2d_grid_dims(
const Shape& shape,
const Strides& strides,
size_t divisor);
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,76 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda/std/limits>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
///////////////////////////////////////////////////////////////////////////////
// Additional C++ operator overrides between half types and native types.
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U>
constexpr bool is_integral_except =
cuda::std::is_integral_v<T> && !cuda::std::is_same_v<T, U>;
template <typename T, typename U>
constexpr bool is_arithmetic_except =
cuda::std::is_arithmetic_v<T> && !cuda::std::is_same_v<T, U>;
#define MLX_DEFINE_HALF_OP(HALF, HALF2FLOAT, FLOAT2HALF, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(HALF x, T y) { \
return FLOAT2HALF(HALF2FLOAT(x) OP static_cast<float>(y)); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(T x, HALF y) { \
return FLOAT2HALF(static_cast<float>(x) OP HALF2FLOAT(y)); \
}
#define MLX_DEFINE_HALF_CMP(HALF, HALF2FLOAT, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(HALF x, T y) { \
return HALF2FLOAT(x) OP static_cast<float>(y); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(T x, HALF y) { \
return static_cast<float>(y) OP HALF2FLOAT(x); \
}
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, +)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, -)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, *)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, /)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, +)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, -)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, *)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, /)
MLX_DEFINE_HALF_CMP(__half, __half2float, <)
MLX_DEFINE_HALF_CMP(__half, __half2float, >)
MLX_DEFINE_HALF_CMP(__half, __half2float, <=)
MLX_DEFINE_HALF_CMP(__half, __half2float, >=)
MLX_DEFINE_HALF_CMP(__half, __half2float, ==)
MLX_DEFINE_HALF_CMP(__half, __half2float, !=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, ==)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, !=)
#undef MLX_DEFINE_HALF_OP
#undef MLX_DEFINE_HALF_CMP
} // namespace mlx::core::cu

View File

@@ -0,0 +1,181 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/kernels/arange.cuh"
#include "mlx/backend/cuda/kernels/fp16_math.cuh"
#include "mlx/distributed/primitives.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cassert>
namespace mlx::core {
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_output_array(out);
encoder.launch_kernel([&, this](cudaStream_t stream) {
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
});
}
bool fast::ScaledDotProductAttention::use_fallback(
const array& q,
const array& k,
const array& v,
bool has_mask,
bool has_arr_mask,
bool do_causal,
Stream s) {
return true;
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU_USE_FALLBACK(func) \
bool func::use_fallback(Stream s) { \
return true; \
} \
NO_GPU_MULTI(func)
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(Abs)
NO_GPU(Add)
NO_GPU(AddMM)
NO_GPU(ArcCos)
NO_GPU(ArcCosh)
NO_GPU(ArcSin)
NO_GPU(ArcSinh)
NO_GPU(ArcTan)
NO_GPU(ArcTan2)
NO_GPU(ArcTanh)
NO_GPU(ArgPartition)
NO_GPU(ArgReduce)
NO_GPU(ArgSort)
NO_GPU(BitwiseBinary)
NO_GPU(BitwiseInvert)
NO_GPU(BlockMaskedMM)
NO_GPU(Ceil)
NO_GPU_MULTI(Compiled)
NO_GPU(Conjugate)
NO_GPU(Convolution)
NO_GPU(Cos)
NO_GPU(Cosh)
NO_GPU(Divide)
NO_GPU_MULTI(DivMod)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(Remainder)
NO_GPU(Equal)
NO_GPU(Erf)
NO_GPU(ErfInv)
NO_GPU(Exp)
NO_GPU(Expm1)
NO_GPU(FFT)
NO_GPU(Floor)
NO_GPU(Gather)
NO_GPU(GatherAxis)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Greater)
NO_GPU(GreaterEqual)
NO_GPU(Hadamard)
NO_GPU(Imag)
NO_GPU(Less)
NO_GPU(LessEqual)
NO_GPU(Load)
NO_GPU(Log)
NO_GPU(Log1p)
NO_GPU(LogicalNot)
NO_GPU(LogicalAnd)
NO_GPU(LogicalOr)
NO_GPU(LogAddExp)
NO_GPU(LogSumExp)
NO_GPU_MULTI(LUF)
NO_GPU(Matmul)
NO_GPU(Maximum)
NO_GPU(Minimum)
NO_GPU(Multiply)
NO_GPU(Negative)
NO_GPU(NotEqual)
NO_GPU(Partition)
NO_GPU(Power)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(RandomBits)
NO_GPU(Real)
NO_GPU(Reduce)
NO_GPU(Round)
NO_GPU(Scan)
NO_GPU(Scatter)
NO_GPU(ScatterAxis)
NO_GPU(Select)
NO_GPU(Sigmoid)
NO_GPU(Sign)
NO_GPU(Sin)
NO_GPU(Sinh)
NO_GPU(SliceUpdate)
NO_GPU(Softmax)
NO_GPU(Sort)
NO_GPU(Square)
NO_GPU(Sqrt)
NO_GPU(Subtract)
NO_GPU_MULTI(SVD)
NO_GPU(Tan)
NO_GPU(Tanh)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_USE_FALLBACK(LayerNorm)
NO_GPU_MULTI(LayerNormVJP)
NO_GPU_USE_FALLBACK(RMSNorm)
NO_GPU_MULTI(RMSNormVJP)
NO_GPU_USE_FALLBACK(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void concatenate_gpu(
const std::vector<array>& inputs,
array& out,
int axis,
const Stream& s) {
throw std::runtime_error("concatenate_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/device.h"
#include <fmt/format.h>
namespace mlx::core {
CudaStream::CudaStream(cu::Device& device) {
device.make_current();
CHECK_CUDA_ERROR(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking));
}
CudaStream::~CudaStream() {
CHECK_CUDA_ERROR(cudaStreamDestroy(stream_));
}
void check_cuda_error(const char* name, cudaError_t err) {
if (err != cudaSuccess) {
throw std::runtime_error(
fmt::format("{} failed: {}", name, cudaGetErrorString(err)));
}
}
} // namespace mlx::core

38
mlx/backend/cuda/utils.h Normal file
View File

@@ -0,0 +1,38 @@
// Copyright © 2025 Apple Inc.
// This file include utilies that are used by C++ code (i.e. .cpp files).
#pragma once
#include <cuda_runtime.h>
namespace mlx::core {
namespace cu {
class Device;
}
// Cuda stream managed with RAII.
class CudaStream {
public:
explicit CudaStream(cu::Device& device);
~CudaStream();
CudaStream(const CudaStream&) = delete;
CudaStream& operator=(const CudaStream&) = delete;
operator cudaStream_t() const {
return stream_;
}
private:
cudaStream_t stream_;
};
// Throw exception if the cuda API does not succeed.
void check_cuda_error(const char* name, cudaError_t err);
// The macro version that prints the command that failed.
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
} // namespace mlx::core

View File

@@ -0,0 +1,90 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
Worker::Worker()
: signal_stream_(device(mlx::core::Device::gpu)),
worker_(&Worker::thread_fn, this) {}
Worker::~Worker() {
{
std::lock_guard lock(worker_mutex_);
stop_ = true;
}
worker_event_.signal(batch_ + 1);
worker_.join();
}
void Worker::add_task(std::function<void()> task) {
pending_tasks_.push_back(std::move(task));
}
void Worker::consume_in_this_thread() {
for (auto& task : pending_tasks_) {
task();
}
pending_tasks_.clear();
}
void Worker::end_batch() {
batch_++;
{
std::lock_guard lock(worker_mutex_);
worker_tasks_[batch_] = std::move(pending_tasks_);
}
uncommited_batches_++;
}
void Worker::commit() {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
worker_event_.signal(batch_);
}
void Worker::commit(cudaStream_t stream) {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
// Signal the |worker_event_| in |signal_stream_| after the kernels in
// |stream_| finish running.
signal_event_.record(stream);
signal_event_.wait(signal_stream_);
worker_event_.signal(signal_stream_, batch_);
}
void Worker::thread_fn() {
// The worker thread is safe to free buffers.
allocator().register_this_thread();
while (!stop_) {
uint64_t batch = worker_event_.value();
Tasks tasks;
{
std::lock_guard lock(worker_mutex_);
// Move tasks in signaled batches.
auto end = worker_tasks_.upper_bound(batch);
for (auto it = worker_tasks_.begin(); it != end; ++it) {
if (tasks.empty()) {
tasks = std::move(it->second);
} else {
std::move(
it->second.begin(), it->second.end(), std::back_inserter(tasks));
}
}
worker_tasks_.erase(worker_tasks_.begin(), end);
}
for (auto& task : tasks) {
task();
}
worker_event_.wait(batch + 1);
}
}
} // namespace mlx::core::cu

68
mlx/backend/cuda/worker.h Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include <functional>
#include <map>
#include <mutex>
#include <thread>
namespace mlx::core::cu {
// Run tasks in worker thread, synchronized with cuda stream.
class Worker {
public:
Worker();
~Worker();
Worker(const Worker&) = delete;
Worker& operator=(const Worker&) = delete;
// Add a pending |task| that will run when consumed or commited.
void add_task(std::function<void()> task);
// Run pending tasks immediately in current thread.
void consume_in_this_thread();
// Put pending tasks in a batch.
void end_batch();
// Inform worker thread to run current batches now.
void commit();
// Inform worker thread to run current batches after kernels in |stream|
// finish running.
void commit(cudaStream_t stream);
// Return how many batches have been added but not committed yet.
size_t uncommited_batches() const {
return uncommited_batches_;
}
private:
void thread_fn();
uint64_t batch_{0};
size_t uncommited_batches_{0};
// Cuda stream and event for signaling kernel completion.
CudaStream signal_stream_;
CudaEvent signal_event_;
// Worker thread.
SharedEvent worker_event_;
std::thread worker_;
std::mutex worker_mutex_;
bool stop_{false};
// Tasks are put in |pending_tasks_| first, and then moved to
// |worker_tasks_| when end_batch() is called.
using Tasks = std::vector<std::function<void()>>;
Tasks pending_tasks_;
std::map<uint64_t, Tasks> worker_tasks_;
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,5 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp)

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::gpu {
bool is_available();
} // namespace mlx::core::gpu

49
mlx/backend/gpu/copy.cpp Normal file
View File

@@ -0,0 +1,49 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h"
#include <cassert>
namespace mlx::core {
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
bool donated = set_copy_output_data(in, out, ctype);
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
void copy_gpu_inplace(
const array& in,
array& out,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), in.strides(), out.strides(), 0, 0, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
} // namespace mlx::core

View File

@@ -5,6 +5,8 @@
#include "mlx/backend/common/copy.h"
#include "mlx/stream.h"
#include <optional>
namespace mlx::core {
// Generic copy inplace

View File

@@ -8,14 +8,11 @@
#include "mlx/array.h"
#include "mlx/stream.h"
namespace mlx::core::metal {
namespace mlx::core::gpu {
void new_stream(Stream stream);
std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool();
void eval(array& arr);
void finalize(Stream s);
void synchronize(Stream s);
} // namespace mlx::core::metal
} // namespace mlx::core::gpu

