mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
10 Commits
v0.26.5
...
9a742090ae
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9a742090ae | ||
|
|
aca7fac9ef | ||
|
|
8b15773206 | ||
|
|
3e885f583a | ||
|
|
c7af3016eb | ||
|
|
9794ec6b8e | ||
|
|
e0bb9f3ef8 | ||
|
|
5b089dc5da | ||
|
|
af74818528 | ||
|
|
0d30e9e8ec |
@@ -7,6 +7,18 @@ parameters:
|
|||||||
nightly_build:
|
nightly_build:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
weekly_build:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
test_release:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
linux_release:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
cuda_release:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build_documentation:
|
build_documentation:
|
||||||
@@ -29,7 +41,7 @@ jobs:
|
|||||||
pip install --upgrade pip
|
pip install --upgrade pip
|
||||||
pip install --upgrade cmake
|
pip install --upgrade cmake
|
||||||
pip install -r docs/requirements.txt
|
pip install -r docs/requirements.txt
|
||||||
pip install . -v
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||||
- when:
|
- when:
|
||||||
condition:
|
condition:
|
||||||
not: << parameters.upload-docs >>
|
not: << parameters.upload-docs >>
|
||||||
@@ -61,9 +73,9 @@ jobs:
|
|||||||
git push -f origin gh-pages
|
git push -f origin gh-pages
|
||||||
|
|
||||||
linux_build_and_test:
|
linux_build_and_test:
|
||||||
machine:
|
docker:
|
||||||
image: ubuntu-2204:current
|
- image: cimg/python:3.9
|
||||||
resource_class: large
|
|
||||||
steps:
|
steps:
|
||||||
- checkout
|
- checkout
|
||||||
- run:
|
- run:
|
||||||
@@ -75,17 +87,21 @@ jobs:
|
|||||||
- run:
|
- run:
|
||||||
name: Install dependencies
|
name: Install dependencies
|
||||||
command: |
|
command: |
|
||||||
export DEBIAN_FRONTEND=noninteractive
|
|
||||||
export NEEDRESTART_MODE=a
|
|
||||||
sudo apt-get update
|
|
||||||
sudo apt-get upgrade -y
|
|
||||||
pip install --upgrade cmake
|
pip install --upgrade cmake
|
||||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
pip install nanobind==2.4.0
|
||||||
|
pip install numpy
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||||
- run:
|
- run:
|
||||||
name: Install Python package
|
name: Install Python package
|
||||||
command: |
|
command: |
|
||||||
pip install -e ".[dev]"
|
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
python3 setup.py build_ext --inplace
|
||||||
|
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
python3 setup.py develop
|
||||||
- run:
|
- run:
|
||||||
name: Generate package stubs
|
name: Generate package stubs
|
||||||
command: |
|
command: |
|
||||||
@@ -95,14 +111,13 @@ jobs:
|
|||||||
- run:
|
- run:
|
||||||
name: Run Python tests
|
name: Run Python tests
|
||||||
command: |
|
command: |
|
||||||
python -m unittest discover python/tests -v
|
python3 -m unittest discover python/tests -v
|
||||||
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
|
||||||
- run:
|
- run:
|
||||||
name: Build CPP only
|
name: Build CPP only
|
||||||
command: |
|
command: |
|
||||||
mkdir -p build && cd build
|
mkdir -p build && cd build
|
||||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||||
make -j `nproc`
|
make -j `nproc`
|
||||||
- run:
|
- run:
|
||||||
@@ -142,7 +157,8 @@ jobs:
|
|||||||
name: Install Python package
|
name: Install Python package
|
||||||
command: |
|
command: |
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||||
pip install -e . -v
|
pip install -e . -v
|
||||||
- run:
|
- run:
|
||||||
name: Generate package stubs
|
name: Generate package stubs
|
||||||
@@ -157,8 +173,7 @@ jobs:
|
|||||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
|
||||||
- run:
|
- run:
|
||||||
name: Build example extension
|
name: Build example extension
|
||||||
command: |
|
command: |
|
||||||
@@ -193,7 +208,8 @@ jobs:
|
|||||||
name: Run Python tests with JIT
|
name: Run Python tests with JIT
|
||||||
command: |
|
command: |
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||||
pip install -e . -v
|
pip install -e . -v
|
||||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||||
METAL_DEBUG_ERROR_MODE=0 \
|
METAL_DEBUG_ERROR_MODE=0 \
|
||||||
@@ -201,7 +217,7 @@ jobs:
|
|||||||
|
|
||||||
cuda_build_and_test:
|
cuda_build_and_test:
|
||||||
machine:
|
machine:
|
||||||
image: linux-cuda-12:2023.11.1
|
image: linux-cuda-12:default
|
||||||
resource_class: gpu.nvidia.small.gen2
|
resource_class: gpu.nvidia.small.gen2
|
||||||
steps:
|
steps:
|
||||||
- checkout
|
- checkout
|
||||||
@@ -210,9 +226,10 @@ jobs:
|
|||||||
command: |
|
command: |
|
||||||
sudo apt-get update
|
sudo apt-get update
|
||||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||||
python3 -m venv env
|
python -m venv env
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||||
pip install -e ".[dev]"
|
pip install -e ".[dev]"
|
||||||
- run:
|
- run:
|
||||||
name: Run Python tests
|
name: Run Python tests
|
||||||
@@ -261,6 +278,7 @@ jobs:
|
|||||||
command: |
|
command: |
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
pip install . -v
|
pip install . -v
|
||||||
- run:
|
- run:
|
||||||
name: Generate package stubs
|
name: Generate package stubs
|
||||||
@@ -272,18 +290,9 @@ jobs:
|
|||||||
name: Build Python package
|
name: Build Python package
|
||||||
command: |
|
command: |
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
python setup.py clean --all
|
<< parameters.build_env >> \
|
||||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
- when:
|
python -m build -w
|
||||||
condition:
|
|
||||||
equal: ["3.9", << parameters.python_version >>]
|
|
||||||
steps:
|
|
||||||
- run:
|
|
||||||
name: Build common package
|
|
||||||
command: |
|
|
||||||
source env/bin/activate
|
|
||||||
python setup.py clean --all
|
|
||||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
|
||||||
- when:
|
- when:
|
||||||
condition: << parameters.build_env >>
|
condition: << parameters.build_env >>
|
||||||
steps:
|
steps:
|
||||||
@@ -300,71 +309,63 @@ jobs:
|
|||||||
python_version:
|
python_version:
|
||||||
type: string
|
type: string
|
||||||
default: "3.9"
|
default: "3.9"
|
||||||
build_env:
|
extra_env:
|
||||||
type: string
|
type: string
|
||||||
default: ""
|
default: "DEV_RELEASE=1"
|
||||||
machine:
|
docker:
|
||||||
image: ubuntu-2204:current
|
- image: ubuntu:20.04
|
||||||
resource_class: large
|
|
||||||
steps:
|
steps:
|
||||||
- checkout
|
- checkout
|
||||||
- run:
|
- run:
|
||||||
name: Build wheel
|
name: Build wheel
|
||||||
command: |
|
command: |
|
||||||
PYTHON=python<< parameters.python_version >>
|
PYTHON=python<< parameters.python_version >>
|
||||||
export DEBIAN_FRONTEND=noninteractive
|
apt-get update
|
||||||
export NEEDRESTART_MODE=a
|
apt-get upgrade -y
|
||||||
sudo apt-get update
|
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||||
sudo apt-get upgrade -y
|
apt-get install -y apt-utils
|
||||||
TZ=Etc/UTC sudo apt-get -y install tzdata
|
apt-get install -y software-properties-common
|
||||||
sudo apt-get install -y apt-utils
|
add-apt-repository -y ppa:deadsnakes/ppa
|
||||||
sudo apt-get install -y software-properties-common
|
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||||
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
apt-get install -y build-essential git
|
||||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
|
||||||
sudo apt-get install -y build-essential git
|
|
||||||
$PYTHON -m venv env
|
$PYTHON -m venv env
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
pip install --upgrade pip
|
pip install --upgrade pip
|
||||||
pip install --upgrade cmake
|
pip install --upgrade cmake
|
||||||
|
pip install nanobind==2.4.0
|
||||||
|
pip install --upgrade setuptools
|
||||||
|
pip install numpy
|
||||||
pip install auditwheel
|
pip install auditwheel
|
||||||
pip install patchelf
|
pip install patchelf
|
||||||
pip install build
|
pip install build
|
||||||
pip install twine
|
pip install twine
|
||||||
<< parameters.build_env >> pip install ".[dev]" -v
|
<< parameters.extra_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
pip install . -v
|
||||||
pip install typing_extensions
|
pip install typing_extensions
|
||||||
python setup.py generate_stubs
|
python setup.py generate_stubs
|
||||||
python setup.py clean --all
|
<< parameters.extra_env >> \
|
||||||
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
bash python/scripts/repair_linux.sh
|
python -m build --wheel
|
||||||
- when:
|
auditwheel show dist/*
|
||||||
condition:
|
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||||
equal: ["3.9", << parameters.python_version >>]
|
- run:
|
||||||
steps:
|
name: Upload package
|
||||||
- run:
|
command: |
|
||||||
name: Build common package
|
source env/bin/activate
|
||||||
command: |
|
twine upload wheelhouse/*
|
||||||
source env/bin/activate
|
|
||||||
python setup.py clean --all
|
|
||||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
|
||||||
python -m build -w
|
|
||||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
|
|
||||||
- when:
|
|
||||||
condition: << parameters.build_env >>
|
|
||||||
steps:
|
|
||||||
- run:
|
|
||||||
name: Upload packages
|
|
||||||
command: |
|
|
||||||
source env/bin/activate
|
|
||||||
twine upload wheelhouse/*.whl
|
|
||||||
- store_artifacts:
|
- store_artifacts:
|
||||||
path: wheelhouse/
|
path: wheelhouse/
|
||||||
|
|
||||||
build_cuda_release:
|
build_cuda_release:
|
||||||
parameters:
|
parameters:
|
||||||
build_env:
|
python_version:
|
||||||
type: string
|
type: string
|
||||||
default: ""
|
default: "3.9"
|
||||||
|
extra_env:
|
||||||
|
type: string
|
||||||
|
default: "DEV_RELEASE=1"
|
||||||
machine:
|
machine:
|
||||||
image: linux-cuda-12:default
|
image: linux-cuda-12:default
|
||||||
resource_class: gpu.nvidia.small.gen2
|
resource_class: gpu.nvidia.small.gen2
|
||||||
@@ -375,25 +376,27 @@ jobs:
|
|||||||
command: |
|
command: |
|
||||||
sudo apt-get update
|
sudo apt-get update
|
||||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||||
sudo apt-get install zip
|
|
||||||
python -m venv env
|
python -m venv env
|
||||||
source env/bin/activate
|
source env/bin/activate
|
||||||
pip install auditwheel
|
pip install auditwheel
|
||||||
pip install patchelf
|
pip install patchelf
|
||||||
pip install build
|
pip install build
|
||||||
pip install twine
|
pip install twine
|
||||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
<< parameters.extra_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||||
python -m build -w
|
pip install ".[dev]" -v
|
||||||
|
python setup.py generate_stubs
|
||||||
|
<< parameters.extra_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||||
|
python -m build --wheel
|
||||||
bash python/scripts/repair_cuda.sh
|
bash python/scripts/repair_cuda.sh
|
||||||
- when:
|
- run:
|
||||||
condition: << parameters.build_env >>
|
name: Upload package
|
||||||
steps:
|
command: |
|
||||||
- run:
|
source env/bin/activate
|
||||||
name: Upload package
|
twine upload wheelhouse/*.whl
|
||||||
command: |
|
|
||||||
source env/bin/activate
|
|
||||||
twine upload wheelhouse/*.whl
|
|
||||||
- store_artifacts:
|
- store_artifacts:
|
||||||
path: wheelhouse/
|
path: wheelhouse/
|
||||||
|
|
||||||
@@ -405,6 +408,8 @@ workflows:
|
|||||||
pattern: "^(?!pull/)[-\\w]+$"
|
pattern: "^(?!pull/)[-\\w]+$"
|
||||||
value: << pipeline.git.branch >>
|
value: << pipeline.git.branch >>
|
||||||
- not: << pipeline.parameters.nightly_build >>
|
- not: << pipeline.parameters.nightly_build >>
|
||||||
|
- not: << pipeline.parameters.weekly_build >>
|
||||||
|
- not: << pipeline.parameters.test_release >>
|
||||||
jobs:
|
jobs:
|
||||||
- mac_build_and_test:
|
- mac_build_and_test:
|
||||||
matrix:
|
matrix:
|
||||||
@@ -418,6 +423,8 @@ workflows:
|
|||||||
when:
|
when:
|
||||||
and:
|
and:
|
||||||
- not: << pipeline.parameters.nightly_build >>
|
- not: << pipeline.parameters.nightly_build >>
|
||||||
|
- not: << pipeline.parameters.weekly_build >>
|
||||||
|
- not: << pipeline.parameters.test_release >>
|
||||||
jobs:
|
jobs:
|
||||||
- build_release:
|
- build_release:
|
||||||
filters:
|
filters:
|
||||||
@@ -499,25 +506,6 @@ workflows:
|
|||||||
branches:
|
branches:
|
||||||
ignore: /.*/
|
ignore: /.*/
|
||||||
upload-docs: true
|
upload-docs: true
|
||||||
- build_linux_release:
|
|
||||||
filters:
|
|
||||||
tags:
|
|
||||||
only: /^v.*/
|
|
||||||
branches:
|
|
||||||
ignore: /.*/
|
|
||||||
matrix:
|
|
||||||
parameters:
|
|
||||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
|
||||||
build_env: ["PYPI_RELEASE=1"]
|
|
||||||
- build_cuda_release:
|
|
||||||
filters:
|
|
||||||
tags:
|
|
||||||
only: /^v.*/
|
|
||||||
branches:
|
|
||||||
ignore: /.*/
|
|
||||||
matrix:
|
|
||||||
parameters:
|
|
||||||
build_env: ["PYPI_RELEASE=1"]
|
|
||||||
|
|
||||||
prb:
|
prb:
|
||||||
when:
|
when:
|
||||||
@@ -596,8 +584,99 @@ workflows:
|
|||||||
- macosx_deployment_target: "15.0"
|
- macosx_deployment_target: "15.0"
|
||||||
xcode_version: "15.0.0"
|
xcode_version: "15.0.0"
|
||||||
python_version: "3.13"
|
python_version: "3.13"
|
||||||
|
weekly_build:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.weekly_build >>
|
||||||
|
jobs:
|
||||||
|
- build_release:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||||
|
build_env: ["DEV_RELEASE=1"]
|
||||||
|
xcode_version: ["16.2.0", "15.0.0"]
|
||||||
|
exclude:
|
||||||
|
- macosx_deployment_target: "13.5"
|
||||||
|
xcode_version: "16.2.0"
|
||||||
|
python_version: "3.9"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "13.5"
|
||||||
|
xcode_version: "16.2.0"
|
||||||
|
python_version: "3.10"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "13.5"
|
||||||
|
xcode_version: "16.2.0"
|
||||||
|
python_version: "3.11"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "13.5"
|
||||||
|
xcode_version: "16.2.0"
|
||||||
|
python_version: "3.12"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "13.5"
|
||||||
|
xcode_version: "16.2.0"
|
||||||
|
python_version: "3.13"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "14.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.9"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "14.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.10"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "14.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.11"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "14.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.12"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "14.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.13"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "15.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.9"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "15.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.10"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "15.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.11"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "15.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.12"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
- macosx_deployment_target: "15.0"
|
||||||
|
xcode_version: "15.0.0"
|
||||||
|
python_version: "3.13"
|
||||||
|
build_env: "DEV_RELEASE=1"
|
||||||
|
linux_test_release:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.linux_release >>
|
||||||
|
jobs:
|
||||||
- build_linux_release:
|
- build_linux_release:
|
||||||
matrix:
|
matrix:
|
||||||
parameters:
|
parameters:
|
||||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
- build_cuda_release
|
extra_env: ["PYPI_RELEASE=1"]
|
||||||
|
cuda_test_release:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.cuda_release >>
|
||||||
|
jobs:
|
||||||
|
- build_cuda_release:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
extra_env: ["PYPI_RELEASE=1"]
|
||||||
|
|||||||
@@ -19,7 +19,6 @@ MLX was developed with contributions from the following individuals:
|
|||||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
|
||||||
|
|
||||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||||
|
|||||||
@@ -64,8 +64,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
|||||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
else()
|
else()
|
||||||
set(MLX_BUILD_METAL OFF)
|
set(MLX_BUILD_METAL OFF)
|
||||||
|
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# ----------------------------- Lib -----------------------------
|
# ----------------------------- Lib -----------------------------
|
||||||
|
|||||||
@@ -203,11 +203,6 @@ void time_reductions() {
|
|||||||
TIME(max_along_0);
|
TIME(max_along_0);
|
||||||
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
||||||
TIME(max_along_1);
|
TIME(max_along_1);
|
||||||
|
|
||||||
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
|
|
||||||
TIME(min_along_0);
|
|
||||||
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
|
|
||||||
TIME(min_along_1);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void time_gather_scatter() {
|
void time_gather_scatter() {
|
||||||
|
|||||||
@@ -58,13 +58,6 @@ def time_max():
|
|||||||
time_fn(mx.max, a, 0)
|
time_fn(mx.max, a, 0)
|
||||||
|
|
||||||
|
|
||||||
def time_min():
|
|
||||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
|
||||||
a[1, 1] = mx.nan
|
|
||||||
mx.eval(a)
|
|
||||||
time_fn(mx.min, a, 0)
|
|
||||||
|
|
||||||
|
|
||||||
def time_negative():
|
def time_negative():
|
||||||
a = mx.random.uniform(shape=(10000, 1000))
|
a = mx.random.uniform(shape=(10000, 1000))
|
||||||
mx.eval(a)
|
mx.eval(a)
|
||||||
@@ -122,7 +115,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
time_add()
|
time_add()
|
||||||
time_matmul()
|
time_matmul()
|
||||||
time_min()
|
|
||||||
time_max()
|
time_max()
|
||||||
time_maximum()
|
time_maximum()
|
||||||
time_exp()
|
time_exp()
|
||||||
|
|||||||
@@ -138,13 +138,13 @@ more concrete:
|
|||||||
* representing the vectorized computation and the axis which
|
* representing the vectorized computation and the axis which
|
||||||
* corresponds to the output vectorized dimension.
|
* corresponds to the output vectorized dimension.
|
||||||
*/
|
*/
|
||||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
const std::vector<int>& axes) override;
|
const std::vector<int>& axes) override;
|
||||||
|
|
||||||
/** The name of primitive. */
|
/** Print the primitive. */
|
||||||
const char* name() const override {
|
void print(std::ostream& os) override {
|
||||||
return "Axpby";
|
os << "Axpby";
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Equivalence check **/
|
/** Equivalence check **/
|
||||||
|
|||||||
@@ -23,6 +23,13 @@ To install from PyPI you must meet the following requirements:
|
|||||||
MLX is only available on devices running macOS >= 13.5
|
MLX is only available on devices running macOS >= 13.5
|
||||||
It is highly recommended to use macOS 14 (Sonoma)
|
It is highly recommended to use macOS 14 (Sonoma)
|
||||||
|
|
||||||
|
|
||||||
|
MLX is also available on conda-forge. To install MLX with conda do:
|
||||||
|
|
||||||
|
.. code-block:: shell
|
||||||
|
|
||||||
|
conda install conda-forge::mlx
|
||||||
|
|
||||||
CUDA
|
CUDA
|
||||||
^^^^
|
^^^^
|
||||||
|
|
||||||
@@ -31,16 +38,8 @@ and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
|
|||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install "mlx[cuda]"
|
pip install mlx-cuda
|
||||||
|
|
||||||
CPU-only (Linux)
|
|
||||||
^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
For a CPU-only version of MLX that runs on Linux use:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
pip install "mlx[cpu]"
|
|
||||||
|
|
||||||
Troubleshooting
|
Troubleshooting
|
||||||
^^^^^^^^^^^^^^^
|
^^^^^^^^^^^^^^^
|
||||||
@@ -89,20 +88,20 @@ Then simply build and install MLX using pip:
|
|||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install .
|
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||||
|
|
||||||
For developing, install the package with development dependencies, and use an
|
For developing, install the package with development dependencies, and use an
|
||||||
editable install:
|
editable install:
|
||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install -e ".[dev]"
|
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||||
|
|
||||||
Once the development dependencies are installed, you can build faster with:
|
Once the development dependencies are installed, you can build faster with:
|
||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
python setup.py build_ext --inplace
|
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||||
|
|
||||||
Run the tests with:
|
Run the tests with:
|
||||||
|
|
||||||
@@ -263,7 +262,7 @@ When building either the Python or C++ APIs make sure to pass the cmake flag
|
|||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
CMAKE_BUILD_PARALLEL_LEVEL=8 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
||||||
|
|
||||||
To build the C++ package run:
|
To build the C++ package run:
|
||||||
|
|
||||||
|
|||||||
@@ -19,4 +19,3 @@ Common Optimizers
|
|||||||
Adamax
|
Adamax
|
||||||
Lion
|
Lion
|
||||||
MultiOptimizer
|
MultiOptimizer
|
||||||
Muon
|
|
||||||
|
|||||||
@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
|
|||||||
const std::vector<mx::array>& inputs,
|
const std::vector<mx::array>& inputs,
|
||||||
const std::vector<int>& axes) override;
|
const std::vector<int>& axes) override;
|
||||||
|
|
||||||
/** The name of primitive. */
|
/** Print the primitive. */
|
||||||
const char* name() const override {
|
void print(std::ostream& os) override {
|
||||||
return "Axpby";
|
os << "Axpby";
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Equivalence check **/
|
/** Equivalence check **/
|
||||||
|
|||||||
@@ -1,20 +1,14 @@
|
|||||||
// Copyright © 2023-2024 Apple Inc.
