Compare commits

...

46 Commits

Author SHA1 Message Date
Awni Hannun
70dc336785 Test on cuda 12.2 and 12.9 (#2413) 2025-07-24 06:06:15 -07:00
Awni Hannun
4e504039f5 [Metal] Release metal events (#2412)
* release metal events

* fix

* fix
2025-07-23 19:53:42 -07:00
Awni Hannun
d1f4d291e8 Fix uv install and add dev release (#2411)
* fix uv install and add dev release

* fix docstring

* pin cuda deps

* cuda release on cpu-only machine
2025-07-23 16:54:19 -07:00
Awni Hannun
e1840853ce full row mask in sdpa consistently gives nan (#2406) 2025-07-23 16:37:03 -07:00
Cheng
0f5ce173da [CUDA] --compress-mode requires CUDA 12.8 (#2407) 2025-07-23 06:11:11 -07:00
Cheng
588854195f Remove unused code in Convolution::vjp (#2408) 2025-07-23 06:11:00 -07:00
Fangjun Kuang
28d068bce6 Fix an error in the comment for mx.dequantize (#2409) 2025-07-23 06:10:50 -07:00
Awni Hannun
d107d8d495 add cuda gemv (#2400) 2025-07-22 08:24:13 -07:00
Awni Hannun
1e496ddb82 [CUDA] Simplify allocator (#2392)
* simplify allocator and fixe race with small pool

* Don't use shared event in worker

* use cuda buffer in small pool

* comment

* comment
2025-07-22 08:24:01 -07:00
Awni Hannun
74eccbf3fa use size option in binary (#2399) 2025-07-22 07:00:53 -07:00
Awni Hannun
08638223ca Fix including stubs in wheel (#2398)
* fix including stubs in wheel

* fix bool_
2025-07-22 06:30:17 -07:00
Cheng
56cc858af9 Add contiguous_copy_cpu util for copying array (#2397) 2025-07-21 07:30:35 -07:00
Cheng
f55c4ed1d6 Remove thrust iterators (#2396) 2025-07-21 07:30:27 -07:00
Awni Hannun
93d70419e7 [CUDA] speedup handling scalars (#2389)
* speedup scalars in cuda

* comment
2025-07-18 21:47:31 -07:00
Awni Hannun
63f663d9c6 fix cuda manylinux version to match others (#2388) 2025-07-18 21:02:16 -07:00
Awni Hannun
84b4d96efa fix release build + patch bump (#2387) 2025-07-18 14:47:37 -07:00
Awni Hannun
aec67f2fa6 patch bump (#2386) 2025-07-18 12:25:48 -07:00
Gökdeniz Gülmez
deee214a95 Adding support for the Muon Optimizer (#1914)
* initial commit with workong optmimizer

* update ACKNOWLEDGMENTS.md

* nits and adding it to test

* nits

* G.astype(mx.bfloat16) to G.astype(G.dtype)

* G.ndim >= 2 to assert G.ndim == 2

* remove coments

* replace with  mx.addmm

* remove comments

* format

* nits

* match muon

* fix addmm

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-07-18 12:25:28 -07:00
Cheng
45adec102c Add contiguous_copy_gpu util for copying array (#2379) 2025-07-18 06:44:25 -07:00
Cheng
31fc530c76 [CUDA] Add more ways finding CCCL headers in JIT (#2382) 2025-07-17 15:25:34 -07:00
Awni Hannun
fbb3f65a1a fix resource leaks in matmul and graph (#2383) 2025-07-17 06:50:15 -07:00
Angelos Katharopoulos
6b1b8ea91b [CUDA] Add work per thread to compile (#2368) 2025-07-17 06:47:52 -07:00
Awni Hannun
b2273733ea Test with CUDA 12.2 (#2375)
* Test with CUDA 12.0

* try older image

* fix cpu sort
2025-07-16 13:00:37 -07:00
Awni Hannun
f409b229a4 fix ring distributed test (#2380) 2025-07-16 11:25:24 -07:00
Cheng
30571e2326 Rename the copy util in cpu/copy.h to copy_cpu (#2378) 2025-07-16 07:34:24 -07:00
Awni Hannun
d7734edd9f fix complex reduce + nan propagation in min and max (#2377) 2025-07-15 18:19:47 -07:00
Awni Hannun
2ba69bc8fa lower memory uniform sampling (#2361)
* lower memory uniform

* use fp32

* fix
2025-07-15 14:22:07 -07:00
Cheng
cb349a291c [CUDA] Use cuda::std::complex in place of cuComplex (#2372) 2025-07-15 00:36:13 -07:00
Awni Hannun
f0a0b077a0 Install linux with mlx[cuda] and mlx[cpu] (#2356)
* install linux with mlx[cuda] and mlx[cpu]

* temp for testing

* cleanup circle, fix cuda repair

* update circle

* update circle

* decouple python bindings from core libraries
2025-07-14 17:17:33 -07:00
Awni Hannun
49114f28ab fix flaky test (#2371) 2025-07-14 17:16:18 -07:00
Awni Hannun
e7d2ebadd2 [CUDA] Affine quantize (#2354)
* affine quantize and dequantize kernels

* format

* fix

* format
2025-07-14 15:45:44 -07:00
Awni Hannun
e569803d7c update linux build (#2370) 2025-07-14 15:13:56 -07:00
Cheng
d34f887abc Add Primitive::name and remove Primitive::print (#2365) 2025-07-14 14:06:35 -07:00
Angelos Katharopoulos
5201df5030 Fix imag() vjp (#2367) 2025-07-14 13:11:16 -07:00
Cheng
2d3c26c565 [CUDA] Do not put kernels in annoymous namespace (#2362) 2025-07-12 14:24:45 -07:00
Cheng
6325f60d52 [CUDA] Bundle CCCL for JIT compilation (#2357)
* Ship CCCL for JIT compilation

* Remove cexpf
2025-07-11 18:45:37 -07:00
Awni Hannun
42cc9cfbc7 fix copy dispatch (#2360) 2025-07-11 10:59:35 -07:00
Cheng
8347575ba1 [CUDA] Implement Scan kernel (#2347)
* Contiguous scan

* Strided scan

* Enable tests

* Fix failing logaddexp test

* Use cexpf in Metal
2025-07-10 16:54:12 -07:00
Angelos Katharopoulos
b6eec20260 Fix edge check in qmm_n QuantizedLoader (#2355) 2025-07-10 16:28:50 -07:00
Angelos Katharopoulos
0eb035b4b1 Fix type promotion in Adam with bias correction (#2350) 2025-07-10 11:14:42 -07:00
Cheng
afb9817599 [CUDA] Put version in ptx cache dir path (#2352) 2025-07-10 07:24:21 -07:00
Cheng
8fb3e7a26c [CUDA] Set current device before cudaGraphLaunch (#2351) 2025-07-10 07:24:02 -07:00
jhavukainen
8c7bc30ce4 Align mlx::core::min op nan propagation with NumPy (#2346) 2025-07-10 06:20:43 -07:00
Cheng
85873cb162 [CUDA] Do vectorized store/load in contiguous elementwise ops (#2342)
* Do vectorized store/load in unary ops

* Do vectorized store/load in binary_two ops

* Do vectorized store/load in copy ops

* Do vectorized store/load in ternary ops

* Use int32_t for IdxT

* binary => binary_two in binary_two.cu

* Fix tests on large arrays

* Use uint as index type

* Contig uses uint as index and non-contig uses int
2025-07-09 18:48:43 -07:00
Awni Hannun
e14ee12491 add zero for argsort vjp (#2345) 2025-07-09 14:37:14 -07:00
jhavukainen
8b9a3f3cea Align mlx::core::max op nan propagation with NumPy (#2339)
* Make max op NaN propagation rules align with numpy

* Adding benchmarks and testing for max op nanpropagation

* Pre-commit formatting

* Fix max complex64 nan propagation and add test

* Improve the cpp unittest

* Only check nans on non-integral types in simd_reduce_impl.

* Cleanup using namespace alias

* Add cpu Max nanpropagation. Fix a small fib in cpu max dispatch data types for int8/int16.

* Make the max nanpropagation test more meaningful for integer types

* Remove tuple unpacking syntax to comply with earlier python versions. Add cuda skip to nanpropagation tests, fix cuda implementation in a separate PR.
2025-07-09 11:26:27 -07:00
144 changed files with 3328 additions and 1802 deletions

View File

@@ -7,18 +7,9 @@ parameters:
nightly_build: nightly_build:
type: boolean type: boolean
default: false default: false
weekly_build:
type: boolean
default: false
test_release: test_release:
type: boolean type: boolean
default: false default: false
linux_release:
type: boolean
default: false
cuda_release:
type: boolean
default: false
jobs: jobs:
build_documentation: build_documentation:
@@ -73,9 +64,9 @@ jobs:
git push -f origin gh-pages git push -f origin gh-pages
linux_build_and_test: linux_build_and_test:
docker: machine:
- image: cimg/python:3.9 image: ubuntu-2204:current
resource_class: large
steps: steps:
- checkout - checkout
- run: - run:
@@ -87,19 +78,17 @@ jobs:
- run: - run:
name: Install dependencies name: Install dependencies
command: | command: |
pip install --upgrade cmake export DEBIAN_FRONTEND=noninteractive
pip install nanobind==2.4.0 export NEEDRESTART_MODE=a
pip install numpy
sudo apt-get update sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev sudo apt-get upgrade -y
pip install --upgrade cmake
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
- run: - run:
name: Install Python package name: Install Python package
command: | command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \ pip install -e ".[dev]"
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
python3 setup.py develop
- run: - run:
name: Generate package stubs name: Generate package stubs
command: | command: |
@@ -109,13 +98,14 @@ jobs:
- run: - run:
name: Run Python tests name: Run Python tests
command: | command: |
python3 -m unittest discover python/tests -v python -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run: - run:
name: Build CPP only name: Build CPP only
command: | command: |
mkdir -p build && cd build mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc` make -j `nproc`
- run: - run:
@@ -170,7 +160,8 @@ jobs:
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run: - run:
name: Build example extension name: Build example extension
command: | command: |
@@ -212,8 +203,12 @@ jobs:
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
cuda_build_and_test: cuda_build_and_test:
parameters:
image_date:
type: string
default: "2023.11.1"
machine: machine:
image: linux-cuda-12:default image: "linux-cuda-12:<< parameters.image_date >>"
resource_class: gpu.nvidia.small.gen2 resource_class: gpu.nvidia.small.gen2
steps: steps:
- checkout - checkout
@@ -222,7 +217,7 @@ jobs:
command: | command: |
sudo apt-get update sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
python -m venv env python3 -m venv env
source env/bin/activate source env/bin/activate
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \ CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
pip install -e ".[dev]" pip install -e ".[dev]"
@@ -284,7 +279,18 @@ jobs:
name: Build Python package name: Build Python package
command: | command: |
source env/bin/activate source env/bin/activate
<< parameters.build_env >> python -m build -w python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
- when: - when:
condition: << parameters.build_env >> condition: << parameters.build_env >>
steps: steps:
@@ -301,88 +307,104 @@ jobs:
python_version: python_version:
type: string type: string
default: "3.9" default: "3.9"
extra_env: build_env:
type: string type: string
default: "DEV_RELEASE=1" default: ""
docker: machine:
- image: ubuntu:20.04 image: ubuntu-2204:current
resource_class: large
steps: steps:
- checkout - checkout
- run: - run:
name: Build wheel name: Build wheel
command: | command: |
PYTHON=python<< parameters.python_version >> PYTHON=python<< parameters.python_version >>
apt-get update export DEBIAN_FRONTEND=noninteractive
apt-get upgrade -y export NEEDRESTART_MODE=a
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata sudo apt-get update
apt-get install -y apt-utils sudo apt-get upgrade -y
apt-get install -y software-properties-common TZ=Etc/UTC sudo apt-get -y install tzdata
add-apt-repository -y ppa:deadsnakes/ppa sudo apt-get install -y apt-utils
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full sudo apt-get install -y software-properties-common
apt-get install -y libblas-dev liblapack-dev liblapacke-dev sudo add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y build-essential git sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install -y build-essential git
$PYTHON -m venv env $PYTHON -m venv env
source env/bin/activate source env/bin/activate
pip install --upgrade pip pip install --upgrade pip
pip install --upgrade cmake pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel pip install auditwheel
pip install patchelf pip install patchelf
pip install build pip install build
pip install twine pip install twine
<< parameters.extra_env >> pip install . -v << parameters.build_env >> pip install ".[dev]" -v
pip install typing_extensions pip install typing_extensions
python setup.py generate_stubs python setup.py generate_stubs
<< parameters.extra_env >> python -m build --wheel python setup.py clean --all
auditwheel show dist/* MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
auditwheel repair dist/* --plat manylinux_2_31_x86_64 bash python/scripts/repair_linux.sh
- run: - when:
name: Upload package condition:
command: | equal: ["3.9", << parameters.python_version >>]
source env/bin/activate steps:
twine upload wheelhouse/* - run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload packages
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts: - store_artifacts:
path: wheelhouse/ path: wheelhouse/
build_cuda_release: build_cuda_release:
parameters: parameters:
python_version: build_env:
type: string type: string
default: "3.9" default: ""
extra_env:
type: string
default: "DEV_RELEASE=1"
machine: machine:
image: linux-cuda-12:default image: ubuntu-2204:current
resource_class: gpu.nvidia.small.gen2 resource_class: large
steps: steps:
- checkout - checkout
- run: - run:
name: Build wheel name: Build wheel
command: | command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update sudo apt-get update
sudo apt install cuda-toolkit-12-9
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
python -m venv env sudo apt-get install zip
source env/bin/activate
pip install auditwheel pip install auditwheel
pip install patchelf pip install patchelf
pip install build pip install build
pip install twine pip install twine
<< parameters.extra_env >> \ export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \ CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
pip install ".[dev]" -v python -m build -w
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build --wheel
bash python/scripts/repair_cuda.sh bash python/scripts/repair_cuda.sh
- run: - when:
name: Upload package condition: << parameters.build_env >>
command: | steps:
source env/bin/activate - run:
twine upload wheelhouse/*.whl name: Upload package
command: |
twine upload wheelhouse/*.whl
- store_artifacts: - store_artifacts:
path: wheelhouse/ path: wheelhouse/
@@ -394,7 +416,6 @@ workflows:
pattern: "^(?!pull/)[-\\w]+$" pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >> value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >> - not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >> - not: << pipeline.parameters.test_release >>
jobs: jobs:
- mac_build_and_test: - mac_build_and_test:
@@ -402,14 +423,16 @@ workflows:
parameters: parameters:
macosx_deployment_target: ["13.5", "14.0"] macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test - linux_build_and_test
- cuda_build_and_test - cuda_build_and_test:
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
- build_documentation - build_documentation
build_pypi_release: build_pypi_release:
when: when:
and: and:
- not: << pipeline.parameters.nightly_build >> - not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >> - not: << pipeline.parameters.test_release >>
jobs: jobs:
- build_release: - build_release:
@@ -501,7 +524,16 @@ workflows:
matrix: matrix:
parameters: parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"] python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
extra_env: ["PYPI_RELEASE=1"] build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
build_env: ["PYPI_RELEASE=1"]
prb: prb:
when: when:
@@ -580,11 +612,17 @@ workflows:
- macosx_deployment_target: "15.0" - macosx_deployment_target: "15.0"
xcode_version: "15.0.0" xcode_version: "15.0.0"
python_version: "3.13" python_version: "3.13"
weekly_build: - build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
when: when:
and: and:
- equal: [ main, << pipeline.git.branch >> ] - equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.weekly_build >> - << pipeline.parameters.test_release >>
jobs: jobs:
- build_release: - build_release:
matrix: matrix:
@@ -654,25 +692,12 @@ workflows:
xcode_version: "15.0.0" xcode_version: "15.0.0"
python_version: "3.13" python_version: "3.13"
build_env: "DEV_RELEASE=1" build_env: "DEV_RELEASE=1"
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.linux_release >>
jobs:
- build_linux_release: - build_linux_release:
matrix: matrix:
parameters: parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"] python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
extra_env: ["PYPI_RELEASE=1"] build_env: ["DEV_RELEASE=1"]
cuda_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.cuda_release >>
jobs:
- build_cuda_release: - build_cuda_release:
matrix: matrix:
parameters: parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"] build_env: ["DEV_RELEASE=1"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -19,6 +19,7 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions. - Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation - Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops. - Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors"> <a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" /> <img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -64,10 +64,8 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
message(WARNING "Building for x86_64 arch is not officially supported.") message(WARNING "Building for x86_64 arch is not officially supported.")
endif() endif()
endif() endif()
else() else()
set(MLX_BUILD_METAL OFF) set(MLX_BUILD_METAL OFF)
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif() endif()
# ----------------------------- Lib ----------------------------- # ----------------------------- Lib -----------------------------

View File

@@ -192,6 +192,22 @@ void time_reductions() {
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); }; auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
TIME(argmin_along_1); TIME(argmin_along_1);
auto indices = mx::array({1});
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
std::vector<int> axes{0};
auto b = scatter(a, {indices}, updates, axes);
mx::eval(b);
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
TIME(max_along_0);
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
TIME(max_along_1);
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
TIME(min_along_0);
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
TIME(min_along_1);
} }
void time_gather_scatter() { void time_gather_scatter() {

View File

@@ -51,6 +51,20 @@ def time_maximum():
time_fn(mx.maximum, a, b) time_fn(mx.maximum, a, b)
def time_max():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.max, a, 0)
def time_min():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.min, a, 0)
def time_negative(): def time_negative():
a = mx.random.uniform(shape=(10000, 1000)) a = mx.random.uniform(shape=(10000, 1000))
mx.eval(a) mx.eval(a)
@@ -108,6 +122,8 @@ if __name__ == "__main__":
time_add() time_add()
time_matmul() time_matmul()
time_min()
time_max()
time_maximum() time_maximum()
time_exp() time_exp()
time_negative() time_negative()

View File

@@ -138,13 +138,13 @@ more concrete:
* representing the vectorized computation and the axis which * representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension. * corresponds to the output vectorized dimension.
*/ */
virtual std::pair<std::vector<array>, std::vector<int>> vmap( std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs, const std::vector<array>& inputs,
const std::vector<int>& axes) override; const std::vector<int>& axes) override;
/** Print the primitive. */ /** The name of primitive. */
void print(std::ostream& os) override { const char* name() const override {
os << "Axpby"; return "Axpby";
} }
/** Equivalence check **/ /** Equivalence check **/

View File

@@ -23,13 +23,6 @@ To install from PyPI you must meet the following requirements:
MLX is only available on devices running macOS >= 13.5 MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma) It is highly recommended to use macOS 14 (Sonoma)
MLX is also available on conda-forge. To install MLX with conda do:
.. code-block:: shell
conda install conda-forge::mlx
CUDA CUDA
^^^^ ^^^^
@@ -38,8 +31,16 @@ and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
.. code-block:: shell .. code-block:: shell
pip install mlx-cuda pip install "mlx[cuda]"
CPU-only (Linux)
^^^^^^^^^^^^^^^^
For a CPU-only version of MLX that runs on Linux use:
.. code-block:: shell
pip install "mlx[cpu]"
Troubleshooting Troubleshooting
^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^

View File

@@ -19,3 +19,4 @@ Common Optimizers
Adamax Adamax
Lion Lion
MultiOptimizer MultiOptimizer
Muon

View File

@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
const std::vector<mx::array>& inputs, const std::vector<mx::array>& inputs,
const std::vector<int>& axes) override; const std::vector<int>& axes) override;
/** Print the primitive. */ /** The name of primitive. */
void print(std::ostream& os) override { const char* name() const override {
os << "Axpby"; return "Axpby";
} }
/** Equivalence check **/ /** Equivalence check **/

View File

@@ -1,14 +1,20 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {
std::string get_primitive_string(Primitive* primitive) { std::filesystem::path current_binary_dir() {
std::ostringstream op_t; static std::filesystem::path binary_dir = []() {
primitive->print(op_t); Dl_info info;
return op_t.str(); if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path();
}();
return binary_dir;
} }
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims( std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(

View File

@@ -2,6 +2,7 @@
#pragma once #pragma once
#include <filesystem>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
@@ -9,7 +10,8 @@
namespace mlx::core { namespace mlx::core {
std::string get_primitive_string(Primitive* primitive); // Return the directory that contains current shared library.
std::filesystem::path current_binary_dir();
inline int64_t inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) { elem_to_loc(int elem, const Shape& shape, const Strides& strides) {

View File

@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// The decomposition is computed in place, so just copy the input to the // The decomposition is computed in place, so just copy the input to the
// output. // output.
copy( copy_cpu(
a, a,
factor, factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General, a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -231,7 +231,7 @@ inline void build_kernel(
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_" os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl; << namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else { } else {
x.primitive().print(os); os << x.primitive().name();
os << "()("; os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) { for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", "; os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";