View File

@@ -0,0 +1,217 @@
// Copyright © 2025 Apple Inc.
#include "mlx/primitives.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include <cassert>
#define MLX_PROFILER_RANGE(message)
namespace mlx::core {
namespace {
void reshape(const array& in, array& out, Stream s) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_gpu_inplace(
in,
out,
in.shape(),
in.strides(),
make_contiguous_strides(in.shape()),
0,
0,
CopyType::General,
s);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
} // namespace
void AsStrided::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsStrided::eval_gpu");
eval(inputs, out);
}
void AsType::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsType::eval_gpu");
CopyType ctype =
inputs[0].flags().contiguous ? CopyType::Vector : CopyType::General;
copy_gpu(inputs[0], out, ctype);
}
void Broadcast::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Broadcast::eval_gpu");
eval(inputs, out);
}
void BroadcastAxes::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("BroadcastAxes::eval_gpu");
eval(inputs, out);
}
void Concatenate::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Concatenate::eval_gpu");
concatenate_gpu(inputs, out, axis_, stream());
}
void Contiguous::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Contiguous::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
constexpr size_t extra_bytes = 16384;
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
(in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy_gpu(in, out, CopyType::General);
}
}
void Copy::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Copy::eval_gpu");
eval(inputs, out);
}
void CustomTransforms::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("CustomTransforms::eval_gpu");
eval(inputs, outputs);
}
void Depends::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Depends::eval_gpu");
eval(inputs, outputs);
}
void ExpandDims::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("ExpandDims::eval_gpu");
eval(inputs, out);
}
void Full::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Full::eval_gpu");
auto in = inputs[0];
CopyType ctype;
if (in.data_size() == 1) {
ctype = CopyType::Scalar;
} else if (in.flags().contiguous) {
ctype = CopyType::Vector;
} else {
ctype = CopyType::General;
}
copy_gpu(in, out, ctype);
}
void Flatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Flatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void NumberOfElements::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("NumberOfElements::eval_gpu");
eval(inputs, out);
}
void Pad::eval_gpu(const std::vector<array>& inputs, array& out) {
// Inputs must be base input array and scalar val array
assert(inputs.size() == 2);
auto& in = inputs[0];
auto& val = inputs[1];
// Padding value must be a scalar
assert(val.size() == 1);
// Padding value, input and output must be of the same type
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
pad_gpu(in, val, out, axes_, low_pad_size_, stream());
}
void Reshape::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Reshape::eval_gpu");
reshape(inputs[0], out, stream());
}
void Split::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Split::eval_gpu");
eval(inputs, outputs);
}
void Slice::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Slice::eval_gpu");
assert(inputs.size() == 1);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
slice_gpu(in, out, start_indices_, strides_, stream());
}
void Squeeze::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Squeeze::eval_gpu");
eval(inputs, out);
}
void StopGradient::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("StopGradient::eval_gpu");
eval(inputs, out);
}
void Transpose::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Transpose::eval_gpu");
eval(inputs, out);
}
void Unflatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Unflatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void View::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("View::eval_gpu");
auto& in = inputs[0];
auto ibytes = size_of(in.dtype());
auto obytes = size_of(out.dtype());
// Conditions for buffer copying (disjunction):
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
} else {
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc(tmp.nbytes()));
copy_gpu_inplace(in, tmp, CopyType::General, stream());
auto flags = out.flags();
flags.contiguous = true;
flags.row_contiguous = true;
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
out.copy_shared_buffer(tmp, out.strides(), flags, out.size());
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,44 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void slice_gpu(
const array& in,
array& out,
const Shape& start_indices,
const Shape& strides,
const Stream& s) {
slice(in, out, start_indices, strides);
}
void pad_gpu(
const array& in,
const array& val,
array& out,
const std::vector<int>& axes,
const Shape& low_pad_size,
const Stream& s) {
// Fill output with val
fill_gpu(val, out, s);
// Find offset for start of input values
size_t data_offset = 0;
for (int i = 0; i < axes.size(); i++) {
auto ax = axes[i] < 0 ? out.ndim() + axes[i] : axes[i];
data_offset += out.strides()[ax] * low_pad_size[i];
}
// Extract slice from output where input will be pasted
array out_slice(in.shape(), out.dtype(), nullptr, {});
out_slice.copy_shared_buffer(
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_gpu_inplace(in, out_slice, CopyType::GeneralGeneral, s);
}
} // namespace mlx::core

View File

@@ -93,6 +93,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp

View File

@@ -1,7 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/resident.h"
#include "mlx/memory.h"
@@ -31,141 +30,18 @@ void* Buffer::raw_ptr() {
namespace metal {
namespace {
BufferCache::BufferCache(ResidencySet& residency_set)
: head_(nullptr),
tail_(nullptr),
pool_size_(0),
residency_set_(residency_set) {}
BufferCache::~BufferCache() {
auto pool = metal::new_scoped_memory_pool();
clear();
}
int BufferCache::clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
if (holder->buf) {
if (!holder->buf->heap()) {
residency_set_.erase(holder->buf);
}
holder->buf->release();
n_release++;
}
delete holder;
}
buffer_pool_.clear();
pool_size_ = 0;
head_ = nullptr;
tail_ = nullptr;
return n_release;
}
MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
// Find the closest buffer in pool
MTL::Buffer* pbuf = nullptr;
auto it = buffer_pool_.lower_bound(size);
// Make sure we use most of the available memory
while (!pbuf && it != buffer_pool_.end() &&
it->first < std::min(2 * size, size + 2 * vm_page_size)) {
// Collect from the cache
pbuf = it->second->buf;
// Remove from cache
remove_from_list(it->second);
delete it->second;
it = buffer_pool_.erase(it);
}
if (pbuf) {
pool_size_ -= pbuf->length();
}
return pbuf;
}
void BufferCache::recycle_to_cache(MTL::Buffer* buf) {
// Add to cache
if (buf) {
BufferHolder* bh = new BufferHolder(buf);
add_at_head(bh);
pool_size_ += buf->length();
buffer_pool_.insert({buf->length(), bh});
}
}
int BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
if (min_bytes_to_free >= 0.9 * pool_size_) {
return clear();
} else {
int n_release = 0;
size_t total_bytes_freed = 0;
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
if (tail_->buf) {
total_bytes_freed += tail_->buf->length();
if (!tail_->buf->heap()) {
residency_set_.erase(tail_->buf);
}
tail_->buf->release();
tail_->buf = nullptr;
n_release++;
}
remove_from_list(tail_);
}
pool_size_ -= total_bytes_freed;
return n_release;
}
}
void BufferCache::add_at_head(BufferCache::BufferHolder* to_add) {
if (!to_add)
return;
if (!head_) {
head_ = to_add;
tail_ = to_add;
} else {
head_->prev = to_add;
to_add->next = head_;
head_ = to_add;
}
}
void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
if (!to_remove) {
return;
}
// If in the middle
if (to_remove->prev && to_remove->next) {
to_remove->prev->next = to_remove->next;
to_remove->next->prev = to_remove->prev;
} else if (to_remove->prev && to_remove == tail_) { // If tail
tail_ = to_remove->prev;
tail_->next = nullptr;
} else if (to_remove == head_ && to_remove->next) { // If head
head_ = to_remove->next;
head_->prev = nullptr;
} else if (to_remove == head_ && to_remove == tail_) { // If only element
head_ = nullptr;
tail_ = nullptr;
}
to_remove->prev = nullptr;
to_remove->next = nullptr;
}
} // namespace
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
residency_set_(device_),
buffer_cache_(residency_set_) {
buffer_cache_(
vm_page_size,
[](MTL::Buffer* buf) { return buf->length(); },
[this](MTL::Buffer* buf) {
if (!buf->heap()) {
residency_set_.erase(buf);
}
buf->release();
}) {
auto pool = metal::new_scoped_memory_pool();
auto memsize = std::get<size_t>(device_info().at("memory_size"));
auto max_rec_size =
@@ -194,6 +70,7 @@ MetalAllocator::~MetalAllocator() {
if (heap_) {
heap_->release();
}
buffer_cache_.clear();
}
size_t MetalAllocator::set_cache_limit(size_t limit) {

View File

@@ -7,6 +7,7 @@
#include <vector>
#include "mlx/allocator.h"
#include "mlx/backend/common/buffer_cache.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/resident.h"
@@ -14,43 +15,6 @@ namespace mlx::core::metal {
using allocator::Buffer;
namespace {
class BufferCache {
public:
BufferCache(ResidencySet& residency_set);
~BufferCache();
MTL::Buffer* reuse_from_cache(size_t size);
void recycle_to_cache(MTL::Buffer* buf);
int release_cached_buffers(size_t min_bytes_to_free);
size_t cache_size() {
return pool_size_;
}
int clear();
private:
struct BufferHolder {
public:
BufferHolder(MTL::Buffer* buf_) : buf(buf_), prev(nullptr), next(nullptr) {}
BufferHolder* prev;
BufferHolder* next;
MTL::Buffer* buf;
};
void add_at_head(BufferHolder* to_add);
void remove_from_list(BufferHolder* to_remove);
std::multimap<size_t, BufferHolder*> buffer_pool_;
BufferHolder* head_;
BufferHolder* tail_;
size_t pool_size_;
ResidencySet& residency_set_;
};
} // namespace
class MetalAllocator : public allocator::Allocator {
/** Allocator for Metal GPUs. */
public:
@@ -90,7 +54,7 @@ class MetalAllocator : public allocator::Allocator {
friend MetalAllocator& allocator();
// Caching allocator
BufferCache buffer_cache_;
BufferCache<MTL::Buffer> buffer_cache_;
ResidencySet residency_set_;

View File

@@ -90,7 +90,7 @@ void binary_op_gpu_inplace(
work_per_thread = large ? 4 : 2;
} else {
large = out.data_size() > UINT32_MAX;
work_per_thread = 1;
work_per_thread = get_work_per_thread(a.dtype());
}
std::string kernel_name =
get_kernel_name(bopt, op, a, large, shape.size(), work_per_thread);
@@ -137,13 +137,20 @@ void binary_op_gpu_inplace(
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), arg_idx++);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), arg_idx++);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}

View File

@@ -64,6 +64,7 @@ inline void build_kernel(
cnt++);
}
std::string idx_type = use_big_index ? "int64_t" : "uint";
if (add_indices) {
os += fmt::format(
" constant const int64_t* in_strides [[buffer({0})]],\n", cnt++);
@@ -83,6 +84,9 @@ inline void build_kernel(
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
os += fmt::format(
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
} else {
os += fmt::format(
" constant const {0}& size [[buffer({1})]],\n", idx_type, cnt++);
}
if (dynamic_dims) {
os += fmt::format(" constant const int& ndim [[buffer({0})]],\n", cnt++);
@@ -92,13 +96,14 @@ inline void build_kernel(
os += " uint3 pos [[thread_position_in_grid]],\n";
os += " uint3 grid [[threads_per_grid]]) {\n";
std::string idx_type = use_big_index ? "int64_t" : "uint";
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
if (contiguous && use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os += " int64_t index = pos.x + grid.x * int64_t(pos.y);\n";
os += " int64_t index = N_ * (pos.x + grid.x * int64_t(pos.y));\n";
} else if (contiguous) {
os += " uint index = N_ * pos.x;\n";
} else if (work_per_thread > 1) {
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
os += fmt::format(
" int xshape = output_shape[{0}];\n",
dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1));
@@ -110,6 +115,9 @@ inline void build_kernel(
" {0} index = pos.x + grid.x * (pos.y + {0}(grid.y) * pos.z);\n",
idx_type);
}
if (work_per_thread > 1 && contiguous) {
os += " for (int i = 0; i < N_ && index < size; ++i) {\n";
}
// Read constant / contiguous inputs in tmps
std::vector<array> nc_inputs;
@@ -193,7 +201,7 @@ inline void build_kernel(
}
// Open per-thread loop
if (work_per_thread > 1) {
if (work_per_thread > 1 && !contiguous) {
os +=
" for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
}
@@ -272,6 +280,7 @@ void Compiled::eval_gpu(
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_, [&]() {
int work_per_thread = get_work_per_thread(outputs_[0].dtype());
std::string kernel = metal::utils();
concatenate(
kernel, metal::unary_ops(), metal::binary_ops(), metal::ternary_ops());
@@ -284,7 +293,9 @@ void Compiled::eval_gpu(
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
/* dynamic_dims = */ false,
/* use_big_index = */ false,
/* work_per_thread = */ work_per_thread);
build_kernel(
kernel,
kernel_lib_ + "_contiguous_large",
@@ -295,7 +306,8 @@ void Compiled::eval_gpu(
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false,
/* use_big_index = */ true);
/* use_big_index = */ true,
/* work_per_thread = */ work_per_thread);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
@@ -468,6 +480,13 @@ void Compiled::eval_gpu(
if (!contiguous) {
compute_encoder.set_vector_bytes(strides[0], cnt++);
compute_encoder.set_vector_bytes(shape, cnt++);
} else {
auto size = outputs[0].data_size();
if (large) {
compute_encoder.set_bytes<int64_t>(size, cnt++);
} else {
compute_encoder.set_bytes<int>(size, cnt++);
}
}
// Put the number of dims in if it is dynamic
@@ -477,12 +496,13 @@ void Compiled::eval_gpu(
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].data_size();
int work_per_thread = get_work_per_thread(outputs[0].dtype());
size_t nthreads = ceildiv(outputs[0].data_size(), work_per_thread);
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
MTL::Size grid_dims = large
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
? get_2d_grid_dims(
outputs[0].shape(), outputs[0].strides(), work_per_thread)
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {

View File

@@ -1,11 +1,10 @@
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <numeric>
#include <sstream>
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/kernels/defines.h"
@@ -178,83 +177,6 @@ void explicit_gemm_conv_group_ND_gpu(
/*copies = */ copies);
}
void conv_1D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
int groups,
bool flip) {
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(2)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1))},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1))},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1))},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
/* const int idil[NDIM] = */ {in_dilation[0]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
/* const int groups = */ groups,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (groups > 1) {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void slow_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
int bm = 16, bn = 8;
int tm = 4, tn = 4;
std::ostringstream kname;
kname << "naive_conv_2d_" << type_to_name(out) << "_bm" << bm << "_bn" << bn
<< "_tm" << tm << "_tn" << tn;
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
size_t n_pixels = conv_params.oS[0] * conv_params.oS[1];
size_t grid_dim_x = (n_pixels + (tm * bm) - 1) / (tm * bm);
size_t grid_dim_y = (conv_params.O + (tn * bn) - 1) / (tn * bn);
size_t grid_dim_z = conv_params.N;
MTL::Size group_dims = MTL::Size(bm, bn, 1);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, grid_dim_z);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void implicit_gemm_conv_2D_gpu(
const Stream& s,
metal::Device& d,
@@ -771,6 +693,141 @@ void depthwise_conv_2D_gpu(
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void dispatch_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies) {
bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
if (is_idil_one && conv_params.groups > 1) {
const int C_per_group = conv_params.C / conv_params.groups;
const int O_per_group = conv_params.O / conv_params.groups;
if (C_per_group == 1 && O_per_group == 1 && is_kdil_one &&
conv_params.wS[0] <= 7 && conv_params.wS[1] <= 7 &&
conv_params.str[0] <= 2 && conv_params.str[1] <= 2 &&
conv_params.oS[0] % 8 == 0 && conv_params.oS[1] % 8 == 0 &&
conv_params.wt_strides[1] == conv_params.wS[1] &&
conv_params.C % 16 == 0 && conv_params.C == conv_params.O) {
return depthwise_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
if ((C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
}
}
// Direct to winograd conv
bool inp_large =
(conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 1ul << 12;
bool channels_large = (conv_params.C + conv_params.O) >= 256;
if (!conv_params.flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
channels_large) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
// Direct to implicit gemm conv
if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
(conv_params.O <= 16 || conv_params.O % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
else if (conv_params.C % 16 == 0 && conv_params.O % 16 == 0) {
return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
}
// Direct to explicit gemm conv
else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void conv_1D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
int groups,
bool flip,
std::vector<array>& copies) {
bool is_idil_one = in_dilation[0] == 1;
int C = in.shape(2);
int O = wt.shape(0);
const int C_per_group = in.shape(2) / groups;
const int O_per_group = wt.shape(0) / groups;
// Direct to implicit gemm conv
if (is_idil_one && (C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
MLXConvParams<2> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ C,
/* const int O = */ O,
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1)), 1},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1)), 1},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1)), 1},
/* const int str[NDIM] = */ {wt_strides[0], 1},
/* const int pad[NDIM] = */ {padding[0], 0},
/* const int kdil[NDIM] = */ {wt_dilation[0], 1},
/* const int idil[NDIM] = */ {in_dilation[0], 1},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], 0, in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], 0, wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], 0, out.strides()[2]},
/* const int groups = */ groups,
/* const bool flip = */ flip};
dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
return;
}
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(2)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1))},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1))},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1))},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
/* const int idil[NDIM] = */ {in_dilation[0]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
/* const int groups = */ groups,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (groups > 1) {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void conv_2D_gpu(
const Stream& s,
metal::Device& d,
@@ -808,57 +865,7 @@ void conv_2D_gpu(
/* const int groups = */ groups,
/* const bool flip = */ flip,
};
bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
if (is_idil_one && groups > 1) {
const int C_per_group = conv_params.C / groups;
const int O_per_group = conv_params.O / groups;
if (C_per_group == 1 && O_per_group == 1 && is_kdil_one &&
conv_params.wS[0] <= 7 && conv_params.wS[1] <= 7 &&
conv_params.str[0] <= 2 && conv_params.str[1] <= 2 &&
conv_params.oS[0] % 8 == 0 && conv_params.oS[1] % 8 == 0 &&
conv_params.wt_strides[1] == conv_params.wS[1] &&
conv_params.C % 16 == 0 && conv_params.C == conv_params.O) {
return depthwise_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
if ((C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
}
}
// Direct to winograd conv
bool inp_large =
(conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 1ul << 12;
bool channels_large = (conv_params.C + conv_params.O) >= 256;
if (!flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
channels_large) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
// Direct to implicit gemm conv
if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
(conv_params.O <= 16 || conv_params.O % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
else if (conv_params.C % 16 == 0 && conv_params.O % 16 == 0) {
return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
}
// Direct to explicit gemm conv
else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
void conv_3D_gpu(
@@ -952,7 +959,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -967,7 +974,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -983,12 +990,13 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
groups_,
flip_);
flip_,
copies);
}
// Throw error
else {

View File

@@ -1,35 +1,15 @@
// Copyright © 2023-2024 Apple Inc.
#include <sstream>
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
constexpr int MAX_COPY_SPECIALIZED_DIMS = 3;
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
bool donated = set_copy_output_data(in, out, ctype);
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
void copy_gpu_inplace(
const array& in,
array& out,
@@ -104,6 +84,8 @@ void copy_gpu_inplace(
"[Copy::eval_gpu] Dynamic output offset requires GeneralGeneral copy");
}
}
} else {
work_per_thread = get_work_per_thread(in.dtype());
}
concatenate(kernel_name, "_copy", type_to_name(in), type_to_name(out));
auto kernel = dynamic ? get_dynamic_copy_kernel(d, kernel_name, in, out)
@@ -165,39 +147,23 @@ void copy_gpu_inplace(
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), 2);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), 2);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void copy_gpu_inplace(
const array& in,
array& out,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), in.strides(), out.strides(), 0, 0, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
void fill_gpu(const array& val, array& out, const Stream& s) {
if (out.size() == 0) {
return;
@@ -214,14 +180,21 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
compute_encoder.set_input_array(val, 0);
compute_encoder.set_output_array(out, 1);
int work_per_thread = get_work_per_thread(val.dtype());
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
size_t nthreads = out.data_size();
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), 2);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), 2);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}

View File

@@ -1,6 +1,6 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/fast_primitives.h"

View File

@@ -1,20 +1,20 @@
// Copyright © 2023-2024 Apple Inc.
#include <cstdlib>
#include <filesystem>
#include <sstream>
#include <sys/sysctl.h>
#define NS_PRIVATE_IMPLEMENTATION
#define CA_PRIVATE_IMPLEMENTATION
#define MTL_PRIVATE_IMPLEMENTATION
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/utils.h"
namespace fs = std::filesystem;
namespace mlx::core::metal {
namespace {
@@ -66,8 +66,8 @@ MTL::Library* try_load_bundle(
if (bundle != nullptr) {
std::string resource_path =
std::string(bundle->resourceURL()->fileSystemRepresentation()) + "/" +
lib_name + ".metallib" auto [lib, error] =
load_library_from_path(device, resource_path.c_str());
lib_name + ".metallib";
auto [lib, error] = load_library_from_path(device, resource_path.c_str());
if (lib) {
return lib;
}
@@ -79,12 +79,18 @@ MTL::Library* try_load_bundle(
// Firstly, search for the metallib in the same path as this binary
std::pair<MTL::Library*, NS::Error*> load_colocated_library(
MTL::Device* device,
const std::string& lib_name) {
std::string lib_path = get_colocated_mtllib_path(lib_name);
if (lib_path.size() != 0) {
return load_library_from_path(device, lib_path.c_str());
const std::string& relative_path) {
std::string binary_dir = get_binary_directory();
if (binary_dir.size() == 0) {
return {nullptr, nullptr};
}
return {nullptr, nullptr};
auto path = fs::path(binary_dir) / relative_path;
if (!path.has_extension()) {
path.replace_extension(".metallib");
}
return load_library_from_path(device, path.c_str());
}
std::pair<MTL::Library*, NS::Error*> load_swiftpm_library(
@@ -99,7 +105,7 @@ std::pair<MTL::Library*, NS::Error*> load_swiftpm_library(
auto bundles = NS::Bundle::allBundles();
for (int i = 0, c = (int)bundles->count(); i < c; i++) {
auto bundle = reinterpret_cast<NS::Bundle*>(bundles->object(i));
library = try_load_bundle(device, bundle->resourceURL());
library = try_load_bundle(device, bundle->resourceURL(), lib_name);
if (library != nullptr) {
return {library, nullptr};
}
@@ -109,33 +115,34 @@ std::pair<MTL::Library*, NS::Error*> load_swiftpm_library(
}
MTL::Library* load_default_library(MTL::Device* device) {
NS::Error *error1, *error2, *error3;
NS::Error* error[4];
MTL::Library* lib;
// First try the colocated mlx.metallib
std::tie(lib, error1) = load_colocated_library(device, "mlx");
std::tie(lib, error[0]) = load_colocated_library(device, "mlx");
if (lib) {
return lib;
}
std::tie(lib, error[1]) = load_colocated_library(device, "Resources/mlx");
if (lib) {
return lib;
}
// Then try default.metallib in a SwiftPM bundle if we have one
std::tie(lib, error2) = load_swiftpm_library(device, "default");
std::tie(lib, error[2]) = load_swiftpm_library(device, "default");
if (lib) {
return lib;
}
// Finally try default_mtllib_path
std::tie(lib, error3) = load_library_from_path(device, default_mtllib_path);
std::tie(lib, error[3]) = load_library_from_path(device, default_mtllib_path);
if (!lib) {
std::ostringstream msg;
msg << "Failed to load the default metallib. ";
if (error1 != nullptr) {
msg << error1->localizedDescription()->utf8String() << " ";
}
if (error2 != nullptr) {
msg << error2->localizedDescription()->utf8String() << " ";
}
if (error3 != nullptr) {
msg << error3->localizedDescription()->utf8String() << " ";
for (int i = 0; i < 4; i++) {
if (error[i] != nullptr) {
msg << error[i]->localizedDescription()->utf8String() << " ";
}
}
throw std::runtime_error(msg.str());
}
@@ -156,6 +163,7 @@ MTL::Library* load_library(
<< error->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
return lib;
}
// We have been given a path so try to load from lib_path / lib_name.metallib
@@ -168,6 +176,7 @@ MTL::Library* load_library(
<< "> with error " << error->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
return lib;
}
// Try to load the colocated library
@@ -188,8 +197,8 @@ MTL::Library* load_library(
std::ostringstream msg;
msg << "Failed to load the metallib " << lib_name << ".metallib. "
<< "We attempted to load it from <" << get_colocated_mtllib_path(lib_name)
<< ">";
<< "We attempted to load it from <" << get_binary_directory() << "/"
<< lib_name << ".metallib" << ">";
#ifdef SWIFTPM_BUNDLE
msg << " and from the Swift PM bundle.";
#endif
@@ -760,42 +769,4 @@ std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool() {
NS::AutoreleasePool::alloc()->init(), dtor);
}
void new_stream(Stream stream) {
if (stream.device == mlx::core::Device::gpu) {
device(stream.device).new_queue(stream.index);
}
}
const std::unordered_map<std::string, std::variant<std::string, size_t>>&
device_info() {
auto init_device_info = []()
-> std::unordered_map<std::string, std::variant<std::string, size_t>> {
auto pool = new_scoped_memory_pool();
auto raw_device = device(default_device()).mtl_device();
auto name = std::string(raw_device->name()->utf8String());
auto arch = std::string(raw_device->architecture()->name()->utf8String());
size_t memsize = 0;
size_t length = sizeof(memsize);
sysctlbyname("hw.memsize", &memsize, &length, NULL, 0);
size_t rsrc_limit = 0;
sysctlbyname("iogpu.rsrc_limit", &rsrc_limit, &length, NULL, 0);
if (rsrc_limit == 0) {
rsrc_limit = 499000;
}
return {
{"device_name", name},
{"architecture", arch},
{"max_buffer_length", raw_device->maxBufferLength()},
{"max_recommended_working_set_size",
raw_device->recommendedMaxWorkingSetSize()},
{"memory_size", memsize},
{"resource_limit", rsrc_limit}};
};
static auto device_info_ = init_device_info();
return device_info_;
}
} // namespace mlx::core::metal

View File

@@ -21,18 +21,14 @@ namespace mlx::core::metal {
// Note, this function must be left inline in a header so that it is not
// dynamically linked.
inline std::string get_colocated_mtllib_path(const std::string& lib_name) {
inline std::string get_binary_directory() {
Dl_info info;
std::string mtllib_path;
std::string lib_ext = lib_name + ".metallib";
int success = dladdr((void*)get_colocated_mtllib_path, &info);
std::string directory;
int success = dladdr((void*)get_binary_directory, &info);
if (success) {
auto mtllib = fs::path(info.dli_fname).remove_filename() / lib_ext;
mtllib_path = mtllib.c_str();
directory = fs::path(info.dli_fname).remove_filename().c_str();
}
return mtllib_path;
return directory;
}
using MTLFCList =
@@ -99,6 +95,10 @@ struct CommandEncoder {
return enc_->setBytes(&v, sizeof(T), idx);
}
void set_threadgroup_memory_length(size_t length, int idx) {
enc_->setThreadgroupMemoryLength(length, idx);
}
ConcurrentContext start_concurrent() {
return ConcurrentContext(*this);
}
@@ -270,4 +270,6 @@ class Device {
Device& device(mlx::core::Device);
std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool();
} // namespace mlx::core::metal