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
#include <dlfcn.h>
|
|
||||||
|
|
||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
std::filesystem::path current_binary_dir() {
|
std::string get_primitive_string(Primitive* primitive) {
|
||||||
static std::filesystem::path binary_dir = []() {
|
std::ostringstream op_t;
|
||||||
Dl_info info;
|
primitive->print(op_t);
|
||||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
return op_t.str();
|
||||||
throw std::runtime_error("Unable to get current binary dir.");
|
|
||||||
}
|
|
||||||
return std::filesystem::path(info.dli_fname).parent_path();
|
|
||||||
}();
|
|
||||||
return binary_dir;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||||
|
|||||||
@@ -2,7 +2,6 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <filesystem>
|
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
@@ -10,8 +9,7 @@
|
|||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
// Return the directory that contains current shared library.
|
std::string get_primitive_string(Primitive* primitive);
|
||||||
std::filesystem::path current_binary_dir();
|
|
||||||
|
|
||||||
inline int64_t
|
inline int64_t
|
||||||
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
|
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
|||||||
|
|
||||||
// The decomposition is computed in place, so just copy the input to the
|
// The decomposition is computed in place, so just copy the input to the
|
||||||
// output.
|
// output.
|
||||||
copy_cpu(
|
copy(
|
||||||
a,
|
a,
|
||||||
factor,
|
factor,
|
||||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -231,7 +231,7 @@ inline void build_kernel(
|
|||||||
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
||||||
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
|
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
|
||||||
} else {
|
} else {
|
||||||
os << x.primitive().name();
|
x.primitive().print(os);
|
||||||
os << "()(";
|
os << "()(";
|
||||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||||
|
|||||||
@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
|
|||||||
// Fill with zeros
|
// Fill with zeros
|
||||||
std::vector<array> temps;
|
std::vector<array> temps;
|
||||||
temps.push_back(array(0, conv_dtype));
|
temps.push_back(array(0, conv_dtype));
|
||||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||||
|
|
||||||
// Pick input slice from padded
|
// Pick input slice from padded
|
||||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
|
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
|
||||||
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
|
|||||||
in_padded_slice.size(),
|
in_padded_slice.size(),
|
||||||
data_offset);
|
data_offset);
|
||||||
// Copy input values into the slice
|
// Copy input values into the slice
|
||||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||||
temps.push_back(in_padded_slice);
|
temps.push_back(in_padded_slice);
|
||||||
|
|
||||||
// Make strided view
|
// Make strided view
|
||||||
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
|
|||||||
// Materialize strided view
|
// Materialize strided view
|
||||||
Shape strided_reshape = {N * oH, wH * C};
|
Shape strided_reshape = {N * oH, wH * C};
|
||||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||||
temps.push_back(in_strided);
|
temps.push_back(in_strided);
|
||||||
|
|
||||||
// Check wt dtype and prepare
|
// Check wt dtype and prepare
|
||||||
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
|
|||||||
wt.size(),
|
wt.size(),
|
||||||
0);
|
0);
|
||||||
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
||||||
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
|
copy(wt_transpose, gemm_wt, CopyType::General, stream);
|
||||||
temps.push_back(gemm_wt);
|
temps.push_back(gemm_wt);
|
||||||
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||||
auto ctype =
|
auto ctype =
|
||||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
copy(wt, gemm_wt, ctype, stream);
|
||||||
temps.push_back(gemm_wt);
|
temps.push_back(gemm_wt);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
|
|||||||
|
|
||||||
// Copy results if needed
|
// Copy results if needed
|
||||||
if (out.dtype() != float32) {
|
if (out.dtype() != float32) {
|
||||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||||
}
|
}
|
||||||
encoder.add_temporaries(std::move(temps));
|
encoder.add_temporaries(std::move(temps));
|
||||||
}
|
}
|
||||||
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
|
|||||||
// Fill with zeros
|
// Fill with zeros
|
||||||
std::vector<array> temps;
|
std::vector<array> temps;
|
||||||
temps.push_back(array(0, conv_dtype));
|
temps.push_back(array(0, conv_dtype));
|
||||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||||
|
|
||||||
// Pick input slice from padded
|
// Pick input slice from padded
|
||||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||||
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
|
|||||||
temps.push_back(in_padded_slice);
|
temps.push_back(in_padded_slice);
|
||||||
|
|
||||||
// Copy input values into the slice
|
// Copy input values into the slice
|
||||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||||
|
|
||||||
// Make strided view
|
// Make strided view
|
||||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||||
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
|
|||||||
// Materialize strided view
|
// Materialize strided view
|
||||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||||
temps.push_back(in_strided);
|
temps.push_back(in_strided);
|
||||||
|
|
||||||
// Check wt dtype and prepare
|
// Check wt dtype and prepare
|
||||||
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
|
|||||||
auto ctype =
|
auto ctype =
|
||||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
copy(wt, gemm_wt, ctype, stream);
|
||||||
temps.push_back(gemm_wt);
|
temps.push_back(gemm_wt);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
|
|||||||
|
|
||||||
// Copy results if needed
|
// Copy results if needed
|
||||||
if (out.dtype() != float32) {
|
if (out.dtype() != float32) {
|
||||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||||
}
|
}
|
||||||
encoder.add_temporaries(std::move(temps));
|
encoder.add_temporaries(std::move(temps));
|
||||||
}
|
}
|
||||||
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
|
|||||||
|
|
||||||
// Fill with zeros
|
// Fill with zeros
|
||||||
std::vector<array> temps = {array(0, conv_dtype)};
|
std::vector<array> temps = {array(0, conv_dtype)};
|
||||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||||
|
|
||||||
// Pick input slice from padded
|
// Pick input slice from padded
|
||||||
size_t data_offset = 0;
|
size_t data_offset = 0;
|
||||||
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
|
|||||||
data_offset);
|
data_offset);
|
||||||
|
|
||||||
// Copy input values into the slice
|
// Copy input values into the slice
|
||||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||||
temps.push_back(in_padded_slice);
|
temps.push_back(in_padded_slice);
|
||||||
|
|
||||||
// Make strided view
|
// Make strided view
|
||||||
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
|
|||||||
}
|
}
|
||||||
|
|
||||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||||
temps.push_back(in_strided);
|
temps.push_back(in_strided);
|
||||||
|
|
||||||
// Check wt dtype and prepare
|
// Check wt dtype and prepare
|
||||||
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
|
|||||||
auto ctype =
|
auto ctype =
|
||||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
copy(wt, gemm_wt, ctype, stream);
|
||||||
temps.push_back(gemm_wt);
|
temps.push_back(gemm_wt);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (flip) {
|
if (flip) {
|
||||||
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
|
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
|
||||||
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
||||||
temps.push_back(gemm_wt_);
|
temps.push_back(gemm_wt_);
|
||||||
|
|
||||||
// Calculate the total size of the spatial dimensions
|
// Calculate the total size of the spatial dimensions
|
||||||
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
|
|||||||
|
|
||||||
// Copy results if needed
|
// Copy results if needed
|
||||||
if (out.dtype() != float32) {
|
if (out.dtype() != float32) {
|
||||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||||
}
|
}
|
||||||
encoder.add_temporaries(std::move(temps));
|
encoder.add_temporaries(std::move(temps));
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -295,11 +295,7 @@ inline void copy_inplace_dispatch(
|
|||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
void copy_cpu_inplace(
|
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||||
const array& src,
|
|
||||||
array& dst,
|
|
||||||
CopyType ctype,
|
|
||||||
Stream stream) {
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream);
|
auto& encoder = cpu::get_command_encoder(stream);
|
||||||
encoder.set_input_array(src);
|
encoder.set_input_array(src);
|
||||||
encoder.set_output_array(dst);
|
encoder.set_output_array(dst);
|
||||||
@@ -309,7 +305,7 @@ void copy_cpu_inplace(
|
|||||||
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
|
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
|
||||||
}
|
}
|
||||||
|
|
||||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
|
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||||
bool donated = set_copy_output_data(src, dst, ctype);
|
bool donated = set_copy_output_data(src, dst, ctype);
|
||||||
if (donated && src.dtype() == dst.dtype()) {
|
if (donated && src.dtype() == dst.dtype()) {
|
||||||
// If the output has the same type as the input then there is nothing to
|
// If the output has the same type as the input then there is nothing to
|
||||||
@@ -319,10 +315,10 @@ void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
|
|||||||
if (ctype == CopyType::GeneralGeneral) {
|
if (ctype == CopyType::GeneralGeneral) {
|
||||||
ctype = CopyType::General;
|
ctype = CopyType::General;
|
||||||
}
|
}
|
||||||
copy_cpu_inplace(src, dst, ctype, stream);
|
copy_inplace(src, dst, ctype, stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
void copy_cpu_inplace(
|
void copy_inplace(
|
||||||
const array& src,
|
const array& src,
|
||||||
array& dst,
|
array& dst,
|
||||||
const Shape& data_shape,
|
const Shape& data_shape,
|
||||||
|
|||||||
@@ -10,14 +10,10 @@
|
|||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
|
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||||
void copy_cpu_inplace(
|
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||||
const array& src,
|
|
||||||
array& dst,
|
|
||||||
CopyType ctype,
|
|
||||||
Stream stream);
|
|
||||||
|
|
||||||
void copy_cpu_inplace(
|
void copy_inplace(
|
||||||
const array& src,
|
const array& src,
|
||||||
array& dst,
|
array& dst,
|
||||||
const Shape& data_shape,
|
const Shape& data_shape,
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
|
|||||||
return {arr, false};
|
return {arr, false};
|
||||||
} else {
|
} else {
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
copy(arr, arr_copy, CopyType::General, stream);
|
||||||
return {arr_copy, true};
|
return {arr_copy, true};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -35,7 +35,7 @@ void AllReduce::eval_cpu(
|
|||||||
return in;
|
return in;
|
||||||
} else {
|
} else {
|
||||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||||
copy_cpu(in, arr_copy, CopyType::General, s);
|
copy(in, arr_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(arr_copy);
|
out.copy_shared_buffer(arr_copy);
|
||||||
return arr_copy;
|
return arr_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -135,7 +135,7 @@ void Eig::eval_cpu(
|
|||||||
: array(a.shape(), complex64, nullptr, {});
|
: array(a.shape(), complex64, nullptr, {});
|
||||||
|
|
||||||
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
|
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
|
||||||
copy_cpu(
|
copy(
|
||||||
a,
|
a,
|
||||||
a_copy,
|
a_copy,
|
||||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
|
|||||||
|
|
||||||
values.set_data(allocator::malloc(values.nbytes()));
|
values.set_data(allocator::malloc(values.nbytes()));
|
||||||
|
|
||||||
copy_cpu(
|
copy(
|
||||||
a,
|
a,
|
||||||
vectors,
|
vectors,
|
||||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
if (in.flags().row_contiguous && in.is_donatable()) {
|
if (in.flags().row_contiguous && in.is_donatable()) {
|
||||||
out.copy_shared_buffer(in);
|
out.copy_shared_buffer(in);
|
||||||
} else {
|
} else {
|
||||||
copy_cpu(
|
copy(
|
||||||
in,
|
in,
|
||||||
out,
|
out,
|
||||||
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
// Copy src into out (copy allocates memory for out)
|
// Copy src into out (copy allocates memory for out)
|
||||||
auto ctype =
|
auto ctype =
|
||||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||||
copy_cpu(src, out, ctype, stream());
|
copy(src, out, ctype, stream());
|
||||||
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream());
|
auto& encoder = cpu::get_command_encoder(stream());
|
||||||
std::vector<array> inds;
|
std::vector<array> inds;
|
||||||
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
// Copy src into out (copy allocates memory for out)
|
// Copy src into out (copy allocates memory for out)
|
||||||
auto ctype =
|
auto ctype =
|
||||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||||
copy_cpu(src, out, ctype, stream());
|
copy(src, out, ctype, stream());
|
||||||
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream());
|
auto& encoder = cpu::get_command_encoder(stream());
|
||||||
encoder.set_input_array(idx);
|
encoder.set_input_array(idx);
|
||||||
|
|||||||
@@ -115,7 +115,7 @@ void inverse_impl(
|
|||||||
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
||||||
|
|
||||||
// The inverse is computed in place, so just copy the input to the output.
|
// The inverse is computed in place, so just copy the input to the output.
|
||||||
copy_cpu(
|
copy(
|
||||||
a,
|
a,
|
||||||
inv,
|
inv,
|
||||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -88,7 +88,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
copy_cpu(x, x_copy, CopyType::General, s);
|
copy(x, x_copy, CopyType::General, s);
|
||||||
encoder.add_temporary(x_copy);
|
encoder.add_temporary(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -31,7 +31,7 @@ void luf_impl(
|
|||||||
strides[ndim - 1] = M;
|
strides[ndim - 1] = M;
|
||||||
strides[ndim - 2] = 1;
|
strides[ndim - 2] = 1;
|
||||||
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
|
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
|
||||||
copy_cpu_inplace(
|
copy_inplace(
|
||||||
a,
|
a,
|
||||||
lu,
|
lu,
|
||||||
a.shape(),
|
a.shape(),
|
||||||
|
|||||||
@@ -6,7 +6,6 @@
|
|||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
#include "mlx/backend/cpu/copy.h"
|
#include "mlx/backend/cpu/copy.h"
|
||||||
#include "mlx/backend/cpu/encoder.h"
|
#include "mlx/backend/cpu/encoder.h"
|
||||||
#include "mlx/backend/cpu/gemm.h"
|
|
||||||
#include "mlx/backend/cpu/lapack.h"
|
#include "mlx/backend/cpu/lapack.h"
|
||||||
#include "mlx/primitives.h"
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
@@ -53,58 +52,6 @@ inline void mask_matrix(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline void segmented_mm(
|
|
||||||
const T* a,
|
|
||||||
const T* b,
|
|
||||||
const uint32_t* segments,
|
|
||||||
T* out,
|
|
||||||
bool a_transposed,
|
|
||||||
bool b_transposed,
|
|
||||||
size_t lda,
|
|
||||||
size_t ldb,
|
|
||||||
const Shape& a_shape,
|
|
||||||
const Strides& a_strides,
|
|
||||||
const Shape& b_shape,
|
|
||||||
const Strides& b_strides,
|
|
||||||
size_t num_segments,
|
|
||||||
const Shape& segments_shape,
|
|
||||||
const Strides& segments_strides) {
|
|
||||||
int ndim = a_shape.size();
|
|
||||||
Shape a_copy = a_shape;
|
|
||||||
Shape b_copy = b_shape;
|
|
||||||
int32_t M = a_copy[ndim - 2];
|
|
||||||
int32_t N = b_copy[ndim - 1];
|
|
||||||
for (int i = 0; i < num_segments; i++) {
|
|
||||||
uint32_t k_start =
|
|
||||||
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
|
|
||||||
uint32_t k_end =
|
|
||||||
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
|
|
||||||
if (k_end <= k_start) {
|
|
||||||
std::fill_n(out + i * M * N, M * N, T(0));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
a_copy[ndim - 1] = k_end - k_start;
|
|
||||||
b_copy[ndim - 2] = k_end - k_start;
|
|
||||||
matmul<T>(
|
|
||||||
a + k_start * a_strides[ndim - 1],
|
|
||||||
b + k_start * b_strides[ndim - 2],
|
|
||||||
out + i * M * N,
|
|
||||||
a_transposed,
|
|
||||||
b_transposed,
|
|
||||||
lda,
|
|
||||||
ldb,
|
|
||||||
N,
|
|
||||||
1.0,
|
|
||||||
0.0,
|
|
||||||
1,
|
|
||||||
a_copy,
|
|
||||||
a_strides,
|
|
||||||
b_copy,
|
|
||||||
b_strides);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -124,20 +71,20 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
|
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
|
||||||
if (do_copy) {
|
if (do_copy) {
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
copy(arr, arr_copy, CopyType::Vector, s);
|
||||||
return std::make_tuple(false, stx, arr_copy, true);
|
return std::make_tuple(false, stx, arr_copy, true);
|
||||||
}
|
}
|
||||||
return std::make_tuple(false, stx, arr, false);
|
return std::make_tuple(false, stx, arr, false);
|
||||||
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
|
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
|
||||||
if (do_copy) {
|
if (do_copy) {
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
copy(arr, arr_copy, CopyType::Vector, s);
|
||||||
return std::make_tuple(true, sty, arr_copy, true);
|
return std::make_tuple(true, sty, arr_copy, true);
|
||||||
}
|
}
|
||||||
return std::make_tuple(true, sty, arr, false);
|
return std::make_tuple(true, sty, arr, false);
|
||||||
} else {
|
} else {
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
copy(arr, arr_copy, CopyType::General, s);
|
||||||
int64_t stx = arr.shape(-1);
|
int64_t stx = arr.shape(-1);
|
||||||
return std::make_tuple(false, stx, arr_copy, true);
|
return std::make_tuple(false, stx, arr_copy, true);
|
||||||
}
|
}
|
||||||
@@ -386,7 +333,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
return std::make_tuple(true, sty, arr);
|
return std::make_tuple(true, sty, arr);
|
||||||
} else {
|
} else {
|
||||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
copy(arr, temps.back(), CopyType::General, s);
|
||||||
int64_t stx = arr.shape(-1);
|
int64_t stx = arr.shape(-1);
|
||||||
return std::make_tuple(false, stx, temps.back());
|
return std::make_tuple(false, stx, temps.back());
|
||||||
}
|
}
|
||||||
@@ -490,121 +437,4 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
encoder.add_temporaries(std::move(temps));
|
encoder.add_temporaries(std::move(temps));
|
||||||
}
|
}
|
||||||
|
|
||||||
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
|
||||||
|
|
||||||
auto& s = stream();
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream());
|
|
||||||
auto check_transpose = [&s, &encoder](const array& x) {
|
|
||||||
auto stx = x.strides()[x.ndim() - 2];
|
|
||||||
auto sty = x.strides()[x.ndim() - 1];
|
|
||||||
if (stx == x.shape(-1) && sty == 1) {
|
|
||||||
return std::make_tuple(false, stx, x);
|
|
||||||
} else if (stx == 1 && sty == x.shape(-2)) {
|
|
||||||
return std::make_tuple(true, sty, x);
|
|
||||||
} else {
|
|
||||||
array xc(x.shape(), x.dtype(), nullptr, {});
|
|
||||||
copy_cpu(x, xc, CopyType::General, s);
|
|
||||||
encoder.add_temporary(xc);
|
|
||||||
int64_t stx = x.shape(-1);
|
|
||||||
return std::make_tuple(false, stx, xc);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
|
|
||||||
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
|
|
||||||
auto& segments = inputs[2];
|
|
||||||
|
|
||||||
encoder.set_input_array(a);
|
|
||||||
encoder.set_input_array(b);
|
|
||||||
encoder.set_input_array(segments);
|
|
||||||
encoder.set_output_array(out);
|
|
||||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
|
||||||
b = array::unsafe_weak_copy(b),
|
|
||||||
segments = array::unsafe_weak_copy(segments),
|
|
||||||
out_ptr = out.data<void>(),
|
|
||||||
a_transposed = a_transposed,
|
|
||||||
b_transposed = b_transposed,
|
|
||||||
lda = lda,
|
|
||||||
ldb = ldb]() {
|
|
||||||
switch (a.dtype()) {
|
|
||||||
case float64:
|
|
||||||
segmented_mm<double>(
|
|
||||||
a.data<double>(),
|
|
||||||
b.data<double>(),
|
|
||||||
segments.data<uint32_t>(),
|
|
||||||
static_cast<double*>(out_ptr),
|
|
||||||
a_transposed,
|
|
||||||
b_transposed,
|
|
||||||
lda,
|
|
||||||
ldb,
|
|
||||||
a.shape(),
|
|
||||||
a.strides(),
|
|
||||||
b.shape(),
|
|
||||||
b.strides(),
|
|
||||||
segments.size() / 2,
|
|
||||||
segments.shape(),
|
|
||||||
segments.strides());
|
|
||||||
break;
|
|
||||||
case float32:
|
|
||||||
segmented_mm<float>(
|
|
||||||
a.data<float>(),
|
|
||||||
b.data<float>(),
|
|
||||||
segments.data<uint32_t>(),
|
|
||||||
static_cast<float*>(out_ptr),
|
|
||||||
a_transposed,
|
|
||||||
b_transposed,
|
|
||||||
lda,
|
|
||||||
ldb,
|
|
||||||
a.shape(),
|
|
||||||
a.strides(),
|
|
||||||
b.shape(),
|
|
||||||
b.strides(),
|
|
||||||
segments.size() / 2,
|
|
||||||
segments.shape(),
|
|
||||||
segments.strides());
|
|
||||||
break;
|
|
||||||
case float16:
|
|
||||||
segmented_mm<float16_t>(
|
|
||||||
a.data<float16_t>(),
|
|
||||||
b.data<float16_t>(),
|
|
||||||
segments.data<uint32_t>(),
|
|
||||||
static_cast<float16_t*>(out_ptr),
|
|
||||||
a_transposed,
|
|
||||||
b_transposed,
|
|
||||||
lda,
|
|
||||||
ldb,
|
|
||||||
a.shape(),
|
|
||||||
a.strides(),
|
|
||||||
b.shape(),
|
|
||||||
b.strides(),
|
|
||||||
segments.size() / 2,
|
|
||||||
segments.shape(),
|
|
||||||
segments.strides());
|
|
||||||
break;
|
|
||||||
case bfloat16:
|
|
||||||
segmented_mm<bfloat16_t>(
|
|
||||||
a.data<bfloat16_t>(),
|
|
||||||
b.data<bfloat16_t>(),
|
|
||||||
segments.data<uint32_t>(),
|
|
||||||
static_cast<bfloat16_t*>(out_ptr),
|
|
||||||
a_transposed,
|
|
||||||
b_transposed,
|
|
||||||
lda,
|
|
||||||
ldb,
|
|
||||||
a.shape(),
|
|
||||||
a.strides(),
|
|
||||||
b.shape(),
|
|
||||||
b.strides(),
|
|
||||||
segments.size() / 2,
|
|
||||||
segments.shape(),
|
|
||||||
segments.strides());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
throw std::invalid_argument(
|
|
||||||
"Segmented mm supports only real float types.");
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -81,7 +81,7 @@ void matmul_general(
|
|||||||
return std::make_tuple(true, sty, arr);
|
return std::make_tuple(true, sty, arr);
|
||||||
} else {
|
} else {
|
||||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||||
copy_cpu(arr, temps.back(), CopyType::General, stream);
|
copy(arr, temps.back(), CopyType::General, stream);
|
||||||
stx = arr.shape(-1);
|
stx = arr.shape(-1);
|
||||||
return std::make_tuple(false, stx, temps.back());
|
return std::make_tuple(false, stx, temps.back());
|
||||||
}
|
}
|
||||||
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
CopyType ctype = c.data_size() == 1
|
CopyType ctype = c.data_size() == 1
|
||||||
? CopyType::Scalar
|
? CopyType::Scalar
|
||||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||||
copy_cpu(c, out, ctype, stream());
|
copy(c, out, ctype, stream());
|
||||||
if (inputs[0].shape(-1) == 0) {
|
if (inputs[0].shape(-1) == 0) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
|
|||||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||||
if (copy_necessary) {
|
if (copy_necessary) {
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
out.set_data(allocator::malloc(out.nbytes()));
|
||||||
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
|
copy_inplace(in, out, CopyType::General, out.primitive().stream());
|
||||||
} else {
|
} else {
|
||||||
shared_buffer_reshape(in, out_strides, out);
|
shared_buffer_reshape(in, out_strides, out);
|
||||||
}
|
}
|
||||||
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
assert(inputs.size() == 1);
|
assert(inputs.size() == 1);
|
||||||
auto& in = inputs[0];
|
auto& in = inputs[0];
|
||||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||||
copy_cpu(in, out, ctype, stream());
|
copy(in, out, ctype, stream());
|
||||||
}
|
}
|
||||||
|
|
||||||
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
size_t data_offset = strides[axis_] * sizes[i];
|
size_t data_offset = strides[axis_] * sizes[i];
|
||||||
out_slice.copy_shared_buffer(
|
out_slice.copy_shared_buffer(
|
||||||
out, strides, flags, out_slice.size(), data_offset);
|
out, strides, flags, out_slice.size(), data_offset);
|
||||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||||
out.copy_shared_buffer(in);
|
out.copy_shared_buffer(in);
|
||||||
} else {
|
} else {
|
||||||
copy_cpu(in, out, CopyType::General, stream());
|
copy(in, out, CopyType::General, stream());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
} else {
|
} else {
|
||||||