View File

@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
// Fill with zeros // Fill with zeros
std::vector<array> temps; std::vector<array> temps;
temps.push_back(array(0, conv_dtype)); temps.push_back(array(0, conv_dtype));
copy(temps.back(), in_padded, CopyType::Scalar, stream); copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded // Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1]; size_t data_offset = padding_lo[0] * in_padded.strides()[1];
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded_slice.size(), in_padded_slice.size(),
data_offset); data_offset);
// Copy input values into the slice // Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream); copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice); temps.push_back(in_padded_slice);
// Make strided view // Make strided view
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
// Materialize strided view // Materialize strided view
Shape strided_reshape = {N * oH, wH * C}; Shape strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {}); array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream); copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided); temps.push_back(in_strided);
// Check wt dtype and prepare // Check wt dtype and prepare
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
wt.size(), wt.size(),
0); 0);
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {}); gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
copy(wt_transpose, gemm_wt, CopyType::General, stream); copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
temps.push_back(gemm_wt); temps.push_back(gemm_wt);
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) { } else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype = auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General; wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {}); gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream); copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt); temps.push_back(gemm_wt);
} }
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
// Copy results if needed // Copy results if needed
if (out.dtype() != float32) { if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream); copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
} }
encoder.add_temporaries(std::move(temps)); encoder.add_temporaries(std::move(temps));
} }
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
// Fill with zeros // Fill with zeros
std::vector<array> temps; std::vector<array> temps;
temps.push_back(array(0, conv_dtype)); temps.push_back(array(0, conv_dtype));
copy(temps.back(), in_padded, CopyType::Scalar, stream); copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded // Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] + size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
temps.push_back(in_padded_slice); temps.push_back(in_padded_slice);
// Copy input values into the slice // Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream); copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view // Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C}; Shape strided_shape = {N, oH, oW, wH, wW, C};
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
// Materialize strided view // Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C}; Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {}); array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream); copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided); temps.push_back(in_strided);
// Check wt dtype and prepare // Check wt dtype and prepare
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
auto ctype = auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General; wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {}); gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream); copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt); temps.push_back(gemm_wt);
} }
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
// Copy results if needed // Copy results if needed
if (out.dtype() != float32) { if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream); copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
} }
encoder.add_temporaries(std::move(temps)); encoder.add_temporaries(std::move(temps));
} }
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
// Fill with zeros // Fill with zeros
std::vector<array> temps = {array(0, conv_dtype)}; std::vector<array> temps = {array(0, conv_dtype)};
copy(temps.back(), in_padded, CopyType::Scalar, stream); copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded // Pick input slice from padded
size_t data_offset = 0; size_t data_offset = 0;
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
data_offset); data_offset);
// Copy input values into the slice // Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream); copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice); temps.push_back(in_padded_slice);
// Make strided view // Make strided view
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
} }
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {}); array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream); copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided); temps.push_back(in_strided);
// Check wt dtype and prepare // Check wt dtype and prepare
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
auto ctype = auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General; wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {}); gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream); copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt); temps.push_back(gemm_wt);
} }
if (flip) { if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {}); auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream); copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
temps.push_back(gemm_wt_); temps.push_back(gemm_wt_);
// Calculate the total size of the spatial dimensions // Calculate the total size of the spatial dimensions
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
// Copy results if needed // Copy results if needed
if (out.dtype() != float32) { if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream); copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
} }
encoder.add_temporaries(std::move(temps)); encoder.add_temporaries(std::move(temps));
} }

View File

@@ -295,7 +295,11 @@ inline void copy_inplace_dispatch(
} // namespace } // namespace
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) { void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream) {
auto& encoder = cpu::get_command_encoder(stream); auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(src); encoder.set_input_array(src);
encoder.set_output_array(dst); encoder.set_output_array(dst);
@@ -305,7 +309,7 @@ void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); }); ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
} }
void copy(const array& src, array& dst, CopyType ctype, Stream stream) { void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
bool donated = set_copy_output_data(src, dst, ctype); bool donated = set_copy_output_data(src, dst, ctype);
if (donated && src.dtype() == dst.dtype()) { if (donated && src.dtype() == dst.dtype()) {
// If the output has the same type as the input then there is nothing to // If the output has the same type as the input then there is nothing to
@@ -315,10 +319,10 @@ void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
if (ctype == CopyType::GeneralGeneral) { if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General; ctype = CopyType::General;
} }
copy_inplace(src, dst, ctype, stream); copy_cpu_inplace(src, dst, ctype, stream);
} }
void copy_inplace( void copy_cpu_inplace(
const array& src, const array& src,
array& dst, array& dst,
const Shape& data_shape, const Shape& data_shape,
@@ -373,4 +377,10 @@ void copy_inplace(
}); });
} }
array contiguous_copy_cpu(const array& arr, Stream stream) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return arr_copy;
}
} // namespace mlx::core } // namespace mlx::core

View File

@@ -10,10 +10,14 @@
namespace mlx::core { namespace mlx::core {
void copy(const array& src, array& dst, CopyType ctype, Stream stream); void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream); void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream);
void copy_inplace( void copy_cpu_inplace(
const array& src, const array& src,
array& dst, array& dst,
const Shape& data_shape, const Shape& data_shape,
@@ -26,4 +30,7 @@ void copy_inplace(
const std::optional<array>& dynamic_i_offset = std::nullopt, const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt); const std::optional<array>& dynamic_o_offset = std::nullopt);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_cpu(const array& arr, Stream stream);
} // namespace mlx::core } // namespace mlx::core

View File

@@ -13,9 +13,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
if (arr.flags().row_contiguous) { if (arr.flags().row_contiguous) {
return {arr, false}; return {arr, false};
} else { } else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); return {contiguous_copy_cpu(arr, stream), true};
copy(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
} }
}; };
@@ -34,8 +32,7 @@ void AllReduce::eval_cpu(
} }
return in; return in;
} else { } else {
array arr_copy(in.shape(), in.dtype(), nullptr, {}); array arr_copy = contiguous_copy_cpu(in, s);
copy(in, arr_copy, CopyType::General, s);
out.copy_shared_buffer(arr_copy); out.copy_shared_buffer(arr_copy);
return arr_copy; return arr_copy;
} }

View File

@@ -135,7 +135,7 @@ void Eig::eval_cpu(
: array(a.shape(), complex64, nullptr, {}); : array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {}); auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy( copy_cpu(
a, a,
a_copy, a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General, a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
values.set_data(allocator::malloc(values.nbytes())); values.set_data(allocator::malloc(values.nbytes()));
copy( copy_cpu(
a, a,
vectors, vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General, a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.flags().row_contiguous && in.is_donatable()) { if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
} else { } else {
copy( copy_cpu(
in, in,
out, out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General, in.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out) // Copy src into out (copy allocates memory for out)
auto ctype = auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General; src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream()); copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream()); auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> inds; std::vector<array> inds;
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out) // Copy src into out (copy allocates memory for out)
auto ctype = auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General; src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream()); copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream()); auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(idx); encoder.set_input_array(idx);

View File

@@ -115,7 +115,7 @@ void inverse_impl(
// (A⁻¹)ᵀ = (Aᵀ)⁻¹ // (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output. // The inverse is computed in place, so just copy the input to the output.
copy( copy_cpu(
a, a,
inv, inv,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General, a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -87,8 +87,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) { if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_cpu(x, s);
copy(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy); encoder.add_temporary(x_copy);
return x_copy; return x_copy;
} }

View File

@@ -31,7 +31,7 @@ void luf_impl(
strides[ndim - 1] = M; strides[ndim - 1] = M;
strides[ndim - 2] = 1; strides[ndim - 2] = 1;
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags); lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_inplace( copy_cpu_inplace(
a, a,
lu, lu,
a.shape(), a.shape(),

View File

@@ -124,21 +124,20 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (!expand_all && stx == arr.shape(-1) && sty == 1) { if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) { if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s); copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true); return std::make_tuple(false, stx, arr_copy, true);
} }
return std::make_tuple(false, stx, arr, false); return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) { } else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) { if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s); copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true); return std::make_tuple(true, sty, arr_copy, true);
} }
return std::make_tuple(true, sty, arr, false); return std::make_tuple(true, sty, arr, false);
} else { } else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1); int64_t stx = arr.shape(-1);
array arr_copy = contiguous_copy_cpu(arr, s);
return std::make_tuple(false, stx, arr_copy, true); return std::make_tuple(false, stx, arr_copy, true);
} }
}; };
@@ -386,7 +385,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, arr); return std::make_tuple(true, sty, arr);
} else { } else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {})); temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s); copy_cpu(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1); int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back()); return std::make_tuple(false, stx, temps.back());
} }
@@ -504,7 +503,7 @@ void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, x); return std::make_tuple(true, sty, x);
} else { } else {
array xc(x.shape(), x.dtype(), nullptr, {}); array xc(x.shape(), x.dtype(), nullptr, {});
copy(x, xc, CopyType::General, s); copy_cpu(x, xc, CopyType::General, s);
encoder.add_temporary(xc); encoder.add_temporary(xc);
int64_t stx = x.shape(-1); int64_t stx = x.shape(-1);
return std::make_tuple(false, stx, xc); return std::make_tuple(false, stx, xc);

View File

@@ -81,7 +81,7 @@ void matmul_general(
return std::make_tuple(true, sty, arr); return std::make_tuple(true, sty, arr);
} else { } else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {})); temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, stream); copy_cpu(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1); stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back()); return std::make_tuple(false, stx, temps.back());
} }
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
CopyType ctype = c.data_size() == 1 CopyType ctype = c.data_size() == 1
? CopyType::Scalar ? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General); : (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy(c, out, ctype, stream()); copy_cpu(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) { if (inputs[0].shape(-1) == 0) {
return; return;
} }

View File

@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out); auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) { if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes())); out.set_data(allocator::malloc(out.nbytes()));
copy_inplace(in, out, CopyType::General, out.primitive().stream()); copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
} else { } else {
shared_buffer_reshape(in, out_strides, out); shared_buffer_reshape(in, out_strides, out);
} }
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1); assert(inputs.size() == 1);
auto& in = inputs[0]; auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General; CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream()); copy_cpu(in, out, ctype, stream());
} }
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) { void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t data_offset = strides[axis_] * sizes[i]; size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer( out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset); out, strides, flags, out_slice.size(), data_offset);
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream()); copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
} }
} }
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) { (allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
} else { } else {
copy(in, out, CopyType::General, stream()); copy_cpu(in, out, CopyType::General, stream());
} }
} }
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
} else { } else {
ctype = CopyType::General; ctype = CopyType::General;
} }
copy(in, out, ctype, stream()); copy_cpu(in, out, ctype, stream());
} }
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) { void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype()); assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val // Fill output with val
copy(val, out, CopyType::Scalar, stream()); copy_cpu(val, out, CopyType::Scalar, stream());
// Find offset for start of input values // Find offset for start of input values
size_t data_offset = 0; size_t data_offset = 0;
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
out, out.strides(), out.flags(), out_slice.size(), data_offset); out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice // Copy input values into the slice
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream()); copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
} }
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) { void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes())); out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] = auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream()); compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_inplace( copy_cpu_inplace(
/* const array& src = */ in, /* const array& src = */ in,
/* array& dst = */ out, /* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(), /* const Shape& data_shape = */ out.shape(),
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
auto ctype = in.flags().contiguous && in.size() == in.data_size() auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector ? CopyType::Vector
: CopyType::General; : CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream()); copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
auto [out_offset, donated] = auto [out_offset, donated] =
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream()); compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
copy_inplace( copy_cpu_inplace(
/* const array& src = */ upd, /* const array& src = */ upd,
/* array& dst = */ out, /* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(), /* const std::vector<int>& data_shape = */ upd.shape(),
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
auto ctype = in.flags().contiguous && in.size() == in.data_size() auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector ? CopyType::Vector
: CopyType::General; : CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream()); copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
// Calculate out strides, initial offset and if copy needs to be made // Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] = auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_); prepare_slice(out, start_indices_, strides_);
// Do copy // Do copy
copy_inplace( copy_cpu_inplace(
/* const array& src = */ upd, /* const array& src = */ upd,
/* array& dst = */ out, /* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(), /* const std::vector<int>& data_shape = */ upd.shape(),
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) { if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {}); auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in); in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General, stream()); copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
} else { } else {
copy_inplace(in, tmp, CopyType::General, stream()); copy_cpu_inplace(in, tmp, CopyType::General, stream());
} }
auto flags = out.flags(); auto flags = out.flags();

View File

@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
strides[in.ndim() - 2] = 1; strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M; strides[in.ndim() - 1] = M;
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags); in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_inplace(a, in, CopyType::GeneralGeneral, stream); copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream); auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc(q.nbytes())); q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes())); r.set_data(allocator::malloc(r.nbytes()));

View File

@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr; return arr;
} else { } else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {})); temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s); copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back(); return temps.back();
} }
}; };
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr; return arr;
} else { } else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {})); temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s); copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back(); return temps.back();
} }
}; };
@@ -712,9 +712,7 @@ void fast::AffineQuantize::eval_cpu(
if (arr.flags().row_contiguous) { if (arr.flags().row_contiguous) {
return std::make_pair(arr, false); return std::make_pair(arr, false);
} else { } else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); return std::make_pair(contiguous_copy_cpu(arr, s), true);
copy(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
} }
}; };

View File

@@ -325,7 +325,15 @@ struct MaxReduce {
}; };
template <int N, typename T> template <int N, typename T>
T operator()(simd::Simd<T, N> x) { std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
return simd::max(x); return simd::max(x);
}; };
}; };
@@ -342,7 +350,15 @@ struct MinReduce {
}; };
template <int N, typename T> template <int N, typename T>
T operator()(simd::Simd<T, N> x) { std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
return simd::min(x); return simd::min(x);
}; };
}; };
@@ -527,10 +543,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_); reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break; break;
case int8: case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_); reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
break; break;
case int16: case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_); reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
break; break;
case int32: case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_); reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);

View File

@@ -250,10 +250,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
// Ensure contiguity // Ensure contiguity
auto in = inputs[0]; auto in = inputs[0];
if (!in.flags().row_contiguous) { if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {}); in = contiguous_copy_cpu(in, stream());
copy(in, arr_copy, CopyType::General, stream()); encoder.add_temporary(in);
in = arr_copy;
encoder.add_temporary(arr_copy);
} }
out.set_data(allocator::malloc(out.nbytes())); out.set_data(allocator::malloc(out.nbytes()));

View File

@@ -131,8 +131,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
} }
return x; return x;
} else { } else {
array x_copy(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_cpu(x, s);
copy(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy); out.copy_shared_buffer(x_copy);
return x_copy; return x_copy;
} }

View File

@@ -334,8 +334,10 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0]; auto& in = inputs[0];
// Copy input to output // Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General; CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
copy(in, out, ctype, stream()); ? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream()); auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out); encoder.set_output_array(out);
@@ -426,8 +428,10 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0]; auto& in = inputs[0];
// Copy input to output // Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General; CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
copy(in, out, ctype, stream()); ? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream()); auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out); encoder.set_output_array(out);

View File

@@ -31,7 +31,7 @@ void svd_impl(
// lapack clobbers the input, so we have to make a copy. // lapack clobbers the input, so we have to make a copy.
array in(a.shape(), a.dtype(), nullptr, {}); array in(a.shape(), a.dtype(), nullptr, {});
copy( copy_cpu(
a, a,
in, in,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General, a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -20,6 +20,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp ${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu ${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp ${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp ${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu ${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@@ -35,12 +36,14 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu ${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu ${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu ${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp ${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu ${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu ${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu ${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu ${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp ${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp) ${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA) target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
@@ -67,6 +70,11 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
target_compile_options(mlx target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>") PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Enable calling host constexpr functions from device. This is needed because
# the constexpr version of isnan is host only.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive. # CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
# Explicitly pass this flag to suppress the warning, it is safe to set it to # Explicitly pass this flag to suppress the warning, it is safe to set it to
# true but the warning wouldn't be suppressed. # true but the warning wouldn't be suppressed.
@@ -80,6 +88,13 @@ endif()
target_compile_options( target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>") mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
# and requires drivers released after CUDA 12.4.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
endif()
# Compute capability 7 is required for synchronization between CPU/GPU with # Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain. # managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES set(MLX_CUDA_ARCHITECTURES
@@ -119,3 +134,7 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
# Suppress nvcc warnings on MLX headers. # Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>) --diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)

View File

@@ -2,7 +2,6 @@
#include "mlx/backend/cuda/allocator.h" #include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h" #include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/utils.h" #include "mlx/utils.h"
#include <cuda_runtime.h> #include <cuda_runtime.h>
@@ -17,14 +16,66 @@ namespace cu {
constexpr int page_size = 16384; constexpr int page_size = 16384;
// Any allocations smaller than this will try to use the small pool
constexpr int small_block_size = 8;
// The small pool size in bytes. This should be a multiple of the host page
// size and small_block_size.
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
auto num_blocks = small_pool_size / small_block_size;
buffer_ = new Block[num_blocks];
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
curr->next = buffer_ + i;
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(data_));
delete[] buffer_;
}
CudaBuffer* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
uint64_t i = next_free_ - buffer_;
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
return &b->buf;
}
void SmallSizePool::free(CudaBuffer* buf) {
auto b = reinterpret_cast<Block*>(buf);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(CudaBuffer* buf) {
constexpr int num_blocks = (small_pool_size / small_block_size);
auto b = reinterpret_cast<Block*>(buf);
int64_t block_num = b - buffer_;
return block_num >= 0 && block_num < num_blocks;
}
CudaAllocator::CudaAllocator() CudaAllocator::CudaAllocator()
: buffer_cache_( : buffer_cache_(
page_size, page_size,
[](CudaBuffer* buf) { return buf->size; }, [](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { [this](CudaBuffer* buf) { cuda_free(buf); }) {
cuda_free(buf->data);
delete buf;
}) {
// TODO: Set memory limit for multi-device. // TODO: Set memory limit for multi-device.
size_t free, total; size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total)); CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
@@ -36,7 +87,9 @@ Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache. // Find available buffer from cache.
auto orig_size = size; auto orig_size = size;
std::unique_lock lock(mutex_); std::unique_lock lock(mutex_);
if (size < page_size) { if (size <= small_block_size) {
size = 8;
} else if (size < page_size) {
size = next_power_of_2(size); size = next_power_of_2(size);
} else { } else {
size = page_size * ((size + page_size - 1) / page_size); size = page_size * ((size + page_size - 1) / page_size);
@@ -44,19 +97,25 @@ Buffer CudaAllocator::malloc(size_t size) {
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size); CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) { if (!buf) {
// If we have a lot of memory pressure or are over the maximum cache size, // If we have a lot of memory pressure try to reclaim memory from the cache.
// try to reclaim memory from the cache. int64_t mem_to_free =
size_t mem_required = get_active_memory() + get_cache_memory() + size; get_active_memory() + get_cache_memory() + size - memory_limit_;
if (mem_required >= memory_limit_) { if (mem_to_free > 0) {
buffer_cache_.release_cached_buffers(mem_required - memory_limit_); buffer_cache_.release_cached_buffers(mem_to_free);
} }
// Try the scalar pool first
if (size <= small_block_size) {
buf = scalar_pool_.malloc();
}
lock.unlock(); lock.unlock();
buf = new CudaBuffer{nullptr, size}; if (!buf) {
cudaError_t err = cudaMallocManaged(&buf->data, size); buf = new CudaBuffer{nullptr, size};
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) { cudaError_t err = cudaMallocManaged(&buf->data, size);
throw std::runtime_error(fmt::format( if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
"cudaMallocManaged failed: {}.", cudaGetErrorString(err))); throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
} }
lock.lock(); lock.lock();
} }
@@ -67,7 +126,6 @@ Buffer CudaAllocator::malloc(size_t size) {
if (get_cache_memory() > max_pool_size_) { if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_); buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
} }
return Buffer{buf}; return Buffer{buf};
} }
@@ -82,9 +140,7 @@ void CudaAllocator::free(Buffer buffer) {
if (get_cache_memory() < max_pool_size_) { if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf); buffer_cache_.recycle_to_cache(buf);
} else { } else {
lock.unlock(); cuda_free(buf);
cuda_free(buf->data);
delete buf;
} }
} }
@@ -96,27 +152,14 @@ size_t CudaAllocator::size(Buffer buffer) const {
return buf->size; return buf->size;
} }
void CudaAllocator::register_this_thread() { // This must be called with mutex_ aquired
std::lock_guard lock(worker_mutex_); void CudaAllocator::cuda_free(CudaBuffer* buf) {
allowed_threads_.insert(std::this_thread::get_id()); if (scalar_pool_.in_pool(buf)) {
} scalar_pool_.free(buf);
} else {
void CudaAllocator::cuda_free(void* buf) { cudaFree(buf->data);
// If cuda_free() is called from a unregistered thread, reschedule the call to delete buf;
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([this, buf]() { this->cuda_free(buf); });
worker_->end_batch();
worker_->commit();
return;
}
} }
cudaFree(buf);
} }
size_t CudaAllocator::get_active_memory() const { size_t CudaAllocator::get_active_memory() const {

View File

@@ -7,13 +7,10 @@
#include <mutex> #include <mutex>
#include <set> #include <set>
#include <thread>
#include <utility> #include <utility>
namespace mlx::core::cu { namespace mlx::core::cu {
class Worker;
using allocator::Buffer; using allocator::Buffer;
// Stores cuda-managed unified memory. // Stores cuda-managed unified memory.
@@ -22,21 +19,35 @@ struct CudaBuffer {
size_t size; size_t size;
}; };
class SmallSizePool {
private:
union Block {
Block* next;
CudaBuffer buf;
};
Block* buffer_{nullptr};
void* data_{nullptr};
Block* next_free_{nullptr};
public:
SmallSizePool();
~SmallSizePool();
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
CudaBuffer* malloc();
void free(CudaBuffer* buf);
bool in_pool(CudaBuffer* buf);
};
class CudaAllocator : public allocator::Allocator { class CudaAllocator : public allocator::Allocator {
public: public:
Buffer malloc(size_t size) override; Buffer malloc(size_t size) override;
void free(Buffer buffer) override; void free(Buffer buffer) override;
size_t size(Buffer buffer) const override; size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
// Call cudaFree in the safe thread.
void cuda_free(void* buf);
size_t get_active_memory() const; size_t get_active_memory() const;
size_t get_peak_memory() const; size_t get_peak_memory() const;
void reset_peak_memory(); void reset_peak_memory();
@@ -47,19 +58,18 @@ class CudaAllocator : public allocator::Allocator {
void clear_cache(); void clear_cache();
private: private:
void cuda_free(CudaBuffer* buf);
CudaAllocator(); CudaAllocator();
friend CudaAllocator& allocator(); friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_; std::mutex mutex_;
size_t memory_limit_; size_t memory_limit_;
size_t max_pool_size_; size_t max_pool_size_;
BufferCache<CudaBuffer> buffer_cache_; BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0}; size_t active_memory_{0};
size_t peak_memory_{0}; size_t peak_memory_{0};
SmallSizePool scalar_pool_;
}; };
CudaAllocator& allocator(); CudaAllocator& allocator();