View File

@@ -4,7 +4,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/distributed/ops.h"

102
mlx/backend/metal/eval.cpp Normal file
View File

@@ -0,0 +1,102 @@
// Copyright © 2023-2024 Apple Inc.
#include <memory>
#include "mlx/backend/gpu/available.h"
#include "mlx/backend/gpu/eval.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/scheduler.h"
namespace mlx::core::gpu {
bool is_available() {
return true;
}
void new_stream(Stream stream) {
if (stream.device == mlx::core::Device::gpu) {
metal::device(stream.device).new_queue(stream.index);
}
}
inline void check_error(MTL::CommandBuffer* cbuf) {
if (cbuf->status() == MTL::CommandBufferStatusError) {
std::ostringstream msg;
msg << "[METAL] Command buffer execution failed: "
<< cbuf->error()->localizedDescription()->utf8String();
throw std::runtime_error(msg.str());
}
}
void eval(array& arr) {
auto pool = metal::new_scoped_memory_pool();
auto s = arr.primitive().stream();
auto& d = metal::device(s.device);
auto command_buffer = d.get_command_buffer(s.index);
auto outputs = arr.outputs();
{
// If the array is a tracer hold a reference
// to its inputs so they don't get donated
std::vector<array> inputs;
if (arr.is_tracer()) {
inputs = arr.inputs();
}
debug_set_primitive_buffer_label(command_buffer, arr.primitive());
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
if (d.command_buffer_needs_commit(s.index)) {
d.end_encoding(s.index);
scheduler::notify_new_task(s);
command_buffer->addCompletedHandler(
[s, buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
scheduler::notify_task_completion(s);
check_error(cbuf);
});
d.commit_command_buffer(s.index);
d.get_command_buffer(s.index);
} else {
command_buffer->addCompletedHandler(
[s, buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
check_error(cbuf);
});
}
}
void finalize(Stream s) {
auto pool = metal::new_scoped_memory_pool();
auto& d = metal::device(s.device);
auto cb = d.get_command_buffer(s.index);
d.end_encoding(s.index);
cb->addCompletedHandler([s](MTL::CommandBuffer* cbuf) { check_error(cbuf); });
d.commit_command_buffer(s.index);
d.get_command_buffer(s.index);
}
void synchronize(Stream s) {
auto pool = metal::new_scoped_memory_pool();
auto& d = metal::device(s.device);
auto cb = d.get_command_buffer(s.index);
cb->retain();
d.end_encoding(s.index);
d.commit_command_buffer(s.index);
cb->waitUntilCompleted();
check_error(cb);
cb->release();
}
} // namespace mlx::core::gpu

View File

@@ -2,7 +2,6 @@
#include "mlx/event.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/scheduler.h"
namespace mlx::core {

View File

@@ -1,7 +1,6 @@
// Copyright © 2024 Apple Inc.
#include "mlx/fence.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/scheduler.h"
#include "mlx/utils.h"
@@ -139,7 +138,7 @@ void Fence::update(Stream stream, const array& x) {
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_bytes(nthreads, 1);
compute_encoder.dispatch_threadgroups(group_dims, grid_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
// Barrier on previous kernels
compute_encoder.barrier();

View File

@@ -7,10 +7,10 @@
#include "mlx/3rdparty/pocketfft.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include "mlx/backend/metal/binary.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/slicing.h"
#include "mlx/backend/metal/unary.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/utils.h"
@@ -632,7 +632,7 @@ void fft_op(
func_consts.push_back(make_int(&rader_m, 3));
// The overall number of FFTs we're going to compute for this input
int size = out.dtype() == float32 ? out.size() : in.size();
size_t size = out.dtype() == float32 ? out.size() : in.size();
if (real && inverse && four_step_params.required) {
size = out.size();
}
@@ -659,8 +659,6 @@ void fft_op(
// We can perform 2 RFFTs at once so the batch size is halved.
batch_size = (batch_size + 2 - 1) / 2;
}
int out_buffer_size = out.size();
auto& compute_encoder = d.get_command_encoder(s.index);
auto in_type_str = in.dtype() == float32 ? "float" : "float2";
auto out_type_str = out.dtype() == float32 ? "float" : "float2";

View File

@@ -1,11 +1,9 @@
// Copyright © 2024 Apple Inc.
#include <map>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/hadamard.h"
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/kernels.h"
@@ -15,7 +13,6 @@
namespace mlx::core {
constexpr int MAX_HADAMARD_THREADS_PER_GROUP = 256;
constexpr int MAX_HADAMARD_BYTES = 32768; // 32KB
std::string gen_hadamard_codelet(int m) {
// Generate a O(m^2) hadamard codelet for a given M
@@ -60,121 +57,142 @@ std::string gen_hadamard_codelet(int m) {
return source.str();
}
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
void hadamard_mn_contiguous(
const array& x,
array& y,
int m,
int n1,
int n2,
float scale,
metal::Device& d,
const Stream& s) {
int n = n1 * n2;
int read_width_n1 = n1 == 2 ? 2 : 4;
int read_width_n2 = n2 == 2 ? 2 : 4;
int read_width_m = (n == 2 || m == 28) ? 2 : 4;
int max_radix_1 = std::min(n1, 16);
int max_radix_2 = std::min(n2, 16);
float scale_n1 = 1.0;
float scale_n2 = (m == 1) ? scale : 1.0;
float scale_m = scale;
auto& in = inputs[0];
// n2 is a row contiguous power of 2 hadamard transform
MTL::Size group_dims_n2(n2 / max_radix_2, 1, 1);
MTL::Size grid_dims_n2(n2 / max_radix_2, x.size() / n2, 1);
std::vector<array> copies;
// Only support the last axis for now
int axis = in.ndim() - 1;
auto check_input = [&copies, &s](const array& x) {
// TODO(alexbarron) pass strides to kernel to relax this constraint
bool no_copy = x.flags().row_contiguous;
if (no_copy) {
return x;
} else {
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
copy_gpu(x, copies.back(), CopyType::General, s);
return copies.back();
// n1 is a strided power of 2 hadamard transform with stride n2
MTL::Size group_dims_n1(n1 / max_radix_1, 1, 1);
MTL::Size grid_dims_n1(n1 / max_radix_1, x.size() / n, n2);
// m is a strided hadamard transform with stride n = n1 * n2
MTL::Size group_dims_m(
std::min(n / read_width_m, MAX_HADAMARD_THREADS_PER_GROUP), 1, 1);
MTL::Size grid_dims_m(
group_dims_m.width, x.size() / m / read_width_m / group_dims_m.width, 1);
// Make the kernel
std::string kname;
kname.reserve(32);
concatenate(kname, "hadamard_", n * m, "_", type_to_name(x));
auto lib = d.get_library(kname, [&]() {
std::string kernel;
concatenate(
kernel,
metal::utils(),
gen_hadamard_codelet(m),
metal::hadamard(),
get_template_definition(
"n2" + kname,
"hadamard_n",
get_type_string(x.dtype()),
n2,
max_radix_2,
read_width_n2));
if (n1 > 1) {
kernel += get_template_definition(
"n1" + kname,
"hadamard_n",
get_type_string(x.dtype()),
n1,
max_radix_1,
read_width_n1,
n2);
}
};
const array& in_contiguous = check_input(in);
if (in_contiguous.is_donatable()) {
out.copy_shared_buffer(in_contiguous);
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
int n, m;
std::tie(n, m) = decompose_hadamard(in.shape(axis));
if (n * (int)size_of(in.dtype()) > MAX_HADAMARD_BYTES) {
throw std::invalid_argument(
"[hadamard] For n = m*2^k, 2^k > 8192 for FP32 or 2^k > 16384 for FP16/BF16 NYI");
}
int max_radix = std::min(n, 16);
// Use read_width 2 for m = 28 to avoid register spilling
int read_width = (n == 2 || m == 28) ? 2 : 4;
std::ostringstream kname;
kname << "hadamard_" << n * m << "_" << type_to_name(out);
auto kernel_name = kname.str();
auto& d = metal::device(s.device);
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
auto codelet = gen_hadamard_codelet(m);
kernel_source << metal::utils() << codelet << metal::hadamard();
kernel_source << get_template_definition(
"n" + kernel_name,
"hadamard_n",
get_type_string(in.dtype()),
n,
max_radix,
read_width);
kernel_source << get_template_definition(
"m" + kernel_name,
"hadamard_m",
get_type_string(in.dtype()),
n,
m,
read_width);
return kernel_source.str();
if (m > 1) {
kernel += get_template_definition(
"m" + kname,
"hadamard_m",
get_type_string(x.dtype()),
n,
m,
read_width_m);
}
return kernel;
});
int batch_size = in.size() / n;
int threads_per = n / max_radix;
auto& compute_encoder = d.get_command_encoder(s.index);
auto launch_hadamard = [&](const array& in,
array& out,
const std::string& kernel_name,
float scale) {
auto kernel = d.get_kernel(kernel_name, lib);
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
// Launch the strided transform for n1
if (n1 > 1) {
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel("n1" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(scale, 2);
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
};
if (m > 1) {
// When m is greater than 1, we decompose the
// computation into two uploads to the GPU:
//
// e.g. len(x) = 12*4 = 48, m = 12, n = 4
//
// y = h48 @ x
//
// Upload 1:
// tmp = a.reshape(12, 4) @ h4
//
// Upload 2:
// y = h12 @ tmp
array temp(in.shape(), in.dtype(), nullptr, {});
temp.set_data(allocator::malloc(temp.nbytes()));
copies.push_back(temp);
launch_hadamard(in_contiguous, temp, "n" + kernel_name, 1.0);
// Metal sometimes reports 256 max threads per group for hadamard_m kernel
threads_per = std::min(n / read_width, MAX_HADAMARD_THREADS_PER_GROUP);
batch_size = in.size() / m / read_width / threads_per;
launch_hadamard(temp, out, "m" + kernel_name, scale_);
} else {
launch_hadamard(in_contiguous, out, "n" + kernel_name, scale_);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_n1, 2);
compute_encoder.dispatch_threads(grid_dims_n1, group_dims_n1);
}
d.add_temporaries(std::move(copies), s.index);
// Launch the transform for n2
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel("n2" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(n1 > 1 ? y : x, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_n2, 2);
compute_encoder.dispatch_threads(grid_dims_n2, group_dims_n2);
// Launch the strided transform for m
if (m > 1) {
auto kernel = d.get_kernel("m" + kname, lib);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(y, 0);
compute_encoder.set_output_array(y, 1);
compute_encoder.set_bytes(scale_m, 2);
compute_encoder.dispatch_threads(grid_dims_m, group_dims_m);
}
}
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = metal::device(s.device);
auto& in = inputs[0];
// Split the hadamard transform so that all of them work on vectors smaller
// than 8192 elements.
//
// We decompose it in the following way:
//
// n = m * n1 * n2 = m * 2^k1 * 2^k2
//
// where m is in (1, 12, 20, 28) and n1 and n2 <= 8192
auto [n, m] = decompose_hadamard(in.shape().back());
int n1 = 1, n2 = n;
if (n > 8192) {
for (n2 = 2; n2 * n2 < n; n2 *= 2) {
}
n1 = n / n2;
}
if (in.flags().row_contiguous) {
if (in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
hadamard_mn_contiguous(in, out, m, n1, n2, scale_, d, s);
} else {
copy_gpu(in, out, CopyType::General, s);
hadamard_mn_contiguous(out, out, m, n1, n2, scale_, d, s);
}
}
} // namespace mlx::core

View File

@@ -2,7 +2,8 @@
#include <fmt/format.h>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/jit/indexing.h"
@@ -458,17 +459,9 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.set_output_array(out, 2);
// Set source info
auto shape = idx.shape();
shape.erase(shape.begin() + axis_);
compute_encoder.set_vector_bytes(shape, 3);
auto strides = src.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 4);
strides = idx.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 5);
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
compute_encoder.set_vector_bytes(remove_index(src.strides(), axis_), 4);
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
compute_encoder.set_bytes(ndim - 1, 6);
compute_encoder.set_bytes(axis_, 7);
compute_encoder.set_bytes(src.shape(axis_), 8);
@@ -582,17 +575,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.set_output_array(out, 2);
// Set source info
auto shape = idx.shape();
shape.erase(shape.begin() + axis_);
compute_encoder.set_vector_bytes(shape, 3);
auto strides = upd.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 4);
strides = idx.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 5);
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
compute_encoder.set_vector_bytes(remove_index(upd.strides(), axis_), 4);
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
compute_encoder.set_bytes(ndim - 1, 6);
compute_encoder.set_bytes(axis_, 7);
compute_encoder.set_bytes(out.shape(axis_), 8);