ctype = CopyType::General;
|
ctype = CopyType::General;
|
||||||
}
|
}
|
||||||
copy_cpu(in, out, ctype, stream());
|
copy(in, out, ctype, stream());
|
||||||
}
|
}
|
||||||
|
|
||||||
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
|
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
|
||||||
|
|
||||||
// Fill output with val
|
// Fill output with val
|
||||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
copy(val, out, CopyType::Scalar, stream());
|
||||||
|
|
||||||
// Find offset for start of input values
|
// Find offset for start of input values
|
||||||
size_t data_offset = 0;
|
size_t data_offset = 0;
|
||||||
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
out, out.strides(), out.flags(), out_slice.size(), data_offset);
|
out, out.strides(), out.flags(), out_slice.size(), data_offset);
|
||||||
|
|
||||||
// Copy input values into the slice
|
// Copy input values into the slice
|
||||||
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
||||||
}
|
}
|
||||||
|
|
||||||
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
out.set_data(allocator::malloc(out.nbytes()));
|
out.set_data(allocator::malloc(out.nbytes()));
|
||||||
auto [in_offset, donated] =
|
auto [in_offset, donated] =
|
||||||
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
|
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
|
||||||
copy_cpu_inplace(
|
copy_inplace(
|
||||||
/* const array& src = */ in,
|
/* const array& src = */ in,
|
||||||
/* array& dst = */ out,
|
/* array& dst = */ out,
|
||||||
/* const Shape& data_shape = */ out.shape(),
|
/* const Shape& data_shape = */ out.shape(),
|
||||||
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
|
|||||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||||
? CopyType::Vector
|
? CopyType::Vector
|
||||||
: CopyType::General;
|
: CopyType::General;
|
||||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||||
|
|
||||||
auto [out_offset, donated] =
|
auto [out_offset, donated] =
|
||||||
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
|
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
|
||||||
copy_cpu_inplace(
|
copy_inplace(
|
||||||
/* const array& src = */ upd,
|
/* const array& src = */ upd,
|
||||||
/* array& dst = */ out,
|
/* array& dst = */ out,
|
||||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||||
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||||
? CopyType::Vector
|
? CopyType::Vector
|
||||||
: CopyType::General;
|
: CopyType::General;
|
||||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||||
|
|
||||||
// Calculate out strides, initial offset and if copy needs to be made
|
// Calculate out strides, initial offset and if copy needs to be made
|
||||||
auto [data_offset, out_strides] =
|
auto [data_offset, out_strides] =
|
||||||
prepare_slice(out, start_indices_, strides_);
|
prepare_slice(out, start_indices_, strides_);
|
||||||
|
|
||||||
// Do copy
|
// Do copy
|
||||||
copy_cpu_inplace(
|
copy_inplace(
|
||||||
/* const array& src = */ upd,
|
/* const array& src = */ upd,
|
||||||
/* array& dst = */ out,
|
/* array& dst = */ out,
|
||||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||||
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
if (in.dtype() == bool_) {
|
if (in.dtype() == bool_) {
|
||||||
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
||||||
in_tmp.copy_shared_buffer(in);
|
in_tmp.copy_shared_buffer(in);
|
||||||
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
|
copy_inplace(in_tmp, tmp, CopyType::General, stream());
|
||||||
} else {
|
} else {
|
||||||
copy_cpu_inplace(in, tmp, CopyType::General, stream());
|
copy_inplace(in, tmp, CopyType::General, stream());
|
||||||
}
|
}
|
||||||
|
|
||||||
auto flags = out.flags();
|
auto flags = out.flags();
|
||||||
|
|||||||
@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
|||||||
strides[in.ndim() - 2] = 1;
|
strides[in.ndim() - 2] = 1;
|
||||||
strides[in.ndim() - 1] = M;
|
strides[in.ndim() - 1] = M;
|
||||||
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
|
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
|
||||||
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
|
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
|
||||||
auto& encoder = cpu::get_command_encoder(stream);
|
auto& encoder = cpu::get_command_encoder(stream);
|
||||||
q.set_data(allocator::malloc(q.nbytes()));
|
q.set_data(allocator::malloc(q.nbytes()));
|
||||||
r.set_data(allocator::malloc(r.nbytes()));
|
r.set_data(allocator::malloc(r.nbytes()));
|
||||||
|
|||||||
@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
return arr;
|
return arr;
|
||||||
} else {
|
} else {
|
||||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
copy(arr, temps.back(), CopyType::General, s);
|
||||||
return temps.back();
|
return temps.back();
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
return arr;
|
return arr;
|
||||||
} else {
|
} else {
|
||||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
copy(arr, temps.back(), CopyType::General, s);
|
||||||
return temps.back();
|
return temps.back();
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -713,7 +713,7 @@ void fast::AffineQuantize::eval_cpu(
|
|||||||
return std::make_pair(arr, false);
|
return std::make_pair(arr, false);
|
||||||
} else {
|
} else {
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
copy(arr, arr_copy, CopyType::General, s);
|
||||||
return std::make_pair(arr_copy, true);
|
return std::make_pair(arr_copy, true);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -350,15 +350,7 @@ struct MinReduce {
|
|||||||
};
|
};
|
||||||
|
|
||||||
template <int N, typename T>
|
template <int N, typename T>
|
||||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
T operator()(simd::Simd<T, N> x) {
|
||||||
return simd::min(x);
|
|
||||||
};
|
|
||||||
|
|
||||||
template <int N, typename T>
|
|
||||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
|
||||||
if (simd::any(x != x)) {
|
|
||||||
return static_cast<T>(NAN);
|
|
||||||
}
|
|
||||||
return simd::min(x);
|
return simd::min(x);
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -251,7 +251,7 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
auto in = inputs[0];
|
auto in = inputs[0];
|
||||||
if (!in.flags().row_contiguous) {
|
if (!in.flags().row_contiguous) {
|
||||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||||
copy_cpu(in, arr_copy, CopyType::General, stream());
|
copy(in, arr_copy, CopyType::General, stream());
|
||||||
in = arr_copy;
|
in = arr_copy;
|
||||||
encoder.add_temporary(arr_copy);
|
encoder.add_temporary(arr_copy);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -132,7 +132,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
copy_cpu(x, x_copy, CopyType::General, s);
|
copy(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -334,10 +334,8 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
auto& in = inputs[0];
|
auto& in = inputs[0];
|
||||||
|
|
||||||
// Copy input to output
|
// Copy input to output
|
||||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
|
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||||
? CopyType::Vector
|
copy(in, out, ctype, stream());
|
||||||
: CopyType::General;
|
|
||||||
copy_cpu(in, out, ctype, stream());
|
|
||||||
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream());
|
auto& encoder = cpu::get_command_encoder(stream());
|
||||||
encoder.set_output_array(out);
|
encoder.set_output_array(out);
|
||||||
@@ -428,10 +426,8 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|||||||
auto& in = inputs[0];
|
auto& in = inputs[0];
|
||||||
|
|
||||||
// Copy input to output
|
// Copy input to output
|
||||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
|
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||||
? CopyType::Vector
|
copy(in, out, ctype, stream());
|
||||||
: CopyType::General;
|
|
||||||
copy_cpu(in, out, ctype, stream());
|
|
||||||
|
|
||||||
auto& encoder = cpu::get_command_encoder(stream());
|
auto& encoder = cpu::get_command_encoder(stream());
|
||||||
encoder.set_output_array(out);
|
encoder.set_output_array(out);
|
||||||
|
|||||||
@@ -31,7 +31,7 @@ void svd_impl(
|
|||||||
|
|
||||||
// lapack clobbers the input, so we have to make a copy.
|
// lapack clobbers the input, so we have to make a copy.
|
||||||
array in(a.shape(), a.dtype(), nullptr, {});
|
array in(a.shape(), a.dtype(), nullptr, {});
|
||||||
copy_cpu(
|
copy(
|
||||||
a,
|
a,
|
||||||
in,
|
in,
|
||||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||||
|
|||||||
@@ -35,14 +35,12 @@ target_sources(
|
|||||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||||
|
|
||||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||||
@@ -69,11 +67,6 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
|
|||||||
target_compile_options(mlx
|
target_compile_options(mlx
|
||||||
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
|
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
|
||||||
|
|
||||||
# Enable calling host constexpr functions from device. This is needed because
|
|
||||||
# the constexpr version of isnan is host only.
|
|
||||||
target_compile_options(
|
|
||||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
|
|
||||||
|
|
||||||
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
|
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
|
||||||
# Explicitly pass this flag to suppress the warning, it is safe to set it to
|
# Explicitly pass this flag to suppress the warning, it is safe to set it to
|
||||||
# true but the warning wouldn't be suppressed.
|
# true but the warning wouldn't be suppressed.
|
||||||
@@ -126,7 +119,3 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
|||||||
# Suppress nvcc warnings on MLX headers.
|
# Suppress nvcc warnings on MLX headers.
|
||||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||||
--diag_suppress=997>)
|
--diag_suppress=997>)
|
||||||
|
|
||||||
# Install CCCL headers for JIT.
|
|
||||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
|
||||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
// Copyright © 2025 Apple Inc.
|
||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
|
||||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
#include "mlx/dtype_utils.h"
|
#include "mlx/dtype_utils.h"
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
#include "mlx/backend/common/binary.h"
|
#include "mlx/backend/common/binary.h"
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||||
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
#include "mlx/dtype_utils.h"
|
#include "mlx/dtype_utils.h"
|
||||||
#include "mlx/primitives.h"
|
#include "mlx/primitives.h"
|
||||||
@@ -16,86 +17,35 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(a[0], b[0]);
|
||||||
for (int i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(a[0], b[0]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(a[0], b[0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(a[0], b[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(a[0], b[i]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto b_vec = load_vector<N_READS>(b, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(a[index], b[0]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(a[i], b[0]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto a_vec = load_vector<N_READS>(a, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(a[index], b[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(a[i], b[i]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto a_vec = load_vector<N_READS>(a, index);
|
|
||||||
auto b_vec = load_vector<N_READS>(b, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -176,7 +126,7 @@ template <typename Op>
|
|||||||
void binary_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
std::string_view op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
assert(inputs.size() > 1);
|
assert(inputs.size() > 1);
|
||||||
const auto& a = inputs[0];
|
const auto& a = inputs[0];
|
||||||
@@ -246,25 +196,18 @@ void binary_op_gpu_inplace(
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||||
// TODO: Choose optimized value based on type size.
|
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||||
constexpr int N_READS = 4;
|
|
||||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
|
||||||
if (bopt == BinaryOpType::ScalarVector) {
|
if (bopt == BinaryOpType::ScalarVector) {
|
||||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
|
||||||
} else if (bopt == BinaryOpType::VectorVector) {
|
} else if (bopt == BinaryOpType::VectorVector) {
|
||||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||||
}
|
}
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel,
|
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||||
out.data_size(),
|
|
||||||
out.shape(),
|
|
||||||
out.strides(),
|
|
||||||
large(),
|
|
||||||
N_READS);
|
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
@@ -290,7 +233,7 @@ template <typename Op>
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
std::string_view op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
auto& a = inputs[0];
|
auto& a = inputs[0];
|
||||||
auto& b = inputs[1];
|
auto& b = inputs[1];
|
||||||
@@ -299,11 +242,11 @@ void binary_op_gpu(
|
|||||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
#define BINARY_GPU(func) \
|
#define BINARY_GPU(func) \
|
||||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||||
auto& s = out.primitive().stream(); \
|
auto& s = out.primitive().stream(); \
|
||||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
|
||||||
}
|
}
|
||||||
|
|
||||||
BINARY_GPU(Add)
|
BINARY_GPU(Add)
|
||||||
@@ -327,31 +270,33 @@ BINARY_GPU(Subtract)
|
|||||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||||
auto& s = out.primitive().stream();
|
auto& s = out.primitive().stream();
|
||||||
|
auto op = get_primitive_string(this);
|
||||||
if (equal_nan_) {
|
if (equal_nan_) {
|
||||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s);
|
||||||
} else {
|
} else {
|
||||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
binary_op_gpu<cu::Equal>(inputs, out, op, s);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||||
auto& s = out.primitive().stream();
|
auto& s = out.primitive().stream();
|
||||||
|
auto op = get_primitive_string(this);
|
||||||
switch (op_) {
|
switch (op_) {
|
||||||
case BitwiseBinary::And:
|
case BitwiseBinary::And:
|
||||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::Or:
|
case BitwiseBinary::Or:
|
||||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::Xor:
|
case BitwiseBinary::Xor:
|
||||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::LeftShift:
|
case BitwiseBinary::LeftShift:
|
||||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
binary_op_gpu<cu::LeftShift>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::RightShift:
|
case BitwiseBinary::RightShift:
|
||||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
binary_op_gpu<cu::RightShift>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
#include "mlx/backend/common/binary.h"
|
#include "mlx/backend/common/binary.h"
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||||
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
#include "mlx/dtype_utils.h"
|
#include "mlx/dtype_utils.h"
|
||||||
#include "mlx/primitives.h"
|
#include "mlx/primitives.h"
|
||||||
@@ -16,119 +17,52 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void
|
__global__ void
|
||||||
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
binary_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
auto out = Op{}(a[0], b[0]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
out_a[0] = out[0];
|
||||||
auto out = Op{}(a[0], b[0]);
|
out_b[0] = out[1];
|
||||||
out_a[i] = out[0];
|
|
||||||
out_b[i] = out[1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
AlignedVector<Out, N_READS> out_a_vec;
|
|
||||||
AlignedVector<Out, N_READS> out_b_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
auto out = Op{}(a[0], b[0]);
|
|
||||||
out_a_vec.val[i] = out[0];
|
|
||||||
out_b_vec.val[i] = out[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
|
||||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void
|
__global__ void
|
||||||
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
binary_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
auto out = Op{}(a[0], b[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
out_a[index] = out[0];
|
||||||
auto out = Op{}(a[0], b[i]);
|
out_b[index] = out[1];
|
||||||
out_a[i] = out[0];
|
|
||||||
out_b[i] = out[1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto b_vec = load_vector<N_READS>(b, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_a_vec;
|
|
||||||
AlignedVector<Out, N_READS> out_b_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
auto out = Op{}(a[0], b_vec.val[i]);
|
|
||||||
out_a_vec.val[i] = out[0];
|
|
||||||
out_b_vec.val[i] = out[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
|
||||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void
|
__global__ void
|
||||||
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
binary_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
auto out = Op{}(a[index], b[0]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
out_a[index] = out[0];
|
||||||
auto out = Op{}(a[i], b[0]);
|
out_b[index] = out[1];
|
||||||
out_a[i] = out[0];
|
|
||||||
out_b[i] = out[1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto a_vec = load_vector<N_READS>(a, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_a_vec;
|
|
||||||
AlignedVector<Out, N_READS> out_b_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
auto out = Op{}(a_vec.val[i], b[0]);
|
|
||||||
out_a_vec.val[i] = out[0];
|
|
||||||
out_b_vec.val[i] = out[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
|
||||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void
|
__global__ void
|
||||||
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
binary_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
auto out = Op{}(a[index], b[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
out_a[index] = out[0];
|
||||||
auto out = Op{}(a[i], b[i]);
|
out_b[index] = out[1];
|
||||||
out_a[i] = out[0];
|
|
||||||
out_b[i] = out[1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto a_vec = load_vector<N_READS>(a, index);
|
|
||||||
auto b_vec = load_vector<N_READS>(b, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_a_vec;
|
|
||||||
AlignedVector<Out, N_READS> out_b_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
|
|
||||||
out_a_vec.val[i] = out[0];
|
|
||||||
out_b_vec.val[i] = out[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
|
||||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||||
__global__ void binary_two_g_nd(
|
__global__ void binary_g_nd(
|
||||||
const In* a,
|
const In* a,
|
||||||
const In* b,
|
const In* b,
|
||||||
Out* out_a,
|
Out* out_a,
|
||||||
@@ -148,7 +82,7 @@ __global__ void binary_two_g_nd(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void binary_two_g(
|
__global__ void binary_g(
|
||||||
const In* a,
|
const In* a,
|
||||||
const In* b,
|
const In* b,
|
||||||
Out* out_a,
|
Out* out_a,
|
||||||
@@ -169,7 +103,7 @@ __global__ void binary_two_g(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out>
|
template <typename Op, typename In, typename Out>
|
||||||
constexpr bool supports_binary_two_op() {
|
constexpr bool supports_binary_op() {
|
||||||
if (std::is_same_v<Op, DivMod>) {
|
if (std::is_same_v<Op, DivMod>) {
|
||||||
return std::is_same_v<In, Out> &&
|
return std::is_same_v<In, Out> &&
|
||||||
(std::is_integral_v<Out> || is_floating_v<Out>);
|
(std::is_integral_v<Out> || is_floating_v<Out>);
|
||||||
@@ -180,10 +114,10 @@ constexpr bool supports_binary_two_op() {
|
|||||||
} // namespace cu
|
} // namespace cu
|
||||||
|
|
||||||
template <typename Op>
|
template <typename Op>
|
||||||
void binary_two_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
std::string_view op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
assert(inputs.size() > 1);
|
assert(inputs.size() > 1);
|
||||||
const auto& a = inputs[0];
|
const auto& a = inputs[0];
|
||||||
@@ -207,7 +141,7 @@ void binary_two_op_gpu_inplace(
|
|||||||
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
|
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
|
||||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||||
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||||
using InType = cuda_type_t<CTYPE_IN>;
|
using InType = cuda_type_t<CTYPE_IN>;
|
||||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||||
|
|
||||||
@@ -227,12 +161,8 @@ void binary_two_op_gpu_inplace(
|
|||||||
int ndim = shape.size();
|
int ndim = shape.size();
|
||||||
if (ndim <= 3) {
|
if (ndim <= 3) {
|
||||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||||
auto kernel = cu::binary_two_g_nd<
|
auto kernel = cu::
|
||||||
Op,
|
binary_g_nd<Op, InType, OutType, IdxT, dims_constant()>;
|
||||||
InType,
|
|
||||||
OutType,
|
|
||||||
IdxT,
|
|
||||||
dims_constant()>;
|
|
||||||
auto [num_blocks, block_dims] =
|
auto [num_blocks, block_dims] =
|
||||||
get_launch_args(kernel, out_a, large());
|
get_launch_args(kernel, out_a, large());
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
@@ -249,7 +179,7 @@ void binary_two_op_gpu_inplace(
|
|||||||
const_param<dims_constant()>(b_strides));
|
const_param<dims_constant()>(b_strides));
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT>;
|
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||||
auto [num_blocks, block_dims] =
|
auto [num_blocks, block_dims] =
|
||||||
get_launch_args(kernel, out_a, large());
|
get_launch_args(kernel, out_a, large());
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
@@ -268,25 +198,22 @@ void binary_two_op_gpu_inplace(
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
|
dispatch_bool(out_a.data_size() > INT32_MAX, [&](auto large) {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||||
// TODO: Choose optimized value based on type size.
|
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||||
constexpr int N_READS = 4;
|
|
||||||
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
|
|
||||||
if (bopt == BinaryOpType::ScalarVector) {
|
if (bopt == BinaryOpType::ScalarVector) {
|
||||||
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||||
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
|
||||||
} else if (bopt == BinaryOpType::VectorVector) {
|
} else if (bopt == BinaryOpType::VectorVector) {
|
||||||
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
|
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||||
}
|
}
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel,
|
kernel,
|
||||||
out_a.data_size(),
|
out_a.data_size(),
|
||||||
out_a.shape(),
|
out_a.shape(),
|
||||||
out_a.strides(),
|
out_a.strides(),
|
||||||
large(),
|
large());
|
||||||
N_READS);
|
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
@@ -310,17 +237,17 @@ void binary_two_op_gpu_inplace(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op>
|
template <typename Op>
|
||||||
void binary_two_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
std::string_view op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
auto& a = inputs[0];
|
auto& a = inputs[0];
|
||||||
auto& b = inputs[1];
|
auto& b = inputs[1];
|
||||||
auto bopt = get_binary_op_type(a, b);
|
auto bopt = get_binary_op_type(a, b);
|
||||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||||
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
void DivMod::eval_gpu(
|
void DivMod::eval_gpu(
|
||||||
@@ -328,7 +255,7 @@ void DivMod::eval_gpu(
|
|||||||
std::vector<array>& outputs) {
|
std::vector<array>& outputs) {
|
||||||
nvtx3::scoped_range r("DivMod::eval_gpu");
|
nvtx3::scoped_range r("DivMod::eval_gpu");
|
||||||
auto& s = outputs[0].primitive().stream();
|
auto& s = outputs[0].primitive().stream();
|
||||||
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
|
binary_op_gpu<cu::DivMod>(inputs, outputs, get_primitive_string(this), s);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -53,10 +53,9 @@ struct FusedKernelBuilder {
|
|||||||
|
|
||||||
// Build function signature.
|
// Build function signature.
|
||||||
if (contiguous) {
|
if (contiguous) {
|
||||||
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
os += "template <typename IdxT = uint32_t>\n";
|
||||||
} else {
|
} else {
|
||||||
os +=
|
os += "template <int NDIM, typename IdxT = uint32_t>\n";
|
||||||
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
|
||||||
}
|
}
|
||||||
os += fmt::format("__global__ void {}(\n", kernel_name + name);
|
os += fmt::format("__global__ void {}(\n", kernel_name + name);
|
||||||
for (size_t i = 0; i < params.size(); ++i) {
|
for (size_t i = 0; i < params.size(); ++i) {
|
||||||
@@ -68,46 +67,12 @@ struct FusedKernelBuilder {
|
|||||||
}
|
}
|
||||||
os += ") {\n";
|
os += ") {\n";
|
||||||
|
|
||||||
// Index. For non contiguous kernels we create a separate index
|
// Index.