View File

@@ -1,8 +1,8 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh" #include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@@ -115,7 +115,7 @@ __global__ void arg_reduce_general(
T vals[N_READS]; T vals[N_READS];
auto tid = r * BLOCK_DIM + block.thread_index().x; auto tid = r * BLOCK_DIM + block.thread_index().x;
cub::LoadDirectBlocked( cub::LoadDirectBlocked(
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init); tid, StridedIterator(in + in_idx, axis_stride), vals, axis_size, init);
best = op.reduce_many(best, vals, tid * N_READS); best = op.reduce_many(best, vals, tid * N_READS);
} }

View File

@@ -3,7 +3,6 @@
#include "mlx/backend/common/binary.h" #include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh" #include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@@ -20,15 +19,10 @@ namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) { __global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
int remaining = size - index * N_READS;
if (remaining <= 0) {
return;
}
if (remaining < N_READS) { if ((index + 1) * N_READS > size) {
for (int i = 0; i < remaining; ++i) { for (int i = index * N_READS; i < size; ++i) {
IdxT offset = index * N_READS + i; out[i] = Op{}(a[0], b[0]);
out[offset] = Op{}(a[0], b[0]);
} }
} else { } else {
AlignedVector<Out, N_READS> out_vec; AlignedVector<Out, N_READS> out_vec;
@@ -44,15 +38,10 @@ __global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
template <typename Op, typename In, typename Out, typename IdxT, int N_READS> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) { __global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
int remaining = size - index * N_READS;
if (remaining <= 0) {
return;
}
if (remaining < N_READS) { if ((index + 1) * N_READS > size) {
for (int i = 0; i < remaining; ++i) { for (IdxT i = index * N_READS; i < size; ++i) {
IdxT offset = index * N_READS + i; out[i] = Op{}(a[0], b[i]);
out[offset] = Op{}(a[0], b[offset]);
} }
} else { } else {
auto b_vec = load_vector<N_READS>(b, index); auto b_vec = load_vector<N_READS>(b, index);
@@ -70,15 +59,10 @@ __global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
template <typename Op, typename In, typename Out, typename IdxT, int N_READS> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) { __global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
int remaining = size - index * N_READS;
if (remaining <= 0) {
return;
}
if (remaining < N_READS) { if ((index + 1) * N_READS > size) {
for (int i = 0; i < remaining; ++i) { for (IdxT i = index * N_READS; i < size; ++i) {
IdxT offset = index * N_READS + i; out[i] = Op{}(a[i], b[0]);
out[offset] = Op{}(a[offset], b[0]);
} }
} else { } else {
auto a_vec = load_vector<N_READS>(a, index); auto a_vec = load_vector<N_READS>(a, index);
@@ -96,15 +80,10 @@ __global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
template <typename Op, typename In, typename Out, typename IdxT, int N_READS> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) { __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
int remaining = size - index * N_READS;
if (remaining <= 0) {
return;
}
if (remaining < N_READS) { if ((index + 1) * N_READS > size) {
for (int i = 0; i < remaining; ++i) { for (IdxT i = index * N_READS; i < size; ++i) {
IdxT offset = index * N_READS + i; out[i] = Op{}(a[i], b[i]);
out[offset] = Op{}(a[offset], b[offset]);
} }
} else { } else {
auto a_vec = load_vector<N_READS>(a, index); auto a_vec = load_vector<N_READS>(a, index);
@@ -149,7 +128,7 @@ __global__ void binary_g(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_4d( auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim); index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]); out[index] = Op{}(a[a_idx], b[b_idx]);
} }
@@ -197,7 +176,7 @@ template <typename Op>
void binary_op_gpu_inplace( void binary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
std::string_view op, const char* op,
const Stream& s) { const Stream& s) {
assert(inputs.size() > 1); assert(inputs.size() > 1);
const auto& a = inputs[0]; const auto& a = inputs[0];
@@ -267,7 +246,7 @@ void binary_op_gpu_inplace(
} }
}); });
} else { } else {
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) { dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>; using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size. // TODO: Choose optimized value based on type size.
constexpr int N_READS = 4; constexpr int N_READS = 4;
@@ -311,7 +290,7 @@ template <typename Op>
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
std::string_view op, const char* op,
const Stream& s) { const Stream& s) {
auto& a = inputs[0]; auto& a = inputs[0];
auto& b = inputs[1]; auto& b = inputs[1];
@@ -320,11 +299,11 @@ void binary_op_gpu(
binary_op_gpu_inplace<Op>(inputs, out, op, s); binary_op_gpu_inplace<Op>(inputs, out, op, s);
} }
#define BINARY_GPU(func) \ #define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \ void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \ nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \ auto& s = out.primitive().stream(); \
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \ binary_op_gpu<cu::func>(inputs, out, name(), s); \
} }
BINARY_GPU(Add) BINARY_GPU(Add)
@@ -348,33 +327,31 @@ BINARY_GPU(Subtract)
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) { void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu"); nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream(); auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
if (equal_nan_) { if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s); binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
} else { } else {
binary_op_gpu<cu::Equal>(inputs, out, op, s); binary_op_gpu<cu::Equal>(inputs, out, name(), s);
} }
} }
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) { void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu"); nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream(); auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
switch (op_) { switch (op_) {
case BitwiseBinary::And: case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s); binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
break; break;
case BitwiseBinary::Or: case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s); binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
break; break;
case BitwiseBinary::Xor: case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s); binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
break; break;
case BitwiseBinary::LeftShift: case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, op, s); binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
break; break;
case BitwiseBinary::RightShift: case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, op, s); binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
break; break;
} }
} }

View File

@@ -3,7 +3,6 @@
#include "mlx/backend/common/binary.h" #include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh" #include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@@ -17,52 +16,119 @@ namespace cu {
namespace cg = cooperative_groups; namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void __global__ void
binary_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) { binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto out = Op{}(a[0], b[0]); if ((index + 1) * N_READS > size) {
out_a[0] = out[0]; for (IdxT i = index * N_READS; i < size; ++i) {
out_b[0] = out[1]; auto out = Op{}(a[0], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b[0]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
} }
} }
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void __global__ void
binary_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) { binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto out = Op{}(a[0], b[index]); if ((index + 1) * N_READS > size) {
out_a[index] = out[0]; for (IdxT i = index * N_READS; i < size; ++i) {
out_b[index] = out[1]; auto out = Op{}(a[0], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b_vec.val[i]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
} }
} }
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void __global__ void
binary_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) { binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto out = Op{}(a[index], b[0]); if ((index + 1) * N_READS > size) {
out_a[index] = out[0]; for (IdxT i = index * N_READS; i < size; ++i) {
out_b[index] = out[1]; auto out = Op{}(a[i], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec.val[i], b[0]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
} }
} }
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void __global__ void
binary_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) { binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto out = Op{}(a[index], b[index]); if ((index + 1) * N_READS > size) {
out_a[index] = out[0]; for (IdxT i = index * N_READS; i < size; ++i) {
out_b[index] = out[1]; auto out = Op{}(a[i], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
} }
} }
template <typename Op, typename In, typename Out, typename IdxT, int NDIM> template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_g_nd( __global__ void binary_two_g_nd(
const In* a, const In* a,
const In* b, const In* b,
Out* out_a, Out* out_a,
@@ -82,7 +148,7 @@ __global__ void binary_g_nd(
} }
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_g( __global__ void binary_two_g(
const In* a, const In* a,
const In* b, const In* b,
Out* out_a, Out* out_a,
@@ -94,7 +160,7 @@ __global__ void binary_g(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_4d( auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim); index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]); auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0]; out_a[index] = out[0];
@@ -103,7 +169,7 @@ __global__ void binary_g(
} }
template <typename Op, typename In, typename Out> template <typename Op, typename In, typename Out>
constexpr bool supports_binary_op() { constexpr bool supports_binary_two_op() {
if (std::is_same_v<Op, DivMod>) { if (std::is_same_v<Op, DivMod>) {
return std::is_same_v<In, Out> && return std::is_same_v<In, Out> &&
(std::is_integral_v<Out> || is_floating_v<Out>); (std::is_integral_v<Out> || is_floating_v<Out>);
@@ -114,10 +180,10 @@ constexpr bool supports_binary_op() {
} // namespace cu } // namespace cu
template <typename Op> template <typename Op>
void binary_op_gpu_inplace( void binary_two_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
std::string_view op, const char* op,
const Stream& s) { const Stream& s) {
assert(inputs.size() > 1); assert(inputs.size() > 1);
const auto& a = inputs[0]; const auto& a = inputs[0];
@@ -141,7 +207,7 @@ void binary_op_gpu_inplace(
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) { dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag); using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag); using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) { if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>; using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>; using OutType = cuda_type_t<CTYPE_OUT>;
@@ -161,8 +227,12 @@ void binary_op_gpu_inplace(
int ndim = shape.size(); int ndim = shape.size();
if (ndim <= 3) { if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) { dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto kernel = cu:: auto kernel = cu::binary_two_g_nd<
binary_g_nd<Op, InType, OutType, IdxT, dims_constant()>; Op,
InType,
OutType,
IdxT,
dims_constant()>;
auto [num_blocks, block_dims] = auto [num_blocks, block_dims] =
get_launch_args(kernel, out_a, large()); get_launch_args(kernel, out_a, large());
encoder.add_kernel_node( encoder.add_kernel_node(
@@ -179,7 +249,7 @@ void binary_op_gpu_inplace(
const_param<dims_constant()>(b_strides)); const_param<dims_constant()>(b_strides));
}); });
} else { } else {
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>; auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT>;
auto [num_blocks, block_dims] = auto [num_blocks, block_dims] =
get_launch_args(kernel, out_a, large()); get_launch_args(kernel, out_a, large());
encoder.add_kernel_node( encoder.add_kernel_node(
@@ -198,22 +268,25 @@ void binary_op_gpu_inplace(
} }
}); });
} else { } else {
dispatch_bool(out_a.data_size() > INT32_MAX, [&](auto large) { dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>; using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>; // TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) { if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT>; kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) { } else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_vs<Op, InType, OutType, IdxT>; kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) { } else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_vv<Op, InType, OutType, IdxT>; kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
} }
auto [num_blocks, block_dims] = get_launch_args( auto [num_blocks, block_dims] = get_launch_args(
kernel, kernel,
out_a.data_size(), out_a.data_size(),
out_a.shape(), out_a.shape(),
out_a.strides(), out_a.strides(),
large()); large(),
N_READS);
encoder.add_kernel_node( encoder.add_kernel_node(
kernel, kernel,
num_blocks, num_blocks,
@@ -237,17 +310,17 @@ void binary_op_gpu_inplace(
} }
template <typename Op> template <typename Op>
void binary_op_gpu( void binary_two_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
std::string_view op, const char* op,
const Stream& s) { const Stream& s) {
auto& a = inputs[0]; auto& a = inputs[0];
auto& b = inputs[1]; auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b); auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt); set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt); set_binary_op_output_data(a, b, outputs[1], bopt);
binary_op_gpu_inplace<Op>(inputs, outputs, op, s); binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
} }
void DivMod::eval_gpu( void DivMod::eval_gpu(
@@ -255,7 +328,7 @@ void DivMod::eval_gpu(
std::vector<array>& outputs) { std::vector<array>& outputs) {
nvtx3::scoped_range r("DivMod::eval_gpu"); nvtx3::scoped_range r("DivMod::eval_gpu");
auto& s = outputs[0].primitive().stream(); auto& s = outputs[0].primitive().stream();
binary_op_gpu<cu::DivMod>(inputs, outputs, get_primitive_string(this), s); binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
} }
} // namespace mlx::core } // namespace mlx::core

View File

@@ -53,9 +53,10 @@ struct FusedKernelBuilder {
// Build function signature. // Build function signature.
if (contiguous) { if (contiguous) {
os += "template <typename IdxT = uint32_t>\n"; os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
} else { } else {
os += "template <int NDIM, typename IdxT = uint32_t>\n"; os +=
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
} }
os += fmt::format("__global__ void {}(\n", kernel_name + name); os += fmt::format("__global__ void {}(\n", kernel_name + name);
for (size_t i = 0; i < params.size(); ++i) { for (size_t i = 0; i < params.size(); ++i) {
@@ -67,12 +68,46 @@ struct FusedKernelBuilder {
} }
os += ") {\n"; os += ") {\n";
// Index. // Index. For non contiguous kernels we create a separate index
// variable per variable otherwise everyone uses `index`.
os += os +=
" IdxT index = cg::this_grid().thread_rank();\n" " IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
" if (index >= size) {\n" " if (index >= size) {\n"
" return;\n" " return;\n"
" }\n"; " }\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " IdxT " + xname + "_idx = 0;\n";
}
os += " {\n";
os += " IdxT loc = index;\n";
os +=
" #pragma unroll\n"
" for (int i = NDIM - 1; i >= 0; i--) {\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
"_strides[i]);\n";
}
os +=
" loc /= shape[i];\n"
" }\n"
" }\n";
}
// Work loop
os +=
"\n"
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
// Read inputs. // Read inputs.
for (size_t i = 0; i < inputs.size(); ++i) { for (size_t i = 0; i < inputs.size(); ++i) {
@@ -89,12 +124,9 @@ struct FusedKernelBuilder {
} else if (contiguous) { } else if (contiguous) {
value = fmt::format("{}[index]", xname); value = fmt::format("{}[index]", xname);
} else { } else {
std::string index = fmt::format( value = fmt::format("{}[{}_idx]", xname, xname);
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
xname);
value = fmt::format("{}[{}]", xname, index);
} }
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value); os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
} }
// Write tape. // Write tape.
@@ -106,23 +138,37 @@ struct FusedKernelBuilder {
value = fmt::format( value = fmt::format(
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0])); "static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
} else { } else {
std::ostringstream ss; value = x.primitive().name();
x.primitive().print(ss);
value = ss.str();
value += "{}("; value += "{}(";
for (size_t i = 0; i < x.inputs().size() - 1; ++i) { for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i])); value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
} }
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back())); value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
} }
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value); os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
} }
// Write output. // Write output.
for (const auto& x : outputs) { for (const auto& x : outputs) {
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x)); os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
} }
// End of work loop
os +=
"\n"
" index++;\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += " + xname + "_strides[NDIM - 1];\n";
}
}
os += " }\n";
os += "}\n"; os += "}\n";
} }
}; };
@@ -158,15 +204,28 @@ void Compiled::eval_gpu(
builder.build("_strided", false); builder.build("_strided", false);
builder.os += "\n} // namespace mlx::core::cu\n"; builder.os += "\n} // namespace mlx::core::cu\n";
// Build kernel names. // Build kernel names.
std::vector<std::string> kernel_names = { std::vector<std::string> kernel_names;
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()), for (auto work_per_thread : std::array<int, 2>{1, 4}) {
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
};
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format( kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i)); "mlx::core::cu::{}_contiguous<uint32_t, {}>",
kernel_names.push_back( lib_name(),
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i)); work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<int64_t, {}>",
lib_name(),
work_per_thread));
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t, {}>",
lib_name(),
i,
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, int64_t, {}>",
lib_name(),
i,
work_per_thread));
}
} }
return std::make_pair(std::move(builder.os), std::move(kernel_names)); return std::make_pair(std::move(builder.os), std::move(kernel_names));
}); });
@@ -209,13 +268,21 @@ void Compiled::eval_gpu(
args.append<uint32_t>(outputs[0].data_size()); args.append<uint32_t>(outputs[0].data_size());
} }
// Choose work per thread
int work_per_thread = 4;
if (!contiguous && shape.back() % work_per_thread != 0) {
work_per_thread = 1;
}
// Launch kernel. // Launch kernel.
const char* index_type = large ? "int64_t" : "uint32_t"; const char* index_type = large ? "int64_t" : "uint32_t";
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name()); std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
if (contiguous) { if (contiguous) {
kernel_name += fmt::format("_contiguous<{}>", index_type); kernel_name +=
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
} else { } else {
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type); kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
} }
auto& encoder = cu::get_command_encoder(s); auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) { for (const auto& in : inputs) {
@@ -226,7 +293,8 @@ void Compiled::eval_gpu(
} }
auto kernel = mod.get_kernel(kernel_name); auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, outputs[0], large); auto [num_blocks, block_dims] =
get_launch_args(kernel, outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args()); encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
} }

View File

@@ -10,19 +10,43 @@ namespace cu {
namespace cg = cooperative_groups; namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT> template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_s(const In* in, Out* out, IdxT size) { __global__ void copy_s(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
out[index] = CastOp<In, Out>{}(in[0]); if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = cast_to<Out>(in[0]);
}
store_vector<N_READS>(out, index, out_vec);
} }
} }
template <typename In, typename Out, typename IdxT> template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_v(const In* in, Out* out, IdxT size) { __global__ void copy_v(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
out[index] = CastOp<In, Out>{}(in[index]); if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[i]);
}
} else {
auto in_vec = load_vector<N_READS>(in, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
}
store_vector<N_READS>(out, index, out_vec);
} }
} }
@@ -41,12 +65,19 @@ void copy_contiguous(
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>; using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>; using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, uint32_t>; using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
auto kernel = cu::copy_s<InType, OutType, IdxT>; // TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
if (ctype == CopyType::Vector) { if (ctype == CopyType::Vector) {
kernel = cu::copy_v<InType, OutType, IdxT>; kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
} }
auto [num_blocks, block_dims] = get_launch_args( auto [num_blocks, block_dims] = get_launch_args(
kernel, out.data_size(), out.shape(), out.strides(), large()); kernel,
out.data_size(),
out.shape(),
out.strides(),
large(),
N_READS);
encoder.add_kernel_node( encoder.add_kernel_node(
kernel, kernel,
num_blocks, num_blocks,

View File

@@ -37,7 +37,7 @@ __global__ void copy_gg(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto [idx_in, idx_out] = elem_to_loc_4d( auto [idx_in, idx_out] = elem_to_loc(
index, shape.data(), strides_in.data(), strides_out.data(), ndim); index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out] = CastOp<In, Out>{}(in[idx_in]); out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
} }

View File

@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
const int64_t* offset_out) { const int64_t* offset_out) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto [idx_in, idx_out] = elem_to_loc_4d( auto [idx_in, idx_out] = elem_to_loc(
index, shape.data(), strides_in.data(), strides_out.data(), ndim); index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]); out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
} }

View File

@@ -34,7 +34,7 @@ __global__ void copy_g(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim); IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
out[index] = CastOp<In, Out>{}(in[idx_in]); out[index] = CastOp<In, Out>{}(in[idx_in]);
} }
} }

View File

@@ -57,8 +57,15 @@ void Device::make_current() {
} }
} }
CommandEncoder& Device::get_command_encoder(Stream s) {
auto it = encoders_.find(s.index);
if (it == encoders_.end()) {
it = encoders_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) { CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph, 0));
CHECK_CUDA_ERROR( CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal)); cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
} }
@@ -168,15 +175,7 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
} }
} }
CommandEncoder& Device::get_command_encoder(Stream s) { CommandEncoder::CommandEncoder(Device& d) : device_(d), stream_(d) {
auto it = encoders_.find(s.index);
if (it == encoders_.end()) {
it = encoders_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CommandEncoder(Device& d) : stream_(d) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0)); CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
} }
@@ -287,6 +286,7 @@ void CommandEncoder::commit() {
CHECK_CUDA_ERROR( CHECK_CUDA_ERROR(
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0)); cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
} }
device_.make_current();
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_)); CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
// TODO smarter cache policy // TODO smarter cache policy
@@ -306,7 +306,6 @@ void CommandEncoder::commit() {
} }
// Put completion handlers in a batch. // Put completion handlers in a batch.
worker_.end_batch();
worker_.commit(stream_); worker_.commit(stream_);
} }
@@ -315,7 +314,6 @@ void CommandEncoder::synchronize() {
auto p = std::make_shared<std::promise<void>>(); auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future(); std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); }); add_completed_handler([p = std::move(p)]() { p->set_value(); });
worker_.end_batch();
commit(); commit();
f.wait(); f.wait();
} }

View File

@@ -93,6 +93,7 @@ class CommandEncoder {
void insert_graph_dependencies(GraphNode node); void insert_graph_dependencies(GraphNode node);
void insert_graph_dependencies(std::vector<GraphNode> nodes); void insert_graph_dependencies(std::vector<GraphNode> nodes);
Device& device_;
CudaStream stream_; CudaStream stream_;
cudaGraph_t graph_; cudaGraph_t graph_;
Worker worker_; Worker worker_;

View File

@@ -2,7 +2,7 @@
#pragma once #pragma once
#include "mlx/backend/cuda/device/cucomplex_math.cuh" #include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh" #include "mlx/backend/cuda/device/fp16_math.cuh"
#include <cuda/atomic> #include <cuda/atomic>
@@ -48,7 +48,7 @@ inline __device__ void atomic_add(__half* out, __half val) {
atomicAdd(out, val); atomicAdd(out, val);
} }
inline __device__ void atomic_add(cuComplex* out, cuComplex val) { inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
#if __CUDA_ARCH__ < 900 #if __CUDA_ARCH__ < 900
atomic_add_general(out, val); atomic_add_general(out, val);
#else #else
@@ -58,12 +58,7 @@ inline __device__ void atomic_add(cuComplex* out, cuComplex val) {
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) { inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
#if __CUDA_ARCH__ < 800 #if __CUDA_ARCH__ < 800
#if CCCL_VERSION >= 2008000
atomic_add_general(out, val); atomic_add_general(out, val);
#else
bool cccl_version_too_old_for_bfloat16_atomic_add = false;
assert(cccl_version_too_old_for_bfloat16_atomic_add);
#endif
#else #else
atomicAdd(out, val); atomicAdd(out, val);
#endif #endif