View File

@@ -80,9 +80,10 @@ template <typename T, typename Op, int N_READS = 4>
const constant size_t& ndim [[buffer(5)]],
const constant int64_t& axis_stride [[buffer(6)]],
const constant size_t& axis_size [[buffer(7)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint3 gid [[thread_position_in_grid]],
uint3 gsize [[threads_per_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]],
uint simd_size [[threads_per_simdgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
@@ -104,17 +105,18 @@ template <typename T, typename Op, int N_READS = 4>
// Compute the input/output index. There is one beginning and one output for
// the whole threadgroup.
auto in_idx = elem_to_loc(gid / lsize, shape, in_strides, ndim);
auto out_idx = elem_to_loc(gid / lsize, shape, out_strides, ndim);
int64_t row_idx = gid.y + static_cast<int64_t>(gsize.y) * gid.z;
auto in_idx = elem_to_loc(row_idx, shape, in_strides, ndim);
auto out_idx = elem_to_loc(row_idx, shape, out_strides, ndim);
IndexValPair<T> best{0, Op::init};
threadgroup IndexValPair<T> local_data[32];
// Loop over the reduction axis in lsize*N_READS buckets
for (uint r = 0; r < ceildiv(axis_size, N_READS * lsize); r++) {
for (uint r = 0; r < ceildiv(axis_size, N_READS * lsize.x); r++) {
// Read the current value
uint32_t current_index = r * lsize * N_READS + lid * N_READS;
uint32_t current_index = r * lsize.x * N_READS + lid.x * N_READS;
uint32_t offset = current_index;
const device T* current_in = in + in_idx + current_index * axis_stride;
T vals[N_READS];
@@ -144,7 +146,7 @@ template <typename T, typename Op, int N_READS = 4>
}
// Read the appropriate value from local data and perform one simd reduction
uint simd_groups = ceildiv(lsize, simd_size);
uint simd_groups = ceildiv(lsize.x, simd_size);
if (simd_lane_id < simd_groups) {
best = local_data[simd_lane_id];
}
@@ -154,7 +156,7 @@ template <typename T, typename Op, int N_READS = 4>
}
// Finally write the output
if (lid == 0) {
if (lid.x == 0) {
out[out_idx] = best.index;
}
}

View File

@@ -9,64 +9,85 @@ template <typename T, typename U, typename Op>
c[index] = Op()(a[0], b[0]);
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[0], b[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[0], b[index + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[index], b[0]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[index + i], b[0]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv(
device const T* a,
device const T* b,
device U* c,
constant uint& size,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[index], b[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
c[index + i] = Op()(a[index + i], b[index + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[0], b[offset]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[0], b[offset + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[0]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[offset + i], b[0]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv2(
device const T* a,
device const T* b,
device U* c,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[offset]);
int64_t offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
c[offset + i] = Op()(a[offset + i], b[offset + i]);
}
}
template <typename T, typename U, typename Op, typename IdxT = int64_t>

View File

@@ -71,6 +71,7 @@ instantiate_binary_types_bool(Less)
instantiate_binary_types_bool(LessEqual)
instantiate_binary_types_bool(NotEqual)
instantiate_binary_float(LogAddExp)
instantiate_binary_all(LogAddExp, complex64, complex64_t, complex64_t)
instantiate_binary_types(Maximum)
instantiate_binary_types(Minimum)
instantiate_binary_types(Multiply)

View File

@@ -130,6 +130,24 @@ struct LogAddExp {
? maxval
: (maxval + log1p(metal::exp(minval - maxval)));
};
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag) || metal::isnan(y.real) ||
metal::isnan(y.imag)) {
return metal::numeric_limits<float>::quiet_NaN();
}
constexpr float inf = metal::numeric_limits<float>::infinity();
complex64_t maxval = x > y ? x : y;
complex64_t minval = x < y ? x : y;
if (minval.real == -inf || maxval.real == inf)
return maxval;
float m = metal::exp(minval.real - maxval.real);
complex64_t dexp{
m * metal::cos(minval.imag - maxval.imag),
m * metal::sin(minval.imag - maxval.imag),
};
return maxval + log1p(dexp);
}
};
struct Maximum {

View File

@@ -12,82 +12,103 @@ template <typename T, typename U, typename Op>
d[index] = out[1];
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[0], b[index]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[0], b[index + i]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[index], b[0]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[index + i], b[0]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
auto out = Op()(a[index], b[index]);
c[index] = out[0];
d[index] = out[1];
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
auto out = Op()(a[index + i], b[index + i]);
c[index + i] = out[0];
d[index + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_sv2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[0], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[0], b[offset + i]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vs2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[0]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[offset + i], b[0]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void binary_vv2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
auto out = Op()(a[offset + i], b[offset + i]);
c[offset + i] = out[0];
d[offset + i] = out[1];
}
}
template <typename T, typename U, typename Op, typename IdxT = int64_t>

View File

@@ -104,10 +104,22 @@ constexpr bool operator==(complex64_t a, complex64_t b) {
constexpr complex64_t operator+(complex64_t a, complex64_t b) {
return {a.real + b.real, a.imag + b.imag};
}
constexpr complex64_t operator+(float a, complex64_t b) {
return {a + b.real, b.imag};
}
constexpr complex64_t operator+(complex64_t a, float b) {
return {a.real + b, a.imag};
}
constexpr complex64_t operator-(complex64_t a, complex64_t b) {
return {a.real - b.real, a.imag - b.imag};
}
constexpr complex64_t operator-(float a, complex64_t b) {
return {a - b.real, -b.imag};
}
constexpr complex64_t operator-(complex64_t a, float b) {
return {a.real - b, a.imag};
}
constexpr complex64_t operator*(complex64_t a, complex64_t b) {
return {a.real * b.real - a.imag * b.imag, a.real * b.imag + a.imag * b.real};
@@ -120,6 +132,13 @@ constexpr complex64_t operator/(complex64_t a, complex64_t b) {
return {x / denom, y / denom};
}
constexpr complex64_t operator/(float a, complex64_t b) {
auto denom = b.real * b.real + b.imag * b.imag;
auto x = a * b.real;
auto y = -a * b.imag;
return {x / denom, y / denom};
}
constexpr complex64_t operator%(complex64_t a, complex64_t b) {
auto real = a.real - (b.real * static_cast<int64_t>(a.real / b.real));
auto imag = a.imag - (b.imag * static_cast<int64_t>(a.imag / b.imag));

View File

@@ -1,39 +1,53 @@
// Copyright © 2024 Apple Inc.
template <typename T, typename U>
template <typename T, typename U, int N = WorkPerThread<T>::n>
[[kernel]] void copy_s(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant uint& size,
uint index [[thread_position_in_grid]]) {
dst[index] = static_cast<U>(src[0]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
dst[index + i] = static_cast<U>(src[0]);
}
}
template <typename T, typename U>
template <typename T, typename U, int N = WorkPerThread<T>::n>
[[kernel]] void copy_v(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant uint& size,
uint index [[thread_position_in_grid]]) {
dst[index] = static_cast<U>(src[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
dst[index + i] = static_cast<U>(src[index + i]);
}
}
template <typename T, typename U>
template <typename T, typename U, int N = WorkPerThread<T>::n>
[[kernel]] void copy_s2(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[0]);
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
dst[offset + i] = static_cast<U>(src[0]);
}
}
template <typename T, typename U>
template <typename T, typename U, int N = WorkPerThread<T>::n>
[[kernel]] void copy_v2(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[offset]);
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
dst[offset + i] = static_cast<U>(src[offset + i]);
}
}
template <typename T, typename U, typename IdxT = int64_t>

View File

@@ -10,7 +10,7 @@ For many sizes, GPU FFTs are memory bandwidth bound so
read/write performance is important.
Where possible, we read 128 bits sequentially in each thread,
coalesced with accesses from adajcent threads for optimal performance.
coalesced with accesses from adjacent threads for optimal performance.
We implement specialized reading/writing for:
- FFT
@@ -98,7 +98,7 @@ struct ReadWriter {
}
METAL_FUNC void load() const {
int batch_idx = elem.x * grid.y * n;
size_t batch_idx = size_t(elem.x * grid.y) * n;
short tg_idx = elem.y * grid.z + elem.z;
short max_index = grid.y * n - 2;
@@ -121,7 +121,7 @@ struct ReadWriter {
}
METAL_FUNC void write() const {
int batch_idx = elem.x * grid.y * n;
size_t batch_idx = size_t(elem.x * grid.y) * n;
short tg_idx = elem.y * grid.z + elem.z;
short max_index = grid.y * n - 2;
@@ -144,7 +144,7 @@ struct ReadWriter {
// Padded IO for Bluestein's algorithm
METAL_FUNC void load_padded(int length, const device float2* w_k) const {
int batch_idx = elem.x * grid.y * length + elem.y * length;
size_t batch_idx = size_t(elem.x * grid.y) * length + elem.y * length;
int fft_idx = elem.z;
int m = grid.z;
@@ -161,7 +161,7 @@ struct ReadWriter {
}
METAL_FUNC void write_padded(int length, const device float2* w_k) const {
int batch_idx = elem.x * grid.y * length + elem.y * length;
size_t batch_idx = size_t(elem.x * grid.y) * length + elem.y * length;
int fft_idx = elem.z;
int m = grid.z;
float2 inv_factor = {1.0f / n, -1.0f / n};
@@ -261,7 +261,7 @@ METAL_FUNC bool ReadWriter<float, float2>::out_of_bounds() const {
template <>
METAL_FUNC void ReadWriter<float, float2>::load() const {
int batch_idx = elem.x * grid.y * n * 2 + elem.y * n * 2;
size_t batch_idx = size_t(elem.x * grid.y) * n * 2 + elem.y * n * 2;
threadgroup float2* seq_buf = buf + elem.y * n;
// No out of bounds accesses on odd batch sizes
@@ -283,7 +283,8 @@ template <>
METAL_FUNC void ReadWriter<float, float2>::write() const {
short n_over_2 = (n / 2) + 1;
int batch_idx = elem.x * grid.y * n_over_2 * 2 + elem.y * n_over_2 * 2;
size_t batch_idx =
size_t(elem.x * grid.y) * n_over_2 * 2 + elem.y * n_over_2 * 2;
threadgroup float2* seq_buf = buf + elem.y * n;
int grid_index = elem.x * grid.y + elem.y;
@@ -317,7 +318,7 @@ template <>
METAL_FUNC void ReadWriter<float, float2>::load_padded(
int length,
const device float2* w_k) const {
int batch_idx = elem.x * grid.y * length * 2 + elem.y * length * 2;
size_t batch_idx = size_t(elem.x * grid.y) * length * 2 + elem.y * length * 2;
threadgroup float2* seq_buf = buf + elem.y * n;
// No out of bounds accesses on odd batch sizes
@@ -345,8 +346,8 @@ METAL_FUNC void ReadWriter<float, float2>::write_padded(
int length,
const device float2* w_k) const {
int length_over_2 = (length / 2) + 1;
int batch_idx =
elem.x * grid.y * length_over_2 * 2 + elem.y * length_over_2 * 2;
size_t batch_idx =
size_t(elem.x * grid.y) * length_over_2 * 2 + elem.y * length_over_2 * 2;
threadgroup float2* seq_buf = buf + elem.y * n + length - 1;
int grid_index = elem.x * grid.y + elem.y;
@@ -397,7 +398,8 @@ METAL_FUNC bool ReadWriter<float2, float>::out_of_bounds() const {
template <>
METAL_FUNC void ReadWriter<float2, float>::load() const {
short n_over_2 = (n / 2) + 1;
int batch_idx = elem.x * grid.y * n_over_2 * 2 + elem.y * n_over_2 * 2;
size_t batch_idx =
size_t(elem.x * grid.y) * n_over_2 * 2 + elem.y * n_over_2 * 2;
threadgroup float2* seq_buf = buf + elem.y * n;
// No out of bounds accesses on odd batch sizes
@@ -458,8 +460,8 @@ METAL_FUNC void ReadWriter<float2, float>::load_padded(
int n_over_2 = (n / 2) + 1;
int length_over_2 = (length / 2) + 1;
int batch_idx =
elem.x * grid.y * length_over_2 * 2 + elem.y * length_over_2 * 2;
size_t batch_idx =
size_t(elem.x * grid.y) * length_over_2 * 2 + elem.y * length_over_2 * 2;
threadgroup float2* seq_buf = buf + elem.y * n;
// No out of bounds accesses on odd batch sizes
@@ -503,7 +505,7 @@ template <>
METAL_FUNC void ReadWriter<float2, float>::write_padded(
int length,
const device float2* w_k) const {
int batch_idx = elem.x * grid.y * length * 2 + elem.y * length * 2;
size_t batch_idx = size_t(elem.x * grid.y) * length * 2 + elem.y * length * 2;
threadgroup float2* seq_buf = buf + elem.y * n + length - 1;
int grid_index = elem.x * grid.y + elem.y;