|
||||||
// variable per variable otherwise everyone uses `index`.
|
|
||||||
os +=
|
os +=
|
||||||
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
|
" IdxT index = cg::this_grid().thread_rank();\n"
|
||||||
" if (index >= size) {\n"
|
" if (index >= size) {\n"
|
||||||
" return;\n"
|
" return;\n"
|
||||||
" }\n";
|
" }\n";
|
||||||
if (!contiguous) {
|
|
||||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
||||||
const auto& x = inputs[i];
|
|
||||||
const std::string& xname = namer.get_name(x);
|
|
||||||
if (is_scalar(x) || is_constant(i)) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
os += " IdxT " + xname + "_idx = 0;\n";
|
|
||||||
}
|
|
||||||
os += " {\n";
|
|
||||||
os += " IdxT loc = index;\n";
|
|
||||||
os +=
|
|
||||||
" #pragma unroll\n"
|
|
||||||
" for (int i = NDIM - 1; i >= 0; i--) {\n";
|
|
||||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
||||||
const auto& x = inputs[i];
|
|
||||||
const std::string& xname = namer.get_name(x);
|
|
||||||
if (is_scalar(x) || is_constant(i)) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
|
|
||||||
"_strides[i]);\n";
|
|
||||||
}
|
|
||||||
os +=
|
|
||||||
" loc /= shape[i];\n"
|
|
||||||
" }\n"
|
|
||||||
" }\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
// Work loop
|
|
||||||
os +=
|
|
||||||
"\n"
|
|
||||||
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
|
|
||||||
|
|
||||||
// Read inputs.
|
// Read inputs.
|
||||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||||
@@ -124,9 +89,12 @@ struct FusedKernelBuilder {
|
|||||||
} else if (contiguous) {
|
} else if (contiguous) {
|
||||||
value = fmt::format("{}[index]", xname);
|
value = fmt::format("{}[index]", xname);
|
||||||
} else {
|
} else {
|
||||||
value = fmt::format("{}[{}_idx]", xname, xname);
|
std::string index = fmt::format(
|
||||||
|
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
|
||||||
|
xname);
|
||||||
|
value = fmt::format("{}[{}]", xname, index);
|
||||||
}
|
}
|
||||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Write tape.
|
// Write tape.
|
||||||
@@ -138,37 +106,23 @@ struct FusedKernelBuilder {
|
|||||||
value = fmt::format(
|
value = fmt::format(
|
||||||
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
|
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
|
||||||
} else {
|
} else {
|
||||||
value = x.primitive().name();
|
std::ostringstream ss;
|
||||||
|
x.primitive().print(ss);
|
||||||
|
value = ss.str();
|
||||||
value += "{}(";
|
value += "{}(";
|
||||||
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
|
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
|
||||||
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
|
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
|
||||||
}
|
}
|
||||||
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
|
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
|
||||||
}
|
}
|
||||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Write output.
|
// Write output.
|
||||||
for (const auto& x : outputs) {
|
for (const auto& x : outputs) {
|
||||||
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
||||||
}
|
}
|
||||||
|
|
||||||
// End of work loop
|
|
||||||
os +=
|
|
||||||
"\n"
|
|
||||||
" index++;\n";
|
|
||||||
if (!contiguous) {
|
|
||||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
||||||
const auto& x = inputs[i];
|
|
||||||
const std::string& xname = namer.get_name(x);
|
|
||||||
if (is_scalar(x) || is_constant(i)) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
os += " " + xname + "_idx += " + xname + "_strides[NDIM - 1];\n";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
os += " }\n";
|
|
||||||
|
|
||||||
os += "}\n";
|
os += "}\n";
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -204,28 +158,15 @@ void Compiled::eval_gpu(
|
|||||||
builder.build("_strided", false);
|
builder.build("_strided", false);
|
||||||
builder.os += "\n} // namespace mlx::core::cu\n";
|
builder.os += "\n} // namespace mlx::core::cu\n";
|
||||||
// Build kernel names.
|
// Build kernel names.
|
||||||
std::vector<std::string> kernel_names;
|
std::vector<std::string> kernel_names = {
|
||||||
for (auto work_per_thread : std::array<int, 2>{1, 4}) {
|
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()),
|
||||||
|
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
|
||||||
|
};
|
||||||
|
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||||
kernel_names.push_back(fmt::format(
|
kernel_names.push_back(fmt::format(
|
||||||
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
|
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i));
|
||||||
lib_name(),
|
kernel_names.push_back(
|
||||||
work_per_thread));
|
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i));
|
||||||
kernel_names.push_back(fmt::format(
|
|
||||||
"mlx::core::cu::{}_contiguous<int64_t, {}>",
|
|
||||||
lib_name(),
|
|
||||||
work_per_thread));
|
|
||||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
|
||||||
kernel_names.push_back(fmt::format(
|
|
||||||
"mlx::core::cu::{}_strided<{}, uint32_t, {}>",
|
|
||||||
lib_name(),
|
|
||||||
i,
|
|
||||||
work_per_thread));
|
|
||||||
kernel_names.push_back(fmt::format(
|
|
||||||
"mlx::core::cu::{}_strided<{}, int64_t, {}>",
|
|
||||||
lib_name(),
|
|
||||||
i,
|
|
||||||
work_per_thread));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||||
});
|
});
|
||||||
@@ -268,21 +209,13 @@ void Compiled::eval_gpu(
|
|||||||
args.append<uint32_t>(outputs[0].data_size());
|
args.append<uint32_t>(outputs[0].data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Choose work per thread
|
|
||||||
int work_per_thread = 4;
|
|
||||||
if (!contiguous && shape.back() % work_per_thread != 0) {
|
|
||||||
work_per_thread = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Launch kernel.
|
// Launch kernel.
|
||||||
const char* index_type = large ? "int64_t" : "uint32_t";
|
const char* index_type = large ? "int64_t" : "uint32_t";
|
||||||
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
|
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
|
||||||
if (contiguous) {
|
if (contiguous) {
|
||||||
kernel_name +=
|
kernel_name += fmt::format("_contiguous<{}>", index_type);
|
||||||
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
|
|
||||||
} else {
|
} else {
|
||||||
kernel_name += fmt::format(
|
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type);
|
||||||
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
|
|
||||||
}
|
}
|
||||||
auto& encoder = cu::get_command_encoder(s);
|
auto& encoder = cu::get_command_encoder(s);
|
||||||
for (const auto& in : inputs) {
|
for (const auto& in : inputs) {
|
||||||
@@ -293,8 +226,7 @@ void Compiled::eval_gpu(
|
|||||||
}
|
}
|
||||||
|
|
||||||
auto kernel = mod.get_kernel(kernel_name);
|
auto kernel = mod.get_kernel(kernel_name);
|
||||||
auto [num_blocks, block_dims] =
|
auto [num_blocks, block_dims] = get_launch_args(kernel, outputs[0], large);
|
||||||
get_launch_args(kernel, outputs[0], large, work_per_thread);
|
|
||||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -10,43 +10,19 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
template <typename In, typename Out, typename IdxT>
|
||||||
__global__ void copy_s(const In* in, Out* out, IdxT size) {
|
__global__ void copy_s(const In* in, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = CastOp<In, Out>{}(in[0]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = cast_to<Out>(in[0]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = cast_to<Out>(in[0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
template <typename In, typename Out, typename IdxT>
|
||||||
__global__ void copy_v(const In* in, Out* out, IdxT size) {
|
__global__ void copy_v(const In* in, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = CastOp<In, Out>{}(in[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = cast_to<Out>(in[i]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto in_vec = load_vector<N_READS>(in, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -65,19 +41,12 @@ void copy_contiguous(
|
|||||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||||
// TODO: Choose optimized value based on type size.
|
auto kernel = cu::copy_s<InType, OutType, IdxT>;
|
||||||
constexpr int N_READS = 4;
|
|
||||||
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
|
|
||||||
if (ctype == CopyType::Vector) {
|
if (ctype == CopyType::Vector) {
|
||||||
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
|
kernel = cu::copy_v<InType, OutType, IdxT>;
|
||||||
}
|
}
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel,
|
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||||
out.data_size(),
|
|
||||||
out.shape(),
|
|
||||||
out.strides(),
|
|
||||||
large(),
|
|
||||||
N_READS);
|
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
|
|||||||
@@ -57,15 +57,8 @@ void Device::make_current() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
CommandEncoder& Device::get_command_encoder(Stream s) {
|
|
||||||
auto it = encoders_.find(s.index);
|
|
||||||
if (it == encoders_.end()) {
|
|
||||||
it = encoders_.try_emplace(s.index, *this).first;
|
|
||||||
}
|
|
||||||
return it->second;
|
|
||||||
}
|
|
||||||
|
|
||||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||||
|
CHECK_CUDA_ERROR(cudaGraphCreate(&graph, 0));
|
||||||
CHECK_CUDA_ERROR(
|
CHECK_CUDA_ERROR(
|
||||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||||
}
|
}
|
||||||
@@ -175,7 +168,15 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
CommandEncoder::CommandEncoder(Device& d) : device_(d), stream_(d) {
|
CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||||
|
auto it = encoders_.find(s.index);
|
||||||
|
if (it == encoders_.end()) {
|
||||||
|
it = encoders_.try_emplace(s.index, *this).first;
|
||||||
|
}
|
||||||
|
return it->second;
|
||||||
|
}
|
||||||
|
|
||||||
|
CommandEncoder::CommandEncoder(Device& d) : stream_(d) {
|
||||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -263,30 +264,22 @@ void CommandEncoder::commit() {
|
|||||||
graph_key_ += std::to_string(graph_node_count_);
|
graph_key_ += std::to_string(graph_node_count_);
|
||||||
graph_key_ += ".";
|
graph_key_ += ".";
|
||||||
graph_key_ += std::to_string(empty_node_count_);
|
graph_key_ += std::to_string(empty_node_count_);
|
||||||
|
auto [it, _] = graph_cache_.emplace(graph_key_, nullptr);
|
||||||
|
auto& graph_exec = it->second;
|
||||||
|
|
||||||
cudaGraphExec_t& graph_exec = graph_cache_[graph_key_];
|
if (graph_exec != NULL) {
|
||||||
|
cudaGraphExecUpdateResultInfo update_result;
|
||||||
if (graph_exec != nullptr) {
|
cudaGraphExecUpdate(graph_exec, graph_, &update_result);
|
||||||
cudaGraphExecUpdateResult update_result;
|
if (update_result.result != cudaGraphExecUpdateSuccess) {
|
||||||
#if CUDART_VERSION >= 12000
|
cudaGetLastError();
|
||||||
cudaGraphExecUpdateResultInfo info;
|
|
||||||
cudaGraphExecUpdate(graph_exec, graph_, &info);
|
|
||||||
update_result = info.result;
|
|
||||||
#else
|
|
||||||
cudaGraphNode_t error_node;
|
|
||||||
cudaGraphExecUpdate(graph_exec, graph_, &error_node, &update_result);
|
|
||||||
#endif // CUDART_VERSION >= 12000
|
|
||||||
if (update_result != cudaGraphExecUpdateSuccess) {
|
|
||||||
cudaGetLastError(); // reset error
|
|
||||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||||
graph_exec = nullptr;
|
graph_exec = NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (graph_exec == nullptr) {
|
if (graph_exec == NULL) {
|
||||||
CHECK_CUDA_ERROR(
|
CHECK_CUDA_ERROR(
|
||||||
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
|
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
|
||||||
}
|
}
|
||||||
device_.make_current();
|
|
||||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||||
|
|
||||||
// TODO smarter cache policy
|
// TODO smarter cache policy
|
||||||
|
|||||||
@@ -93,7 +93,6 @@ class CommandEncoder {
|
|||||||
void insert_graph_dependencies(GraphNode node);
|
void insert_graph_dependencies(GraphNode node);
|
||||||
void insert_graph_dependencies(std::vector<GraphNode> nodes);
|
void insert_graph_dependencies(std::vector<GraphNode> nodes);
|
||||||
|
|
||||||
Device& device_;
|
|
||||||
CudaStream stream_;
|
CudaStream stream_;
|
||||||
cudaGraph_t graph_;
|
cudaGraph_t graph_;
|
||||||
Worker worker_;
|
Worker worker_;
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device/complex.cuh"
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||||
|
|
||||||
#include <cuda/atomic>
|
#include <cuda/atomic>
|
||||||
@@ -48,7 +48,7 @@ inline __device__ void atomic_add(__half* out, __half val) {
|
|||||||
atomicAdd(out, val);
|
atomicAdd(out, val);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
|
inline __device__ void atomic_add(cuComplex* out, cuComplex val) {
|
||||||
#if __CUDA_ARCH__ < 900
|
#if __CUDA_ARCH__ < 900
|
||||||
atomic_add_general(out, val);
|
atomic_add_general(out, val);
|
||||||
#else
|
#else
|
||||||
@@ -58,7 +58,12 @@ inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
|
|||||||
|
|
||||||
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
|
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
|
||||||
#if __CUDA_ARCH__ < 800
|
#if __CUDA_ARCH__ < 800
|
||||||
|
#if CCCL_VERSION >= 2008000
|
||||||
atomic_add_general(out, val);
|
atomic_add_general(out, val);
|
||||||
|
#else
|
||||||
|
bool cccl_version_too_old_for_bfloat16_atomic_add = false;
|
||||||
|
assert(cccl_version_too_old_for_bfloat16_atomic_add);
|
||||||
|
#endif
|
||||||
#else
|
#else
|
||||||
atomicAdd(out, val);
|
atomicAdd(out, val);
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -1,7 +1,10 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
// Copyright © 2025 Apple Inc.
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
|
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||||
|
#include "mlx/backend/cuda/device/utils.cuh"
|
||||||
|
|
||||||
|
#include <cuComplex.h>
|
||||||
#include <cuda/std/array>
|
#include <cuda/std/array>
|
||||||
|
|
||||||
namespace mlx::core::cu {
|
namespace mlx::core::cu {
|
||||||
@@ -44,7 +47,7 @@ struct Remainder {
|
|||||||
} else {
|
} else {
|
||||||
return x % y;
|
return x % y;
|
||||||
}
|
}
|
||||||
} else if constexpr (is_complex_v<T>) {
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return x % y;
|
return x % y;
|
||||||
} else {
|
} else {
|
||||||
T r = fmod(x, y);
|
T r = fmod(x, y);
|
||||||
@@ -66,12 +69,14 @@ struct Equal {
|
|||||||
struct NaNEqual {
|
struct NaNEqual {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ bool operator()(T x, T y) {
|
__device__ bool operator()(T x, T y) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (std::is_same_v<T, cuComplex>) {
|
||||||
return x == y ||
|
return x == y ||
|
||||||
(isnan(x.real()) && isnan(y.real()) && isnan(x.imag()) &&
|
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) && isnan(cuCimagf(x)) &&
|
||||||
isnan(y.imag())) ||
|
isnan(cuCimagf(y))) ||
|
||||||
(x.real() == y.real() && isnan(x.imag()) && isnan(y.imag())) ||
|
(cuCrealf(x) == cuCrealf(y) && isnan(cuCimagf(x)) &&
|
||||||
(isnan(x.real()) && isnan(y.real()) && x.imag() == y.imag());
|
isnan(cuCimagf(y))) ||
|
||||||
|
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) &&
|
||||||
|
cuCimagf(x) == cuCimagf(y));
|
||||||
} else {
|
} else {
|
||||||
return x == y || (isnan(x) && isnan(y));
|
return x == y || (isnan(x) && isnan(y));
|
||||||
}
|
}
|
||||||
@@ -109,38 +114,36 @@ struct LessEqual {
|
|||||||
struct LogAddExp {
|
struct LogAddExp {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x, T y) {
|
__device__ T operator()(T x, T y) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if (isnan(x) || isnan(y)) {
|
||||||
if (isnan(x.real()) || isnan(x.imag()) || isnan(y.real()) ||
|
return cuda::std::numeric_limits<T>::quiet_NaN();
|
||||||
isnan(y.imag())) {
|
|
||||||
return {
|
|
||||||
cuda::std::numeric_limits<float>::quiet_NaN(),
|
|
||||||
cuda::std::numeric_limits<float>::quiet_NaN()};
|
|
||||||
}
|
|
||||||
auto max = x.real() > y.real() ? x : y;
|
|
||||||
auto min = x.real() < y.real() ? x : y;
|
|
||||||
auto min_real = min.real();
|
|
||||||
auto max_real = max.real();
|
|
||||||
if (!isfinite(min_real) && (min_real == max_real)) {
|
|
||||||
if (min_real < 0) {
|
|
||||||
return min;
|
|
||||||
} else {
|
|
||||||
return Log{}(Exp{}(min) + Exp{}(max));
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
return Log1p{}(Exp{}(min - max)) + max;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (isnan(x) || isnan(y)) {
|
|
||||||
return cuda::std::numeric_limits<T>::quiet_NaN();
|
|
||||||
}
|
|
||||||
T maxval = max(x, y);
|
|
||||||
T minval = min(x, y);
|
|
||||||
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
|
|
||||||
maxval == cuda::std::numeric_limits<T>::infinity())
|
|
||||||
? maxval
|
|
||||||
: T(float(maxval) + log1p(expf(minval - maxval)));
|
|
||||||
}
|
}
|
||||||
|
T maxval = max(x, y);
|
||||||
|
T minval = min(x, y);
|
||||||
|
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
|
||||||
|
maxval == cuda::std::numeric_limits<T>::infinity())
|
||||||
|
? maxval
|
||||||
|
: T(float(maxval) + log1p(expf(minval - maxval)));
|
||||||
};
|
};
|
||||||
|
|
||||||
|
__device__ cuComplex operator()(cuComplex x, cuComplex y) {
|
||||||
|
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
|
||||||
|
isnan(cuCimagf(y))) {
|
||||||
|
return {
|
||||||
|
cuda::std::numeric_limits<float>::quiet_NaN(),
|
||||||
|
cuda::std::numeric_limits<float>::quiet_NaN()};
|
||||||
|
}
|
||||||
|
float inf = cuda::std::numeric_limits<float>::infinity();
|
||||||
|
auto maxval = x > y ? x : y;
|
||||||
|
auto minval = x < y ? x : y;
|
||||||
|
if (cuCrealf(minval) == -inf || cuCrealf(maxval) == inf)
|
||||||
|
return maxval;
|
||||||
|
float m = exp(cuCrealf(minval) - cuCrealf(maxval));
|
||||||
|
cuComplex dexp{
|
||||||
|
m * cos(cuCimagf(minval) - cuCimagf(maxval)),
|
||||||
|
m * sin(cuCimagf(minval) - cuCimagf(maxval)),
|
||||||
|
};
|
||||||
|
return maxval + log1p(dexp);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Maximum {
|
struct Maximum {
|
||||||
@@ -148,8 +151,8 @@ struct Maximum {
|
|||||||
__device__ T operator()(T x, T y) {
|
__device__ T operator()(T x, T y) {
|
||||||
if constexpr (cuda::std::is_integral_v<T>) {
|
if constexpr (cuda::std::is_integral_v<T>) {
|
||||||
return max(x, y);
|
return max(x, y);
|
||||||
} else if constexpr (is_complex_v<T>) {
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
if (isnan(x.real()) || isnan(x.imag())) {
|
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
return x > y ? x : y;
|
return x > y ? x : y;
|
||||||
@@ -167,8 +170,8 @@ struct Minimum {
|
|||||||
__device__ T operator()(T x, T y) {
|
__device__ T operator()(T x, T y) {
|
||||||
if constexpr (cuda::std::is_integral_v<T>) {
|
if constexpr (cuda::std::is_integral_v<T>) {
|
||||||
return min(x, y);
|
return min(x, y);
|
||||||
} else if constexpr (is_complex_v<T>) {
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
if (isnan(x.real()) || isnan(x.imag())) {
|
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
return x < y ? x : y;
|
return x < y ? x : y;
|
||||||
@@ -191,8 +194,8 @@ struct Multiply {
|
|||||||
struct NotEqual {
|
struct NotEqual {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ bool operator()(T x, T y) {
|
__device__ bool operator()(T x, T y) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (std::is_same_v<T, cuComplex>) {
|
||||||
return x.real() != y.real() || x.imag() != y.imag();
|
return cuCrealf(x) != cuCrealf(y) || cuCimagf(x) != cuCimagf(y);
|
||||||
} else {
|
} else {
|
||||||
return x != y;
|
return x != y;
|
||||||
}
|
}
|
||||||
@@ -212,8 +215,19 @@ struct Power {
|
|||||||
base *= base;
|
base *= base;
|
||||||
}
|
}
|
||||||
return res;
|
return res;
|
||||||
} else if constexpr (is_complex_v<T>) {
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return pow(base, exp);
|
if (base.y == 0 && base.x == 0) {
|
||||||
|
if (isnan(exp.x) || isnan(exp.y)) {
|
||||||
|
auto nan = cuda::std::numeric_limits<float>::quiet_NaN();
|
||||||
|
return make_cuFloatComplex(nan, nan);
|
||||||
|
}
|
||||||
|
return make_cuFloatComplex(0.0, 0.0);
|
||||||
|
}
|
||||||
|
auto x_theta = atan2f(base.y, base.x);
|
||||||
|
auto x_ln_r = 0.5 * logf(base.x * base.x + base.y * base.y);
|
||||||
|
auto mag = expf(exp.x * x_ln_r - exp.y * x_theta);
|
||||||
|
auto phase = exp.y * x_ln_r + exp.x * x_theta;
|
||||||
|
return make_cuFloatComplex(mag * cosf(phase), mag * sinf(phase));
|
||||||
} else {
|
} else {
|
||||||
return powf(base, exp);
|
return powf(base, exp);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -2,10 +2,7 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device/complex.cuh"
|
#include <cuComplex.h>
|
||||||
|
|
||||||
#include <cuda_bf16.h>
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <thrust/iterator/transform_iterator.h>
|
#include <thrust/iterator/transform_iterator.h>
|
||||||
|
|
||||||
namespace mlx::core::cu {
|
namespace mlx::core::cu {
|
||||||
@@ -20,48 +17,34 @@ struct CastOp {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// Castings between complex and boolean.