View File

@@ -1,10 +1,7 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/cucomplex_math.cuh" #include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cuComplex.h>
#include <cuda/std/array> #include <cuda/std/array>
namespace mlx::core::cu { namespace mlx::core::cu {
@@ -47,7 +44,7 @@ struct Remainder {
} else { } else {
return x % y; return x % y;
} }
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) { } else if constexpr (is_complex_v<T>) {
return x % y; return x % y;
} else { } else {
T r = fmod(x, y); T r = fmod(x, y);
@@ -69,14 +66,12 @@ struct Equal {
struct NaNEqual { struct NaNEqual {
template <typename T> template <typename T>
__device__ bool operator()(T x, T y) { __device__ bool operator()(T x, T y) {
if constexpr (std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return x == y || return x == y ||
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) && isnan(cuCimagf(x)) && (isnan(x.real()) && isnan(y.real()) && isnan(x.imag()) &&
isnan(cuCimagf(y))) || isnan(y.imag())) ||
(cuCrealf(x) == cuCrealf(y) && isnan(cuCimagf(x)) && (x.real() == y.real() && isnan(x.imag()) && isnan(y.imag())) ||
isnan(cuCimagf(y))) || (isnan(x.real()) && isnan(y.real()) && x.imag() == y.imag());
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) &&
cuCimagf(x) == cuCimagf(y));
} else { } else {
return x == y || (isnan(x) && isnan(y)); return x == y || (isnan(x) && isnan(y));
} }
@@ -114,36 +109,38 @@ struct LessEqual {
struct LogAddExp { struct LogAddExp {
template <typename T> template <typename T>
__device__ T operator()(T x, T y) { __device__ T operator()(T x, T y) {
if (isnan(x) || isnan(y)) { if constexpr (is_complex_v<T>) {
return cuda::std::numeric_limits<T>::quiet_NaN(); if (isnan(x.real()) || isnan(x.imag()) || isnan(y.real()) ||
isnan(y.imag())) {
return {
cuda::std::numeric_limits<float>::quiet_NaN(),
cuda::std::numeric_limits<float>::quiet_NaN()};
}
auto max = x.real() > y.real() ? x : y;
auto min = x.real() < y.real() ? x : y;
auto min_real = min.real();
auto max_real = max.real();
if (!isfinite(min_real) && (min_real == max_real)) {
if (min_real < 0) {
return min;
} else {
return Log{}(Exp{}(min) + Exp{}(max));
}
} else {
return Log1p{}(Exp{}(min - max)) + max;
}
} else {
if (isnan(x) || isnan(y)) {
return cuda::std::numeric_limits<T>::quiet_NaN();
}
T maxval = max(x, y);
T minval = min(x, y);
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
maxval == cuda::std::numeric_limits<T>::infinity())
? maxval
: T(float(maxval) + log1p(expf(minval - maxval)));
} }
T maxval = max(x, y);
T minval = min(x, y);
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
maxval == cuda::std::numeric_limits<T>::infinity())
? maxval
: T(float(maxval) + log1p(expf(minval - maxval)));
}; };
__device__ cuComplex operator()(cuComplex x, cuComplex y) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
isnan(cuCimagf(y))) {
return {
cuda::std::numeric_limits<float>::quiet_NaN(),
cuda::std::numeric_limits<float>::quiet_NaN()};
}
float inf = cuda::std::numeric_limits<float>::infinity();
auto maxval = x > y ? x : y;
auto minval = x < y ? x : y;
if (cuCrealf(minval) == -inf || cuCrealf(maxval) == inf)
return maxval;
float m = exp(cuCrealf(minval) - cuCrealf(maxval));
cuComplex dexp{
m * cos(cuCimagf(minval) - cuCimagf(maxval)),
m * sin(cuCimagf(minval) - cuCimagf(maxval)),
};
return maxval + log1p(dexp);
}
}; };
struct Maximum { struct Maximum {
@@ -151,8 +148,8 @@ struct Maximum {
__device__ T operator()(T x, T y) { __device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) { if constexpr (cuda::std::is_integral_v<T>) {
return max(x, y); return max(x, y);
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) { } else if constexpr (is_complex_v<T>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) { if (isnan(x.real()) || isnan(x.imag())) {
return x; return x;
} }
return x > y ? x : y; return x > y ? x : y;
@@ -170,8 +167,8 @@ struct Minimum {
__device__ T operator()(T x, T y) { __device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) { if constexpr (cuda::std::is_integral_v<T>) {
return min(x, y); return min(x, y);
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) { } else if constexpr (is_complex_v<T>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) { if (isnan(x.real()) || isnan(x.imag())) {
return x; return x;
} }
return x < y ? x : y; return x < y ? x : y;
@@ -194,8 +191,8 @@ struct Multiply {
struct NotEqual { struct NotEqual {
template <typename T> template <typename T>
__device__ bool operator()(T x, T y) { __device__ bool operator()(T x, T y) {
if constexpr (std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return cuCrealf(x) != cuCrealf(y) || cuCimagf(x) != cuCimagf(y); return x.real() != y.real() || x.imag() != y.imag();
} else { } else {
return x != y; return x != y;
} }
@@ -215,19 +212,8 @@ struct Power {
base *= base; base *= base;
} }
return res; return res;
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) { } else if constexpr (is_complex_v<T>) {
if (base.y == 0 && base.x == 0) { return pow(base, exp);
if (isnan(exp.x) || isnan(exp.y)) {
auto nan = cuda::std::numeric_limits<float>::quiet_NaN();
return make_cuFloatComplex(nan, nan);
}
return make_cuFloatComplex(0.0, 0.0);
}
auto x_theta = atan2f(base.y, base.x);
auto x_ln_r = 0.5 * logf(base.x * base.x + base.y * base.y);
auto mag = expf(exp.x * x_ln_r - exp.y * x_theta);
auto phase = exp.y * x_ln_r + exp.x * x_theta;
return make_cuFloatComplex(mag * cosf(phase), mag * sinf(phase));
} else { } else {
return powf(base, exp); return powf(base, exp);
} }

View File

@@ -2,7 +2,8 @@
#pragma once #pragma once
#include <cuComplex.h> #include "mlx/backend/cuda/device/complex.cuh"
#include <cuda_bf16.h> #include <cuda_bf16.h>
#include <cuda_fp16.h> #include <cuda_fp16.h>
#include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/transform_iterator.h>
@@ -20,50 +21,43 @@ struct CastOp {
}; };
// Castings between complex and boolean. // Castings between complex and boolean.
// TODO: Should make a custom complex type. template <typename T>
template <> struct CastOp<complex_t<T>, bool> {
struct CastOp<cuComplex, bool> {
static constexpr bool is_castable = true; static constexpr bool is_castable = true;
__device__ bool operator()(cuComplex x) { __device__ bool operator()(complex_t<T> x) {
return x.x != 0 && x.y != 0; return x.real() != 0 && x.imag() != 0;
} }
}; };
template <> template <typename T>
struct CastOp<bool, cuComplex> { struct CastOp<bool, complex_t<T>> {
static constexpr bool is_castable = true; static constexpr bool is_castable = true;
__device__ cuComplex operator()(bool x) { __device__ complex_t<T> operator()(bool x) {
return x ? make_cuFloatComplex(1, 1) : make_cuFloatComplex(0, 0); return x ? complex_t<T>{1, 1} : complex_t<T>{0, 0};
} }
}; };
// Converting a complex number to real number discards the imaginary part. // Converting a complex number to real number discards the imaginary part.
template <typename DstT> template <typename T, typename DstT>
struct CastOp< struct CastOp<complex_t<T>, DstT, cuda::std::enable_if_t<!is_complex_v<DstT>>> {
cuComplex, static constexpr bool is_castable = cuda::std::is_convertible_v<T, DstT>;
DstT,
cuda::std::enable_if_t<!cuda::std::is_same_v<cuComplex, DstT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<float, DstT>;
__device__ DstT operator()(cuComplex x) { __device__ DstT operator()(complex_t<T> x) {
static_assert(!cuda::std::is_same_v<cuComplex, DstT>); static_assert(!is_complex_v<DstT>);
return static_cast<DstT>(cuCrealf(x)); return static_cast<DstT>(x.real());
} }
}; };
// Allow converting a real number to complex number. // Allow converting a real number to complex number.
template <typename SrcT> template <typename SrcT, typename T>
struct CastOp< struct CastOp<SrcT, complex_t<T>, cuda::std::enable_if_t<!is_complex_v<SrcT>>> {
SrcT, static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, T>;
cuComplex,
cuda::std::enable_if_t<!cuda::std::is_same_v<SrcT, cuComplex>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, float>;
__device__ cuComplex operator()(SrcT x) { __device__ complex_t<T> operator()(SrcT x) {
static_assert(!cuda::std::is_same_v<SrcT, cuComplex>); static_assert(!is_complex_v<SrcT>);
return cuComplex{static_cast<float>(x), 0}; return complex_t<T>{static_cast<T>(x), 0};
} }
}; };
@@ -88,8 +82,7 @@ struct CastOp<
SrcT, SrcT,
DstT, DstT,
cuda::std::enable_if_t< cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
!cuda::std::is_same_v<SrcT, cuComplex> &&
(cuda::std::is_same_v<DstT, __half> || (cuda::std::is_same_v<DstT, __half> ||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> { cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
static constexpr bool is_castable = true; static constexpr bool is_castable = true;
@@ -104,8 +97,7 @@ struct CastOp<
SrcT, SrcT,
DstT, DstT,
cuda::std::enable_if_t< cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
!cuda::std::is_same_v<DstT, cuComplex> &&
!cuda::std::is_same_v<DstT, __half> && !cuda::std::is_same_v<DstT, __half> &&
!cuda::std::is_same_v<DstT, __nv_bfloat16> && !cuda::std::is_same_v<DstT, __nv_bfloat16> &&
(cuda::std::is_same_v<SrcT, __half> || (cuda::std::is_same_v<SrcT, __half> ||

View File

@@ -0,0 +1,60 @@
// Copyright © 2025 Apple Inc.
#pragma once
// Make multiplication and division faster.
#define LIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS
#include <cuda/std/complex>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
// TODO: Consider using a faster implementation as cuda::std::complex has to
// conform to C++ standard.
template <typename T>
using complex_t = cuda::std::complex<T>;
using complex64_t = complex_t<float>;
using complex128_t = complex_t<double>;
template <typename T>
struct is_complex : cuda::std::false_type {};
template <typename T>
struct is_complex<cuda::std::complex<T>> : cuda::std::true_type {};
template <typename T>
inline constexpr bool is_complex_v = is_complex<T>::value;
// cuda::std::complex is missing some operators.
template <typename T>
inline __host__ __device__ complex_t<T> operator%(
complex_t<T> a,
complex_t<T> b) {
T r = a.real() - floor(a.real() / b.real()) * b.real();
T i = a.imag() - floor(a.imag() / b.imag()) * b.imag();
return complex_t<T>{r, i};
}
template <typename T>
inline __host__ __device__ bool operator>(complex_t<T> a, complex_t<T> b) {
return (a.real() > b.real()) || (a.real() == b.real() && a.imag() > b.imag());
}
template <typename T>
inline __host__ __device__ bool operator<(complex_t<T> a, complex_t<T> b) {
return operator>(b, a);
}
template <typename T>
inline __host__ __device__ bool operator<=(complex_t<T> a, complex_t<T> b) {
return !(a > b);
}
template <typename T>
inline __host__ __device__ bool operator>=(complex_t<T> a, complex_t<T> b) {
return !(a < b);
}
} // namespace mlx::core::cu

View File

@@ -1,240 +0,0 @@
// Copyright © 2025 Apple Inc.
// Copyright © 2017-2024 The Simons Foundation, Inc.
//
// FINUFFT is licensed under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance with the
// License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Forked from
// https://github.com/flatironinstitute/finufft/blob/main/include/cufinufft/contrib/helper_math.h
#pragma once
#include <cuComplex.h>
// This header provides some helper functions for cuComplex types.
// It mainly wraps existing CUDA implementations to provide operator overloads
// e.g. cuAdd, cuSub, cuMul, cuDiv, cuCreal, cuCimag, cuCabs, cuCarg, cuConj are
// all provided by CUDA
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCadd(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCsub(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCmul(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCdiv(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator%(const cuDoubleComplex& a, const cuDoubleComplex& b) {
double r = cuCreal(a) - (floorf(cuCreal(a) / cuCreal(b)) * cuCreal(b));
double i = cuCimag(a) - (floorf(cuCimag(a) / cuCimag(b)) * cuCimag(b));
return make_cuDoubleComplex(r, i);
}
__forceinline__ __host__ __device__ bool operator==(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return cuCreal(a) == cuCreal(b) && cuCimag(a) == cuCimag(b);
}
__forceinline__ __host__ __device__ bool operator!=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return !(a == b);
}
__forceinline__ __host__ __device__ bool operator>(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
double mag_a = sqrt(cuCreal(a) * cuCreal(a) + cuCimag(a) * cuCimag(a));
double mag_b = sqrt(cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b));
return mag_a > mag_b;
}
__forceinline__ __host__ __device__ bool operator>=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return a > b || a == b;
}
__forceinline__ __host__ __device__ bool operator<(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return b > a;
}
__forceinline__ __host__ __device__ bool operator<=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return b > a || a == b;
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) + b, cuCimag(a));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a + cuCreal(b), cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) - b, cuCimag(a));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a - cuCreal(b), -cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) * b, cuCimag(a) * b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a * cuCreal(b), a * cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) / b, cuCimag(a) / b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(double a, const cuDoubleComplex& b) {
double denom = cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b);
return make_cuDoubleComplex(
(a * cuCreal(b)) / denom, (-a * cuCimag(b)) / denom);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCaddf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCsubf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCmulf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCdivf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator%(const cuFloatComplex& a, const cuFloatComplex& b) {
float r = cuCrealf(a) - (floorf(cuCrealf(a) / cuCrealf(b)) * cuCrealf(b));
float i = cuCimagf(a) - (floorf(cuCimagf(a) / cuCimagf(b)) * cuCimagf(b));
return make_cuFloatComplex(r, i);
}
__forceinline__ __host__ __device__ bool operator==(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return cuCrealf(a) == cuCrealf(b) && cuCimagf(a) == cuCimagf(b);
}
__forceinline__ __host__ __device__ bool operator!=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return !(a == b);
}
__forceinline__ __host__ __device__ bool operator>(
const cuFloatComplex& a,
const cuFloatComplex& b) {
float mag_a = sqrt(cuCrealf(a) * cuCrealf(a) + cuCimagf(a) * cuCimagf(a));
float mag_b = sqrt(cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b));
return mag_a > mag_b;
}
__forceinline__ __host__ __device__ bool operator>=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return a > b || a == b;
}
__forceinline__ __host__ __device__ bool operator<(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return b > a;
}
__forceinline__ __host__ __device__ bool operator<=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return b > a || a == b;
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) + b, cuCimagf(a));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a + cuCrealf(b), cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) - b, cuCimagf(a));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a - cuCrealf(b), -cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) * b, cuCimagf(a) * b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a * cuCrealf(b), a * cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) / b, cuCimagf(a) / b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(float a, const cuFloatComplex& b) {
float denom = cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b);
return make_cuFloatComplex(
(a * cuCrealf(b)) / denom, (-a * cuCimagf(b)) / denom);
}

View File

@@ -14,8 +14,6 @@ struct Abs {
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_unsigned_v<T>) { if constexpr (cuda::std::is_unsigned_v<T>) {
return x; return x;
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {sqrt(cuCrealf(x) * cuCrealf(x) + cuCimagf(x) * cuCimagf(x)), 0};
} else { } else {
return abs(x); return abs(x);
} }
@@ -27,8 +25,6 @@ struct ArcCos {
__device__ T operator()(T x) { __device__ T operator()(T x) {
return acos(x); return acos(x);
} }
__device__ cuComplex operator()(cuComplex x);
}; };
struct ArcCosh { struct ArcCosh {
@@ -43,8 +39,6 @@ struct ArcSin {
__device__ T operator()(T x) { __device__ T operator()(T x) {
return asin(x); return asin(x);
} }
__device__ cuComplex operator()(cuComplex x);
}; };
struct ArcSinh { struct ArcSinh {
@@ -59,8 +53,6 @@ struct ArcTan {
__device__ T operator()(T x) { __device__ T operator()(T x) {
return atan(x); return atan(x);
} }
__device__ cuComplex operator()(cuComplex x);
}; };
struct ArcTanh { struct ArcTanh {
@@ -82,6 +74,8 @@ struct Ceil {
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_integral_v<T>) { if constexpr (cuda::std::is_integral_v<T>) {
return x; return x;
} else if constexpr (is_complex_v<T>) {
return T{ceil(x.real()), ceil(x.imag())};
} else { } else {
return ceil(x); return ceil(x);
} }
@@ -89,34 +83,23 @@ struct Ceil {
}; };
struct Conjugate { struct Conjugate {
__device__ cuComplex operator()(cuComplex x) { template <typename T>
return {cuCrealf(x), -cuCimagf(x)}; __device__ complex_t<T> operator()(complex_t<T> x) {
return conj(x);
} }
}; };
struct Cos { struct Cos {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return cos(x);
return {
cos(cuCrealf(x)) * cosh(cuCimagf(x)),
-sin(cuCrealf(x)) * sinh(cuCimagf(x))};
} else {
return cos(x);
}
} }
}; };
struct Cosh { struct Cosh {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return cosh(x);
return {
cosh(cuCrealf(x)) * cos(cuCimagf(x)),
sinh(cuCrealf(x)) * sin(cuCimagf(x))};
} else {
return cosh(x);
}
} }
}; };
@@ -149,12 +132,7 @@ struct ErfInv {
struct Exp { struct Exp {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return exp(x);
auto m = exp(cuCrealf(x));
return {m * cos(cuCimagf(x)), m * sinh(cuCimagf(x))};
} else {
return exp(x);
}
} }
}; };
@@ -176,6 +154,8 @@ struct Floor {
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_integral_v<T>) { if constexpr (cuda::std::is_integral_v<T>) {
return x; return x;
} else if constexpr (is_complex_v<T>) {
return T{floor(x.real()), floor(x.imag())};
} else { } else {
return floor(x); return floor(x);
} }
@@ -183,30 +163,25 @@ struct Floor {
}; };
struct Imag { struct Imag {
__device__ float operator()(cuComplex x) { template <typename T>
return cuCimagf(x); __device__ auto operator()(complex_t<T> x) {
return x.imag();
} }
}; };
struct Log { struct Log {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return log(x);
auto r = log(cuCrealf(Abs{}(x)));
auto i = atan2f(cuCimagf(x), cuCrealf(x));
return {r, i};
} else {
return log(x);
}
} }
}; };
struct Log2 { struct Log2 {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
auto y = Log{}(x); auto y = Log{}(x);
return {cuCrealf(y) / CUDART_LN2_F, cuCimagf(y) / CUDART_LN2_F}; return {y.real() / CUDART_LN2_F, y.imag() / CUDART_LN2_F};
} else { } else {
return log2(x); return log2(x);
} }
@@ -216,20 +191,31 @@ struct Log2 {
struct Log10 { struct Log10 {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return log10(x);
auto y = Log{}(x);
return {cuCrealf(y) / CUDART_LNT_F, cuCimagf(y) / CUDART_LNT_F};
return y;
} else {
return log10(x);
}
} }
}; };
struct Log1p { struct Log1p {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T z) {
return log1p(x); if constexpr (is_complex_v<T>) {
float x = z.real();
float y = z.imag();
float zabs = Abs{}(z).real();
float theta = atan2f(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1pf(r), theta};
} else {
float z0 = hypotf(x + 1, y);
return {logf(z0), theta};
}
} else {
return log1p(z);
}
} }
}; };
@@ -242,8 +228,8 @@ struct LogicalNot {
struct Negative { struct Negative {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return 0 - x; return T{0, 0} - x;
} else { } else {
return -x; return -x;
} }
@@ -251,16 +237,17 @@ struct Negative {
}; };
struct Real { struct Real {
__device__ float operator()(cuComplex x) { template <typename T>
return cuCrealf(x); __device__ auto operator()(complex_t<T> x) {
return x.real();
} }
}; };
struct Round { struct Round {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return {rint(cuCrealf(x)), rint(cuCimagf(x))}; return {rint(x.real()), rint(x.imag())};
} else { } else {
return rint(x); return rint(x);
} }
@@ -280,8 +267,8 @@ struct Sign {
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_unsigned_v<T>) { if constexpr (cuda::std::is_unsigned_v<T>) {
return x != 0; return x != 0;
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) { } else if constexpr (is_complex_v<T>) {
if (cuCrealf(x) == 0 && cuCimagf(x) == 0) { if (x.real() == 0 && x.imag() == 0) {
return x; return x;
} else { } else {
return x / Abs()(x); return x / Abs()(x);
@@ -297,26 +284,14 @@ struct Sign {
struct Sin { struct Sin {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return sin(x);
return {
sin(cuCrealf(x)) * cosh(cuCimagf(x)),
cos(cuCrealf(x)) * sinh(cuCimagf(x))};
} else {
return sin(x);
}
} }
}; };
struct Sinh { struct Sinh {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return sinh(x);
return {
sinh(cuCrealf(x)) * cos(cuCimagf(x)),
cosh(cuCrealf(x)) * sin(cuCimagf(x))};
} else {
return sinh(x);
}
} }
}; };
@@ -332,77 +307,31 @@ struct Sqrt {
__device__ T operator()(T x) { __device__ T operator()(T x) {
return sqrt(x); return sqrt(x);
} }
__device__ cuComplex operator()(cuComplex x) {
auto xr = cuCrealf(x);
auto xi = cuCimagf(x);
if (xr == 0.0f && xi == 0.0f) {
return {0.0f, 0.0f};
}
auto r = cuCrealf(Abs{}(x));
auto a = sqrt((r + xr) / 2.0f);
auto b_abs = sqrt((r - xr) / 2.0f);
auto b = copysign(b_abs, xi);
return {a, b};
}
}; };
struct Rsqrt { struct Rsqrt {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
return rsqrt(x); if constexpr (is_complex_v<T>) {
} return 1.0f / Sqrt{}(x);
__device__ cuComplex operator()(cuComplex x) { } else {
return 1.0f / Sqrt{}(x); return rsqrt(x);
}
} }
}; };
struct Tan { struct Tan {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return tan(x);
float tan_a = tan(cuCrealf(x));
float tanh_b = tanh(cuCimagf(x));
float t1 = tan_a * tanh_b;
float denom = 1. + t1 * t1;
return {(tan_a - tanh_b * t1) / denom, (tanh_b + tan_a * t1) / denom};
} else {
return tan(x);
}
} }
}; };
struct Tanh { struct Tanh {
template <typename T> template <typename T>
__device__ T operator()(T x) { __device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { return tanh(x);
float tanh_a = tanh(cuCrealf(x));
float tan_b = tan(cuCimagf(x));
float t1 = tanh_a * tan_b;
float denom = 1. + t1 * t1;
return {(tanh_a + tan_b * t1) / denom, (tan_b - tanh_a * t1) / denom};
} else {
return tanh(x);
}
} }
}; };
__device__ cuComplex ArcCos::operator()(cuComplex x) {
auto i = cuComplex{0.0, 1.0};
auto y = Log{}(x + i * Sqrt{}(1.0 - x * x));
return {cuCimagf(y), -cuCrealf(y)};
};
__device__ cuComplex ArcSin::operator()(cuComplex x) {
auto i = cuComplex{0.0f, 1.0f};
auto y = Log{}(i * x + Sqrt{}(1.0f - x * x));
return {cuCimagf(y), -cuCrealf(y)};
};
__device__ cuComplex ArcTan::operator()(cuComplex x) {
auto i = cuComplex{0.0f, 1.0f};
auto ix = i * x;
return (1.0f / cuComplex{0.0f, 2.0f}) * Log{}((1.0f + ix) / (1.0f - ix));
};
} // namespace mlx::core::cu } // namespace mlx::core::cu