View File

@@ -26,7 +26,7 @@ METAL_FUNC void radix_func(thread float* x) {
}
}
template <typename T, int N, int max_radix, int read_width>
template <typename T, int N, int max_radix, int read_width, int stride = 1>
[[kernel]] void hadamard_n(
const device T* in [[buffer(0)]],
device T* out [[buffer(1)]],
@@ -46,18 +46,25 @@ template <typename T, int N, int max_radix, int read_width>
constexpr short logFinal = logN % logR;
constexpr short final_radix = 1 << (logFinal);
int batch_idx = elem.x * N;
short i = elem.y;
int batch_idx = elem.y * N * stride + elem.z;
short i = elem.x;
threadgroup T buf[N];
// Read values from device
STEEL_PRAGMA_UNROLL
for (short j = 0; j < max_radix / read_width; j++) {
short index = j * read_width * num_threads + i * read_width;
if (stride == 1) {
STEEL_PRAGMA_UNROLL
for (short r = 0; r < read_width; r++) {
buf[index + r] = in[batch_idx + index + r];
for (short j = 0; j < max_radix / read_width; j++) {
short index = j * read_width * num_threads + i * read_width;
STEEL_PRAGMA_UNROLL
for (short r = 0; r < read_width; r++) {
buf[index + r] = in[batch_idx + index + r];
}
}
} else {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < max_radix; j++) {
buf[j * num_threads + i] = in[batch_idx + (j * num_threads + i) * stride];
}
}
@@ -113,12 +120,20 @@ template <typename T, int N, int max_radix, int read_width>
}
// Write values to device
STEEL_PRAGMA_UNROLL
for (short j = 0; j < max_radix / read_width; j++) {
short index = j * read_width * num_threads + i * read_width;
if (stride == 1) {
STEEL_PRAGMA_UNROLL
for (short r = 0; r < read_width; r++) {
out[batch_idx + index + r] = T(buf[index + r] * scale);
for (short j = 0; j < max_radix / read_width; j++) {
short index = j * read_width * num_threads + i * read_width;
STEEL_PRAGMA_UNROLL
for (short r = 0; r < read_width; r++) {
out[batch_idx + index + r] = T(buf[index + r] * scale);
}
}
} else {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < max_radix; j++) {
out[batch_idx + (j * num_threads + i) * stride] =
buf[j * num_threads + i];
}
}
}

View File

@@ -103,8 +103,8 @@ template <typename T, typename AccT = float, int N_READS = 4>
}
} else {
for (int i = 0; i < N_READS; i++) {
vals[i] = (offset + i < axis_size) ? AccT(in[offset + i])
: Limits<AccT>::finite_min;
vals[i] =
(offset + i < axis_size) ? AccT(in[offset + i]) : Limits<AccT>::min;
}
}
prevmax = maxval;
@@ -134,10 +134,7 @@ template <typename T, typename AccT = float, int N_READS = 4>
threadgroup_barrier(mem_flags::mem_threadgroup);
normalizer = simd_sum(local_normalizer[simd_lane_id]);
if (simd_group_id == 0) {
normalizer = simd_sum(local_normalizer[simd_lane_id]);
if (simd_lane_id == 0) {
out[gid] = isinf(maxval) ? T(maxval) : T(log(normalizer) + maxval);
}
if (lid == 0) {
out[gid] = isinf(maxval) ? T(maxval) : T(log(normalizer) + maxval);
}
}

View File

@@ -14,11 +14,23 @@ using namespace metal;
MLX_MTL_CONST int SIMD_SIZE = 32;
MLX_MTL_CONST int QUAD_SIZE = 4;
template <int bits, int wsize = 8>
inline constexpr short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, typename U, int values_per_thread, int bits>
inline U load_vector(const device T* x, thread U* x_thread) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
U sum = 0;
@@ -57,6 +69,21 @@ inline U load_vector(const device T* x, thread U* x_thread) {
}
}
else if (bits == 5) {
for (int i = 0; i < values_per_thread; i += 8) {
sum += x[i] + x[i + 1] + x[i + 2] + x[i + 3] + x[i + 4] + x[i + 5] +
x[i + 6] + x[i + 7];
x_thread[i] = x[i];
x_thread[i + 1] = x[i + 1] / 32.0f;
x_thread[i + 2] = x[i + 2] / 4.0f;
x_thread[i + 3] = x[i + 3] / 128.0f;
x_thread[i + 4] = x[i + 4] / 16.0f;
x_thread[i + 5] = x[i + 5] / 2.0f;
x_thread[i + 6] = x[i + 6] / 64.0f;
x_thread[i + 7] = x[i + 7] / 8.0f;
}
}
else if (bits == 6) {
for (int i = 0; i < values_per_thread; i += 4) {
sum += x[i] + x[i + 1] + x[i + 2] + x[i + 3];
@@ -80,8 +107,9 @@ inline U load_vector(const device T* x, thread U* x_thread) {
template <typename T, typename U, int values_per_thread, int bits>
inline U load_vector_safe(const device T* x, thread U* x_thread, int N) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
U sum = 0;
@@ -121,6 +149,21 @@ inline U load_vector_safe(const device T* x, thread U* x_thread, int N) {
}
}
else if (bits == 5) {
for (int i = 0; i < N; i += 8) {
sum += x[i] + x[i + 1] + x[i + 2] + x[i + 3] + x[i + 4] + x[i + 5] +
x[i + 6] + x[i + 7];
x_thread[i] = x[i];
x_thread[i + 1] = x[i + 1] / 32.0f;
x_thread[i + 2] = x[i + 2] / 4.0f;
x_thread[i + 3] = x[i + 3] / 128.0f;
x_thread[i + 4] = x[i + 4] / 16.0f;
x_thread[i + 5] = x[i + 5] / 2.0f;
x_thread[i + 6] = x[i + 6] / 64.0f;
x_thread[i + 7] = x[i + 7] / 8.0f;
}
}
else if (bits == 6) {
for (int i = 0; i < N; i += 4) {
sum += x[i] + x[i + 1] + x[i + 2] + x[i + 3];
@@ -153,8 +196,9 @@ inline U qdot(
U bias,
U sum) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
U accum = 0;
@@ -199,6 +243,26 @@ inline U qdot(
}
}
else if (bits == 5) {
for (int i = 0; i < (values_per_thread / 8); i++) {
x_thread += 8 * i;
w += 5 * i;
accum += (w[0] & 0x1f) * x_thread[0];
accum += (w[0] & 0xe0) * x_thread[1];
accum += (w[1] & 0x3) * (x_thread[1] * 256.0f);
accum += (w[1] & 0x7c) * x_thread[2];
accum += (w[1] & 0x80) * x_thread[3];
accum += (w[2] & 0xf) * (x_thread[3] * 256.0f);
accum += (w[2] & 0xf0) * x_thread[4];
accum += (w[3] & 0x1) * (x_thread[4] * 256.0f);
accum += (w[3] & 0x3e) * x_thread[5];
accum += (w[3] & 0xc0) * x_thread[6];
accum += (w[4] & 0x7) * (x_thread[6] * 256.0f);
accum += (w[4] & 0xf8) * x_thread[7];
}
}
else if (bits == 6) {
for (int i = 0; i < (values_per_thread / 4); i++) {
x_thread += 4 * i;
@@ -234,8 +298,9 @@ inline U qdot_safe(
U sum,
int N) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
U accum = 0;
@@ -280,6 +345,26 @@ inline U qdot_safe(
}
}
else if (bits == 5) {
for (int i = 0; i < (N / 8); i++) {
x_thread += 8 * i;
w += 5 * i;
accum += (w[0] & 0x1f) * x_thread[0];
accum += (w[0] & 0xe0) * x_thread[1];
accum += (w[1] & 0x3) * (x_thread[1] * 256.0f);
accum += (w[1] & 0x7c) * x_thread[2];
accum += (w[1] & 0x80) * x_thread[3];
accum += (w[2] & 0xf) * (x_thread[3] * 256.0f);
accum += (w[2] & 0xf0) * x_thread[4];
accum += (w[3] & 0x1) * (x_thread[4] * 256.0f);
accum += (w[3] & 0x3e) * x_thread[5];
accum += (w[3] & 0xc0) * x_thread[6];
accum += (w[4] & 0x7) * (x_thread[6] * 256.0f);
accum += (w[4] & 0xf8) * x_thread[7];
}
}
else if (bits == 6) {
for (int i = 0; i < (N / 4); i++) {
x_thread += 4 * i;
@@ -310,8 +395,9 @@ template <typename U, int values_per_thread, int bits>
inline void
qouter(const thread uint8_t* w, U x, U scale, U bias, thread U* result) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
if (bits == 2) {
U s[4] = {scale, scale / 4.0f, scale / 16.0f, scale / 64.0f};
@@ -348,8 +434,31 @@ qouter(const thread uint8_t* w, U x, U scale, U bias, thread U* result) {
result[2 * i] += x * (s[0] * (w[i] & 0x0f) + bias);
result[2 * i + 1] += x * (s[1] * (w[i] & 0xf0) + bias);
}
}
} else if (bits == 6) {
else if (bits == 5) {
for (int i = 0; i < (values_per_thread / 8); i++) {
uint8_t w0 = w[5 * i];
uint8_t w1 = w[5 * i + 1];
uint8_t w2 = w[5 * i + 2];
uint8_t w3 = w[5 * i + 3];
uint8_t w4 = w[5 * i + 4];
result[8 * i] += x * ((w0 & 0x1f) * scale + bias);
result[8 * i + 1] +=
x * ((((w0 & 0xe0) >> 5) + ((w1 & 0x3) << 3)) * scale + bias);
result[8 * i + 2] += x * (((w1 & 0x7c) >> 2) * scale + bias);
result[8 * i + 3] +=
x * ((((w1 & 0x80) >> 7) + ((w2 & 0xf) << 1)) * scale + bias);
result[8 * i + 4] +=
x * ((((w2 & 0xf0) >> 4) + ((w3 & 0x1) << 4)) * scale + bias);
result[8 * i + 5] += x * (((w3 & 0x3e) >> 1) * scale + bias);
result[8 * i + 6] +=
x * ((((w3 & 0xc0) >> 6) + ((w4 & 0x7) << 2)) * scale + bias);
result[8 * i + 7] += x * (((w4 & 0xf8) >> 3) * scale + bias);
}
}
else if (bits == 6) {
for (int i = 0; i < (values_per_thread / 4); i++) {
uint8_t w0 = w[3 * i];
uint8_t w1 = w[3 * i + 1];
@@ -375,8 +484,9 @@ template <typename U, int N, int bits>
inline void
dequantize(const device uint8_t* w, U scale, U bias, threadgroup U* w_local) {
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
if (bits == 2) {
U s[4] = {
@@ -416,11 +526,26 @@ dequantize(const device uint8_t* w, U scale, U bias, threadgroup U* w_local) {
}
}
else if (bits == 5) {
for (int i = 0; i < (N / 8); i++) {
w_local += 8 * i;
w += 5 * i;
w_local[0] = (w[0] & 0x1f) * scale + bias;
w_local[1] = (((w[0] & 0xe0) >> 5) + ((w[1] & 0x3) << 3)) * scale + bias;
w_local[2] = ((w[1] & 0x7c) >> 2) * scale + bias;
w_local[3] = (((w[1] & 0x80) >> 7) + ((w[2] & 0xf) << 1)) * scale + bias;
w_local[4] = (((w[2] & 0xf0) >> 4) + ((w[3] & 0x1) << 4)) * scale + bias;
w_local[5] = ((w[3] & 0x3e) >> 1) * scale + bias;
w_local[6] = (((w[3] & 0xc0) >> 6) + ((w[4] & 0x7) << 2)) * scale + bias;
w_local[7] = ((w[4] & 0xf8) >> 3) * scale + bias;
}
}
else if (bits == 6) {
for (int i = 0; i < (N / 4); i++) {
w_local += 4 * i;
w += 3 * i;
w_local[0] = (w[0] & 0x3f) * scale + bias;
w_local[1] = (((w[0] >> 6) & 0x03) + ((w[1] & 0x0f) << 2)) * scale + bias;
w_local[2] = (((w[1] >> 4) & 0x0f) + ((w[2] & 0x03) << 4)) * scale + bias;
@@ -452,11 +577,12 @@ struct QuantizedBlockLoader {
group_size % BCOLS == 0,
"The group size should be divisible by the columns");
static_assert(
bits == 2 || bits == 3 || bits == 4 || bits == 6 || bits == 8,
"Template undefined for bits not in {2, 3, 4, 6, 8}");
bits == 2 || bits == 3 || bits == 4 || bits == 5 || bits == 6 ||
bits == 8,
"Template undefined for bits not in {2, 3, 4, 5, 6, 8}");
MLX_MTL_CONST short pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
MLX_MTL_CONST short bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
MLX_MTL_CONST short pack_factor = get_pack_factor<bits, 8>();
MLX_MTL_CONST short bytes_per_pack = get_bytes_per_pack<bits>();
MLX_MTL_CONST short BCOLS_PACKED = BCOLS / pack_factor;
MLX_MTL_CONST short n_reads =
(BCOLS_PACKED * BROWS < tgp_size) ? 1 : (BCOLS_PACKED * BROWS) / tgp_size;
@@ -632,12 +758,11 @@ METAL_FUNC void qmv_fast_impl(
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int packs_per_thread = bits == 2 ? 1 : 2;
constexpr int num_simdgroups = 2;
constexpr int results_per_simdgroup = 4;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
constexpr int bytes_per_pack = power_of_2_bits ? 4 : 3;
constexpr int pack_factor = get_pack_factor<bits, 32>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits, 32>();
constexpr int values_per_thread = pack_factor * packs_per_thread;
constexpr int block_size = values_per_thread * SIMD_SIZE;
constexpr int scale_step_per_thread = group_size / values_per_thread;
@@ -700,12 +825,12 @@ METAL_FUNC void qmv_impl(
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int num_simdgroups = 2;
constexpr int results_per_simdgroup = 4;
constexpr int packs_per_thread = 1;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
constexpr int bytes_per_pack = power_of_2_bits ? 4 : 3;
constexpr int pack_factor = get_pack_factor<bits, 32>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits, 32>();
constexpr int values_per_thread = pack_factor * packs_per_thread;
constexpr int block_size = values_per_thread * SIMD_SIZE;
constexpr int scale_step_per_thread = group_size / values_per_thread;
@@ -857,8 +982,9 @@ METAL_FUNC void qvm_impl(
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int num_simdgroups = 2;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
constexpr int pack_factor = get_pack_factor<bits, 32>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int tn = 32 / pack_factor;
constexpr int block_size = SIMD_SIZE;
@@ -981,9 +1107,10 @@ METAL_FUNC void qmm_t_impl(
constexpr int WM = 2;
constexpr int WN = 2;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
// Instantiate the appropriate BlockMMA and Loader
using mma_t = mlx::steel::
@@ -1008,11 +1135,11 @@ METAL_FUNC void qmm_t_impl(
auto wl = (const device uint8_t*)w;
x += y_row * K;
x += y_row * static_cast<int64_t>(K);
wl += y_col * K_w;
scales += y_col * K_g;
biases += y_col * K_g;
y += y_row * N + y_col;
y += y_row * static_cast<int64_t>(N) + y_col;
// Make the x loader and mma operation
const short num_els = min(BM, M - y_row);
@@ -1106,11 +1233,11 @@ METAL_FUNC void qmm_n_impl(
constexpr int WM = 2;
constexpr int WN = 2;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int BN_padded = (BN + 16 / sizeof(T));
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
// Instantiate the appropriate BlockMMA and Loader
using mma_t = mlx::steel::
@@ -1132,11 +1259,11 @@ METAL_FUNC void qmm_n_impl(
// Set the block
const int y_row = tid.y * BM;
const int y_col = tid.x * BN;
x += y_row * K;
x += y_row * static_cast<int64_t>(K);
wl += y_col * bytes_per_pack / pack_factor;
scales += y_col / group_size;
biases += y_col / group_size;
y += y_row * N + y_col;
y += y_row * static_cast<int64_t>(N) + y_col;
// Make the x loader and mma operation
const short num_els = min(BM, M - y_row);
@@ -2120,11 +2247,10 @@ template <
uint3 tid [[threadgroup_position_in_grid]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]]) {
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int BN_padded = (BN + 16 / sizeof(T));
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
using mma_t = mlx::steel::BlockMMA<
T,
@@ -2305,13 +2431,13 @@ template <typename T, const int group_size, const int bits>
constexpr float eps = 1e-7;
constexpr int simd_size = 32;
constexpr float n_bins = (1 << bits) - 1;
constexpr int packs_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int values_per_reduce = group_size / simd_size;
constexpr int writes_per_reduce = packs_per_int / values_per_reduce;
constexpr int writes_per_reduce = pack_factor / values_per_reduce;
constexpr int writes_per_pack =
writes_per_reduce > 1 ? 1 : values_per_reduce / packs_per_int;
writes_per_reduce > 1 ? 1 : values_per_reduce / pack_factor;
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
static_assert(
group_size % simd_size == 0,
@@ -2354,8 +2480,8 @@ template <typename T, const int group_size, const int bits>
biases[gindex] = static_cast<T>(bias);
}
// We accumulate 3 bytes worth for 3/6 bit so we need a uint32_t
uint32_t output = 0;
using OutType = metal::conditional_t<bits == 5, uint64_t, uint32_t>;
OutType output = 0;
#pragma clang loop unroll(full)
for (int i = 0; i < values_per_reduce; i++) {
@@ -2363,27 +2489,35 @@ template <typename T, const int group_size, const int bits>
if (bits == 8) {
output = val;
} else {
output += val << (bits * (i % packs_per_int));
output |= val << (bits * (i % pack_factor));
}
if (packs_per_int < values_per_reduce &&
i % packs_per_int == packs_per_int - 1) {
out[out_index + i / packs_per_int] = output;
if (pack_factor < values_per_reduce && i % pack_factor == pack_factor - 1) {
out[out_index + i / pack_factor] = output;
output = 0;
} else {
#pragma clang loop unroll(full)
for (int j = 1; j < writes_per_reduce; j++) {
uint8_t sval = simd_shuffle_down(val, j);
output += sval << (bits * (j * values_per_reduce + i));
output |= static_cast<OutType>(sval)
<< (bits * (j * values_per_reduce + i));
}
}
}
if (bits == 3 || bits == 6) {
if (in_index % packs_per_int == 0 && out_index % bytes_per_pack == 0) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
}
} else if (bits == 5) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
out[out_index + 3] = (output & 0xff000000) >> 24;
out[out_index + 4] = (output & 0xff00000000) >> 32;
}
} else {
if (writes_per_reduce > 0 && out_index % writes_per_reduce == 0) {
out[out_index / writes_per_reduce] = output;
@@ -2399,12 +2533,11 @@ template <typename T, const int group_size, const int bits>
device T* out [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
constexpr int packs_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
size_t offset = index.x + grid_dim.x * size_t(index.y);
size_t oindex = offset * packs_per_int;
size_t oindex = offset * pack_factor;
size_t gindex = oindex / group_size;
T scale = scales[gindex];
T bias = biases[gindex];
@@ -2421,7 +2554,16 @@ template <typename T, const int group_size, const int bits>
out[5] = (((w[1] & 0x80) >> 7) + ((w[2] & 0x3) << 1)) * scale + bias;
out[6] = ((w[2] & 0x1c) >> 2) * scale + bias;
out[7] = ((w[2] & 0xe0) >> 5) * scale + bias;
} else if (bits == 5) {
w += offset * bytes_per_pack;
out[0] = (w[0] & 0x1f) * scale + bias;
out[1] = (((w[0] & 0xe0) >> 5) + ((w[1] & 0x3) << 3)) * scale + bias;
out[2] = ((w[1] & 0x7c) >> 2) * scale + bias;
out[3] = (((w[1] & 0x80) >> 7) + ((w[2] & 0xf) << 1)) * scale + bias;
out[4] = (((w[2] & 0xf0) >> 4) + ((w[3] & 0x1) << 4)) * scale + bias;
out[5] = ((w[3] & 0x3e) >> 1) * scale + bias;
out[6] = (((w[3] & 0xc0) >> 6) + ((w[4] & 0x7) << 2)) * scale + bias;
out[7] = ((w[4] & 0xf8) >> 3) * scale + bias;
} else if (bits == 6) {
w += offset * bytes_per_pack;
out[0] = (w[0] & 0x3f) * scale + bias;
@@ -2431,7 +2573,7 @@ template <typename T, const int group_size, const int bits>
} else {
uint val = w[offset];
#pragma clang loop unroll(full)
for (int i = 0; i < packs_per_int; i++) {
for (int i = 0; i < pack_factor; i++) {
uint8_t d;
if (bits == 2) {
d = (val >> (bits * i)) & 0x03;