|
|
||||||
template <typename T>
|
|
||||||
struct CastOp<complex_t<T>, bool> {
|
|
||||||
static constexpr bool is_castable = true;
|
|
||||||
|
|
||||||
__device__ bool operator()(complex_t<T> x) {
|
|
||||||
return x.real() != 0 && x.imag() != 0;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
struct CastOp<bool, complex_t<T>> {
|
|
||||||
static constexpr bool is_castable = true;
|
|
||||||
|
|
||||||
__device__ complex_t<T> operator()(bool x) {
|
|
||||||
return x ? complex_t<T>{1, 1} : complex_t<T>{0, 0};
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Converting a complex number to real number discards the imaginary part.
|
// Converting a complex number to real number discards the imaginary part.
|
||||||
template <typename T, typename DstT>
|
template <typename DstT>
|
||||||
struct CastOp<complex_t<T>, DstT, cuda::std::enable_if_t<!is_complex_v<DstT>>> {
|
struct CastOp<
|
||||||
static constexpr bool is_castable = cuda::std::is_convertible_v<T, DstT>;
|
cuComplex,
|
||||||
|
DstT,
|
||||||
|
cuda::std::enable_if_t<!cuda::std::is_same_v<cuComplex, DstT>>> {
|
||||||
|
static constexpr bool is_castable = cuda::std::is_convertible_v<float, DstT>;
|
||||||
|
|
||||||
__device__ DstT operator()(complex_t<T> x) {
|
__device__ DstT operator()(cuComplex x) {
|
||||||
static_assert(!is_complex_v<DstT>);
|
static_assert(!cuda::std::is_same_v<cuComplex, DstT>);
|
||||||
return static_cast<DstT>(x.real());
|
return static_cast<DstT>(cuCrealf(x));
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// Allow converting a real number to complex number.
|
// Allow converting a real number to complex number.
|
||||||
template <typename SrcT, typename T>
|
template <typename SrcT>
|
||||||
struct CastOp<SrcT, complex_t<T>, cuda::std::enable_if_t<!is_complex_v<SrcT>>> {
|
struct CastOp<
|
||||||
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, T>;
|
SrcT,
|
||||||
|
cuComplex,
|
||||||
|
cuda::std::enable_if_t<!cuda::std::is_same_v<SrcT, cuComplex>>> {
|
||||||
|
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, float>;
|
||||||
|
|
||||||
__device__ complex_t<T> operator()(SrcT x) {
|
__device__ cuComplex operator()(SrcT x) {
|
||||||
static_assert(!is_complex_v<SrcT>);
|
static_assert(!cuda::std::is_same_v<SrcT, cuComplex>);
|
||||||
return complex_t<T>{static_cast<T>(x), 0};
|
return cuComplex{static_cast<float>(x), 0};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// Do nothing when no casting is needed.
|
|
||||||
template <typename SrcT, typename DstT>
|
template <typename SrcT, typename DstT>
|
||||||
struct CastOp<
|
struct CastOp<
|
||||||
SrcT,
|
SrcT,
|
||||||
@@ -74,51 +57,9 @@ struct CastOp<
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// In CUDA 11 the half types do not define conversions between some types,
|
|
||||||
// provide fallbacks here.
|
|
||||||
#if CUDART_VERSION < 12000
|
|
||||||
template <typename SrcT, typename DstT>
|
|
||||||
struct CastOp<
|
|
||||||
SrcT,
|
|
||||||
DstT,
|
|
||||||
cuda::std::enable_if_t<
|
|
||||||
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
|
|
||||||
(cuda::std::is_same_v<DstT, __half> ||
|
|
||||||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
|
|
||||||
static constexpr bool is_castable = true;
|
|
||||||
|
|
||||||
__device__ DstT operator()(SrcT x) {
|
|
||||||
return DstT(static_cast<float>(x));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename SrcT, typename DstT>
|
|
||||||
struct CastOp<
|
|
||||||
SrcT,
|
|
||||||
DstT,
|
|
||||||
cuda::std::enable_if_t<
|
|
||||||
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
|
|
||||||
!cuda::std::is_same_v<DstT, __half> &&
|
|
||||||
!cuda::std::is_same_v<DstT, __nv_bfloat16> &&
|
|
||||||
(cuda::std::is_same_v<SrcT, __half> ||
|
|
||||||
cuda::std::is_same_v<SrcT, __nv_bfloat16>)>> {
|
|
||||||
static constexpr bool is_castable = true;
|
|
||||||
|
|
||||||
__device__ DstT operator()(SrcT x) {
|
|
||||||
return DstT(static_cast<float>(x));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
#endif // CUDART_VERSION < 12000
|
|
||||||
|
|
||||||
// Helper to deduce the SrcT.
|
|
||||||
template <typename DstT, typename SrcT>
|
|
||||||
inline __host__ __device__ auto cast_to(SrcT x) {
|
|
||||||
return CastOp<SrcT, DstT>{}(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Return an iterator that cast the value to DstT using CastOp.
|
// Return an iterator that cast the value to DstT using CastOp.
|
||||||
template <typename DstT, typename Iterator>
|
template <typename DstT, typename Iterator>
|
||||||
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
|
__host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||||
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
|
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
|
||||||
if constexpr (std::is_same_v<SrcT, DstT>) {
|
if constexpr (std::is_same_v<SrcT, DstT>) {
|
||||||
return it;
|
return it;
|
||||||
|
|||||||
@@ -1,60 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
// Make multiplication and division faster.
|
|
||||||
#define LIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS
|
|
||||||
|
|
||||||
#include <cuda/std/complex>
|
|
||||||
#include <cuda/std/type_traits>
|
|
||||||
|
|
||||||
namespace mlx::core::cu {
|
|
||||||
|
|
||||||
// TODO: Consider using a faster implementation as cuda::std::complex has to
|
|
||||||
// conform to C++ standard.
|
|
||||||
template <typename T>
|
|
||||||
using complex_t = cuda::std::complex<T>;
|
|
||||||
|
|
||||||
using complex64_t = complex_t<float>;
|
|
||||||
using complex128_t = complex_t<double>;
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
struct is_complex : cuda::std::false_type {};
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
struct is_complex<cuda::std::complex<T>> : cuda::std::true_type {};
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline constexpr bool is_complex_v = is_complex<T>::value;
|
|
||||||
|
|
||||||
// cuda::std::complex is missing some operators.
|
|
||||||
template <typename T>
|
|
||||||
inline __host__ __device__ complex_t<T> operator%(
|
|
||||||
complex_t<T> a,
|
|
||||||
complex_t<T> b) {
|
|
||||||
T r = a.real() - floor(a.real() / b.real()) * b.real();
|
|
||||||
T i = a.imag() - floor(a.imag() / b.imag()) * b.imag();
|
|
||||||
return complex_t<T>{r, i};
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline __host__ __device__ bool operator>(complex_t<T> a, complex_t<T> b) {
|
|
||||||
return (a.real() > b.real()) || (a.real() == b.real() && a.imag() > b.imag());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline __host__ __device__ bool operator<(complex_t<T> a, complex_t<T> b) {
|
|
||||||
return operator>(b, a);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline __host__ __device__ bool operator<=(complex_t<T> a, complex_t<T> b) {
|
|
||||||
return !(a > b);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline __host__ __device__ bool operator>=(complex_t<T> a, complex_t<T> b) {
|
|
||||||
return !(a < b);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core::cu
|
|
||||||
240
mlx/backend/cuda/device/cucomplex_math.cuh
Normal file
240
mlx/backend/cuda/device/cucomplex_math.cuh
Normal file
@@ -0,0 +1,240 @@
|
|||||||
|
// Copyright © 2025 Apple Inc.
|
||||||
|
// Copyright © 2017-2024 The Simons Foundation, Inc.
|
||||||
|
//
|
||||||
|
// FINUFFT is licensed under the Apache License, Version 2.0 (the
|
||||||
|
// "License"); you may not use this file except in compliance with the
|
||||||
|
// License. You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
//
|
||||||
|
// Forked from
|
||||||
|
// https://github.com/flatironinstitute/finufft/blob/main/include/cufinufft/contrib/helper_math.h
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cuComplex.h>
|
||||||
|
|
||||||
|
// This header provides some helper functions for cuComplex types.
|
||||||
|
// It mainly wraps existing CUDA implementations to provide operator overloads
|
||||||
|
// e.g. cuAdd, cuSub, cuMul, cuDiv, cuCreal, cuCimag, cuCabs, cuCarg, cuConj are
|
||||||
|
// all provided by CUDA
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator+(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||||
|
return cuCadd(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator-(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||||
|
return cuCsub(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator*(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||||
|
return cuCmul(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator/(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||||
|
return cuCdiv(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator%(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||||
|
double r = cuCreal(a) - (floorf(cuCreal(a) / cuCreal(b)) * cuCreal(b));
|
||||||
|
double i = cuCimag(a) - (floorf(cuCimag(a) / cuCimag(b)) * cuCimag(b));
|
||||||
|
return make_cuDoubleComplex(r, i);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator==(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
return cuCreal(a) == cuCreal(b) && cuCimag(a) == cuCimag(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator!=(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
return !(a == b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator>(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
double mag_a = sqrt(cuCreal(a) * cuCreal(a) + cuCimag(a) * cuCimag(a));
|
||||||
|
double mag_b = sqrt(cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b));
|
||||||
|
return mag_a > mag_b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator>=(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
return a > b || a == b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator<(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
return b > a;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator<=(
|
||||||
|
const cuDoubleComplex& a,
|
||||||
|
const cuDoubleComplex& b) {
|
||||||
|
return b > a || a == b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator+(const cuDoubleComplex& a, double b) {
|
||||||
|
return make_cuDoubleComplex(cuCreal(a) + b, cuCimag(a));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator+(double a, const cuDoubleComplex& b) {
|
||||||
|
return make_cuDoubleComplex(a + cuCreal(b), cuCimag(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator-(const cuDoubleComplex& a, double b) {
|
||||||
|
return make_cuDoubleComplex(cuCreal(a) - b, cuCimag(a));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator-(double a, const cuDoubleComplex& b) {
|
||||||
|
return make_cuDoubleComplex(a - cuCreal(b), -cuCimag(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator*(const cuDoubleComplex& a, double b) {
|
||||||
|
return make_cuDoubleComplex(cuCreal(a) * b, cuCimag(a) * b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator*(double a, const cuDoubleComplex& b) {
|
||||||
|
return make_cuDoubleComplex(a * cuCreal(b), a * cuCimag(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator/(const cuDoubleComplex& a, double b) {
|
||||||
|
return make_cuDoubleComplex(cuCreal(a) / b, cuCimag(a) / b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||||
|
operator/(double a, const cuDoubleComplex& b) {
|
||||||
|
double denom = cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b);
|
||||||
|
return make_cuDoubleComplex(
|
||||||
|
(a * cuCreal(b)) / denom, (-a * cuCimag(b)) / denom);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator+(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||||
|
return cuCaddf(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator-(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||||
|
return cuCsubf(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator*(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||||
|
return cuCmulf(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator/(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||||
|
return cuCdivf(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator%(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||||
|
float r = cuCrealf(a) - (floorf(cuCrealf(a) / cuCrealf(b)) * cuCrealf(b));
|
||||||
|
float i = cuCimagf(a) - (floorf(cuCimagf(a) / cuCimagf(b)) * cuCimagf(b));
|
||||||
|
return make_cuFloatComplex(r, i);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator==(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
return cuCrealf(a) == cuCrealf(b) && cuCimagf(a) == cuCimagf(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator!=(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
return !(a == b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator>(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
float mag_a = sqrt(cuCrealf(a) * cuCrealf(a) + cuCimagf(a) * cuCimagf(a));
|
||||||
|
float mag_b = sqrt(cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b));
|
||||||
|
return mag_a > mag_b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator>=(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
return a > b || a == b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator<(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
return b > a;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ bool operator<=(
|
||||||
|
const cuFloatComplex& a,
|
||||||
|
const cuFloatComplex& b) {
|
||||||
|
return b > a || a == b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator+(const cuFloatComplex& a, float b) {
|
||||||
|
return make_cuFloatComplex(cuCrealf(a) + b, cuCimagf(a));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator+(float a, const cuFloatComplex& b) {
|
||||||
|
return make_cuFloatComplex(a + cuCrealf(b), cuCimagf(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator-(const cuFloatComplex& a, float b) {
|
||||||
|
return make_cuFloatComplex(cuCrealf(a) - b, cuCimagf(a));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator-(float a, const cuFloatComplex& b) {
|
||||||
|
return make_cuFloatComplex(a - cuCrealf(b), -cuCimagf(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator*(const cuFloatComplex& a, float b) {
|
||||||
|
return make_cuFloatComplex(cuCrealf(a) * b, cuCimagf(a) * b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator*(float a, const cuFloatComplex& b) {
|
||||||
|
return make_cuFloatComplex(a * cuCrealf(b), a * cuCimagf(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator/(const cuFloatComplex& a, float b) {
|
||||||
|
return make_cuFloatComplex(cuCrealf(a) / b, cuCimagf(a) / b);
|
||||||
|
}
|
||||||
|
|
||||||
|
__forceinline__ __host__ __device__ cuFloatComplex
|
||||||
|
operator/(float a, const cuFloatComplex& b) {
|
||||||
|
float denom = cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b);
|
||||||
|
return make_cuFloatComplex(
|
||||||
|
(a * cuCrealf(b)) / denom, (-a * cuCimagf(b)) / denom);
|
||||||
|
}
|
||||||
@@ -14,6 +14,8 @@ struct Abs {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (cuda::std::is_unsigned_v<T>) {
|
if constexpr (cuda::std::is_unsigned_v<T>) {
|
||||||
return x;
|
return x;
|
||||||
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
return {sqrt(cuCrealf(x) * cuCrealf(x) + cuCimagf(x) * cuCimagf(x)), 0};
|
||||||
} else {
|
} else {
|
||||||
return abs(x);
|
return abs(x);
|
||||||
}
|
}
|
||||||
@@ -25,6 +27,8 @@ struct ArcCos {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return acos(x);
|
return acos(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__device__ cuComplex operator()(cuComplex x);
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ArcCosh {
|
struct ArcCosh {
|
||||||
@@ -39,6 +43,8 @@ struct ArcSin {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return asin(x);
|
return asin(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__device__ cuComplex operator()(cuComplex x);
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ArcSinh {
|
struct ArcSinh {
|
||||||
@@ -53,6 +59,8 @@ struct ArcTan {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return atan(x);
|
return atan(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__device__ cuComplex operator()(cuComplex x);
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ArcTanh {
|
struct ArcTanh {
|
||||||
@@ -74,8 +82,6 @@ struct Ceil {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (cuda::std::is_integral_v<T>) {
|
if constexpr (cuda::std::is_integral_v<T>) {
|
||||||
return x;
|
return x;
|
||||||
} else if constexpr (is_complex_v<T>) {
|
|
||||||
return T{ceil(x.real()), ceil(x.imag())};
|
|
||||||
} else {
|
} else {
|
||||||
return ceil(x);
|
return ceil(x);
|
||||||
}
|
}
|
||||||
@@ -83,23 +89,34 @@ struct Ceil {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct Conjugate {
|
struct Conjugate {
|
||||||
template <typename T>
|
__device__ cuComplex operator()(cuComplex x) {
|
||||||
__device__ complex_t<T> operator()(complex_t<T> x) {
|
return {cuCrealf(x), -cuCimagf(x)};
|
||||||
return conj(x);
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Cos {
|
struct Cos {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return cos(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
return {
|
||||||
|
cos(cuCrealf(x)) * cosh(cuCimagf(x)),
|
||||||
|
-sin(cuCrealf(x)) * sinh(cuCimagf(x))};
|
||||||
|
} else {
|
||||||
|
return cos(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Cosh {
|
struct Cosh {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return cosh(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
return {
|
||||||
|
cosh(cuCrealf(x)) * cos(cuCimagf(x)),
|
||||||
|
sinh(cuCrealf(x)) * sin(cuCimagf(x))};
|
||||||
|
} else {
|
||||||
|
return cosh(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -132,7 +149,12 @@ struct ErfInv {
|
|||||||
struct Exp {
|
struct Exp {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return exp(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
auto m = exp(cuCrealf(x));
|
||||||
|
return {m * cos(cuCimagf(x)), m * sinh(cuCimagf(x))};
|
||||||
|
} else {
|
||||||
|
return exp(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -154,8 +176,6 @@ struct Floor {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (cuda::std::is_integral_v<T>) {
|
if constexpr (cuda::std::is_integral_v<T>) {
|
||||||
return x;
|
return x;
|
||||||
} else if constexpr (is_complex_v<T>) {
|
|
||||||
return T{floor(x.real()), floor(x.imag())};
|
|
||||||
} else {
|
} else {
|
||||||
return floor(x);
|
return floor(x);
|
||||||
}
|
}
|
||||||
@@ -163,25 +183,30 @@ struct Floor {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct Imag {
|
struct Imag {
|
||||||
template <typename T>
|
__device__ float operator()(cuComplex x) {
|
||||||
__device__ auto operator()(complex_t<T> x) {
|
return cuCimagf(x);
|
||||||
return x.imag();
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Log {
|
struct Log {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return log(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
auto r = log(cuCrealf(Abs{}(x)));
|
||||||
|
auto i = atan2f(cuCimagf(x), cuCrealf(x));
|
||||||
|
return {r, i};
|
||||||
|
} else {
|
||||||
|
return log(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Log2 {
|
struct Log2 {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
auto y = Log{}(x);
|
auto y = Log{}(x);
|
||||||
return {y.real() / CUDART_LN2_F, y.imag() / CUDART_LN2_F};
|
return {cuCrealf(y) / CUDART_LN2_F, cuCimagf(y) / CUDART_LN2_F};
|
||||||
} else {
|
} else {
|
||||||
return log2(x);
|
return log2(x);
|
||||||
}
|
}
|
||||||
@@ -191,31 +216,20 @@ struct Log2 {
|
|||||||
struct Log10 {
|
struct Log10 {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return log10(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
auto y = Log{}(x);
|
||||||
|
return {cuCrealf(y) / CUDART_LNT_F, cuCimagf(y) / CUDART_LNT_F};
|
||||||
|
return y;
|
||||||
|
} else {
|
||||||
|
return log10(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Log1p {
|
struct Log1p {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T z) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (is_complex_v<T>) {
|
return log1p(x);
|
||||||
float x = z.real();
|
|
||||||
float y = z.imag();
|
|
||||||
float zabs = Abs{}(z).real();
|
|
||||||
float theta = atan2f(y, x + 1);
|
|
||||||
if (zabs < 0.5f) {
|
|
||||||
float r = x * (2 + x) + y * y;
|
|
||||||
if (r == 0) { // handle underflow
|
|
||||||
return {x, theta};
|
|
||||||
}
|
|
||||||
return {0.5f * log1pf(r), theta};
|
|
||||||
} else {
|
|
||||||
float z0 = hypotf(x + 1, y);
|
|
||||||
return {logf(z0), theta};
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
return log1p(z);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -228,8 +242,8 @@ struct LogicalNot {
|
|||||||
struct Negative {
|
struct Negative {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return T{0, 0} - x;
|
return 0 - x;
|
||||||
} else {
|
} else {
|
||||||
return -x;
|
return -x;
|
||||||
}
|
}
|
||||||
@@ -237,17 +251,16 @@ struct Negative {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct Real {
|
struct Real {
|
||||||
template <typename T>
|
__device__ float operator()(cuComplex x) {
|
||||||
__device__ auto operator()(complex_t<T> x) {
|
return cuCrealf(x);
|
||||||
return x.real();
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Round {
|
struct Round {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return {rint(x.real()), rint(x.imag())};
|
return {rint(cuCrealf(x)), rint(cuCimagf(x))};
|
||||||
} else {
|
} else {
|
||||||
return rint(x);
|
return rint(x);
|
||||||
}
|
}
|
||||||
@@ -267,8 +280,8 @@ struct Sign {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (cuda::std::is_unsigned_v<T>) {
|
if constexpr (cuda::std::is_unsigned_v<T>) {
|
||||||
return x != 0;
|
return x != 0;
|
||||||
} else if constexpr (is_complex_v<T>) {
|
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
if (x.real() == 0 && x.imag() == 0) {
|
if (cuCrealf(x) == 0 && cuCimagf(x) == 0) {
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
return x / Abs()(x);
|
return x / Abs()(x);
|
||||||
@@ -284,14 +297,26 @@ struct Sign {
|
|||||||
struct Sin {
|
struct Sin {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return sin(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
return {
|
||||||
|
sin(cuCrealf(x)) * cosh(cuCimagf(x)),
|
||||||
|
cos(cuCrealf(x)) * sinh(cuCimagf(x))};
|
||||||
|
} else {
|
||||||
|
return sin(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Sinh {
|
struct Sinh {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return sinh(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
return {
|
||||||
|
sinh(cuCrealf(x)) * cos(cuCimagf(x)),
|
||||||
|
cosh(cuCrealf(x)) * sin(cuCimagf(x))};
|
||||||
|
} else {
|
||||||
|
return sinh(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -307,31 +332,77 @@ struct Sqrt {
|
|||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return sqrt(x);
|
return sqrt(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__device__ cuComplex operator()(cuComplex x) {
|
||||||
|
auto xr = cuCrealf(x);
|
||||||
|
auto xi = cuCimagf(x);
|
||||||
|
if (xr == 0.0f && xi == 0.0f) {
|
||||||
|
return {0.0f, 0.0f};
|
||||||
|
}
|
||||||
|
auto r = cuCrealf(Abs{}(x));
|
||||||
|
auto a = sqrt((r + xr) / 2.0f);
|
||||||
|
auto b_abs = sqrt((r - xr) / 2.0f);
|
||||||
|
auto b = copysign(b_abs, xi);
|
||||||
|
return {a, b};
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Rsqrt {
|
struct Rsqrt {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
if constexpr (is_complex_v<T>) {
|
return rsqrt(x);
|
||||||
return 1.0f / Sqrt{}(x);
|
}
|
||||||
} else {
|
__device__ cuComplex operator()(cuComplex x) {
|
||||||
return rsqrt(x);
|
return 1.0f / Sqrt{}(x);
|
||||||
}
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Tan {
|
struct Tan {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return tan(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
float tan_a = tan(cuCrealf(x));
|
||||||
|
float tanh_b = tanh(cuCimagf(x));
|
||||||
|
float t1 = tan_a * tanh_b;
|
||||||
|
float denom = 1. + t1 * t1;
|
||||||
|
return {(tan_a - tanh_b * t1) / denom, (tanh_b + tan_a * t1) / denom};
|
||||||
|
} else {
|
||||||
|
return tan(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Tanh {
|
struct Tanh {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ T operator()(T x) {
|
__device__ T operator()(T x) {
|
||||||
return tanh(x);
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
|
float tanh_a = tanh(cuCrealf(x));
|
||||||
|
float tan_b = tan(cuCimagf(x));
|
||||||
|
float t1 = tanh_a * tan_b;
|
||||||
|
float denom = 1. + t1 * t1;
|
||||||
|
return {(tanh_a + tan_b * t1) / denom, (tan_b - tanh_a * t1) / denom};
|
||||||
|
} else {
|
||||||
|
return tanh(x);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
__device__ cuComplex ArcCos::operator()(cuComplex x) {
|
||||||
|
auto i = cuComplex{0.0, 1.0};
|
||||||
|
auto y = Log{}(x + i * Sqrt{}(1.0 - x * x));
|
||||||
|
return {cuCimagf(y), -cuCrealf(y)};
|
||||||
|
};
|
||||||
|
|
||||||
|
__device__ cuComplex ArcSin::operator()(cuComplex x) {
|
||||||
|
auto i = cuComplex{0.0f, 1.0f};
|
||||||
|
auto y = Log{}(i * x + Sqrt{}(1.0f - x * x));
|
||||||
|
return {cuCimagf(y), -cuCrealf(y)};
|
||||||
|
};
|
||||||
|
|
||||||
|
__device__ cuComplex ArcTan::operator()(cuComplex x) {
|
||||||
|
auto i = cuComplex{0.0f, 1.0f};
|
||||||
|
auto ix = i * x;
|
||||||
|
return (1.0f / cuComplex{0.0f, 2.0f}) * Log{}((1.0f + ix) / (1.0f - ix));
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace mlx::core::cu
|
} // namespace mlx::core::cu
|
||||||
|
|||||||
@@ -8,9 +8,9 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device/complex.cuh"
|
|
||||||
#include "mlx/backend/cuda/device/config.h"
|
#include "mlx/backend/cuda/device/config.h"
|
||||||
|
|
||||||
|
#include <cuComplex.h>
|
||||||
#include <cuda_bf16.h>
|
#include <cuda_bf16.h>
|
||||||
#include <cuda_fp16.h>
|
#include <cuda_fp16.h>
|
||||||
#include <cuda/std/array>
|
#include <cuda/std/array>
|
||||||
@@ -28,27 +28,6 @@ namespace mlx::core::cu {
|
|||||||
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
|
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
|
||||||
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
||||||
|
|
||||||
// Vectorized load/store.