View File

@@ -8,9 +8,9 @@
#pragma once #pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/config.h" #include "mlx/backend/cuda/device/config.h"
#include <cuComplex.h>
#include <cuda_bf16.h> #include <cuda_bf16.h>
#include <cuda_fp16.h> #include <cuda_fp16.h>
#include <cuda/std/array> #include <cuda/std/array>
@@ -49,6 +49,20 @@ store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
to[offset] = vec; to[offset] = vec;
} }
// Helper for accessing strided data.
template <typename T>
struct StridedIterator {
T it;
int64_t stride;
__host__ __device__ StridedIterator(T it, int64_t stride)
: it(it), stride(stride) {}
__host__ __device__ auto operator[](int i) const {
return it[i * stride];
}
};
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// Type limits utils // Type limits utils
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
@@ -127,13 +141,13 @@ struct Limits<bool> {
} }
}; };
template <> template <typename T>
struct Limits<cuComplex> { struct Limits<complex_t<T>> {
static constexpr __host__ __device__ cuComplex max() { static constexpr __host__ __device__ complex_t<T> max() {
return {Limits<float>::max(), Limits<float>::max()}; return {Limits<T>::max(), Limits<T>::max()};
} }
static constexpr __host__ __device__ cuComplex min() { static constexpr __host__ __device__ complex_t<T> min() {
return {Limits<float>::min(), Limits<float>::min()}; return {Limits<T>::min(), Limits<T>::min()};
} }
}; };
@@ -204,20 +218,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
return cuda::std::make_tuple(a_loc, b_loc, c_loc); return cuda::std::make_tuple(a_loc, b_loc, c_loc);
} }
// Optimized version when ndim is larger than 4.
template <typename IdxT = int64_t> template <typename IdxT = int64_t>
inline __host__ __device__ IdxT inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
IdxT loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
loc += (elem % shape[i]) * IdxT(strides[i]);
elem /= shape[i];
}
return loc;
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
IdxT elem, IdxT elem,
const int* shape, const int* shape,
const int64_t* a_strides, const int64_t* a_strides,
@@ -235,7 +237,7 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
} }
template <typename IdxT = int64_t> template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d( inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
IdxT elem, IdxT elem,
const int* shape, const int* shape,
const int64_t* a_strides, const int64_t* a_strides,
@@ -359,21 +361,4 @@ struct LoopedElemToLoc<1, false, OffsetT> {
} }
}; };
inline __device__ cuComplex log1p(cuComplex in) {
float x = cuCrealf(in);
float y = cuCimagf(in);
float zabs = sqrt(x * x + y * y);
float theta = atan2f(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1pf(r), theta};
} else {
auto z0 = sqrt((x + 1) * (x + 1) + y * y);
return {log(z0), theta};
}
}
} // namespace mlx::core::cu } // namespace mlx::core::cu

View File

@@ -19,8 +19,6 @@ void new_stream(Stream s) {
cudaFree(nullptr); cudaFree(nullptr);
// Ensure the static stream objects get created. // Ensure the static stream objects get created.
cu::get_command_encoder(s); cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
} }
void eval(array& arr) { void eval(array& arr) {

View File

@@ -90,8 +90,6 @@ bool CudaEvent::completed() const {
// SharedEvent implementations // SharedEvent implementations
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) { __host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current; uint64_t current;
while ((current = ac->load()) < value) { while ((current = ac->load()) < value) {
@@ -112,26 +110,26 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value); event_signal(ac, value);
} }
} // namespace SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
SharedEvent::SharedEvent() { SharedEvent::SharedEvent() {
// Allocate cuda::atomic on managed memory. buf_ = std::shared_ptr<Buffer>(
Atomic* ac; new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic))); allocator().free(*ptr);
new (ac) Atomic(0); delete ptr;
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) { });
ptr->~Atomic(); *static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
allocator().cuda_free(ptr);
});
} }
void SharedEvent::wait(uint64_t value) { void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait"); nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(ac_.get(), value); event_wait(to_atomic(buf_), value);
} }
void SharedEvent::wait(cudaStream_t stream, uint64_t value) { void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value); event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
} }
void SharedEvent::wait(Stream s, uint64_t value) { void SharedEvent::wait(Stream s, uint64_t value) {
@@ -142,17 +140,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
auto& encoder = get_command_encoder(s); auto& encoder = get_command_encoder(s);
encoder.commit(); encoder.commit();
wait(encoder.stream(), value); wait(encoder.stream(), value);
encoder.add_completed_handler([ac = ac_]() {}); encoder.add_completed_handler([buf = buf_]() {});
} }
} }
void SharedEvent::signal(uint64_t value) { void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal"); nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(ac_.get(), value); event_signal(to_atomic(buf_), value);
} }
void SharedEvent::signal(cudaStream_t stream, uint64_t value) { void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value); event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
} }
void SharedEvent::signal(Stream s, uint64_t value) { void SharedEvent::signal(Stream s, uint64_t value) {
@@ -166,18 +164,18 @@ void SharedEvent::signal(Stream s, uint64_t value) {
auto& encoder = get_command_encoder(s); auto& encoder = get_command_encoder(s);
encoder.commit(); encoder.commit();
signal(encoder.stream(), value); signal(encoder.stream(), value);
encoder.add_completed_handler([ac = ac_]() {}); encoder.add_completed_handler([buf = buf_]() {});
} }
} }
bool SharedEvent::is_signaled(uint64_t value) const { bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled"); nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return ac_->load() >= value; return to_atomic(buf_)->load() >= value;
} }
uint64_t SharedEvent::value() const { uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value"); nvtx3::scoped_range r("cu::SharedEvent::value");
return ac_->load(); return to_atomic(buf_)->load();
} }
} // namespace cu } // namespace cu

View File

@@ -2,6 +2,7 @@
#pragma once #pragma once
#include "mlx/allocator.h"
#include "mlx/stream.h" #include "mlx/stream.h"
#include <cuda_runtime.h> #include <cuda_runtime.h>
@@ -55,12 +56,8 @@ class SharedEvent {
bool is_signaled(uint64_t value) const; bool is_signaled(uint64_t value) const;
uint64_t value() const; uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private: private:
std::shared_ptr<Atomic> ac_; std::shared_ptr<mlx::core::allocator::Buffer> buf_;
}; };
} // namespace mlx::core::cu } // namespace mlx::core::cu

147
mlx/backend/cuda/gemv.cu Normal file
View File

@@ -0,0 +1,147 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
static constexpr int n_per_thread = 4;
static constexpr int rows_per_block = 8;
template <typename T, int rows_per_block, int n_per_thread>
__device__ void
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
auto g_idx = block.group_index();
auto t_idx = block.thread_index();
int row = g_idx.x * rows_per_block + t_idx.y;
if (row < rows) {
float sum = 0.0f;
for (int col = n_per_thread * warp.thread_rank(); col < cols;
col += (WARP_SIZE * n_per_thread)) {
auto local_mat = load_vector<n_per_thread>(mat + row * cols + col, 0);
auto local_vec = load_vector<n_per_thread>(vec + col, 0);
#pragma unroll
for (int j = 0; j < n_per_thread; ++j) {
sum += static_cast<float>(local_mat.val[j]) *
static_cast<float>(local_vec.val[j]);
}
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
if (warp.thread_rank() == 0) {
out[row] = static_cast<T>(sum);
}
}
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void gemv_batched(
const T* mat,
const T* vec,
T* out,
int rows,
int cols,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides mat_batch_strides,
const __grid_constant__ Strides vec_batch_strides,
int batch_ndim) {
auto block = cg::this_thread_block();
auto batch_idx = block.group_index().y;
auto [vec_offset, mat_offset] = elem_to_loc(
batch_idx,
batch_shape.data(),
vec_batch_strides.data(),
mat_batch_strides.data(),
batch_ndim);
gemv_impl<T, rows_per_block, n_per_thread>(
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
}
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
return K % (WARP_SIZE * n_per_thread) == 0 &&
((M == 1 && b_transposed) || (N == 1 && !a_transposed));
}
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
dim3 block_dims{WARP_SIZE, rows_per_block};
const DataType* mat;
const DataType* vec;
int rows;
int cols = K;
auto mat_strides = const_param(a_batch_strides);
auto vec_strides = const_param(b_batch_strides);
if (M == 1) {
mat = b.data<DataType>();
vec = a.data<DataType>();
rows = N;
std::swap(mat_strides, vec_strides);
} else {
mat = a.data<DataType>();
vec = b.data<DataType>();
rows = M;
}
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
if (batch_count == 1) {
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread>;
encoder.add_kernel_node(
kernel,
num_blocks_x,
block_dims,
mat,
vec,
out.data<DataType>(),
rows,
cols);
} else {
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread>;
encoder.add_kernel_node(
kernel,
dim3{num_blocks_x, batch_count},
block_dims,
mat,
vec,
out.data<DataType>(),
rows,
cols,
const_param(batch_shape),
mat_strides,
vec_strides,
batch_shape.size());
}
});
}
} // namespace mlx::core::cu

24
mlx/backend/cuda/gemv.h Normal file
View File

@@ -0,0 +1,24 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder);
} // namespace mlx::core::cu

View File

@@ -1,121 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <cuda/std/utility>
#include "mlx/backend/cuda/kernel_utils.cuh"
namespace mlx::core::cu {
// Iterating non-contiguous array.
template <typename Iterator, typename IdxT = int64_t>
class general_iterator
: public thrust::
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides)
: super_t(it),
index_(index),
ndim_(ndim),
shape_(cuda::std::move(shape)),
strides_(cuda::std::move(strides)) {}
__host__ __device__ IdxT index() const {
return index_;
}
__host__ __device__ const Shape& shape() const {
return shape_;
}
__host__ __device__ const Strides& strides() const {
return strides_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const general_iterator& other) const {
return this->base() == other.base() && this->index() == other.index();
}
__host__ __device__ void advance(difference_type n) {
this->index_ += n;
}
__host__ __device__ void increment() {
this->index_ += 1;
}
__host__ __device__ void decrement() {
this->index_ -= 1;
}
__host__ __device__ difference_type
distance_to(const general_iterator& other) const {
_CCCL_ASSERT(
this->base() == other.base(),
"Underlying iterator must point to same base iterator");
return other.index() - this->index();
}
// The dereference is device-only to avoid accidental running in host.
__device__ typename super_t::reference dereference() const {
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
return *(this->base() + offset);
}
IdxT index_;
int ndim_;
Shape shape_;
Strides strides_;
};
template <typename IdxT, typename Iterator>
__host__ __device__ auto make_general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides) {
return general_iterator<Iterator, IdxT>(
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterator(
Iterator it,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
return make_general_iterator<IdxT>(
it, 0, shape.size(), const_param(shape), const_param(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterators(
Iterator it,
IdxT size,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
auto ndim = shape.size();
auto shape_arg = const_param(shape);
auto strides_arg = const_param(strides);
return std::make_pair(
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
}
} // namespace mlx::core::cu

View File

@@ -1,60 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_facade.h>
namespace mlx::core::cu {
// RandomAccessIterator for strided access to array entries.
template <typename Iterator, typename Stride = int64_t>
class strided_iterator
: public thrust::
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ strided_iterator(Iterator it, Stride stride)
: super_t(it), stride_(stride) {}
__host__ __device__ Stride stride() const {
return stride_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const strided_iterator& other) const {
return this->base() == other.base();
}
__host__ __device__ void advance(difference_type n) {
this->base_reference() += n * stride_;
}
__host__ __device__ void increment() {
this->base_reference() += stride_;
}
__host__ __device__ void decrement() {
this->base_reference() -= stride_;
}
__host__ __device__ difference_type
distance_to(const strided_iterator& other) const {
const difference_type dist = other.base() - this->base();
_CCCL_ASSERT(
dist % stride() == 0,
"Underlying iterator difference must be divisible by the stride");
return dist / stride();
}
Stride stride_;
};
} // namespace mlx::core::cu

View File

@@ -2,6 +2,7 @@
#include "mlx/backend/cuda/jit_module.h" #include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/version.h"
#include "cuda_jit_sources.h" #include "cuda_jit_sources.h"
@@ -12,6 +13,7 @@
#include <fmt/format.h> #include <fmt/format.h>
#include <nvrtc.h> #include <nvrtc.h>
#include <unistd.h>
namespace mlx::core::cu { namespace mlx::core::cu {
@@ -49,14 +51,41 @@ const std::string& cuda_home() {
return home; return home;
} }
// Return the location of CCCL headers shipped with the distribution.
const std::string& cccl_dir() {
static std::string dir = []() {
std::filesystem::path path;
#if defined(MLX_CCCL_DIR)
// First search the install dir if defined.
path = MLX_CCCL_DIR;
if (std::filesystem::exists(path)) {
return path.string();
}
#endif
// Then search dynamically from the dir of libmlx.so file.
path = current_binary_dir().parent_path() / "include" / "cccl";
if (std::filesystem::exists(path)) {
return path.string();
}
// Finally check the environment variable.
path = std::getenv("MLX_CCCL_DIR");
if (!path.empty() && std::filesystem::exists(path)) {
return path.string();
}
return std::string();
}();
return dir;
}
// Get the cache directory for storing compiled results. // Get the cache directory for storing compiled results.
const std::filesystem::path& ptx_cache_dir() { const std::filesystem::path& ptx_cache_dir() {
static std::filesystem::path cache = []() -> std::filesystem::path { static std::filesystem::path cache = []() -> std::filesystem::path {
std::filesystem::path cache; std::filesystem::path cache;
if (auto c = std::getenv("MLX_PTX_CACHE"); c) { if (auto c = std::getenv("MLX_PTX_CACHE_DIR"); c) {
cache = c; cache = c;
} else { } else {
cache = std::filesystem::temp_directory_path() / "mlx" / "ptx"; cache =
std::filesystem::temp_directory_path() / "mlx" / version() / "ptx";
} }
if (!std::filesystem::exists(cache)) { if (!std::filesystem::exists(cache)) {
std::error_code error; std::error_code error;
@@ -108,7 +137,8 @@ void write_cached_ptx(
const std::filesystem::path& cache_dir, const std::filesystem::path& cache_dir,
const std::string& module_name, const std::string& module_name,
const std::vector<char>& ptx, const std::vector<char>& ptx,
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) { const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
const std::string& source_code) {
if (cache_dir.empty()) { if (cache_dir.empty()) {
return; return;
} }
@@ -121,6 +151,9 @@ void write_cached_ptx(
for (const auto& [name, mangled] : ptx_kernels) { for (const auto& [name, mangled] : ptx_kernels) {
txt_file << name << "\t" << mangled << std::endl; txt_file << name << "\t" << mangled << std::endl;
} }
std::ofstream source_file(cache_dir / (module_name + ".cu"));
source_file << source_code;
} }
// Return if |device|'s version is not newer than |major|.|minor| version. // Return if |device|'s version is not newer than |major|.|minor| version.
@@ -160,7 +193,7 @@ constexpr const char* g_include_names[] = {
INCLUDE_PREFIX "binary_ops.cuh", INCLUDE_PREFIX "binary_ops.cuh",
INCLUDE_PREFIX "cast_op.cuh", INCLUDE_PREFIX "cast_op.cuh",
INCLUDE_PREFIX "config.h", INCLUDE_PREFIX "config.h",
INCLUDE_PREFIX "cucomplex_math.cuh", INCLUDE_PREFIX "complex.cuh",
INCLUDE_PREFIX "fp16_math.cuh", INCLUDE_PREFIX "fp16_math.cuh",
INCLUDE_PREFIX "indexing.cuh", INCLUDE_PREFIX "indexing.cuh",
INCLUDE_PREFIX "scatter_ops.cuh", INCLUDE_PREFIX "scatter_ops.cuh",
@@ -176,7 +209,7 @@ constexpr const char* g_headers[] = {
jit_source_binary_ops, jit_source_binary_ops,
jit_source_cast_op, jit_source_cast_op,
jit_source_config, jit_source_config,
jit_source_cucomplex_math, jit_source_complex,
jit_source_fp16_math, jit_source_fp16_math,
jit_source_indexing, jit_source_indexing,
jit_source_scatter_ops, jit_source_scatter_ops,
@@ -213,16 +246,24 @@ JitModule::JitModule(
} }
// Compile program. // Compile program.
std::vector<const char*> args;
bool use_sass = compiler_supports_device_sass(device); bool use_sass = compiler_supports_device_sass(device);
std::string compute = fmt::format( std::string compute = fmt::format(
"--gpu-architecture={}_{}{}", "--gpu-architecture={}_{}{}",
use_sass ? "sm" : "compute", use_sass ? "sm" : "compute",
device.compute_capability_major(), device.compute_capability_major(),
device.compute_capability_minor()); device.compute_capability_minor());
std::string include = fmt::format("--include-path={}/include", cuda_home()); args.push_back(compute.c_str());
const char* args[] = {compute.c_str(), include.c_str()}; std::string cccl_include = cccl_dir();
if (!cccl_include.empty()) {
cccl_include = fmt::format("--include-path={}", cccl_include);
args.push_back(cccl_include.c_str());
}
std::string cuda_include =
fmt::format("--include-path={}/include", cuda_home());
args.push_back(cuda_include.c_str());
nvrtcResult compile_result = nvrtcResult compile_result =
nvrtcCompileProgram(prog, std::size(args), args); nvrtcCompileProgram(prog, args.size(), args.data());
if (compile_result != NVRTC_SUCCESS) { if (compile_result != NVRTC_SUCCESS) {
size_t log_size; size_t log_size;
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size)); CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
@@ -252,7 +293,8 @@ JitModule::JitModule(
} else { } else {
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data())); CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
} }
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels); write_cached_ptx(
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
} }
// Load module. // Load module.