View File

@@ -136,6 +136,7 @@
instantiate_quantized_groups(2) \
instantiate_quantized_groups(3) \
instantiate_quantized_groups(4) \
instantiate_quantized_groups(5) \
instantiate_quantized_groups(6) \
instantiate_quantized_groups(8)

View File

@@ -224,7 +224,7 @@ template <
if ((non_row_reductions < 32 && row_size <= 8) || non_row_reductions <= 8) {
// Simple loop over non_row_reductions and reduce the row in the thread.
IdxT out_idx = tid.x + tsize.y * IdxT(tid.y);
IdxT out_idx = tid.x + tsize.x * IdxT(tid.y);
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
for (uint r = 0; r < non_row_reductions; r++) {

View File

@@ -104,4 +104,5 @@ instantiate_scan_helper(min_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumMi
instantiate_scan_helper(min_complex64_complex64, complex64_t, complex64_t, CumMin, 2)
instantiate_scan_helper(logaddexp_float16_float16, half, half, CumLogaddexp, 4)
instantiate_scan_helper(logaddexp_float32_float32, float, float, CumLogaddexp, 4)
instantiate_scan_helper(logaddexp_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumLogaddexp, 4) // clang-format on
instantiate_scan_helper(logaddexp_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumLogaddexp, 4)
instantiate_scan_helper(logaddexp_complex64_complex64, complex64_t, complex64_t, CumLogaddexp, 2) // clang-format on

View File

@@ -56,9 +56,9 @@ template <typename T, int D, int V = D>
const int head_idx = tid.x;
const int q_seq_idx = tid.y;
const int kv_head_idx = head_idx / gqa_factor;
const int o_offset = tpg.x * q_seq_idx + head_idx;
const int o_offset = head_idx * tpg.y + q_seq_idx;
const int q_offset =
query_transposed ? o_offset : head_idx * tpg.y + q_seq_idx;
query_transposed ? tpg.x * q_seq_idx + head_idx : o_offset;
queries += q_offset * D + simd_lid * qk_per_thread;
keys += kv_head_idx * k_head_stride + simd_gid * k_seq_stride +
simd_lid * qk_per_thread;
@@ -213,9 +213,9 @@ template <typename T, int D, int V = D>
const int block_idx = tid.z;
const int head_idx = tid.x;
const int q_seq_idx = tid.y;
const int o_offset = tpg.x * q_seq_idx + head_idx;
const int o_offset = head_idx * tpg.y + q_seq_idx;
const int q_offset =
query_transposed ? o_offset : head_idx * tpg.y + q_seq_idx;
query_transposed ? tpg.x * q_seq_idx + head_idx : o_offset;
const int kv_head_idx = head_idx / gqa_factor;
queries += q_offset * D + simd_lid * qk_per_thread;
@@ -358,8 +358,8 @@ template <typename T, int D>
// Adjust positions
const int head_idx = tid.x;
const int q_seq_idx = tid.y;
const int n_heads = tpg.x;
const int q_offset = n_heads * q_seq_idx + head_idx;
const int q_offset = head_idx * tpg.y + q_seq_idx;
;
partials += q_offset * blocks * D + simd_gid * D + simd_lid * elem_per_thread;
sums += q_offset * blocks;
maxs += q_offset * blocks;

View File

@@ -128,8 +128,8 @@ template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
}
} else {
for (int i = 0; i < N_READS; i++) {
vals[i] = (offset + i < axis_size) ? AccT(in[offset + i])
: Limits<AccT>::finite_min;
vals[i] =
(offset + i < axis_size) ? AccT(in[offset + i]) : Limits<AccT>::min;
}
}
prevmax = maxval;

View File

@@ -95,7 +95,7 @@ template <
Q += tidl.z * params->Q_strides[0] + // Batch
tidl.y * params->Q_strides[1] + // Head
tidl.x * BQ * params->Q_strides[2]; // Seqeunce
tidl.x * BQ * params->Q_strides[2]; // Sequence
ulong kv_head_idx = int(tid.y) / params->gqa_factor;
K += tidl.z * params->K_strides[0] + // Batch
@@ -106,7 +106,7 @@ template <
O += tidl.z * params->O_strides[0] + // Batch
tidl.y * params->O_strides[1] + // Head
tidl.x * BQ * params->O_strides[2]; // Seqeunce
tidl.x * BQ * params->O_strides[2]; // Sequence
if (has_mask) {
mask += tidl.z * mask_params->M_strides[0] + // Batch