|
|
||||||
template <typename T, int N>
|
|
||||||
struct alignas(sizeof(T) * N) AlignedVector {
|
|
||||||
T val[N];
|
|
||||||
};
|
|
||||||
|
|
||||||
template <int N, typename T>
|
|
||||||
inline __device__ AlignedVector<T, N> load_vector(
|
|
||||||
const T* ptr,
|
|
||||||
uint32_t offset) {
|
|
||||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
|
||||||
return from[offset];
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N, typename T>
|
|
||||||
inline __device__ void
|
|
||||||
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
|
||||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
|
||||||
to[offset] = vec;
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Type limits utils
|
// Type limits utils
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -99,20 +78,20 @@ struct Limits<
|
|||||||
return cuda::std::numeric_limits<T>::infinity();
|
return cuda::std::numeric_limits<T>::infinity();
|
||||||
}
|
}
|
||||||
static constexpr __host__ __device__ T min() {
|
static constexpr __host__ __device__ T min() {
|
||||||
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
|
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
|
||||||
return -cuda::std::numeric_limits<float>::infinity();
|
|
||||||
#else
|
|
||||||
return -cuda::std::numeric_limits<T>::infinity();
|
return -cuda::std::numeric_limits<T>::infinity();
|
||||||
|
#else
|
||||||
|
return -cuda::std::numeric_limits<float>::infinity();
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
static constexpr __host__ __device__ T finite_max() {
|
static constexpr __host__ __device__ T finite_max() {
|
||||||
return cuda::std::numeric_limits<T>::max();
|
return cuda::std::numeric_limits<T>::max();
|
||||||
}
|
}
|
||||||
static constexpr __host__ __device__ T finite_min() {
|
static constexpr __host__ __device__ T finite_min() {
|
||||||
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
|
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
|
||||||
return cuda::std::numeric_limits<float>::lowest();
|
|
||||||
#else
|
|
||||||
return cuda::std::numeric_limits<T>::lowest();
|
return cuda::std::numeric_limits<T>::lowest();
|
||||||
|
#else
|
||||||
|
return cuda::std::numeric_limits<float>::lowest();
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -127,13 +106,13 @@ struct Limits<bool> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename T>
|
template <>
|
||||||
struct Limits<complex_t<T>> {
|
struct Limits<cuComplex> {
|
||||||
static constexpr __host__ __device__ complex_t<T> max() {
|
static constexpr __host__ __device__ cuComplex max() {
|
||||||
return {Limits<T>::max(), Limits<T>::max()};
|
return {Limits<float>::max(), Limits<float>::max()};
|
||||||
}
|
}
|
||||||
static constexpr __host__ __device__ complex_t<T> min() {
|
static constexpr __host__ __device__ cuComplex min() {
|
||||||
return {Limits<T>::min(), Limits<T>::min()};
|
return {Limits<float>::min(), Limits<float>::min()};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -359,4 +338,21 @@ struct LoopedElemToLoc<1, false, OffsetT> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
inline __device__ cuComplex log1p(cuComplex in) {
|
||||||
|
float x = cuCrealf(in);
|
||||||
|
float y = cuCimagf(in);
|
||||||
|
float zabs = sqrt(x * x + y * y);
|
||||||
|
float theta = atan2f(y, x + 1);
|
||||||
|
if (zabs < 0.5f) {
|
||||||
|
float r = x * (2 + x) + y * y;
|
||||||
|
if (r == 0) { // handle underflow
|
||||||
|
return {x, theta};
|
||||||
|
}
|
||||||
|
return {0.5f * log1pf(r), theta};
|
||||||
|
} else {
|
||||||
|
auto z0 = sqrt((x + 1) * (x + 1) + y * y);
|
||||||
|
return {log(z0), theta};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace mlx::core::cu
|
} // namespace mlx::core::cu
|
||||||
|
|||||||
@@ -90,6 +90,8 @@ bool CudaEvent::completed() const {
|
|||||||
// SharedEvent implementations
|
// SharedEvent implementations
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
||||||
uint64_t current;
|
uint64_t current;
|
||||||
while ((current = ac->load()) < value) {
|
while ((current = ac->load()) < value) {
|
||||||
@@ -110,6 +112,8 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
|||||||
event_signal(ac, value);
|
event_signal(ac, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
SharedEvent::SharedEvent() {
|
SharedEvent::SharedEvent() {
|
||||||
// Allocate cuda::atomic on managed memory.
|
// Allocate cuda::atomic on managed memory.
|
||||||
Atomic* ac;
|
Atomic* ac;
|
||||||
|
|||||||
@@ -2,7 +2,6 @@
|
|||||||
|
|
||||||
#include "mlx/backend/cuda/jit_module.h"
|
#include "mlx/backend/cuda/jit_module.h"
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
#include "mlx/version.h"
|
|
||||||
|
|
||||||
#include "cuda_jit_sources.h"
|
#include "cuda_jit_sources.h"
|
||||||
|
|
||||||
@@ -13,7 +12,6 @@
|
|||||||
|
|
||||||
#include <fmt/format.h>
|
#include <fmt/format.h>
|
||||||
#include <nvrtc.h>
|
#include <nvrtc.h>
|
||||||
#include <unistd.h>
|
|
||||||
|
|
||||||
namespace mlx::core::cu {
|
namespace mlx::core::cu {
|
||||||
|
|
||||||
@@ -51,41 +49,14 @@ const std::string& cuda_home() {
|
|||||||
return home;
|
return home;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return the location of CCCL headers shipped with the distribution.
|
|
||||||
const std::string& cccl_dir() {
|
|
||||||
static std::string dir = []() {
|
|
||||||
std::filesystem::path path;
|
|
||||||
#if defined(MLX_CCCL_DIR)
|
|
||||||
// First search the install dir if defined.
|
|
||||||
path = MLX_CCCL_DIR;
|
|
||||||
if (std::filesystem::exists(path)) {
|
|
||||||
return path.string();
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
// Then search dynamically from the dir of libmlx.so file.
|
|
||||||
path = current_binary_dir().parent_path() / "include" / "cccl";
|
|
||||||
if (std::filesystem::exists(path)) {
|
|
||||||
return path.string();
|
|
||||||
}
|
|
||||||
// Finally check the environment variable.
|
|
||||||
path = std::getenv("MLX_CCCL_DIR");
|
|
||||||
if (!path.empty() && std::filesystem::exists(path)) {
|
|
||||||
return path.string();
|
|
||||||
}
|
|
||||||
return std::string();
|
|
||||||
}();
|
|
||||||
return dir;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get the cache directory for storing compiled results.
|
// Get the cache directory for storing compiled results.
|
||||||
const std::filesystem::path& ptx_cache_dir() {
|
const std::filesystem::path& ptx_cache_dir() {
|
||||||
static std::filesystem::path cache = []() -> std::filesystem::path {
|
static std::filesystem::path cache = []() -> std::filesystem::path {
|
||||||
std::filesystem::path cache;
|
std::filesystem::path cache;
|
||||||
if (auto c = std::getenv("MLX_PTX_CACHE_DIR"); c) {
|
if (auto c = std::getenv("MLX_PTX_CACHE"); c) {
|
||||||
cache = c;
|
cache = c;
|
||||||
} else {
|
} else {
|
||||||
cache =
|
cache = std::filesystem::temp_directory_path() / "mlx" / "ptx";
|
||||||
std::filesystem::temp_directory_path() / "mlx" / version() / "ptx";
|
|
||||||
}
|
}
|
||||||
if (!std::filesystem::exists(cache)) {
|
if (!std::filesystem::exists(cache)) {
|
||||||
std::error_code error;
|
std::error_code error;
|
||||||
@@ -137,8 +108,7 @@ void write_cached_ptx(
|
|||||||
const std::filesystem::path& cache_dir,
|
const std::filesystem::path& cache_dir,
|
||||||
const std::string& module_name,
|
const std::string& module_name,
|
||||||
const std::vector<char>& ptx,
|
const std::vector<char>& ptx,
|
||||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||||
const std::string& source_code) {
|
|
||||||
if (cache_dir.empty()) {
|
if (cache_dir.empty()) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@@ -151,9 +121,6 @@ void write_cached_ptx(
|
|||||||
for (const auto& [name, mangled] : ptx_kernels) {
|
for (const auto& [name, mangled] : ptx_kernels) {
|
||||||
txt_file << name << "\t" << mangled << std::endl;
|
txt_file << name << "\t" << mangled << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::ofstream source_file(cache_dir / (module_name + ".cu"));
|
|
||||||
source_file << source_code;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return if |device|'s version is not newer than |major|.|minor| version.
|
// Return if |device|'s version is not newer than |major|.|minor| version.
|
||||||
@@ -193,7 +160,7 @@ constexpr const char* g_include_names[] = {
|
|||||||
INCLUDE_PREFIX "binary_ops.cuh",
|
INCLUDE_PREFIX "binary_ops.cuh",
|
||||||
INCLUDE_PREFIX "cast_op.cuh",
|
INCLUDE_PREFIX "cast_op.cuh",
|
||||||
INCLUDE_PREFIX "config.h",
|
INCLUDE_PREFIX "config.h",
|
||||||
INCLUDE_PREFIX "complex.cuh",
|
INCLUDE_PREFIX "cucomplex_math.cuh",
|
||||||
INCLUDE_PREFIX "fp16_math.cuh",
|
INCLUDE_PREFIX "fp16_math.cuh",
|
||||||
INCLUDE_PREFIX "indexing.cuh",
|
INCLUDE_PREFIX "indexing.cuh",
|
||||||
INCLUDE_PREFIX "scatter_ops.cuh",
|
INCLUDE_PREFIX "scatter_ops.cuh",
|
||||||
@@ -209,7 +176,7 @@ constexpr const char* g_headers[] = {
|
|||||||
jit_source_binary_ops,
|
jit_source_binary_ops,
|
||||||
jit_source_cast_op,
|
jit_source_cast_op,
|
||||||
jit_source_config,
|
jit_source_config,
|
||||||
jit_source_complex,
|
jit_source_cucomplex_math,
|
||||||
jit_source_fp16_math,
|
jit_source_fp16_math,
|
||||||
jit_source_indexing,
|
jit_source_indexing,
|
||||||
jit_source_scatter_ops,
|
jit_source_scatter_ops,
|
||||||
@@ -246,24 +213,16 @@ JitModule::JitModule(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Compile program.
|
// Compile program.
|
||||||
std::vector<const char*> args;
|
|
||||||
bool use_sass = compiler_supports_device_sass(device);
|
bool use_sass = compiler_supports_device_sass(device);
|
||||||
std::string compute = fmt::format(
|
std::string compute = fmt::format(
|
||||||
"--gpu-architecture={}_{}{}",
|
"--gpu-architecture={}_{}{}",
|
||||||
use_sass ? "sm" : "compute",
|
use_sass ? "sm" : "compute",
|
||||||
device.compute_capability_major(),
|
device.compute_capability_major(),
|
||||||
device.compute_capability_minor());
|
device.compute_capability_minor());
|
||||||
args.push_back(compute.c_str());
|
std::string include = fmt::format("--include-path={}/include", cuda_home());
|
||||||
std::string cccl_include = cccl_dir();
|
const char* args[] = {compute.c_str(), include.c_str()};
|
||||||
if (!cccl_include.empty()) {
|
|
||||||
cccl_include = fmt::format("--include-path={}", cccl_include);
|
|
||||||
args.push_back(cccl_include.c_str());
|
|
||||||
}
|
|
||||||
std::string cuda_include =
|
|
||||||
fmt::format("--include-path={}/include", cuda_home());
|
|
||||||
args.push_back(cuda_include.c_str());
|
|
||||||
nvrtcResult compile_result =
|
nvrtcResult compile_result =
|
||||||
nvrtcCompileProgram(prog, args.size(), args.data());
|
nvrtcCompileProgram(prog, std::size(args), args);
|
||||||
if (compile_result != NVRTC_SUCCESS) {
|
if (compile_result != NVRTC_SUCCESS) {
|
||||||
size_t log_size;
|
size_t log_size;
|
||||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
|
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
|
||||||
@@ -293,8 +252,7 @@ JitModule::JitModule(
|
|||||||
} else {
|
} else {
|
||||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||||
}
|
}
|
||||||
write_cached_ptx(
|
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels);
|
||||||
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Load module.
|
// Load module.
|
||||||
|
|||||||
@@ -11,6 +11,7 @@
|
|||||||
#include "mlx/array.h"
|
#include "mlx/array.h"
|
||||||
#include "mlx/backend/cuda/device/utils.cuh"
|
#include "mlx/backend/cuda/device/utils.cuh"
|
||||||
|
|
||||||
|
#include <cuComplex.h>
|
||||||
#include <cuda.h>
|
#include <cuda.h>
|
||||||
#include <cuda_bf16.h>
|
#include <cuda_bf16.h>
|
||||||
#include <cuda_fp16.h>
|
#include <cuda_fp16.h>
|
||||||
@@ -78,7 +79,7 @@ struct CTypeToCudaType<bfloat16_t> {
|
|||||||
|
|
||||||
template <>
|
template <>
|
||||||
struct CTypeToCudaType<complex64_t> {
|
struct CTypeToCudaType<complex64_t> {
|
||||||
using type = cu::complex64_t;
|
using type = cuComplex;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
@@ -90,14 +91,10 @@ inline constexpr bool is_floating_v =
|
|||||||
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
|
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
|
||||||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
|
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
|
||||||
|
|
||||||
// Type traits for detecting complex numbers.
|
|
||||||
template <typename T>
|
|
||||||
inline constexpr bool is_complex_v = cuda::std::is_same_v<T, complex64_t> ||
|
|
||||||
cuda::std::is_same_v<T, complex128_t>;
|
|
||||||
|
|
||||||
// Type traits for detecting complex or real floating point numbers.
|
// Type traits for detecting complex or real floating point numbers.
|
||||||
template <typename T>
|
template <typename T>
|
||||||
inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
|
inline constexpr bool is_inexact_v =
|
||||||
|
is_floating_v<T> || cuda::std::is_same_v<T, complex64_t>;
|
||||||
|
|
||||||
// Utility to copy data from vector to array in host.
|
// Utility to copy data from vector to array in host.