View File

@@ -11,7 +11,6 @@
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/cuda/device/utils.cuh" #include "mlx/backend/cuda/device/utils.cuh"
#include <cuComplex.h>
#include <cuda.h> #include <cuda.h>
#include <cuda_bf16.h> #include <cuda_bf16.h>
#include <cuda_fp16.h> #include <cuda_fp16.h>
@@ -79,7 +78,7 @@ struct CTypeToCudaType<bfloat16_t> {
template <> template <>
struct CTypeToCudaType<complex64_t> { struct CTypeToCudaType<complex64_t> {
using type = cuComplex; using type = cu::complex64_t;
}; };
template <typename T> template <typename T>
@@ -91,10 +90,14 @@ inline constexpr bool is_floating_v =
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> || cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>; cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
// Type traits for detecting complex numbers.
template <typename T>
inline constexpr bool is_complex_v = cuda::std::is_same_v<T, complex64_t> ||
cuda::std::is_same_v<T, complex128_t>;
// Type traits for detecting complex or real floating point numbers. // Type traits for detecting complex or real floating point numbers.
template <typename T> template <typename T>
inline constexpr bool is_inexact_v = inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
is_floating_v<T> || cuda::std::is_same_v<T, complex64_t>;
// Utility to copy data from vector to array in host. // Utility to copy data from vector to array in host.
template <int NDIM = MAX_NDIM, typename T = int32_t> template <int NDIM = MAX_NDIM, typename T = int32_t>

View File

@@ -1,7 +1,6 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh" #include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
@@ -105,8 +104,8 @@ __global__ void layer_norm(
T wn[N_READS]; T wn[N_READS];
T bn[N_READS]; T bn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size); cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(b, b_stride), bn, axis_size);
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
float norm = (static_cast<float>(xn[i]) - mean) * normalizer; float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm) + bn[i]; xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
@@ -162,7 +161,7 @@ __global__ void layer_norm_vjp(
auto index = r * BLOCK_DIM + block.thread_rank(); auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, mean); cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
cub::LoadDirectBlocked(index, g, gn, axis_size); cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) { for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]) - mean; float t = static_cast<float>(xn[i]) - mean;
float wi = wn[i]; float wi = wn[i];
@@ -185,7 +184,7 @@ __global__ void layer_norm_vjp(
T gn[N_READS]; T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size); cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size); cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) { for (int i = 0; i < N_READS; i++) {
float xi = (static_cast<float>(xn[i]) - mean) * normalizer; float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
float wi = wn[i]; float wi = wn[i];
@@ -237,8 +236,7 @@ void LayerNorm::eval_gpu(
} }
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy); out.copy_shared_buffer(x_copy);
return x_copy; return x_copy;
} }
@@ -295,9 +293,7 @@ void LayerNormVJP::eval_gpu(
return x; return x;
} }
copied = true; copied = true;
array x_copy(x.shape(), x.dtype(), nullptr, {}); return contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
return x_copy;
}; };
bool donate_x = inputs[0].is_donatable(); bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[3].is_donatable(); bool donate_g = inputs[3].is_donatable();

View File

@@ -108,8 +108,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) { if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy); encoder.add_temporary(x_copy);
return x_copy; return x_copy;
} }

View File

@@ -2,6 +2,7 @@
#include "mlx/backend/common/matmul.h" #include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@@ -27,6 +28,35 @@ void check_cublas_error(const char* name, cublasStatus_t err) {
} }
} }
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
class MatMul { class MatMul {
public: public:
MatMul( MatMul(
@@ -43,7 +73,7 @@ class MatMul {
int32_t batch_count, int32_t batch_count,
int64_t a_batch_stride, int64_t a_batch_stride,
int64_t b_batch_stride) int64_t b_batch_stride)
: handle_(device.lt_handle()) { : handle_(device.lt_handle()), pref_(cublas_preference(device)) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED; heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cuda_type(dtype); auto scale_type = dtype_to_cuda_type(dtype);
@@ -77,20 +107,6 @@ class MatMul {
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride); type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout( out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols); type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
} }
MatMul( MatMul(
@@ -104,7 +120,6 @@ class MatMul {
uint64_t b_rows, uint64_t b_rows,
uint64_t b_cols, uint64_t b_cols,
int64_t ldb, int64_t ldb,
bool c_transposed,
int64_t ldc, int64_t ldc,
int32_t batch_count, int32_t batch_count,
int64_t a_batch_stride, int64_t a_batch_stride,
@@ -126,15 +141,15 @@ class MatMul {
b_batch_stride) { b_batch_stride) {
auto type = dtype_to_cuda_type(dtype); auto type = dtype_to_cuda_type(dtype);
c_desc_ = create_matrix_layout( c_desc_ = create_matrix_layout(
type, a_rows, b_cols, c_transposed, ldc, batch_count, c_batch_stride); type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
} }
~MatMul() { ~MatMul() {
cublasLtMatrixLayoutDestroy(a_desc_); CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
cublasLtMatrixLayoutDestroy(b_desc_); CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
cublasLtMatrixLayoutDestroy(c_desc_); CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
cublasLtMatrixLayoutDestroy(out_desc_); CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
cublasLtMatmulDescDestroy(matmul_desc_); CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
} }
void run( void run(
@@ -259,9 +274,9 @@ class MatMul {
return desc; return desc;
} }
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr}; cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr}; cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr}; cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr}; cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr}; cublasLtMatrixLayout_t c_desc_{nullptr};
@@ -282,8 +297,7 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
} else if (stx == 1 && sty == arr.shape(-2)) { } else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr); return std::make_tuple(true, sty, arr);
} else { } else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); array arr_copy = contiguous_copy_gpu(arr, s);
copy_gpu(arr, arr_copy, CopyType::General, s);
enc.add_temporary(arr_copy); enc.add_temporary(arr_copy);
return std::make_tuple(false, arr.shape(-1), arr_copy); return std::make_tuple(false, arr.shape(-1), arr_copy);
} }
@@ -340,6 +354,22 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
batch_shape = {1}; batch_shape = {1};
} }
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
cu::gemv(
a,
b,
out,
M,
N,
K,
batch_count,
batch_shape,
a_batch_strides,
b_batch_strides,
encoder);
return;
}
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt // Invoke cublasLt
@@ -389,9 +419,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3); assert(inputs.size() == 3);
auto& a_pre = inputs[0]; auto& a_pre = inputs[0];
auto& b_pre = inputs[1]; auto& b_pre = inputs[1];
auto& c_pre = inputs[2]; auto c = inputs[2];
out.set_data(allocator::malloc(out.nbytes()));
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
// Init checks and prep // Init checks and prep
@@ -404,7 +432,24 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
// the arrays // the arrays
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre); auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre); auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
auto [c_transposed, ldc, c] = check_transpose(encoder, s, c_pre);
int64_t ldc;
{
auto stx = c.strides()[c.ndim() - 2];
auto sty = c.strides()[c.ndim() - 1];
if (sty == 1 && stx == c.shape(-1)) {
ldc = stx;
out.set_data(allocator::malloc(out.nbytes()));
} else if (sty == 1 && stx == 0) {
ldc = 0;
out.set_data(allocator::malloc(out.nbytes()));
} else {
// Copy C into out and set C to out
ldc = c.shape(-1);
copy_gpu(c, out, CopyType::General, s);
c = out;
}
}
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
// Check and collapse batch dimensions // Check and collapse batch dimensions
@@ -442,7 +487,6 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
K, K,
N, N,
ldb, ldb,
c_transposed,
ldc, ldc,
batch_shape.back(), batch_shape.back(),
a_batch_strides.back(), a_batch_strides.back(),

View File

@@ -82,7 +82,6 @@ NO_GPU(Load)
NO_GPU_MULTI(LUF) NO_GPU_MULTI(LUF)
NO_GPU_MULTI(QRF) NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul) NO_GPU(QuantizedMatmul)
NO_GPU(Scan)
NO_GPU(SegmentedMM) NO_GPU(SegmentedMM)
NO_GPU_MULTI(SVD) NO_GPU_MULTI(SVD)
NO_GPU(Inverse) NO_GPU(Inverse)
@@ -92,7 +91,6 @@ NO_GPU_MULTI(Eigh)
namespace fast { namespace fast {
NO_GPU(ScaledDotProductAttention) NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel) NO_GPU_MULTI(CustomKernel)
} // namespace fast } // namespace fast

View File

@@ -0,0 +1,386 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, int group_size, int bits>
__global__ void
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
constexpr float eps = 1e-7;
constexpr int simd_size = WARP_SIZE;
constexpr float n_bins = (1 << bits) - 1;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int values_per_reduce = group_size / simd_size;
constexpr int writes_per_reduce = pack_factor / values_per_reduce;
constexpr int writes_per_pack =
writes_per_reduce > 1 ? 1 : values_per_reduce / pack_factor;
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
size_t offset = tidx + grid_dim_x * size_t(tidy);
size_t in_index = offset * values_per_reduce;
if (in_index >= size) {
return;
}
size_t out_index = power_of_2_bits
? offset * writes_per_pack
: offset * bytes_per_pack / writes_per_reduce;
float w_thread[values_per_reduce];
float w_min = Limits<float>::max();
float w_max = 0;
#pragma clang loop unroll(full)
for (int i = 0; i < values_per_reduce; i++) {
float val = w[in_index + i];
w_thread[i] = val;
w_min = min(w_min, val);
w_max = max(w_max, val);
}
cg::greater<float> max_op;
cg::less<float> min_op;
auto warp = cg::tiled_partition<WARP_SIZE>(cg::this_thread_block());
w_min = cg::reduce(warp, w_min, min_op);
w_max = cg::reduce(warp, w_max, max_op);
float scale = max((w_max - w_min) / n_bins, eps);
bool side = abs(w_min) > abs(w_max);
scale = side ? scale : -scale;
float edge = side ? w_min : w_max;
float q0 = round(edge / scale);
bool at_zero = q0 == 0.0f;
scale = at_zero ? scale : edge / q0;
float bias = at_zero ? 0 : edge;
// Write out the scales and biases
size_t gindex = in_index / group_size;
if (in_index % group_size == 0) {
scales[gindex] = static_cast<T>(scale);
biases[gindex] = static_cast<T>(bias);
}
using OutType = std::conditional_t<bits == 5, uint64_t, uint32_t>;
OutType output = 0;
#pragma clang loop unroll(full)
for (int i = 0; i < values_per_reduce; i++) {
uint8_t val = min(round((w_thread[i] - bias) / scale), n_bins);
if (bits == 8) {
output = val;
} else {
output |= val << (bits * (i % pack_factor));
}
if (pack_factor < values_per_reduce && i % pack_factor == pack_factor - 1) {
out[out_index + i / pack_factor] = output;
output = 0;
} else {
#pragma clang loop unroll(full)
for (int j = 1; j < writes_per_reduce; j++) {
uint8_t sval = warp.shfl_down(val, j);
output |= static_cast<OutType>(sval)
<< (bits * (j * values_per_reduce + i));
}
}
}
if constexpr (bits == 3 || bits == 6) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
}
} else if constexpr (bits == 5) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
out[out_index + 3] = (output & 0xff000000) >> 24;
out[out_index + 4] = (output & 0xff00000000) >> 32;
}
} else {
if constexpr (writes_per_reduce > 0) {
if (out_index % writes_per_reduce == 0) {
out[out_index / writes_per_reduce] = output;
}
}
}
}
template <typename T, int group_size, int bits>
__global__ void affine_dequantize(
const uint8_t* w,
const T* scales,
const T* biases,
T* out,
size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
size_t offset = tidx + grid_dim_x * size_t(tidy);
size_t oindex = offset * pack_factor;
if (oindex >= size) {
return;
}
size_t gindex = oindex / group_size;
T scale = scales[gindex];
T bias = biases[gindex];
out += oindex;
if constexpr (bits == 3) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x7) * scale + bias;
out[1] = static_cast<T>((w[0] & 0x38) >> 3) * scale + bias;
out[2] = (static_cast<T>((w[0] & 0xc0) >> 6) +
static_cast<T>((w[1] & 0x1) << 2)) *
scale +
bias;
out[3] = static_cast<T>((w[1] & 0xe) >> 1) * scale + bias;
out[4] = static_cast<T>((w[1] & 0x70) >> 4) * scale + bias;
out[5] = (static_cast<T>((w[1] & 0x80) >> 7) +
static_cast<T>((w[2] & 0x3) << 1)) *
scale +
bias;
out[6] = static_cast<T>((w[2] & 0x1c) >> 2) * scale + bias;
out[7] = static_cast<T>((w[2] & 0xe0) >> 5) * scale + bias;
} else if constexpr (bits == 5) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x1f) * scale + bias;
out[1] = (static_cast<T>((w[0] & 0xe0) >> 5) +
static_cast<T>((w[1] & 0x3) << 3)) *
scale +
bias;
out[2] = static_cast<T>((w[1] & 0x7c) >> 2) * scale + bias;
out[3] = (static_cast<T>((w[1] & 0x80) >> 7) +
static_cast<T>((w[2] & 0xf) << 1)) *
scale +
bias;
out[4] = (static_cast<T>((w[2] & 0xf0) >> 4) +
static_cast<T>((w[3] & 0x1) << 4)) *
scale +
bias;
out[5] = static_cast<T>((w[3] & 0x3e) >> 1) * scale + bias;
out[6] = (static_cast<T>((w[3] & 0xc0) >> 6) +
static_cast<T>((w[4] & 0x7) << 2)) *
scale +
bias;
out[7] = static_cast<T>((w[4] & 0xf8) >> 3) * scale + bias;
} else if constexpr (bits == 6) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x3f) * scale + bias;
out[1] = (static_cast<T>((w[0] >> 6) & 0x03) +
static_cast<T>((w[1] & 0x0f) << 2)) *
scale +
bias;
out[2] = (static_cast<T>((w[1] >> 4) & 0x0f) +
static_cast<T>((w[2] & 0x03) << 4)) *
scale +
bias;
out[3] = static_cast<T>((w[2] >> 2) & 0x3f) * scale + bias;
} else {
uint val = w[offset];
#pragma clang loop unroll(full)
for (int i = 0; i < pack_factor; i++) {
uint8_t d;
if (bits == 2) {
d = (val >> (bits * i)) & 0x03;
} else if (bits == 4) {
d = (val >> (bits * i)) & 0x0f;
} else if (bits == 8) {
d = val;
}
out[i] = scale * static_cast<T>(d) + bias;
}
}
}
} // namespace cu
namespace {
inline array ensure_row_contiguous(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
} // namespace
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& w_pre = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
auto w = ensure_row_contiguous(w_pre, enc, s);
enc.set_input_array(w);
if (dequantize_) {
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(out);
} else {
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
enc.set_output_array(out);
enc.set_output_array(scales);
enc.set_output_array(biases);
}
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
// Treat uint32 as uint8 in kernel
int uint8_per_uint32 = 4;
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
: bits_ == 6 ? 4
: 8 / bits_;
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
size_t size =
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
if (dequantize_) {
grid_shape.back() *= uint8_per_uint32;
} else {
grid_shape.back() /= per_thread;
}
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
if (dequantize_) {
auto kernel =
cu::affine_dequantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<uint8_t>(),
inputs[1].data<DataType>(),
inputs[2].data<DataType>(),
out.data<DataType>(),
out.size());
} else {
auto kernel =
cu::affine_quantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<DataType>(),
out.data<uint8_t>(),
outputs[1].data<DataType>(),
outputs[2].data<DataType>(),
w.size());
}
});
});
});
}
} // namespace mlx::core

View File

@@ -47,8 +47,7 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
} }
} }
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) { if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
array in_copy(in.shape(), in.dtype(), nullptr, {}); array in_copy = contiguous_copy_gpu(in, s);
copy_gpu(in, in_copy, CopyType::General, s);
encoder.add_temporary(in_copy); encoder.add_temporary(in_copy);
in = in_copy; in = in_copy;
plan = get_reduction_plan(in, axes_); plan = get_reduction_plan(in, axes_);

View File

@@ -3,7 +3,6 @@
#include <type_traits> #include <type_traits>
#include "mlx/backend/common/reduce.h" #include "mlx/backend/common/reduce.h"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce_ops.cuh" #include "mlx/backend/cuda/reduce/reduce_ops.cuh"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"

View File

@@ -69,6 +69,18 @@ struct Prod {
struct Min { struct Min {
template <typename T> template <typename T>
__device__ __forceinline__ T operator()(T a, T b) { __device__ __forceinline__ T operator()(T a, T b) {
if constexpr (is_complex_v<T>) {
if (isnan(a.real()) || isnan(a.imag())) {
return a;
}
if (isnan(b.real()) || isnan(b.imag())) {
return b;
}
} else if constexpr (!cuda::std::is_integral_v<T>) {
if (isnan(a) || isnan(b)) {
return cuda::std::numeric_limits<float>::quiet_NaN();
}
}
return a < b ? a : b; return a < b ? a : b;
} }
@@ -81,6 +93,18 @@ struct Min {
struct Max { struct Max {
template <typename T> template <typename T>
__device__ __forceinline__ T operator()(T a, T b) { __device__ __forceinline__ T operator()(T a, T b) {
if constexpr (is_complex_v<T>) {
if (isnan(a.real()) || isnan(a.imag())) {
return a;
}
if (isnan(b.real()) || isnan(b.imag())) {
return b;
}
} else if constexpr (!cuda::std::is_integral_v<T>) {
if (isnan(a) || isnan(b)) {
return cuda::std::numeric_limits<float>::quiet_NaN();
}
}
return a > b ? a : b; return a > b ? a : b;
} }
@@ -151,7 +175,7 @@ struct ReduceInit<Or, T> {
template <typename T> template <typename T>
struct ReduceInit<Sum, T> { struct ReduceInit<Sum, T> {
static constexpr __host__ __device__ auto value() { static constexpr __host__ __device__ auto value() {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return T{0, 0}; return T{0, 0};
} else { } else {
return cast_to<typename ReduceResult<Sum, T>::type>(0); return cast_to<typename ReduceResult<Sum, T>::type>(0);
@@ -162,7 +186,7 @@ struct ReduceInit<Sum, T> {
template <typename T> template <typename T>
struct ReduceInit<Prod, T> { struct ReduceInit<Prod, T> {
static constexpr __host__ __device__ auto value() { static constexpr __host__ __device__ auto value() {
if constexpr (cuda::std::is_same_v<T, cuComplex>) { if constexpr (is_complex_v<T>) {
return T{1, 0}; return T{1, 0};
} else { } else {
return cast_to<typename ReduceResult<Prod, T>::type>(1); return cast_to<typename ReduceResult<Prod, T>::type>(1);

View File

@@ -4,6 +4,7 @@
#include <numeric> #include <numeric>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device/utils.cuh" #include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h> #include <cooperative_groups.h>

View File

@@ -1,7 +1,6 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh" #include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
@@ -89,7 +88,7 @@ __global__ void rms_norm(
T xn[N_READS]; T xn[N_READS];
T wn[N_READS]; T wn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size); cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
float norm = static_cast<float>(xn[i]) * normalizer; float norm = static_cast<float>(xn[i]) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm); xn[i] = wn[i] * static_cast<T>(norm);
@@ -132,7 +131,7 @@ __global__ void rms_norm_vjp(
auto index = r * BLOCK_DIM + block.thread_rank(); auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0)); cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
cub::LoadDirectBlocked(index, g, gn, axis_size); cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) { for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]); float t = static_cast<float>(xn[i]);
float wi = wn[i]; float wi = wn[i];
@@ -154,7 +153,7 @@ __global__ void rms_norm_vjp(
T gn[N_READS]; T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size); cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size); cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size); cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) { for (int i = 0; i < N_READS; i++) {
float xi = xn[i]; float xi = xn[i];
float wi = wn[i]; float wi = wn[i];
@@ -206,8 +205,7 @@ void RMSNorm::eval_gpu(
} }
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy); out.copy_shared_buffer(x_copy);
return x_copy; return x_copy;
} }
@@ -259,9 +257,7 @@ void RMSNormVJP::eval_gpu(
return x; return x;
} }
copied = true; copied = true;
array x_copy(x.shape(), x.dtype(), nullptr, {}); return contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
return x_copy;
}; };
bool donate_x = inputs[0].is_donatable(); bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[2].is_donatable(); bool donate_g = inputs[2].is_donatable();