View File

@@ -113,7 +113,7 @@ struct BlockLoader {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
// Zero out unneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
@@ -240,7 +240,7 @@ struct BlockLoaderT {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
// Zero out unneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);

View File

@@ -141,7 +141,7 @@ implicit_gemm_conv_2d_general(
// Store results to device memory
{
// Adjust for simdgroup and thread locatio
// Adjust for simdgroup and thread location
int offset_m = c_row + mma_op.sm;
int offset_n = c_col + mma_op.sn;
C += offset_n;

View File

@@ -381,6 +381,7 @@ struct Conv2DWeightBlockLoader {
const constant MLXConvParams<2>* params;
int weight_hw;
int weight_step;
const int read_n;
const bool do_read;
@@ -402,6 +403,7 @@ struct Conv2DWeightBlockLoader {
src(src_ + bi * src_ld + bj),
params(params_),
weight_hw(0),
weight_step(params->C / params->groups),
read_n(offsets.y + bi),
do_read(read_n + n_rows * TROWS <= gemm_params_->N) {}
@@ -435,15 +437,15 @@ struct Conv2DWeightBlockLoader {
/* Iteration helper */
METAL_FUNC void next() {
if (++weight_hw < (params->wS[1] * params->wS[0])) {
src += params->wt_strides[2];
src += weight_step;
return;
}
weight_hw = 0;
src += BK - (params->wS[1] * params->wS[0] - 1) * params->wt_strides[2];
src += BK - (params->wS[1] * params->wS[0] - 1) * weight_step;
}
};
} // namespace steel
} // namespace mlx
} // namespace mlx

View File

@@ -272,7 +272,7 @@ struct Conv2DWeightBlockLoaderSmallChannels {
return;
}
const device T* curr_src = src + weight_hw * params->wt_strides[2];
const device T* curr_src = src + weight_hw * (params->C / params->groups);
if (BN != 8 || do_read) {
STEEL_PRAGMA_UNROLL
@@ -316,4 +316,4 @@ struct Conv2DWeightBlockLoaderSmallChannels {
};
} // namespace steel
} // namespace mlx
} // namespace mlx

View File

@@ -113,7 +113,7 @@ struct BlockLoader {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
// Zero out unneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);

View File

@@ -1,25 +1,32 @@
// Copyright © 2024 Apple Inc.
template <typename T, typename Op>
template <typename T, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void ternary_v(
device const bool* a,
device const T* b,
device const T* c,
device T* d,
constant uint& size,
uint index [[thread_position_in_grid]]) {
d[index] = Op()(a[index], b[index], c[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
d[index + i] = Op()(a[index + i], b[index + i], c[index + i]);
}
}
template <typename T, typename Op>
template <typename T, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void ternary_v2(
device const bool* a,
device const T* b,
device const T* c,
device T* d,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
d[offset] = Op()(a[offset], b[offset], c[offset]);
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
d[offset + i] = Op()(a[offset + i], b[offset + i], c[offset + i]);
}
}
template <typename T, typename Op, typename IdxT = int64_t>

View File

@@ -1,21 +1,28 @@
// Copyright © 2024 Apple Inc.
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void unary_v(
device const T* in,
device U* out,
constant uint& size,
uint index [[thread_position_in_grid]]) {
out[index] = Op()(in[index]);
index *= N;
for (int i = 0; i < N && (index + i) < size; ++i) {
out[index + i] = Op()(in[index + i]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, int N = WorkPerThread<T>::n>
[[kernel]] void unary_v2(
device const T* in,
device U* out,
constant int64_t& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto offset = index.x + grid_dim.x * int64_t(index.y);
out[offset] = Op()(in[offset]);
auto offset = N * (index.x + grid_dim.x * int64_t(index.y));
for (int i = 0; i < N && (offset + i) < size; ++i) {
out[offset + i] = Op()(in[offset + i]);
}
}
template <

View File

@@ -69,17 +69,24 @@ instantiate_unary_float(Round)
instantiate_unary_int(BitwiseInvert)
instantiate_unary_all_same(Abs, complex64, complex64_t)
instantiate_unary_all_same(ArcCos, complex64, complex64_t)
instantiate_unary_all_same(ArcSin, complex64, complex64_t)
instantiate_unary_all_same(ArcTan, complex64, complex64_t)
instantiate_unary_all_same(Conjugate, complex64, complex64_t)
instantiate_unary_all_same(Cos, complex64, complex64_t)
instantiate_unary_all_same(Cosh, complex64, complex64_t)
instantiate_unary_all_same(Exp, complex64, complex64_t)
instantiate_unary_all_same(Log, complex64, complex64_t)
instantiate_unary_all_same(Log1p, complex64, complex64_t)
instantiate_unary_all_same(Log2, complex64, complex64_t)
instantiate_unary_all_same(Log10, complex64, complex64_t)
instantiate_unary_all_same(Negative, complex64, complex64_t)
instantiate_unary_all_same(Sign, complex64, complex64_t)
instantiate_unary_all_same(Sin, complex64, complex64_t)
instantiate_unary_all_same(Sinh, complex64, complex64_t)
instantiate_unary_all_same(Square, complex64, complex64_t)
instantiate_unary_all_same(Sqrt, complex64, complex64_t)
instantiate_unary_all_same(Rsqrt, complex64, complex64_t)
instantiate_unary_all_same(Tan, complex64, complex64_t)
instantiate_unary_all_same(Tanh, complex64, complex64_t)
instantiate_unary_all_same(Round, complex64, complex64_t)

View File

@@ -17,27 +17,21 @@ struct Abs {
T operator()(T x) {
return metal::abs(x);
};
template <>
uint8_t operator()(uint8_t x) {
return x;
};
template <>
uint16_t operator()(uint16_t x) {
return x;
};
template <>
uint32_t operator()(uint32_t x) {
return x;
};
template <>
uint64_t operator()(uint64_t x) {
return x;
};
template <>
bool operator()(bool x) {
return x;
};
template <>
complex64_t operator()(complex64_t x) {
return {metal::precise::sqrt(x.real * x.real + x.imag * x.imag), 0};
};
@@ -48,6 +42,8 @@ struct ArcCos {
T operator()(T x) {
return metal::precise::acos(x);
};
complex64_t operator()(complex64_t x);
};
struct ArcCosh {
@@ -62,6 +58,8 @@ struct ArcSin {
T operator()(T x) {
return metal::precise::asin(x);
};
complex64_t operator()(complex64_t x);
};
struct ArcSinh {
@@ -76,6 +74,8 @@ struct ArcTan {
T operator()(T x) {
return metal::precise::atan(x);
};
complex64_t operator()(complex64_t x);
};
struct ArcTanh {
@@ -97,39 +97,30 @@ struct Ceil {
T operator()(T x) {
return metal::ceil(x);
};
template <>
int8_t operator()(int8_t x) {
return x;
};
template <>
int16_t operator()(int16_t x) {
return x;
};
template <>
int32_t operator()(int32_t x) {
return x;
};
template <>
int64_t operator()(int64_t x) {
return x;
};
template <>
uint8_t operator()(uint8_t x) {
return x;
};
template <>
uint16_t operator()(uint16_t x) {
return x;
};
template <>
uint32_t operator()(uint32_t x) {
return x;
};
template <>
uint64_t operator()(uint64_t x) {
return x;
};
template <>
bool operator()(bool x) {
return x;
};
@@ -141,7 +132,6 @@ struct Cos {
return metal::precise::cos(x);
};
template <>
complex64_t operator()(complex64_t x) {
return {
metal::precise::cos(x.real) * metal::precise::cosh(x.imag),
@@ -155,7 +145,6 @@ struct Cosh {
return metal::precise::cosh(x);
};
template <>
complex64_t operator()(complex64_t x) {
return {
metal::precise::cosh(x.real) * metal::precise::cos(x.imag),
@@ -188,7 +177,6 @@ struct Exp {
T operator()(T x) {
return metal::precise::exp(x);
};
template <>
complex64_t operator()(complex64_t x) {
auto m = metal::precise::exp(x.real);
return {m * metal::precise::cos(x.imag), m * metal::precise::sin(x.imag)};
@@ -207,39 +195,30 @@ struct Floor {
T operator()(T x) {
return metal::floor(x);
};
template <>
int8_t operator()(int8_t x) {
return x;
};
template <>
int16_t operator()(int16_t x) {
return x;
};
template <>
int32_t operator()(int32_t x) {
return x;
};
template <>
int64_t operator()(int64_t x) {
return x;
};
template <>
uint8_t operator()(uint8_t x) {
return x;
};
template <>
uint16_t operator()(uint16_t x) {
return x;
};
template <>
uint32_t operator()(uint32_t x) {
return x;
};
template <>
uint64_t operator()(uint64_t x) {
return x;
};
template <>
bool operator()(bool x) {
return x;
};
@@ -258,7 +237,6 @@ struct Log {
return metal::precise::log(x);
};
template <>
complex64_t operator()(complex64_t x) {
auto r = metal::precise::log(Abs{}(x).real);
auto i = metal::precise::atan2(x.imag, x.real);
@@ -272,7 +250,6 @@ struct Log2 {
return metal::precise::log2(x);
};
template <>
complex64_t operator()(complex64_t x) {
auto y = Log{}(x);
return {y.real / M_LN2_F, y.imag / M_LN2_F};
@@ -285,7 +262,6 @@ struct Log10 {
return metal::precise::log10(x);
};
template <>
complex64_t operator()(complex64_t x) {
auto y = Log{}(x);
return {y.real / M_LN10_F, y.imag / M_LN10_F};
@@ -325,7 +301,6 @@ struct Round {
T operator()(T x) {
return metal::rint(x);
};
template <>
complex64_t operator()(complex64_t x) {
return {metal::rint(x.real), metal::rint(x.imag)};
};
@@ -344,11 +319,9 @@ struct Sign {
T operator()(T x) {
return (x > T(0)) - (x < T(0));
};
template <>
uint32_t operator()(uint32_t x) {
return x != 0;
};
template <>
complex64_t operator()(complex64_t x) {
if (x == complex64_t(0)) {
return x;
@@ -364,7 +337,6 @@ struct Sin {
return metal::precise::sin(x);
};
template <>
complex64_t operator()(complex64_t x) {
return {
metal::precise::sin(x.real) * metal::precise::cosh(x.imag),
@@ -378,7 +350,6 @@ struct Sinh {
return metal::precise::sinh(x);
};
template <>
complex64_t operator()(complex64_t x) {
return {
metal::precise::sinh(x.real) * metal::precise::cos(x.imag),
@@ -398,6 +369,17 @@ struct Sqrt {
T operator()(T x) {
return metal::precise::sqrt(x);
};
complex64_t operator()(complex64_t x) {
if (x.real == 0.0 && x.imag == 0.0) {
return {0.0, 0.0};
}
auto r = Abs{}(x).real;
auto a = metal::precise::sqrt((r + x.real) / 2.0);
auto b_abs = metal::precise::sqrt((r - x.real) / 2.0);
auto b = metal::copysign(b_abs, x.imag);
return {a, b};
}
};
struct Rsqrt {
@@ -405,6 +387,10 @@ struct Rsqrt {
T operator()(T x) {
return metal::precise::rsqrt(x);
};
complex64_t operator()(complex64_t x) {
return 1.0 / Sqrt{}(x);
}
};
struct Tan {
@@ -413,7 +399,6 @@ struct Tan {
return metal::precise::tan(x);
};
template <>
complex64_t operator()(complex64_t x) {
float tan_a = metal::precise::tan(x.real);
float tanh_b = metal::precise::tanh(x.imag);
@@ -429,7 +414,6 @@ struct Tanh {
return metal::precise::tanh(x);
};
template <>
complex64_t operator()(complex64_t x) {
float tanh_a = metal::precise::tanh(x.real);
float tan_b = metal::precise::tan(x.imag);
@@ -438,3 +422,21 @@ struct Tanh {
return {(tanh_a + tan_b * t1) / denom, (tan_b - tanh_a * t1) / denom};
};
};
complex64_t ArcCos::operator()(complex64_t x) {
auto i = complex64_t{0.0, 1.0};
auto y = Log{}(x + i * Sqrt{}(1.0 - x * x));
return {y.imag, -y.real};
};
complex64_t ArcSin::operator()(complex64_t x) {
auto i = complex64_t{0.0, 1.0};
auto y = Log{}(i * x + Sqrt{}(1.0 - x * x));
return {y.imag, -y.real};
};
complex64_t ArcTan::operator()(complex64_t x) {
auto i = complex64_t{0.0, 1.0};
auto ix = i * x;
return (1.0 / complex64_t{0.0, 2.0}) * Log{}((1.0 + ix) / (1.0 - ix));
};

Some files were not shown because too many files have changed in this diff Show More