|
||||||
template <int NDIM = MAX_NDIM, typename T = int32_t>
|
template <int NDIM = MAX_NDIM, typename T = int32_t>
|
||||||
|
|||||||
@@ -237,7 +237,8 @@ void LayerNorm::eval_gpu(
|
|||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
@@ -294,7 +295,9 @@ void LayerNormVJP::eval_gpu(
|
|||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
copied = true;
|
copied = true;
|
||||||
return contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
|
return x_copy;
|
||||||
};
|
};
|
||||||
bool donate_x = inputs[0].is_donatable();
|
bool donate_x = inputs[0].is_donatable();
|
||||||
bool donate_g = inputs[3].is_donatable();
|
bool donate_g = inputs[3].is_donatable();
|
||||||
|
|||||||
@@ -108,7 +108,8 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
encoder.add_temporary(x_copy);
|
encoder.add_temporary(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -27,35 +27,6 @@ void check_cublas_error(const char* name, cublasStatus_t err) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct CublasPreference {
|
|
||||||
CublasPreference(Device& device) {
|
|
||||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
|
||||||
// for Hopper+:
|
|
||||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
|
||||||
uint64_t MiB = 1024 * 1024;
|
|
||||||
uint64_t workspace_size =
|
|
||||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
|
||||||
|
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
|
||||||
pref_,
|
|
||||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
|
||||||
&workspace_size,
|
|
||||||
sizeof(uint64_t)));
|
|
||||||
}
|
|
||||||
|
|
||||||
~CublasPreference() {
|
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
|
||||||
}
|
|
||||||
|
|
||||||
cublasLtMatmulPreference_t pref_{nullptr};
|
|
||||||
};
|
|
||||||
|
|
||||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
|
||||||
static CublasPreference pref(device);
|
|
||||||
return pref.pref_;
|
|
||||||
}
|
|
||||||
|
|
||||||
class MatMul {
|
class MatMul {
|
||||||
public:
|
public:
|
||||||
MatMul(
|
MatMul(
|
||||||
@@ -72,7 +43,7 @@ class MatMul {
|
|||||||
int32_t batch_count,
|
int32_t batch_count,
|
||||||
int64_t a_batch_stride,
|
int64_t a_batch_stride,
|
||||||
int64_t b_batch_stride)
|
int64_t b_batch_stride)
|
||||||
: handle_(device.lt_handle()), pref_(cublas_preference(device)) {
|
: handle_(device.lt_handle()) {
|
||||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||||
|
|
||||||
auto scale_type = dtype_to_cuda_type(dtype);
|
auto scale_type = dtype_to_cuda_type(dtype);
|
||||||
@@ -106,6 +77,20 @@ class MatMul {
|
|||||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||||
out_desc_ = create_matrix_layout(
|
out_desc_ = create_matrix_layout(
|
||||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||||
|
|
||||||
|
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||||
|
// for Hopper+:
|
||||||
|
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||||
|
uint64_t MiB = 1024 * 1024;
|
||||||
|
uint64_t workspace_size =
|
||||||
|
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||||
|
|
||||||
|
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||||
|
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||||
|
pref_,
|
||||||
|
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||||
|
&workspace_size,
|
||||||
|
sizeof(uint64_t)));
|
||||||
}
|
}
|
||||||
|
|
||||||
MatMul(
|
MatMul(
|
||||||
@@ -119,6 +104,7 @@ class MatMul {
|
|||||||
uint64_t b_rows,
|
uint64_t b_rows,
|
||||||
uint64_t b_cols,
|
uint64_t b_cols,
|
||||||
int64_t ldb,
|
int64_t ldb,
|
||||||
|
bool c_transposed,
|
||||||
int64_t ldc,
|
int64_t ldc,
|
||||||
int32_t batch_count,
|
int32_t batch_count,
|
||||||
int64_t a_batch_stride,
|
int64_t a_batch_stride,
|
||||||
@@ -140,15 +126,15 @@ class MatMul {
|
|||||||
b_batch_stride) {
|
b_batch_stride) {
|
||||||
auto type = dtype_to_cuda_type(dtype);
|
auto type = dtype_to_cuda_type(dtype);
|
||||||
c_desc_ = create_matrix_layout(
|
c_desc_ = create_matrix_layout(
|
||||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
type, a_rows, b_cols, c_transposed, ldc, batch_count, c_batch_stride);
|
||||||
}
|
}
|
||||||
|
|
||||||
~MatMul() {
|
~MatMul() {
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
cublasLtMatrixLayoutDestroy(a_desc_);
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
cublasLtMatrixLayoutDestroy(b_desc_);
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
cublasLtMatrixLayoutDestroy(c_desc_);
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
cublasLtMatrixLayoutDestroy(out_desc_);
|
||||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
cublasLtMatmulDescDestroy(matmul_desc_);
|
||||||
}
|
}
|
||||||
|
|
||||||
void run(
|
void run(
|
||||||
@@ -273,9 +259,9 @@ class MatMul {
|
|||||||
return desc;
|
return desc;
|
||||||
}
|
}
|
||||||
|
|
||||||
cublasLtMatmulPreference_t pref_{nullptr};
|
|
||||||
cublasLtHandle_t handle_{nullptr};
|
cublasLtHandle_t handle_{nullptr};
|
||||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||||
|
cublasLtMatmulPreference_t pref_{nullptr};
|
||||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||||
@@ -296,7 +282,8 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
|||||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||||
return std::make_tuple(true, sty, arr);
|
return std::make_tuple(true, sty, arr);
|
||||||
} else {
|
} else {
|
||||||
array arr_copy = contiguous_copy_gpu(arr, s);
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
|
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||||
enc.add_temporary(arr_copy);
|
enc.add_temporary(arr_copy);
|
||||||
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
||||||
}
|
}
|
||||||
@@ -402,7 +389,9 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
assert(inputs.size() == 3);
|
assert(inputs.size() == 3);
|
||||||
auto& a_pre = inputs[0];
|
auto& a_pre = inputs[0];
|
||||||
auto& b_pre = inputs[1];
|
auto& b_pre = inputs[1];
|
||||||
auto c = inputs[2];
|
auto& c_pre = inputs[2];
|
||||||
|
|
||||||
|
out.set_data(allocator::malloc(out.nbytes()));
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////
|
||||||
// Init checks and prep
|
// Init checks and prep
|
||||||
@@ -415,24 +404,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
// the arrays
|
// the arrays
|
||||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||||
|
auto [c_transposed, ldc, c] = check_transpose(encoder, s, c_pre);
|
||||||
int64_t ldc;
|
|
||||||
{
|
|
||||||
auto stx = c.strides()[c.ndim() - 2];
|
|
||||||
auto sty = c.strides()[c.ndim() - 1];
|
|
||||||
if (sty == 1 && stx == c.shape(-1)) {
|
|
||||||
ldc = stx;
|
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
|
||||||
} else if (sty == 1 && stx == 0) {
|
|
||||||
ldc = 0;
|
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
|
||||||
} else {
|
|
||||||
// Copy C into out and set C to out
|
|
||||||
ldc = c.shape(-1);
|
|
||||||
copy_gpu(c, out, CopyType::General, s);
|
|
||||||
c = out;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////
|
||||||
// Check and collapse batch dimensions
|
// Check and collapse batch dimensions
|
||||||
@@ -470,6 +442,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
K,
|
K,
|
||||||
N,
|
N,
|
||||||
ldb,
|
ldb,
|
||||||
|
c_transposed,
|
||||||
ldc,
|
ldc,
|
||||||
batch_shape.back(),
|
batch_shape.back(),
|
||||||
a_batch_strides.back(),
|
a_batch_strides.back(),
|
||||||
|
|||||||
@@ -82,7 +82,7 @@ NO_GPU(Load)
|
|||||||
NO_GPU_MULTI(LUF)
|
NO_GPU_MULTI(LUF)
|
||||||
NO_GPU_MULTI(QRF)
|
NO_GPU_MULTI(QRF)
|
||||||
NO_GPU(QuantizedMatmul)
|
NO_GPU(QuantizedMatmul)
|
||||||
NO_GPU(SegmentedMM)
|
NO_GPU(Scan)
|
||||||
NO_GPU_MULTI(SVD)
|
NO_GPU_MULTI(SVD)
|
||||||
NO_GPU(Inverse)
|
NO_GPU(Inverse)
|
||||||
NO_GPU(Cholesky)
|
NO_GPU(Cholesky)
|
||||||
@@ -91,6 +91,7 @@ NO_GPU_MULTI(Eigh)
|
|||||||
|
|
||||||
namespace fast {
|
namespace fast {
|
||||||
NO_GPU(ScaledDotProductAttention)
|
NO_GPU(ScaledDotProductAttention)
|
||||||
|
NO_GPU_MULTI(AffineQuantize)
|
||||||
NO_GPU_MULTI(CustomKernel)
|
NO_GPU_MULTI(CustomKernel)
|
||||||
} // namespace fast
|
} // namespace fast
|
||||||
|
|
||||||
|
|||||||
@@ -1,386 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device.h"
|
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
||||||
#include "mlx/backend/gpu/copy.h"
|
|
||||||
#include "mlx/dtype_utils.h"
|
|
||||||
#include "mlx/fast_primitives.h"
|
|
||||||
|
|
||||||
#include <cooperative_groups.h>
|
|
||||||
#include <cooperative_groups/reduce.h>
|
|
||||||
#include <nvtx3/nvtx3.hpp>
|
|
||||||
|
|
||||||
namespace mlx::core {
|
|
||||||
namespace cu {
|
|
||||||
|
|
||||||
namespace cg = cooperative_groups;
|
|
||||||
|
|
||||||
template <int bits, int wsize = 8>
|
|
||||||
inline constexpr __device__ short get_pack_factor() {
|
|
||||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int bits, int wsize = 8>
|
|
||||||
inline constexpr __device__ short get_bytes_per_pack() {
|
|
||||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
|
||||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T, int group_size, int bits>
|
|
||||||
__global__ void
|
|
||||||
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
|
|
||||||
auto block_size = cg::this_thread_block().dim_threads();
|
|
||||||
auto block_idx = cg::this_thread_block().group_index();
|
|
||||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
|
||||||
|
|
||||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
|
||||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
|
||||||
|
|
||||||
auto grid_dim_x =
|
|
||||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
|
||||||
constexpr float eps = 1e-7;
|
|
||||||
constexpr int simd_size = WARP_SIZE;
|
|
||||||
constexpr float n_bins = (1 << bits) - 1;
|
|
||||||
constexpr int pack_factor = get_pack_factor<bits, 8>();
|
|
||||||
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
|
|
||||||
constexpr int values_per_reduce = group_size / simd_size;
|
|
||||||
constexpr int writes_per_reduce = pack_factor / values_per_reduce;
|
|
||||||
constexpr int writes_per_pack =
|
|
||||||
writes_per_reduce > 1 ? 1 : values_per_reduce / pack_factor;
|
|
||||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
|
||||||
|
|
||||||
size_t offset = tidx + grid_dim_x * size_t(tidy);
|
|
||||||
size_t in_index = offset * values_per_reduce;
|
|
||||||
if (in_index >= size) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
size_t out_index = power_of_2_bits
|
|
||||||
? offset * writes_per_pack
|
|
||||||
: offset * bytes_per_pack / writes_per_reduce;
|
|
||||||
|
|
||||||
float w_thread[values_per_reduce];
|
|
||||||
float w_min = Limits<float>::max();
|
|
||||||
float w_max = 0;
|
|
||||||
|
|
||||||
#pragma clang loop unroll(full)
|
|
||||||
for (int i = 0; i < values_per_reduce; i++) {
|
|
||||||
float val = w[in_index + i];
|
|
||||||
w_thread[i] = val;
|
|
||||||
w_min = min(w_min, val);
|
|
||||||
w_max = max(w_max, val);
|
|
||||||
}
|
|
||||||
|
|
||||||
cg::greater<float> max_op;
|
|
||||||
cg::less<float> min_op;
|
|
||||||
auto warp = cg::tiled_partition<WARP_SIZE>(cg::this_thread_block());
|
|
||||||
|
|
||||||
w_min = cg::reduce(warp, w_min, min_op);
|
|
||||||
w_max = cg::reduce(warp, w_max, max_op);
|
|
||||||
|
|
||||||
float scale = max((w_max - w_min) / n_bins, eps);
|
|
||||||
bool side = abs(w_min) > abs(w_max);
|
|
||||||
scale = side ? scale : -scale;
|
|
||||||
float edge = side ? w_min : w_max;
|
|
||||||
float q0 = round(edge / scale);
|
|
||||||
bool at_zero = q0 == 0.0f;
|
|
||||||
scale = at_zero ? scale : edge / q0;
|
|
||||||
float bias = at_zero ? 0 : edge;
|
|
||||||
|
|
||||||
// Write out the scales and biases
|
|
||||||
size_t gindex = in_index / group_size;
|
|
||||||
if (in_index % group_size == 0) {
|
|
||||||
scales[gindex] = static_cast<T>(scale);
|
|
||||||
biases[gindex] = static_cast<T>(bias);
|
|
||||||
}
|
|
||||||
|
|
||||||
using OutType = std::conditional_t<bits == 5, uint64_t, uint32_t>;
|
|
||||||
OutType output = 0;
|
|
||||||
|
|
||||||
#pragma clang loop unroll(full)
|
|
||||||
for (int i = 0; i < values_per_reduce; i++) {
|
|
||||||
uint8_t val = min(round((w_thread[i] - bias) / scale), n_bins);
|
|
||||||
if (bits == 8) {
|
|
||||||
output = val;
|
|
||||||
} else {
|
|
||||||
output |= val << (bits * (i % pack_factor));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (pack_factor < values_per_reduce && i % pack_factor == pack_factor - 1) {
|
|
||||||
out[out_index + i / pack_factor] = output;
|
|
||||||
output = 0;
|
|
||||||
} else {
|
|
||||||
#pragma clang loop unroll(full)
|
|
||||||
for (int j = 1; j < writes_per_reduce; j++) {
|
|
||||||
uint8_t sval = warp.shfl_down(val, j);
|
|
||||||
output |= static_cast<OutType>(sval)
|
|
||||||
<< (bits * (j * values_per_reduce + i));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if constexpr (bits == 3 || bits == 6) {
|
|
||||||
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
|
|
||||||
out[out_index] = output & 0xff;
|
|
||||||
out[out_index + 1] = (output & 0xff00) >> 8;
|
|
||||||
out[out_index + 2] = (output & 0xff0000) >> 16;
|
|
||||||
}
|
|
||||||
} else if constexpr (bits == 5) {
|
|
||||||
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
|
|
||||||
out[out_index] = output & 0xff;
|
|
||||||
out[out_index + 1] = (output & 0xff00) >> 8;
|
|
||||||
out[out_index + 2] = (output & 0xff0000) >> 16;
|
|
||||||
out[out_index + 3] = (output & 0xff000000) >> 24;
|
|
||||||
out[out_index + 4] = (output & 0xff00000000) >> 32;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if constexpr (writes_per_reduce > 0) {
|
|
||||||
if (out_index % writes_per_reduce == 0) {
|
|
||||||
out[out_index / writes_per_reduce] = output;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T, int group_size, int bits>
|
|
||||||
__global__ void affine_dequantize(
|
|
||||||
const uint8_t* w,
|
|
||||||
const T* scales,
|
|
||||||
const T* biases,
|
|
||||||
T* out,
|
|
||||||
size_t size) {
|
|
||||||
auto block_size = cg::this_thread_block().dim_threads();
|
|
||||||
auto block_idx = cg::this_thread_block().group_index();
|
|
||||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
|
||||||
|
|
||||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
|
||||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
|
||||||
|
|
||||||
auto grid_dim_x =
|
|
||||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
|
||||||
|
|
||||||
constexpr int pack_factor = get_pack_factor<bits, 8>();
|
|
||||||
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
|
|
||||||
|
|
||||||
size_t offset = tidx + grid_dim_x * size_t(tidy);
|
|
||||||
size_t oindex = offset * pack_factor;
|
|
||||||
|
|
||||||
if (oindex >= size) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t gindex = oindex / group_size;
|
|
||||||
T scale = scales[gindex];
|
|
||||||
T bias = biases[gindex];
|
|
||||||
out += oindex;
|
|
||||||
|
|
||||||
if constexpr (bits == 3) {
|
|
||||||
w += offset * bytes_per_pack;
|
|
||||||
out[0] = static_cast<T>(w[0] & 0x7) * scale + bias;
|
|
||||||
out[1] = static_cast<T>((w[0] & 0x38) >> 3) * scale + bias;
|
|
||||||
out[2] = (static_cast<T>((w[0] & 0xc0) >> 6) +
|
|
||||||
static_cast<T>((w[1] & 0x1) << 2)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[3] = static_cast<T>((w[1] & 0xe) >> 1) * scale + bias;
|
|
||||||
out[4] = static_cast<T>((w[1] & 0x70) >> 4) * scale + bias;
|
|
||||||
out[5] = (static_cast<T>((w[1] & 0x80) >> 7) +
|
|
||||||
static_cast<T>((w[2] & 0x3) << 1)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[6] = static_cast<T>((w[2] & 0x1c) >> 2) * scale + bias;
|
|
||||||
out[7] = static_cast<T>((w[2] & 0xe0) >> 5) * scale + bias;
|
|
||||||
} else if constexpr (bits == 5) {
|
|
||||||
w += offset * bytes_per_pack;
|
|
||||||
out[0] = static_cast<T>(w[0] & 0x1f) * scale + bias;
|
|
||||||
out[1] = (static_cast<T>((w[0] & 0xe0) >> 5) +
|
|
||||||
static_cast<T>((w[1] & 0x3) << 3)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[2] = static_cast<T>((w[1] & 0x7c) >> 2) * scale + bias;
|
|
||||||
out[3] = (static_cast<T>((w[1] & 0x80) >> 7) +
|
|
||||||
static_cast<T>((w[2] & 0xf) << 1)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[4] = (static_cast<T>((w[2] & 0xf0) >> 4) +
|
|
||||||
static_cast<T>((w[3] & 0x1) << 4)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[5] = static_cast<T>((w[3] & 0x3e) >> 1) * scale + bias;
|
|
||||||
out[6] = (static_cast<T>((w[3] & 0xc0) >> 6) +
|
|
||||||
static_cast<T>((w[4] & 0x7) << 2)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[7] = static_cast<T>((w[4] & 0xf8) >> 3) * scale + bias;
|
|
||||||
} else if constexpr (bits == 6) {
|
|
||||||
w += offset * bytes_per_pack;
|
|
||||||
out[0] = static_cast<T>(w[0] & 0x3f) * scale + bias;
|
|
||||||
out[1] = (static_cast<T>((w[0] >> 6) & 0x03) +
|
|
||||||
static_cast<T>((w[1] & 0x0f) << 2)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[2] = (static_cast<T>((w[1] >> 4) & 0x0f) +
|
|
||||||
static_cast<T>((w[2] & 0x03) << 4)) *
|
|
||||||
scale +
|
|
||||||
bias;
|
|
||||||
out[3] = static_cast<T>((w[2] >> 2) & 0x3f) * scale + bias;
|
|
||||||
} else {
|
|
||||||
uint val = w[offset];
|
|
||||||
#pragma clang loop unroll(full)
|
|
||||||
for (int i = 0; i < pack_factor; i++) {
|
|
||||||
uint8_t d;
|
|
||||||
if (bits == 2) {
|
|
||||||
d = (val >> (bits * i)) & 0x03;
|
|
||||||
} else if (bits == 4) {
|
|
||||||
d = (val >> (bits * i)) & 0x0f;
|
|
||||||
} else if (bits == 8) {
|
|
||||||
d = val;
|
|
||||||
}
|
|
||||||
out[i] = scale * static_cast<T>(d) + bias;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace cu
|
|
||||||
namespace {
|
|
||||||
|
|
||||||
inline array ensure_row_contiguous(
|
|
||||||
const array& x,
|
|
||||||
cu::CommandEncoder& enc,
|
|
||||||
const Stream& s) {
|
|
||||||
if (!x.flags().row_contiguous) {
|
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
|
||||||
enc.add_temporary(x_copy);
|
|
||||||
return x_copy;
|
|
||||||
} else {
|
|
||||||
return x;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void dispatch_groups(int group_size, F&& f) {
|
|
||||||
switch (group_size) {
|
|
||||||
case 32:
|
|
||||||
f(std::integral_constant<int, 32>{});
|
|
||||||
break;
|
|
||||||
case 64:
|
|
||||||
f(std::integral_constant<int, 64>{});
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
f(std::integral_constant<int, 128>{});
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void dispatch_bits(int bits, F&& f) {
|
|
||||||
switch (bits) {
|
|
||||||
case 2:
|
|
||||||
f(std::integral_constant<int, 2>{});
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
f(std::integral_constant<int, 3>{});
|
|
||||||
break;
|
|
||||||
case 4:
|
|
||||||
f(std::integral_constant<int, 4>{});
|
|
||||||
break;
|
|
||||||
case 5:
|
|
||||||
f(std::integral_constant<int, 5>{});
|
|
||||||
break;
|
|
||||||
case 6:
|
|
||||||
f(std::integral_constant<int, 6>{});
|
|
||||||
break;
|
|
||||||
case 8:
|
|
||||||
f(std::integral_constant<int, 8>{});
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void fast::AffineQuantize::eval_gpu(
|
|
||||||
const std::vector<array>& inputs,
|
|
||||||
std::vector<array>& outputs) {
|
|
||||||
auto& w_pre = inputs[0];
|
|
||||||
auto& out = outputs[0];
|
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
|
||||||
|
|
||||||
auto& s = stream();
|
|
||||||
auto& d = cu::device(s.device);
|
|
||||||
auto& enc = d.get_command_encoder(s);
|
|
||||||
|
|
||||||
auto w = ensure_row_contiguous(w_pre, enc, s);
|
|
||||||
enc.set_input_array(w);
|
|
||||||
if (dequantize_) {
|
|
||||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
|
||||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
|
||||||
enc.set_input_array(scales);
|
|
||||||
enc.set_input_array(biases);
|
|
||||||
enc.set_output_array(out);
|
|
||||||
} else {
|
|
||||||
auto& scales = outputs[1];
|
|
||||||
auto& biases = outputs[2];
|
|
||||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
|
||||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
|
||||||
enc.set_output_array(out);
|
|
||||||
enc.set_output_array(scales);
|
|
||||||
enc.set_output_array(biases);
|
|
||||||
}
|
|
||||||
|
|
||||||
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
|
|
||||||
|
|
||||||
// Treat uint32 as uint8 in kernel
|
|
||||||
int uint8_per_uint32 = 4;
|
|
||||||
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
|
|
||||||
: bits_ == 6 ? 4
|
|
||||||
: 8 / bits_;
|
|
||||||
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
|
|
||||||
size_t size =
|
|
||||||
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
|
|
||||||
|
|
||||||
bool large = size > UINT_MAX;
|
|
||||||
auto grid_shape = w.shape();
|
|
||||||
|
|
||||||
if (dequantize_) {
|
|
||||||
grid_shape.back() *= uint8_per_uint32;
|
|
||||||
} else {
|
|
||||||
grid_shape.back() /= per_thread;
|
|
||||||
}
|
|
||||||
|
|
||||||
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
|
|
||||||
dispatch_groups(group_size_, [&](auto group_size) {
|
|
||||||
dispatch_bits(bits_, [&](auto bits) {
|
|
||||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
||||||
if (dequantize_) {
|
|
||||||
auto kernel =
|
|
||||||
cu::affine_dequantize<DataType, group_size.value, bits.value>;
|
|
||||||
auto [num_blocks, block_dims] =
|
|
||||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
|
||||||
enc.add_kernel_node(
|
|
||||||
kernel,
|
|
||||||
num_blocks,
|
|
||||||
block_dims,
|
|
||||||
w.data<uint8_t>(),
|
|
||||||
inputs[1].data<DataType>(),
|
|
||||||
inputs[2].data<DataType>(),
|
|
||||||
out.data<DataType>(),
|
|
||||||
out.size());
|
|
||||||
} else {
|
|
||||||
auto kernel =
|
|
||||||
cu::affine_quantize<DataType, group_size.value, bits.value>;
|
|
||||||
auto [num_blocks, block_dims] =
|
|
||||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
|
||||||
enc.add_kernel_node(
|
|
||||||
kernel,
|
|
||||||
num_blocks,
|
|
||||||
block_dims,
|
|
||||||
w.data<DataType>(),
|
|
||||||
out.data<uint8_t>(),
|
|
||||||
outputs[1].data<DataType>(),
|
|
||||||
outputs[2].data<DataType>(),
|
|
||||||
w.size());
|
|
||||||
}
|
|
||||||
});
|
|
||||||
});
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
|
||||||
@@ -47,7 +47,8 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
|
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
|
||||||
array in_copy = contiguous_copy_gpu(in, s);
|
array in_copy(in.shape(), in.dtype(), nullptr, {});
|
||||||
|
copy_gpu(in, in_copy, CopyType::General, s);
|
||||||
encoder.add_temporary(in_copy);
|
encoder.add_temporary(in_copy);
|
||||||
in = in_copy;
|
in = in_copy;
|
||||||
plan = get_reduction_plan(in, axes_);
|
plan = get_reduction_plan(in, axes_);
|
||||||
|
|||||||
@@ -37,15 +37,15 @@ __global__ void all_reduce(T* in, U* out, size_t block_step, size_t size) {
|
|||||||
for (; i + block.size() * N <= check; i += block.size() * N) {
|
for (; i + block.size() * N <= check; i += block.size() * N) {
|
||||||
cub::LoadDirectBlockedVectorized<T, N>(block.thread_rank(), in + i, vals);
|
cub::LoadDirectBlockedVectorized<T, N>(block.thread_rank(), in + i, vals);
|
||||||
for (int j = 0; j < N; j++) {
|
for (int j = 0; j < N; j++) {
|
||||||
accs[0] = op(accs[0], cast_to<U>(vals[j]));
|
accs[0] = op(accs[0], __cast<U, T>(vals[j]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (i < check) {
|
if (i < check) {
|
||||||
cub::LoadDirectBlocked(
|
cub::LoadDirectBlocked(
|
||||||
block.thread_rank(), in + i, vals, check - i, cast_to<T>(init));
|
block.thread_rank(), in + i, vals, check - i, __cast<T, U>(init));
|
||||||
for (int i = 0; i < N; i++) {
|
for (int i = 0; i < N; i++) {
|
||||||
accs[0] = op(accs[0], cast_to<U>(vals[i]));
|
accs[0] = op(accs[0], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
#include <numeric>
|
#include <numeric>
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