465
mlx/backend/cuda/scan.cu Normal file
View File

@@ -0,0 +1,465 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/scan.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename T>
struct ScanResult {
using type = T;
};
template <>
struct ScanResult<Sum, bool> {
using type = int32_t;
};
template <typename T>
struct ReduceInit<LogAddExp, T> {
static constexpr __host__ __device__ T value() {
return Limits<T>::min();
}
};
template <bool reverse, typename T, typename U, int N_READS>
inline __device__ void
load_values(int index, const T* in, U (&values)[N_READS], int size, U init) {
int remaining = size - index * N_READS;
if constexpr (reverse) {
in += remaining - N_READS;
if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) {
values[N_READS - i - 1] =
(N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init;
}
} else {
for (int i = 0; i < N_READS; ++i) {
values[N_READS - i - 1] = cast_to<U>(in[i]);
}
}
} else {
in += index * N_READS;
if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) {
values[i] = (i < remaining) ? cast_to<U>(in[i]) : init;
}
} else {
for (int i = 0; i < N_READS; ++i) {
values[i] = cast_to<U>(in[i]);
}
}
}
}
template <bool reverse, int offset, typename T, int N_READS>
inline __device__ void
store_values(int index, T* out, T (&values)[N_READS], int size) {
int start = index * N_READS + offset;
int remaining = size - start;
if constexpr (reverse) {
out += remaining - N_READS;
if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) {
if (N_READS - i - 1 < remaining) {
out[i] = values[N_READS - i - 1];
}
}
} else {
for (int i = 0; i < N_READS; ++i) {
out[i] = values[N_READS - i - 1];
}
}
} else {
out += start;
if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) {
if (i < remaining) {
out[i] = values[i];
}
}
} else {
for (int i = 0; i < N_READS; ++i) {
out[i] = values[i];
}
}
}
}
template <
typename T,
typename U,
typename Op,
int N_READS,
bool inclusive,
bool reverse>
__global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
in += grid.block_rank() * axis_size;
out += grid.block_rank() * axis_size;
__shared__ U warp_sums[WARP_SIZE];
Op op;
U init = ReduceInit<Op, T>::value();
U prefix = init;
// Scan per block.
for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) {
int32_t index = r * block.size() + block.thread_rank();
U values[N_READS];
load_values<reverse>(index, in, values, axis_size, init);
// Compute an inclusive scan per thread.
for (int i = 1; i < N_READS; ++i) {
values[i] = op(values[i], values[i - 1]);
}
// Compute exclusive scan of thread sums.
U prev_thread_sum = cg::exclusive_scan(warp, values[N_READS - 1], op);
if (warp.thread_rank() == 0) {
prev_thread_sum = init;
}
// Write wrap's sum to shared memory.
if (warp.thread_rank() == WARP_SIZE - 1) {
warp_sums[warp.meta_group_rank()] =
op(prev_thread_sum, values[N_READS - 1]);
}
block.sync();
// Compute exclusive scan of warp sums.
if (warp.meta_group_rank() == 0) {
U prev_warp_sum =
cg::exclusive_scan(warp, warp_sums[warp.thread_rank()], op);
if (warp.thread_rank() == 0) {
prev_warp_sum = init;
}
warp_sums[warp.thread_rank()] = prev_warp_sum;
}
block.sync();
// Compute the output.
for (int i = 0; i < N_READS; ++i) {
values[i] = op(values[i], prefix);
values[i] = op(values[i], warp_sums[warp.meta_group_rank()]);
values[i] = op(values[i], prev_thread_sum);
}
// Write the values.
if (inclusive) {
store_values<reverse, 0>(index, out, values, axis_size);
} else {
store_values<reverse, 1>(index, out, values, axis_size);
if (reverse) {
if (block.thread_rank() == 0 && index == 0) {
out[axis_size - 1] = init;
}
} else {
if (block.thread_rank() == 0 && index == 0) {
out[0] = init;
}
}
}
block.sync();
// Share the prefix.
if ((warp.meta_group_rank() == warp.meta_group_size() - 1) &&
(warp.thread_rank() == WARP_SIZE - 1)) {
warp_sums[0] = values[N_READS - 1];
}
block.sync();
prefix = warp_sums[0];
}
}
template <
typename T,
typename U,
typename Op,
int N_READS,
int BM,
int BN,
bool inclusive,
bool reverse>
__global__ void strided_scan(
const T* in,
U* out,
int32_t axis_size,
int64_t stride,
int64_t stride_blocks) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
constexpr int BN_pad = WARP_SIZE + 16 / sizeof(U);
constexpr int n_warps = BN / N_READS;
constexpr int n_scans = BN / n_warps;
__shared__ U read_buffer[BM * BN_pad];
Op op;
U init = ReduceInit<Op, T>::value();
U values[n_scans];
U prefix[n_scans];
for (int i = 0; i < n_scans; ++i) {
prefix[i] = init;
}
// Compute offsets.
int64_t offset = (grid.block_rank() / stride_blocks) * axis_size * stride;
int64_t global_index_x = (grid.block_rank() % stride_blocks) * BN;
uint read_offset_y = (block.thread_rank() * N_READS) / BN;
uint read_offset_x = (block.thread_rank() * N_READS) % BN;
uint scan_offset_y = warp.thread_rank();
uint scan_offset_x = warp.meta_group_rank() * n_scans;
uint stride_limit = stride - global_index_x;
in += offset + global_index_x + read_offset_x;
out += offset + global_index_x + read_offset_x;
U* read_into = read_buffer + read_offset_y * BN_pad + read_offset_x;
U* read_from = read_buffer + scan_offset_y * BN_pad + scan_offset_x;
for (uint j = 0; j < axis_size; j += BM) {
// Calculate the indices for the current thread.
uint index_y = j + read_offset_y;
uint check_index_y = index_y;
if (reverse) {
index_y = axis_size - 1 - index_y;
}
// Read in SM.
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
read_into[i] = in[index_y * stride + i];
}
} else {
for (int i = 0; i < N_READS; ++i) {
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
read_into[i] = in[index_y * stride + i];
} else {
read_into[i] = init;
}
}
}
block.sync();
// Read strided into registers.
for (int i = 0; i < n_scans; ++i) {
values[i] = read_from[i];
}
// Perform the scan.
for (int i = 0; i < n_scans; ++i) {
values[i] = cg::inclusive_scan(warp, values[i], op);
values[i] = op(values[i], prefix[i]);
prefix[i] = warp.shfl(values[i], WARP_SIZE - 1);
}
// Write to SM.
for (int i = 0; i < n_scans; ++i) {
read_from[i] = values[i];
}
block.sync();
// Write to device memory.
if (!inclusive) {
if (check_index_y == 0) {
if ((read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
out[index_y * stride + i] = init;
}
} else {
for (int i = 0; i < N_READS; ++i) {
if ((read_offset_x + i) < stride_limit) {
out[index_y * stride + i] = init;
}
}
}
}
if (reverse) {
index_y -= 1;
check_index_y += 1;
} else {
index_y += 1;
check_index_y += 1;
}
}
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
out[index_y * stride + i] = read_into[i];
}
} else {
for (int i = 0; i < N_READS; ++i) {
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
out[index_y * stride + i] = read_into[i];
}
}
}
}
}
} // namespace cu
template <typename F>
void dispatch_scan_ops(Scan::ReduceType scan_op, F&& f) {
if (scan_op == Scan::ReduceType::Max) {
f(type_identity<cu::Max>{});
} else if (scan_op == Scan::ReduceType::Min) {
f(type_identity<cu::Min>{});
} else if (scan_op == Scan::ReduceType::Sum) {
f(type_identity<cu::Sum>{});
} else if (scan_op == Scan::ReduceType::Prod) {
f(type_identity<cu::Prod>{});
} else if (scan_op == Scan::ReduceType::LogAddExp) {
f(type_identity<cu::LogAddExp>{});
} else {
throw std::invalid_argument("Unknown reduce type.");
}
}
template <typename Op>
const char* op_to_string() {
if (cuda::std::is_same_v<Op, cu::Max>) {
return "Max";
} else if (cuda::std::is_same_v<Op, cu::Min>) {
return "Min";
} else if (cuda::std::is_same_v<Op, cu::Sum>) {
return "Sum";
} else if (cuda::std::is_same_v<Op, cu::Prod>) {
return "Prod";
} else if (cuda::std::is_same_v<Op, cu::LogAddExp>) {
return "LogAddExp";
} else {
throw std::invalid_argument("Unknown op.");
}
}
template <typename Op, typename T>
constexpr bool supports_scan_op() {
if constexpr (cuda::std::is_same_v<Op, LogAddExp>) {
return is_inexact_v<T>;
} else {
return true;
}
}
void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Scan::eval_gpu");
assert(inputs.size() == 1);
auto in = inputs[0];
auto& s = stream();
if (in.flags().contiguous && in.strides()[axis_] != 0) {
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.copy_shared_buffer(in);
} else {
out.set_data(
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
} else {
in = contiguous_copy_gpu(in, s);
out.copy_shared_buffer(in);
}
constexpr int N_READS = 4;
int32_t axis_size = in.shape(axis_);
bool contiguous = in.strides()[axis_] == 1;
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_all_types(in.dtype(), [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
dispatch_scan_ops(reduce_type_, [&](auto scan_op_tag) {
using Op = MLX_GET_TYPE(scan_op_tag);
if constexpr (supports_scan_op<Op, T>) {
using U = typename cu::ScanResult<Op, T>::type;
dispatch_bool(inclusive_, [&](auto inclusive) {
dispatch_bool(reverse_, [&](auto reverse) {
if (contiguous) {
auto kernel = cu::contiguous_scan<
T,
U,
Op,
N_READS,
inclusive.value,
reverse.value>;
int block_dim = cuda::ceil_div(axis_size, N_READS);
block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE;
block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE);
encoder.add_kernel_node(
kernel,
in.data_size() / axis_size,
block_dim,
in.data<T>(),
out.data<U>(),
axis_size);
} else {
constexpr int BM = WARP_SIZE;
constexpr int BN = WARP_SIZE;
auto kernel = cu::strided_scan<
T,
U,
Op,
N_READS,
BM,
BN,
inclusive.value,
reverse.value>;
int64_t stride = in.strides()[axis_];
int64_t stride_blocks = cuda::ceil_div(stride, BN);
dim3 num_blocks = get_2d_grid_dims(
in.shape(), in.strides(), axis_size * stride);
if (num_blocks.x * stride_blocks <= UINT32_MAX) {
num_blocks.x *= stride_blocks;
} else {
num_blocks.y *= stride_blocks;
}
int block_dim = (BN / N_READS) * WARP_SIZE;
encoder.add_kernel_node(
kernel,
num_blocks,
block_dim,
in.data<T>(),
out.data<U>(),
axis_size,
stride,
stride_blocks);
}
});
});
} else {
throw std::runtime_error(fmt::format(
"Can not do scan op {} on inputs of {} with result of {}.",
op_to_string<Op>(),
dtype_to_string(in.dtype()),
dtype_to_string(out.dtype())));
}
});
});
}
} // namespace mlx::core

View File

@@ -125,8 +125,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
} }
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy); out.copy_shared_buffer(x_copy);
return x_copy; return x_copy;
} }

View File

@@ -72,8 +72,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1; bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
if (!is_segmented_sort) { if (!is_segmented_sort) {
array trans = swapaxes_in_eval(in, axis, last_dim); array trans = swapaxes_in_eval(in, axis, last_dim);
in = array(trans.shape(), trans.dtype(), nullptr, {}); in = contiguous_copy_gpu(trans, s);
copy_gpu(trans, in, CopyType::General, s);
encoder.add_temporary(in); encoder.add_temporary(in);
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype()); out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
encoder.add_temporary(out); encoder.add_temporary(out);

View File

@@ -15,12 +15,27 @@ namespace cu {
namespace cg = cooperative_groups; namespace cg = cooperative_groups;
template <typename Op, typename T, typename IdxT> template <typename Op, typename T, typename IdxT, int N_READS>
__global__ void __global__ void
ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) { ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
out[index] = Op{}(a[index], b[index], c[index]); if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[i], c[i]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
auto c_vec = load_vector<N_READS>(c, index);
AlignedVector<T, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i], c_vec.val[i]);
}
store_vector<N_READS>(out, index, out_vec);
} }
} }
@@ -61,7 +76,7 @@ __global__ void ternary_g(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto [a_idx, b_idx, c_idx] = elem_to_loc_4d( auto [a_idx, b_idx, c_idx] = elem_to_loc(
index, index,
shape.data(), shape.data(),
a_strides.data(), a_strides.data(),
@@ -149,11 +164,18 @@ void ternary_op_gpu_inplace(
} }
}); });
} else { } else {
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) { dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>; using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
auto kernel = cu::ternary_v<Op, DType, IdxT>; // TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
auto kernel = cu::ternary_v<Op, DType, IdxT, N_READS>;
auto [num_blocks, block_dims] = get_launch_args( auto [num_blocks, block_dims] = get_launch_args(
kernel, out.data_size(), out.shape(), out.strides(), large()); kernel,
out.data_size(),
out.shape(),
out.strides(),
large(),
N_READS);
encoder.add_kernel_node( encoder.add_kernel_node(
kernel, kernel,
num_blocks, num_blocks,

View File

@@ -2,9 +2,7 @@
#include "mlx/backend/common/unary.h" #include "mlx/backend/common/unary.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/device/unary_ops.cuh" #include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh" #include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h" #include "mlx/dtype_utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@@ -18,11 +16,24 @@ namespace cu {
namespace cg = cooperative_groups; namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT> template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void unary_v(const In* in, Out* out, IdxT size) { __global__ void unary_v(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) {
out[index] = Op{}(in[index]); if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(in[i]);
}
} else {
auto in_vec = load_vector<N_READS>(in, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(in_vec.val[i]);
}
store_vector<N_READS>(out, index, out_vec);
} }
} }
@@ -36,7 +47,7 @@ __global__ void unary_g(
int ndim) { int ndim) {
IdxT index = cg::this_grid().thread_rank(); IdxT index = cg::this_grid().thread_rank();
if (index < size) { if (index < size) {
auto idx = elem_to_loc_4d(index, shape.data(), strides.data(), ndim); auto idx = elem_to_loc(index, shape.data(), strides.data(), ndim);
out[index] = Op{}(in[idx]); out[index] = Op{}(in[idx]);
} }
} }
@@ -58,10 +69,10 @@ constexpr bool supports_unary_op() {
!std::is_same_v<In, bool>; !std::is_same_v<In, bool>;
} }
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) { if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
return std::is_same_v<In, Out> && !std::is_same_v<In, complex64_t>; return std::is_same_v<In, Out> && !mlx::core::is_complex_v<In>;
} }
if (std::is_same_v<Op, Conjugate>) { if (std::is_same_v<Op, Conjugate>) {
return std::is_same_v<In, Out> && std::is_same_v<In, complex64_t>; return std::is_same_v<In, Out> && mlx::core::is_complex_v<In>;
} }
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> || if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> || std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
@@ -75,7 +86,7 @@ constexpr bool supports_unary_op() {
return std::is_same_v<In, Out> && is_inexact_v<In>; return std::is_same_v<In, Out> && is_inexact_v<In>;
} }
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) { if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
return std::is_same_v<In, complex64_t> && std::is_same_v<Out, float>; return mlx::core::is_complex_v<In> && std::is_same_v<Out, float>;
} }
if (std::is_same_v<Op, LogicalNot>) { if (std::is_same_v<Op, LogicalNot>) {
return std::is_same_v<In, Out> && std::is_same_v<In, bool>; return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
@@ -89,7 +100,7 @@ template <typename Op>
void unary_op_gpu_inplace( void unary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
auto& in = inputs[0]; auto& in = inputs[0];
if (in.size() == 0) { if (in.size() == 0) {
@@ -112,14 +123,20 @@ void unary_op_gpu_inplace(
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag); using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) { if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
dispatch_bool(large, [&](auto large) { dispatch_bool(large, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
using InType = cuda_type_t<CTYPE_IN>; using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>; using OutType = cuda_type_t<CTYPE_OUT>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
if (contig) { if (contig) {
auto kernel = cu::unary_v<Op, InType, OutType, IdxT>; using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
auto kernel = cu::unary_v<Op, InType, OutType, IdxT, N_READS>;
auto [num_blocks, block_dims] = get_launch_args( auto [num_blocks, block_dims] = get_launch_args(
kernel, out.data_size(), out.shape(), out.strides(), large); kernel,
out.data_size(),
out.shape(),
out.strides(),
large,
N_READS);
encoder.add_kernel_node( encoder.add_kernel_node(
kernel, kernel,
num_blocks, num_blocks,
@@ -128,6 +145,7 @@ void unary_op_gpu_inplace(
out.data<OutType>(), out.data<OutType>(),
out.data_size()); out.data_size());
} else { } else {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
auto [shape, strides] = collapse_contiguous_dims(in); auto [shape, strides] = collapse_contiguous_dims(in);
auto kernel = cu::unary_g<Op, InType, OutType, IdxT>; auto kernel = cu::unary_g<Op, InType, OutType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large); auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
@@ -158,17 +176,17 @@ template <typename Op>
void unary_op_gpu( void unary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
set_unary_output_data(inputs[0], out); set_unary_output_data(inputs[0], out);
unary_op_gpu_inplace<Op>(inputs, out, op, s); unary_op_gpu_inplace<Op>(inputs, out, op, s);
} }
#define UNARY_GPU(func) \ #define UNARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \ void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \ nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \ auto& s = out.primitive().stream(); \
unary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \ unary_op_gpu<cu::func>(inputs, out, name(), s); \
} }
UNARY_GPU(Abs) UNARY_GPU(Abs)
@@ -204,16 +222,15 @@ UNARY_GPU(Tanh)
void Log::eval_gpu(const std::vector<array>& inputs, array& out) { void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Log::eval_gpu"); nvtx3::scoped_range r("Log::eval_gpu");
auto& s = out.primitive().stream(); auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
switch (base_) { switch (base_) {
case Base::e: case Base::e:
unary_op_gpu<cu::Log>(inputs, out, op, s); unary_op_gpu<cu::Log>(inputs, out, name(), s);
break; break;
case Base::two: case Base::two:
unary_op_gpu<cu::Log2>(inputs, out, op, s); unary_op_gpu<cu::Log2>(inputs, out, name(), s);
break; break;
case Base::ten: case Base::ten:
unary_op_gpu<cu::Log10>(inputs, out, op, s); unary_op_gpu<cu::Log10>(inputs, out, name(), s);
break; break;
} }
} }
@@ -224,7 +241,7 @@ void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
const auto& in = inputs[0]; const auto& in = inputs[0];
auto& s = out.primitive().stream(); auto& s = out.primitive().stream();
if (issubdtype(in.dtype(), inexact)) { if (issubdtype(in.dtype(), inexact)) {
unary_op_gpu<cu::Round>(inputs, out, get_primitive_string(this), s); unary_op_gpu<cu::Round>(inputs, out, name(), s);
} else { } else {
// No-op integer types // No-op integer types
out.copy_shared_buffer(in); out.copy_shared_buffer(in);

View File

@@ -61,7 +61,7 @@ const char* dtype_to_cuda_type(const Dtype& dtype) {
case float64: case float64:
return "double"; return "double";
case complex64: case complex64:
return "cuComplex"; return "complex64_t";
default: default:
return "unknown"; return "unknown";
} }

View File

@@ -1,7 +1,6 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/worker.h" #include "mlx/backend/cuda/worker.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h" #include "mlx/backend/cuda/device.h"
namespace mlx::core::cu { namespace mlx::core::cu {
@@ -12,10 +11,10 @@ Worker::Worker()
Worker::~Worker() { Worker::~Worker() {
{ {
std::lock_guard lock(worker_mutex_); std::lock_guard lock(mtx_);
stop_ = true; stop_ = true;
} }
worker_event_.signal(batch_ + 1); cond_.notify_one();
worker_.join(); worker_.join();
} }
@@ -23,53 +22,41 @@ void Worker::add_task(std::function<void()> task) {
pending_tasks_.push_back(std::move(task)); pending_tasks_.push_back(std::move(task));
} }
void Worker::consume_in_this_thread() { void Worker::signal(void* data) {
for (auto& task : pending_tasks_) { auto w = static_cast<Worker*>(data);
task();
}
pending_tasks_.clear();
}
void Worker::end_batch() {
batch_++;
{ {
std::lock_guard lock(worker_mutex_); std::lock_guard lock(w->mtx_);
worker_tasks_[batch_] = std::move(pending_tasks_); w->signaled_batch_++;
} }
uncommited_batches_++; w->cond_.notify_one();
}
void Worker::commit() {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
worker_event_.signal(batch_);
} }
void Worker::commit(cudaStream_t stream) { void Worker::commit(cudaStream_t stream) {
if (uncommited_batches_ == 0) { // Move pending tasks into tasks
if (pending_tasks_.empty()) {
return; return;
} }
uncommited_batches_ = 0; {
// Signal the |worker_event_| in |signal_stream_| after the kernels in std::lock_guard lock(mtx_);
// |stream_| finish running. // Move pending tasks into ready tasks
worker_tasks_[++committed_batch_] = std::move(pending_tasks_);
}
signal_event_.record(stream); signal_event_.record(stream);
signal_event_.wait(signal_stream_); signal_event_.wait(signal_stream_);
worker_event_.signal(signal_stream_, batch_); cudaLaunchHostFunc(signal_stream_, signal, this);
} }
void Worker::thread_fn() { void Worker::thread_fn() {
// The worker thread is safe to free buffers.
allocator().register_this_thread();
while (!stop_) { while (!stop_) {
uint64_t batch = worker_event_.value(); uint64_t current_batch = 0;
Tasks tasks; Tasks tasks;
{ {
std::lock_guard lock(worker_mutex_); std::unique_lock<std::mutex> lk(mtx_);
// Move tasks in signaled batches. cond_.wait(lk, [this, &current_batch] {
auto end = worker_tasks_.upper_bound(batch); return this->signaled_batch_ > current_batch || this->stop_;
});
current_batch = signaled_batch_;
auto end = worker_tasks_.upper_bound(current_batch);
for (auto it = worker_tasks_.begin(); it != end; ++it) { for (auto it = worker_tasks_.begin(); it != end; ++it) {
if (tasks.empty()) { if (tasks.empty()) {
tasks = std::move(it->second); tasks = std::move(it->second);
@@ -85,7 +72,6 @@ void Worker::thread_fn() {
auto task = std::move(tasks[i]); auto task = std::move(tasks[i]);
task(); task();
} }
worker_event_.wait(batch + 1);
} }
} }

View File

@@ -5,6 +5,7 @@
#include "mlx/backend/cuda/event.h" #include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h" #include "mlx/backend/cuda/utils.h"
#include <condition_variable>
#include <functional> #include <functional>
#include <map> #include <map>
#include <mutex> #include <mutex>
@@ -24,38 +25,24 @@ class Worker {
// Add a pending |task| that will run when consumed or commited. // Add a pending |task| that will run when consumed or commited.
void add_task(std::function<void()> task); void add_task(std::function<void()> task);
// Run pending tasks immediately in current thread.
void consume_in_this_thread();
// Put pending tasks in a batch.
void end_batch();
// Inform worker thread to run current batches now.
void commit();
// Inform worker thread to run current batches after kernels in |stream| // Inform worker thread to run current batches after kernels in |stream|
// finish running. // finish running.
void commit(cudaStream_t stream); void commit(cudaStream_t stream);
// Return how many batches have been added but not committed yet.
size_t uncommited_batches() const {
return uncommited_batches_;
}
private: private:
void thread_fn(); static void signal(void*);
uint64_t batch_{0}; void thread_fn();
size_t uncommited_batches_{0}; std::mutex mtx_;
std::condition_variable cond_;
uint64_t committed_batch_{0};
uint64_t signaled_batch_{0};
// Cuda stream and event for signaling kernel completion. // Cuda stream and event for signaling kernel completion.
CudaStream signal_stream_; CudaStream signal_stream_;
CudaEvent signal_event_; CudaEvent signal_event_;
// Worker thread.
SharedEvent worker_event_;
std::thread worker_;
std::mutex worker_mutex_;
bool stop_{false}; bool stop_{false};
// Tasks are put in |pending_tasks_| first, and then moved to // Tasks are put in |pending_tasks_| first, and then moved to
@@ -63,6 +50,7 @@ class Worker {
using Tasks = std::vector<std::function<void()>>; using Tasks = std::vector<std::function<void()>>;
Tasks pending_tasks_; Tasks pending_tasks_;
std::map<uint64_t, Tasks> worker_tasks_; std::map<uint64_t, Tasks> worker_tasks_;
std::thread worker_;
}; };
} // namespace mlx::core::cu } // namespace mlx::core::cu

View File

@@ -46,4 +46,10 @@ void copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s); in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
} }
array contiguous_copy_gpu(const array& arr, const Stream& s) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
return arr_copy;
}
} // namespace mlx::core } // namespace mlx::core

View File

@@ -43,4 +43,7 @@ void copy_gpu_inplace(
// Fill the output with the scalar val // Fill the output with the scalar val
void fill_gpu(const array& val, array& out, const Stream& s); void fill_gpu(const array& val, array& out, const Stream& s);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_gpu(const array& arr, const Stream& s);
} // namespace mlx::core } // namespace mlx::core

View File

@@ -128,8 +128,7 @@ Buffer MetalAllocator::malloc(size_t size) {
auto pool = metal::new_scoped_memory_pool(); auto pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure or are over the maximum cache size, // If we have a lot of memory pressure try to reclaim memory from the cache
// try to reclaim memory from the cache
if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) { if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) {
num_resources_ -= num_resources_ -=
buffer_cache_.release_cached_buffers(mem_required - gc_limit_); buffer_cache_.release_cached_buffers(mem_required - gc_limit_);

View File

@@ -7,20 +7,20 @@
#define BINARY_GPU(func) \ #define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \ void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
binary_op_gpu(inputs, out, get_primitive_string(this)); \ binary_op_gpu(inputs, out, name()); \
} }
#define BINARY_GPU_MULTI(func) \ #define BINARY_GPU_MULTI(func) \
void func::eval_gpu( \ void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \ const std::vector<array>& inputs, std::vector<array>& outputs) { \
binary_op_gpu(inputs, outputs, get_primitive_string(this)); \ binary_op_gpu(inputs, outputs, name()); \
} }
namespace mlx::core { namespace mlx::core {
std::string get_kernel_name( std::string get_kernel_name(
BinaryOpType bopt, BinaryOpType bopt,
const std::string& op, const char* op,
const array& a, const array& a,
bool large, bool large,
int ndim, int ndim,
@@ -65,7 +65,7 @@ std::string get_kernel_name(
void binary_op_gpu_inplace( void binary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
auto& a = inputs[0]; auto& a = inputs[0];
auto& b = inputs[1]; auto& b = inputs[1];
@@ -165,7 +165,7 @@ void binary_op_gpu_inplace(
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
assert(inputs.size() == 2); assert(inputs.size() == 2);
auto& a = inputs[0]; auto& a = inputs[0];
@@ -179,7 +179,7 @@ void binary_op_gpu(
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
const std::string& op) { const char* op) {
auto& s = outputs[0].primitive().stream(); auto& s = outputs[0].primitive().stream();
binary_op_gpu(inputs, outputs, op, s); binary_op_gpu(inputs, outputs, op, s);
} }
@@ -187,7 +187,7 @@ void binary_op_gpu(
void binary_op_gpu_inplace( void binary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
std::vector<array> outputs = {out}; std::vector<array> outputs = {out};
binary_op_gpu_inplace(inputs, outputs, op, s); binary_op_gpu_inplace(inputs, outputs, op, s);
@@ -196,7 +196,7 @@ void binary_op_gpu_inplace(
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s) { const Stream& s) {
assert(inputs.size() == 2); assert(inputs.size() == 2);
auto& a = inputs[0]; auto& a = inputs[0];
@@ -209,7 +209,7 @@ void binary_op_gpu(
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op) { const char* op) {
auto& s = out.primitive().stream(); auto& s = out.primitive().stream();
binary_op_gpu(inputs, out, op, s); binary_op_gpu(inputs, out, op, s);
} }
@@ -237,19 +237,19 @@ BINARY_GPU(Subtract)
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) { void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
switch (op_) { switch (op_) {
case BitwiseBinary::And: case BitwiseBinary::And:
binary_op_gpu(inputs, out, get_primitive_string(this)); binary_op_gpu(inputs, out, name());
break; break;
case BitwiseBinary::Or: case BitwiseBinary::Or:
binary_op_gpu(inputs, out, get_primitive_string(this)); binary_op_gpu(inputs, out, name());
break; break;
case BitwiseBinary::Xor: case BitwiseBinary::Xor:
binary_op_gpu(inputs, out, get_primitive_string(this)); binary_op_gpu(inputs, out, name());
break; break;
case BitwiseBinary::LeftShift: case BitwiseBinary::LeftShift:
binary_op_gpu(inputs, out, get_primitive_string(this)); binary_op_gpu(inputs, out, name());
break; break;
case BitwiseBinary::RightShift: case BitwiseBinary::RightShift:
binary_op_gpu(inputs, out, get_primitive_string(this)); binary_op_gpu(inputs, out, name());
break; break;
} }
} }

View File

@@ -9,25 +9,25 @@ namespace mlx::core {
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
const std::string& op, const char* op,
const Stream& s); const Stream& s);
void binary_op_gpu( void binary_op_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s); const Stream& s);
void binary_op_gpu_inplace( void binary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs, std::vector<array>& outputs,
const std::string& op, const char* op,
const Stream& s); const Stream& s);
void binary_op_gpu_inplace( void binary_op_gpu_inplace(
const std::vector<array>& inputs, const std::vector<array>& inputs,
array& out, array& out,
const std::string& op, const char* op,
const Stream& s); const Stream& s);
} // namespace mlx::core } // namespace mlx::core

View File

@@ -212,9 +212,7 @@ inline void build_kernel(
get_type_string(x.dtype()), get_type_string(x.dtype()),
namer.get_name(x.inputs()[0])); namer.get_name(x.inputs()[0]));
} else { } else {
std::ostringstream ss; os += x.primitive().name();
x.primitive().print(ss);
os += ss.str();
os += "()("; os += "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) { for (int i = 0; i < x.inputs().size() - 1; i++) {
os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i])); os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i]));

View File

@@ -149,8 +149,7 @@ void explicit_gemm_conv_group_ND_gpu(
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size()); wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
// Materialize // Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {}); array wt_transpose = contiguous_copy_gpu(wt_view, s);
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
// Perform gemm // Perform gemm
std::vector<array> copies = {in_unfolded, wt_transpose}; std::vector<array> copies = {in_unfolded, wt_transpose};
@@ -961,16 +960,12 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
auto in = inputs[0]; auto in = inputs[0];
auto wt = inputs[1]; auto wt = inputs[1];
if (!in.flags().row_contiguous) { if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {}); in = contiguous_copy_gpu(in, s);
copy_gpu(in, arr_copy, CopyType::General, s); copies.push_back(in);
copies.push_back(arr_copy);
in = arr_copy;
} }
if (!wt.flags().row_contiguous) { if (!wt.flags().row_contiguous) {
array arr_copy(wt.shape(), wt.dtype(), nullptr, {}); wt = contiguous_copy_gpu(wt, s);
copy_gpu(wt, arr_copy, CopyType::General, s); copies.push_back(wt);
copies.push_back(arr_copy);
wt = arr_copy;
} }
// 3D conv // 3D conv

View File

@@ -86,7 +86,7 @@ void copy_gpu_inplace(
} }
} else { } else {
work_per_thread = get_work_per_thread(out.dtype(), out.data_size()); work_per_thread = get_work_per_thread(out.dtype(), out.data_size());
if (work_per_thread > 1) { if (!large && work_per_thread > 1) {
kernel_name += "n"; kernel_name += "n";
} }
} }

View File

@@ -1,20 +1,18 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include <cstdlib> #include <cstdlib>
#include <filesystem>
#include <sstream> #include <sstream>
#define NS_PRIVATE_IMPLEMENTATION #define NS_PRIVATE_IMPLEMENTATION
#define CA_PRIVATE_IMPLEMENTATION #define CA_PRIVATE_IMPLEMENTATION
#define MTL_PRIVATE_IMPLEMENTATION #define MTL_PRIVATE_IMPLEMENTATION
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/device.h" #include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal.h" #include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/utils.h" #include "mlx/backend/metal/utils.h"
#include "mlx/utils.h" #include "mlx/utils.h"
namespace fs = std::filesystem;
namespace mlx::core::metal { namespace mlx::core::metal {
namespace { namespace {
@@ -80,12 +78,7 @@ MTL::Library* try_load_bundle(
std::pair<MTL::Library*, NS::Error*> load_colocated_library( std::pair<MTL::Library*, NS::Error*> load_colocated_library(
MTL::Device* device, MTL::Device* device,
const std::string& relative_path) { const std::string& relative_path) {
std::string binary_dir = get_binary_directory(); auto path = current_binary_dir() / relative_path;
if (binary_dir.size() == 0) {
return {nullptr, nullptr};
}
auto path = fs::path(binary_dir) / relative_path;
if (!path.has_extension()) { if (!path.has_extension()) {
path.replace_extension(".metallib"); path.replace_extension(".metallib");
} }
@@ -197,7 +190,7 @@ MTL::Library* load_library(
std::ostringstream msg; std::ostringstream msg;
msg << "Failed to load the metallib " << lib_name << ".metallib. " msg << "Failed to load the metallib " << lib_name << ".metallib. "
<< "We attempted to load it from <" << get_binary_directory() << "/" << "We attempted to load it from <" << current_binary_dir() << "/"
<< lib_name << ".metallib" << ">"; << lib_name << ".metallib" << ">";
#ifdef SWIFTPM_BUNDLE #ifdef SWIFTPM_BUNDLE
msg << " and from the Swift PM bundle."; msg << " and from the Swift PM bundle.";

View File

@@ -3,8 +3,6 @@
#pragma once #pragma once
#include <Metal/Metal.hpp> #include <Metal/Metal.hpp>
#include <dlfcn.h>
#include <filesystem>
#include <functional> #include <functional>
#include <mutex> #include <mutex>
#include <shared_mutex> #include <shared_mutex>
@@ -15,22 +13,8 @@
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/device.h" #include "mlx/device.h"
namespace fs = std::filesystem;
namespace mlx::core::metal { namespace mlx::core::metal {
// Note, this function must be left inline in a header so that it is not
// dynamically linked.
inline std::string get_binary_directory() {
Dl_info info;
std::string directory;
int success = dladdr((void*)get_binary_directory, &info);
if (success) {
directory = fs::path(info.dli_fname).remove_filename().c_str();
}
return directory;
}
using MTLFCList = using MTLFCList =
std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>; std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>;

View File

@@ -14,6 +14,10 @@ Event::Event(Stream stream) : stream_(stream) {
auto p = metal::new_scoped_memory_pool(); auto p = metal::new_scoped_memory_pool();
event_ = std::shared_ptr<void>( event_ = std::shared_ptr<void>(
metal::device(Device::gpu).mtl_device()->newSharedEvent(), dtor); metal::device(Device::gpu).mtl_device()->newSharedEvent(), dtor);
if (event_ == nullptr) {
throw std::runtime_error(
"[Event::Event] Failed to create Metal shared event.");
}
} }
void Event::wait() { void Event::wait() {

View File

@@ -8,12 +8,6 @@ using namespace fmt::literals;
namespace mlx::core { namespace mlx::core {
std::string op_name(const array& arr) {
std::ostringstream op_t;
arr.primitive().print(op_t);
return op_t.str();
}
MTL::ComputePipelineState* get_arange_kernel( MTL::ComputePipelineState* get_arange_kernel(
metal::Device& d, metal::Device& d,
const std::string& kernel_name, const std::string& kernel_name,
@@ -33,7 +27,7 @@ MTL::ComputePipelineState* get_unary_kernel(
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op) { const char* op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1); std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() { auto lib = d.get_library(lib_name, [&]() {
auto in_t = get_type_string(in_type); auto in_t = get_type_string(in_type);
@@ -58,10 +52,10 @@ MTL::ComputePipelineState* get_unary_kernel(
} }
void append_binary_kernels( void append_binary_kernels(
const std::string lib_name, const std::string& lib_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op, const char* op,
std::string& kernel_source) { std::string& kernel_source) {
const std::array<std::pair<std::string, std::string>, 7> kernel_types = {{ const std::array<std::pair<std::string, std::string>, 7> kernel_types = {{
{"ss", "binary_ss"}, {"ss", "binary_ss"},
@@ -112,7 +106,7 @@ MTL::ComputePipelineState* get_binary_kernel(
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op) { const char* op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1); std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() { auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source; std::string kernel_source;
@@ -129,7 +123,7 @@ MTL::ComputePipelineState* get_binary_two_kernel(
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op) { const char* op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1); std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() { auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source = metal::utils(); std::string kernel_source = metal::utils();
@@ -144,7 +138,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
metal::Device& d, metal::Device& d,
const std::string& kernel_name, const std::string& kernel_name,
Dtype type, Dtype type,
const std::string op) { const char* op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1); std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() { auto lib = d.get_library(lib_name, [&]() {
auto t_str = get_type_string(type); auto t_str = get_type_string(type);

View File

@@ -19,27 +19,27 @@ MTL::ComputePipelineState* get_unary_kernel(
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op); const char* op);
MTL::ComputePipelineState* get_binary_kernel( MTL::ComputePipelineState* get_binary_kernel(
metal::Device& d, metal::Device& d,
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op); const char* op);
MTL::ComputePipelineState* get_binary_two_kernel( MTL::ComputePipelineState* get_binary_two_kernel(
metal::Device& d, metal::Device& d,
const std::string& kernel_name, const std::string& kernel_name,
Dtype in_type, Dtype in_type,
Dtype out_type, Dtype out_type,
const std::string op); const char* op);
MTL::ComputePipelineState* get_ternary_kernel( MTL::ComputePipelineState* get_ternary_kernel(
metal::Device& d, metal::Device& d,
const std::string& kernel_name, const std::string& kernel_name,
Dtype type, Dtype type,
const std::string op); const char* op);
MTL::ComputePipelineState* get_copy_kernel( MTL::ComputePipelineState* get_copy_kernel(
metal::Device& d, metal::Device& d,
@@ -257,8 +257,10 @@ MTL::ComputePipelineState* get_gather_qmm_kernel(
// Create a GPU kernel template definition for JIT compilation // Create a GPU kernel template definition for JIT compilation
template <typename... Args> template <typename... Args>
std::string std::string get_template_definition(
get_template_definition(std::string name, std::string func, Args... args) { std::string_view name,
std::string_view func,
Args... args) {
std::ostringstream s; std::ostringstream s;
s << func << "<"; s << func << "<";
bool first = true; bool first = true;

View File

@@ -0,0 +1,134 @@
// Copyright © 2025 Apple Inc.
// Copyright © 2008-2013 NVIDIA Corporation
// Copyright © 2013 Filipe RNC Maia
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Forked from
// https://github.com/NVIDIA/cccl/blob/main/thrust/thrust/detail/complex/cexpf.h
// TODO: We should use thrust::exp but the thrust header in old CUDA versions
// can not be used in JIT.
#pragma once
#include <metal_math>
using ieee_float_shape_type = union {
float value;
uint32_t word;
};
inline void get_float_word(thread uint32_t& i, float d) {
ieee_float_shape_type gf_u;
gf_u.value = (d);
(i) = gf_u.word;
}
inline void get_float_word(thread int32_t& i, float d) {
ieee_float_shape_type gf_u;
gf_u.value = (d);
(i) = gf_u.word;
}
inline void set_float_word(thread float& d, uint32_t i) {
ieee_float_shape_type sf_u;
sf_u.word = (i);
(d) = sf_u.value;
}
inline float frexp_expf(float x, thread int* expt) {
const uint32_t k = 235;
const float kln2 = 162.88958740F;
float exp_x;
uint32_t hx;
exp_x = metal::exp(x - kln2);
get_float_word(hx, exp_x);
*expt = (hx >> 23) - (0x7f + 127) + k;
set_float_word(exp_x, (hx & 0x7fffff) | ((0x7f + 127) << 23));
return exp_x;
}
inline complex64_t ldexp_cexpf(complex64_t z, int expt) {
float x, y, exp_x, scale1, scale2;
int ex_expt, half_expt;
x = z.real;
y = z.imag;
exp_x = frexp_expf(x, &ex_expt);
expt += ex_expt;
half_expt = expt / 2;
set_float_word(scale1, (0x7f + half_expt) << 23);
half_expt = expt - half_expt;
set_float_word(scale2, (0x7f + half_expt) << 23);
return complex64_t{
metal::cos(y) * exp_x * scale1 * scale2,
metal::sin(y) * exp_x * scale1 * scale2};
}
inline complex64_t cexpf(const thread complex64_t& z) {
float x, y, exp_x;
uint32_t hx, hy;
const uint32_t exp_ovfl = 0x42b17218, cexp_ovfl = 0x43400074;
x = z.real;
y = z.imag;
get_float_word(hy, y);
hy &= 0x7fffffff;
/* cexp(x + I 0) = exp(x) + I 0 */
if (hy == 0) {
return complex64_t{metal::exp(x), y};
}
get_float_word(hx, x);
/* cexp(0 + I y) = cos(y) + I sin(y) */
if ((hx & 0x7fffffff) == 0) {
return complex64_t{metal::cos(y), metal::sin(y)};
}
if (hy >= 0x7f800000) {
if ((hx & 0x7fffffff) != 0x7f800000) {
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
return complex64_t{y - y, y - y};
} else if (hx & 0x80000000) {
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
return complex64_t{0.0, 0.0};
} else {
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
return complex64_t{x, y - y};
}
}
if (hx >= exp_ovfl && hx <= cexp_ovfl) {
/*
* x is between 88.7 and 192, so we must scale to avoid
* overflow in expf(x).
*/
return ldexp_cexpf(z, 0);
} else {
/*
* Cases covered here:
* - x < exp_ovfl and exp(x) won't overflow (common case)
* - x > cexp_ovfl, so exp(x) * s overflows for all s > 0
* - x = +-Inf (generated by exp())
* - x = NaN (spurious inexact exception from y)
*/
exp_x = metal::exp(x);
return complex64_t{exp_x * metal::cos(y), exp_x * metal::sin(y)};
}
}

View File

@@ -643,14 +643,14 @@ struct QuantizedBlockLoader {
return; return;
} }
if (reduction_dim == 1 && bi >= src_tile_dim.y) { if (reduction_dim == 1 && bi >= src_tile_dim.x) {
for (int i = 0; i < n_reads * pack_factor; i++) { for (int i = 0; i < n_reads * pack_factor; i++) {
dst[i] = T(0); dst[i] = T(0);
} }
return; return;
} }
if (reduction_dim == 0 && bi >= src_tile_dim.x) { if (reduction_dim == 0 && bi >= src_tile_dim.y) {
for (int i = 0; i < n_reads * pack_factor; i++) { for (int i = 0; i < n_reads * pack_factor; i++) {
dst[i] = T(0); dst[i] = T(0);
} }

View File

@@ -164,7 +164,15 @@ struct Min {
DEFINE_SIMD_REDUCE() DEFINE_SIMD_REDUCE()
template <typename T> template <typename T>
T simd_reduce_impl(T val) { metal::enable_if_t<metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
return simd_min(val);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
if (simd_any(val != val)) {
return static_cast<T>(NAN);
}
return simd_min(val); return simd_min(val);
} }
@@ -176,17 +184,52 @@ struct Min {
} }
// Operator // Operator
U operator()(U a, U b) { template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T a, T b) {
return a < b ? a : b; return a < b ? a : b;
} }
};
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T a, T b) {
if (metal::isnan(a) || metal::isnan(b)) {
return static_cast<T>(NAN);
} else {
return a < b ? a : b;
}
}
template <>
complex64_t operator()(complex64_t a, complex64_t b) {
bool real_is_nan = metal::isnan(a.real) || metal::isnan(b.real);
bool imag_is_nan = metal::isnan(a.imag) || metal::isnan(b.imag);
if (!real_is_nan && !imag_is_nan) {
return a < b ? a : b;
} else if (real_is_nan && !imag_is_nan) {
return complex64_t(
static_cast<float>(NAN), a.imag < b.imag ? a.imag : b.imag);
} else if (!real_is_nan && imag_is_nan) {
return complex64_t(
a.real < b.real ? a.real : b.real, static_cast<float>(NAN));
} else {
return complex64_t(static_cast<float>(NAN), static_cast<float>(NAN));
}
};
};
template <typename U> template <typename U>
struct Max { struct Max {
DEFINE_SIMD_REDUCE() DEFINE_SIMD_REDUCE()
template <typename T> template <typename T>
T simd_reduce_impl(T val) { metal::enable_if_t<metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
return simd_max(val);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
if (simd_any(val != val)) {
return static_cast<T>(NAN);
}
return simd_max(val); return simd_max(val);
} }
@@ -198,7 +241,35 @@ struct Max {
} }
// Operator // Operator
U operator()(U a, U b) { template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T a, T b) {
return a > b ? a : b; return a > b ? a : b;
} }
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T a, T b) {
if (metal::isnan(a) || metal::isnan(b)) {
return static_cast<T>(NAN);
} else {
return a > b ? a : b;
}
}
template <>
complex64_t operator()(complex64_t a, complex64_t b) {
bool real_is_nan = metal::isnan(a.real) || metal::isnan(b.real);
bool imag_is_nan = metal::isnan(a.imag) || metal::isnan(b.imag);
if (!real_is_nan && !imag_is_nan) {
return a > b ? a : b;
} else if (real_is_nan && !imag_is_nan) {
return complex64_t(
static_cast<float>(NAN), a.imag > b.imag ? a.imag : b.imag);
} else if (!real_is_nan && imag_is_nan) {
return complex64_t(
a.real > b.real ? a.real : b.real, static_cast<float>(NAN));
} else {
return complex64_t(static_cast<float>(NAN), static_cast<float>(NAN));
}
}
}; };

View File

@@ -5,6 +5,7 @@
#include <metal_integer> #include <metal_integer>
#include <metal_math> #include <metal_math>
#include "mlx/backend/metal/kernels/cexpf.h"
#include "mlx/backend/metal/kernels/erf.h" #include "mlx/backend/metal/kernels/erf.h"
#include "mlx/backend/metal/kernels/expm1f.h" #include "mlx/backend/metal/kernels/expm1f.h"
@@ -178,8 +179,7 @@ struct Exp {
return metal::precise::exp(x); return metal::precise::exp(x);
}; };
complex64_t operator()(complex64_t x) { complex64_t operator()(complex64_t x) {
auto m = metal::precise::exp(x.real); return cexpf(x);
return {m * metal::precise::cos(x.imag), m * metal::precise::sin(x.imag)};
} }
}; };

View File

@@ -25,8 +25,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) { if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x; return x;
} else { } else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
d.add_temporary(x_copy, s.index); d.add_temporary(x_copy, s.index);
return x_copy; return x_copy;
} }

View File

@@ -33,8 +33,7 @@ std::tuple<bool, int64_t, array> check_transpose(
} else if (stx == 1 && (!is_vector || sty == arr.shape(-2))) { } else if (stx == 1 && (!is_vector || sty == arr.shape(-2))) {
return std::make_tuple(true, sty, arr); return std::make_tuple(true, sty, arr);
} else { } else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {}); array arr_copy = contiguous_copy_gpu(arr, s);
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy); copies.push_back(arr_copy);
return std::make_tuple(false, arr.shape(-1), arr_copy); return std::make_tuple(false, arr.shape(-1), arr_copy);
} }
@@ -43,8 +42,7 @@ std::tuple<bool, int64_t, array> check_transpose(
inline array inline array
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) { ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
if (!x.flags().row_contiguous) { if (!x.flags().row_contiguous) {
array x_copy(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
d.add_temporary(x_copy, s.index); d.add_temporary(x_copy, s.index);
return x_copy; return x_copy;
} else { } else {
@@ -75,8 +73,7 @@ ensure_batch_contiguous(const array& x, metal::Device& d, const Stream& s) {
} }
} }
array x_copy(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
d.add_temporary(x_copy, s.index); d.add_temporary(x_copy, s.index);
return std::make_tuple(false, x_copy.strides()[x_copy.ndim() - 2], x_copy); return std::make_tuple(false, x_copy.strides()[x_copy.ndim() - 2], x_copy);
} }
@@ -1894,8 +1891,7 @@ void segmented_mm(
return std::make_tuple(false, x); return std::make_tuple(false, x);
} }
array x_copy(x.shape(), x.dtype(), nullptr, {}); array x_copy = contiguous_copy_gpu(x, s);
copy_gpu(x, x_copy, CopyType::General, s);
d.add_temporary(x_copy, s.index); d.add_temporary(x_copy, s.index);
return std::make_tuple(true, x_copy); return std::make_tuple(true, x_copy);
}; };

Some files were not shown because too many files have changed in this diff Show More