|
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||||
|
|
||||||
#include <cooperative_groups.h>
|
#include <cooperative_groups.h>
|
||||||
@@ -127,7 +128,7 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
|||||||
T vals[N_READS];
|
T vals[N_READS];
|
||||||
cub::LoadDirectBlockedVectorized(thread_x, in + loop.location(), vals);
|
cub::LoadDirectBlockedVectorized(thread_x, in + loop.location(), vals);
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
totals[i] = op(totals[i], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||||
}
|
}
|
||||||
@@ -136,7 +137,7 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
|||||||
T vals[N_READS];
|
T vals[N_READS];
|
||||||
cub::LoadDirectBlocked(thread_x, in + loop.location(), vals);
|
cub::LoadDirectBlocked(thread_x, in + loop.location(), vals);
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
totals[i] = op(totals[i], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||||
}
|
}
|
||||||
@@ -149,9 +150,9 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
|||||||
in + loop.location(),
|
in + loop.location(),
|
||||||
vals,
|
vals,
|
||||||
args.reduction_stride - tile_x * BN,
|
args.reduction_stride - tile_x * BN,
|
||||||
cast_to<T>(ReduceInit<Op, T>::value()));
|
__cast<T, U>(ReduceInit<Op, T>::value()));
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
totals[i] = op(totals[i], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
#include <type_traits>
|
#include <type_traits>
|
||||||
|
|
||||||
#include "mlx/backend/common/reduce.h"
|
#include "mlx/backend/common/reduce.h"
|
||||||
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
||||||
#include "mlx/dtype_utils.h"
|
#include "mlx/dtype_utils.h"
|
||||||
|
|||||||
@@ -2,8 +2,6 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device/atomic_ops.cuh"
|
|
||||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
|
||||||
#include "mlx/backend/cuda/device/utils.cuh"
|
#include "mlx/backend/cuda/device/utils.cuh"
|
||||||
#include "mlx/backend/cuda/reduce/reduce_utils.cuh"
|
#include "mlx/backend/cuda/reduce/reduce_utils.cuh"
|
||||||
|
|
||||||
@@ -42,15 +40,15 @@ struct Sum {
|
|||||||
}
|
}
|
||||||
|
|
||||||
__device__ void atomic_update(__nv_bfloat16* x, __nv_bfloat16 y) {
|
__device__ void atomic_update(__nv_bfloat16* x, __nv_bfloat16 y) {
|
||||||
atomic_add(x, y);
|
atomicAdd(x, y);
|
||||||
}
|
}
|
||||||
|
|
||||||
__device__ void atomic_update(int* x, int y) {
|
__device__ void atomic_update(int* x, int y) {
|
||||||
atomic_add(x, y);
|
atomicAdd(x, y);
|
||||||
}
|
}
|
||||||
|
|
||||||
__device__ void atomic_update(float* x, float y) {
|
__device__ void atomic_update(float* x, float y) {
|
||||||
atomic_add(x, y);
|
atomicAdd(x, y);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -69,18 +67,6 @@ struct Prod {
|
|||||||
struct Min {
|
struct Min {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ __forceinline__ T operator()(T a, T b) {
|
__device__ __forceinline__ T operator()(T a, T b) {
|
||||||
if constexpr (is_complex_v<T>) {
|
|
||||||
if (isnan(a.real()) || isnan(a.imag())) {
|
|
||||||
return a;
|
|
||||||
}
|
|
||||||
if (isnan(b.real()) || isnan(b.imag())) {
|
|
||||||
return b;
|
|
||||||
}
|
|
||||||
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
|
||||||
if (isnan(a) || isnan(b)) {
|
|
||||||
return cuda::std::numeric_limits<float>::quiet_NaN();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return a < b ? a : b;
|
return a < b ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -93,18 +79,6 @@ struct Min {
|
|||||||
struct Max {
|
struct Max {
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__device__ __forceinline__ T operator()(T a, T b) {
|
__device__ __forceinline__ T operator()(T a, T b) {
|
||||||
if constexpr (is_complex_v<T>) {
|
|
||||||
if (isnan(a.real()) || isnan(a.imag())) {
|
|
||||||
return a;
|
|
||||||
}
|
|
||||||
if (isnan(b.real()) || isnan(b.imag())) {
|
|
||||||
return b;
|
|
||||||
}
|
|
||||||
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
|
||||||
if (isnan(a) || isnan(b)) {
|
|
||||||
return cuda::std::numeric_limits<float>::quiet_NaN();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return a > b ? a : b;
|
return a > b ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -175,10 +149,10 @@ struct ReduceInit<Or, T> {
|
|||||||
template <typename T>
|
template <typename T>
|
||||||
struct ReduceInit<Sum, T> {
|
struct ReduceInit<Sum, T> {
|
||||||
static constexpr __host__ __device__ auto value() {
|
static constexpr __host__ __device__ auto value() {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return T{0, 0};
|
return T{0, 0};
|
||||||
} else {
|
} else {
|
||||||
return cast_to<typename ReduceResult<Sum, T>::type>(0);
|
return typename ReduceResult<Sum, T>::type{0};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@@ -186,10 +160,10 @@ struct ReduceInit<Sum, T> {
|
|||||||
template <typename T>
|
template <typename T>
|
||||||
struct ReduceInit<Prod, T> {
|
struct ReduceInit<Prod, T> {
|
||||||
static constexpr __host__ __device__ auto value() {
|
static constexpr __host__ __device__ auto value() {
|
||||||
if constexpr (is_complex_v<T>) {
|
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||||
return T{1, 0};
|
return T{1, 0};
|
||||||
} else {
|
} else {
|
||||||
return cast_to<typename ReduceResult<Prod, T>::type>(1);
|
return typename ReduceResult<Prod, T>::type{1};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@@ -4,7 +4,6 @@
|
|||||||
|
|
||||||
#include <numeric>
|
#include <numeric>
|
||||||
|
|
||||||
#include "mlx/backend/common/utils.h"
|
|
||||||
#include "mlx/backend/cuda/device/utils.cuh"
|
#include "mlx/backend/cuda/device/utils.cuh"
|
||||||
|
|
||||||
#include <cooperative_groups.h>
|
#include <cooperative_groups.h>
|
||||||
@@ -56,6 +55,22 @@ __device__ void atomic_reduce(T* x, T y) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: Should make a custom complex type
|
||||||
|
template <typename U, typename T>
|
||||||
|
inline __device__ U __cast(T x) {
|
||||||
|
return static_cast<U>(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
inline __device__ bool __cast<bool, cuComplex>(cuComplex x) {
|
||||||
|
return x.x != 0 && x.y != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
inline __device__ cuComplex __cast<cuComplex, bool>(bool x) {
|
||||||
|
return x ? make_cuFloatComplex(1, 1) : make_cuFloatComplex(0, 0);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename T, int N, typename Block, typename Warp, typename Op>
|
template <typename T, int N, typename Block, typename Warp, typename Op>
|
||||||
inline __device__ void
|
inline __device__ void
|
||||||
block_reduce(Block block, Warp warp, T (&vals)[N], T* smem, Op op, T init) {
|
block_reduce(Block block, Warp warp, T (&vals)[N], T* smem, Op op, T init) {
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
#include <numeric>
|
#include <numeric>
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
|
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||||
|
|
||||||
#include <cooperative_groups.h>
|
#include <cooperative_groups.h>
|
||||||
@@ -112,7 +113,7 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
|||||||
in + k * size + r * (block.size() * N),
|
in + k * size + r * (block.size() * N),
|
||||||
vals[k]);
|
vals[k]);
|
||||||
for (int j = 0; j < N; j++) {
|
for (int j = 0; j < N; j++) {
|
||||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
accs[k] = op(accs[k], __cast<U, T>(vals[k][j]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -124,7 +125,7 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
|||||||
in + k * size + r * (block.size() * N),
|
in + k * size + r * (block.size() * N),
|
||||||
vals[k]);
|
vals[k]);
|
||||||
for (int j = 0; j < N; j++) {
|
for (int j = 0; j < N; j++) {
|
||||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
accs[k] = op(accs[k], __cast<U, T>(vals[k][j]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -137,9 +138,9 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
|||||||
in + k * size + final_offset,
|
in + k * size + final_offset,
|
||||||
vals[k],
|
vals[k],
|
||||||
size,
|
size,
|
||||||
cast_to<T>(init));
|
__cast<T, U>(init));
|
||||||
for (int j = 0; j < N; j++) {
|
for (int j = 0; j < N; j++) {
|
||||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
accs[k] = op(accs[k], __cast<U, T>(vals[k][j]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -198,7 +199,7 @@ __global__ void row_reduce_looped(
|
|||||||
in + loop.location() + r * BLOCK_DIM * N_READS,
|
in + loop.location() + r * BLOCK_DIM * N_READS,
|
||||||
vals);
|
vals);
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
total[0] = op(total[0], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (final_offset < args.row_size) {
|
if (final_offset < args.row_size) {
|
||||||
@@ -208,9 +209,9 @@ __global__ void row_reduce_looped(
|
|||||||
in + loop.location() + final_offset,
|
in + loop.location() + final_offset,
|
||||||
vals,
|
vals,
|
||||||
args.row_size - final_offset,
|
args.row_size - final_offset,
|
||||||
cast_to<T>(init));
|
__cast<T, U>(init));
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
total[0] = op(total[0], __cast<U, T>(vals[i]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// TODO: Maybe block.sync() here?
|
// TODO: Maybe block.sync() here?
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ __global__ void rms_norm(
|
|||||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||||
T xn[N_READS];
|
T xn[N_READS];
|
||||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
for (int i = 0; i < N_READS; ++i) {
|
||||||
float t = static_cast<float>(xn[i]);
|
float t = static_cast<float>(xn[i]);
|
||||||
normalizer += t * t;
|
normalizer += t * t;
|
||||||
@@ -130,7 +130,7 @@ __global__ void rms_norm_vjp(
|
|||||||
T wn[N_READS] = {};
|
T wn[N_READS] = {};
|
||||||
T gn[N_READS] = {};
|
T gn[N_READS] = {};
|
||||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
|
||||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||||
for (int i = 0; i < N_READS; i++) {
|
for (int i = 0; i < N_READS; i++) {
|
||||||
@@ -206,7 +206,8 @@ void RMSNorm::eval_gpu(
|
|||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
@@ -258,7 +259,9 @@ void RMSNormVJP::eval_gpu(
|
|||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
copied = true;
|
copied = true;
|
||||||
return contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
|
return x_copy;
|
||||||
};
|
};
|
||||||
bool donate_x = inputs[0].is_donatable();
|
bool donate_x = inputs[0].is_donatable();
|
||||||
bool donate_g = inputs[2].is_donatable();
|
bool donate_g = inputs[2].is_donatable();
|
||||||
|
|||||||
@@ -1,465 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
#include "mlx/backend/cuda/device.h"
|
|
||||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
||||||
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
|
||||||
#include "mlx/backend/gpu/copy.h"
|
|
||||||
#include "mlx/dtype_utils.h"
|
|
||||||
#include "mlx/primitives.h"
|
|
||||||
|
|
||||||
#include <cooperative_groups.h>
|
|
||||||
#include <cooperative_groups/scan.h>
|
|
||||||
#include <nvtx3/nvtx3.hpp>
|
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
|
|
||||||
namespace mlx::core {
|
|
||||||
|
|
||||||
namespace cu {
|
|
||||||
|
|
||||||
namespace cg = cooperative_groups;
|
|
||||||
|
|
||||||
template <typename Op, typename T>
|
|
||||||
struct ScanResult {
|
|
||||||
using type = T;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <>
|
|
||||||
struct ScanResult<Sum, bool> {
|
|
||||||
using type = int32_t;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
struct ReduceInit<LogAddExp, T> {
|
|
||||||
static constexpr __host__ __device__ T value() {
|
|
||||||
return Limits<T>::min();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <bool reverse, typename T, typename U, int N_READS>
|
|
||||||
inline __device__ void
|
|
||||||
load_values(int index, const T* in, U (&values)[N_READS], int size, U init) {
|
|
||||||
int remaining = size - index * N_READS;
|
|
||||||
if constexpr (reverse) {
|
|
||||||
in += remaining - N_READS;
|
|
||||||
if (remaining < N_READS) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
values[N_READS - i - 1] =
|
|
||||||
(N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
values[N_READS - i - 1] = cast_to<U>(in[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
in += index * N_READS;
|
|
||||||
if (remaining < N_READS) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
values[i] = (i < remaining) ? cast_to<U>(in[i]) : init;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
values[i] = cast_to<U>(in[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <bool reverse, int offset, typename T, int N_READS>
|
|
||||||
inline __device__ void
|
|
||||||
store_values(int index, T* out, T (&values)[N_READS], int size) {
|
|
||||||
int start = index * N_READS + offset;
|
|
||||||
int remaining = size - start;
|
|
||||||
if constexpr (reverse) {
|
|
||||||
out += remaining - N_READS;
|
|
||||||
if (remaining < N_READS) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
if (N_READS - i - 1 < remaining) {
|
|
||||||
out[i] = values[N_READS - i - 1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out[i] = values[N_READS - i - 1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
out += start;
|
|
||||||
if (remaining < N_READS) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
if (i < remaining) {
|
|
||||||
out[i] = values[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out[i] = values[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <
|
|
||||||
typename T,
|
|
||||||
typename U,
|
|
||||||
typename Op,
|
|
||||||
int N_READS,
|
|
||||||
bool inclusive,
|
|
||||||
bool reverse>
|
|
||||||
__global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
|
|
||||||
auto grid = cg::this_grid();
|
|
||||||
auto block = cg::this_thread_block();
|
|
||||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
||||||
|
|
||||||
in += grid.block_rank() * axis_size;
|
|
||||||
out += grid.block_rank() * axis_size;
|
|
||||||
|
|
||||||
__shared__ U warp_sums[WARP_SIZE];
|
|
||||||
|
|
||||||
Op op;
|
|
||||||
U init = ReduceInit<Op, T>::value();
|
|
||||||
U prefix = init;
|
|
||||||
|
|
||||||
// Scan per block.
|
|
||||||
for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) {
|
|
||||||
int32_t index = r * block.size() + block.thread_rank();
|
|
||||||
U values[N_READS];
|
|
||||||
load_values<reverse>(index, in, values, axis_size, init);
|
|
||||||
|
|
||||||
// Compute an inclusive scan per thread.
|
|
||||||
for (int i = 1; i < N_READS; ++i) {
|
|
||||||
values[i] = op(values[i], values[i - 1]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute exclusive scan of thread sums.
|
|
||||||
U prev_thread_sum = cg::exclusive_scan(warp, values[N_READS - 1], op);
|
|
||||||
if (warp.thread_rank() == 0) {
|
|
||||||
prev_thread_sum = init;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Write wrap's sum to shared memory.
|
|
||||||
if (warp.thread_rank() == WARP_SIZE - 1) {
|
|
||||||
warp_sums[warp.meta_group_rank()] =
|
|
||||||
op(prev_thread_sum, values[N_READS - 1]);
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
|
|
||||||
// Compute exclusive scan of warp sums.
|
|
||||||
if (warp.meta_group_rank() == 0) {
|
|
||||||
U prev_warp_sum =
|
|
||||||
cg::exclusive_scan(warp, warp_sums[warp.thread_rank()], op);
|
|
||||||
if (warp.thread_rank() == 0) {
|
|
||||||
prev_warp_sum = init;
|
|
||||||
}
|
|
||||||
warp_sums[warp.thread_rank()] = prev_warp_sum;
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
|
|
||||||
// Compute the output.
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
values[i] = op(values[i], prefix);
|
|
||||||
values[i] = op(values[i], warp_sums[warp.meta_group_rank()]);
|
|
||||||
values[i] = op(values[i], prev_thread_sum);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Write the values.
|
|
||||||
if (inclusive) {
|
|
||||||
store_values<reverse, 0>(index, out, values, axis_size);
|
|
||||||
} else {
|
|
||||||
store_values<reverse, 1>(index, out, values, axis_size);
|
|
||||||
if (reverse) {
|
|
||||||
if (block.thread_rank() == 0 && index == 0) {
|
|
||||||
out[axis_size - 1] = init;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (block.thread_rank() == 0 && index == 0) {
|
|
||||||
out[0] = init;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
|
|
||||||
// Share the prefix.
|
|
||||||
if ((warp.meta_group_rank() == warp.meta_group_size() - 1) &&
|
|
||||||
(warp.thread_rank() == WARP_SIZE - 1)) {
|
|
||||||
warp_sums[0] = values[N_READS - 1];
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
prefix = warp_sums[0];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <
|
|
||||||
typename T,
|
|
||||||
typename U,
|
|
||||||
typename Op,
|
|
||||||
int N_READS,
|
|
||||||
int BM,
|
|
||||||
int BN,
|
|
||||||
bool inclusive,
|
|
||||||
bool reverse>
|
|
||||||
__global__ void strided_scan(
|
|
||||||
const T* in,
|
|
||||||
U* out,
|
|
||||||
int32_t axis_size,
|
|
||||||
int64_t stride,
|
|
||||||
int64_t stride_blocks) {
|
|
||||||
auto grid = cg::this_grid();
|
|
||||||
auto block = cg::this_thread_block();
|
|
||||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
||||||
|
|
||||||
constexpr int BN_pad = WARP_SIZE + 16 / sizeof(U);
|
|
||||||
constexpr int n_warps = BN / N_READS;
|
|
||||||
constexpr int n_scans = BN / n_warps;
|
|
||||||
|
|
||||||
__shared__ U read_buffer[BM * BN_pad];
|
|
||||||
|
|
||||||
Op op;
|
|
||||||
U init = ReduceInit<Op, T>::value();
|
|
||||||
U values[n_scans];
|
|
||||||
U prefix[n_scans];
|
|
||||||
for (int i = 0; i < n_scans; ++i) {
|
|
||||||
prefix[i] = init;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute offsets.
|
|
||||||
int64_t offset = (grid.block_rank() / stride_blocks) * axis_size * stride;
|
|
||||||
int64_t global_index_x = (grid.block_rank() % stride_blocks) * BN;
|
|
||||||
uint read_offset_y = (block.thread_rank() * N_READS) / BN;
|
|
||||||
uint read_offset_x = (block.thread_rank() * N_READS) % BN;
|
|
||||||
uint scan_offset_y = warp.thread_rank();
|
|
||||||
uint scan_offset_x = warp.meta_group_rank() * n_scans;
|
|
||||||
|
|
||||||
uint stride_limit = stride - global_index_x;
|
|
||||||
in += offset + global_index_x + read_offset_x;
|
|
||||||
out += offset + global_index_x + read_offset_x;
|
|
||||||
U* read_into = read_buffer + read_offset_y * BN_pad + read_offset_x;
|
|
||||||
U* read_from = read_buffer + scan_offset_y * BN_pad + scan_offset_x;
|
|
||||||
|
|
||||||
for (uint j = 0; j < axis_size; j += BM) {
|
|
||||||
// Calculate the indices for the current thread.
|
|
||||||
uint index_y = j + read_offset_y;
|
|
||||||
uint check_index_y = index_y;
|
|
||||||
if (reverse) {
|
|
||||||
index_y = axis_size - 1 - index_y;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Read in SM.
|
|
||||||
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
read_into[i] = in[index_y * stride + i];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
|
||||||
read_into[i] = in[index_y * stride + i];
|
|
||||||
} else {
|
|
||||||
read_into[i] = init;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
|
|
||||||
// Read strided into registers.
|
|
||||||
for (int i = 0; i < n_scans; ++i) {
|
|
||||||
values[i] = read_from[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Perform the scan.
|
|
||||||
for (int i = 0; i < n_scans; ++i) {
|
|
||||||
values[i] = cg::inclusive_scan(warp, values[i], op);
|
|
||||||
values[i] = op(values[i], prefix[i]);
|
|
||||||
prefix[i] = warp.shfl(values[i], WARP_SIZE - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Write to SM.
|
|
||||||
for (int i = 0; i < n_scans; ++i) {
|
|
||||||
read_from[i] = values[i];
|
|
||||||
}
|
|
||||||
block.sync();
|
|
||||||
|
|
||||||
// Write to device memory.
|
|
||||||
if (!inclusive) {
|
|
||||||
if (check_index_y == 0) {
|
|
||||||
if ((read_offset_x + N_READS) < stride_limit) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out[index_y * stride + i] = init;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
if ((read_offset_x + i) < stride_limit) {
|
|
||||||
out[index_y * stride + i] = init;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (reverse) {
|
|
||||||
index_y -= 1;
|
|
||||||
check_index_y += 1;
|
|
||||||
} else {
|
|
||||||
index_y += 1;
|
|
||||||
check_index_y += 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out[index_y * stride + i] = read_into[i];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
|
||||||
out[index_y * stride + i] = read_into[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace cu
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void dispatch_scan_ops(Scan::ReduceType scan_op, F&& f) {
|
|
||||||
if (scan_op == Scan::ReduceType::Max) {
|
|
||||||
f(type_identity<cu::Max>{});
|
|
||||||
} else if (scan_op == Scan::ReduceType::Min) {
|
|
||||||
f(type_identity<cu::Min>{});
|
|
||||||
} else if (scan_op == Scan::ReduceType::Sum) {
|
|
||||||
f(type_identity<cu::Sum>{});
|
|
||||||
} else if (scan_op == Scan::ReduceType::Prod) {
|
|
||||||
f(type_identity<cu::Prod>{});
|
|
||||||
} else if (scan_op == Scan::ReduceType::LogAddExp) {
|
|
||||||
f(type_identity<cu::LogAddExp>{});
|
|
||||||
} else {
|
|
||||||
throw std::invalid_argument("Unknown reduce type.");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename Op>
|
|
||||||
const char* op_to_string() {
|
|
||||||
if (cuda::std::is_same_v<Op, cu::Max>) {
|
|
||||||
return "Max";
|
|
||||||
} else if (cuda::std::is_same_v<Op, cu::Min>) {
|
|
||||||
return "Min";
|
|
||||||
} else if (cuda::std::is_same_v<Op, cu::Sum>) {
|
|
||||||
return "Sum";
|
|
||||||
} else if (cuda::std::is_same_v<Op, cu::Prod>) {
|
|
||||||
return "Prod";
|
|
||||||
} else if (cuda::std::is_same_v<Op, cu::LogAddExp>) {
|
|
||||||
return "LogAddExp";
|
|
||||||
} else {
|
|
||||||
throw std::invalid_argument("Unknown op.");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename Op, typename T>
|
|
||||||
constexpr bool supports_scan_op() {
|
|
||||||
if constexpr (cuda::std::is_same_v<Op, LogAddExp>) {
|
|
||||||
return is_inexact_v<T>;
|
|
||||||
} else {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
||||||
nvtx3::scoped_range r("Scan::eval_gpu");
|
|
||||||
assert(inputs.size() == 1);
|
|
||||||
auto in = inputs[0];
|
|
||||||
auto& s = stream();
|
|
||||||
|
|
||||||
if (in.flags().contiguous && in.strides()[axis_] != 0) {
|
|
||||||
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
|
|
||||||
out.copy_shared_buffer(in);
|
|
||||||
} else {
|
|
||||||
out.set_data(
|
|
||||||
allocator::malloc(in.data_size() * out.itemsize()),
|
|
||||||
in.data_size(),
|
|
||||||
in.strides(),
|
|
||||||
in.flags());
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
in = contiguous_copy_gpu(in, s);
|
|
||||||
out.copy_shared_buffer(in);
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int N_READS = 4;
|
|
||||||
int32_t axis_size = in.shape(axis_);
|
|
||||||
bool contiguous = in.strides()[axis_] == 1;
|
|
||||||
|
|
||||||
auto& encoder = cu::get_command_encoder(s);
|
|
||||||
encoder.set_input_array(in);
|
|
||||||
encoder.set_output_array(out);
|
|
||||||
|
|
||||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
||||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
||||||
dispatch_scan_ops(reduce_type_, [&](auto scan_op_tag) {
|
|
||||||
using Op = MLX_GET_TYPE(scan_op_tag);
|
|
||||||
if constexpr (supports_scan_op<Op, T>) {
|
|
||||||
using U = typename cu::ScanResult<Op, T>::type;
|
|
||||||
dispatch_bool(inclusive_, [&](auto inclusive) {
|
|
||||||
dispatch_bool(reverse_, [&](auto reverse) {
|
|
||||||
if (contiguous) {
|
|
||||||
auto kernel = cu::contiguous_scan<
|
|
||||||
T,
|
|
||||||
U,
|
|
||||||
Op,
|
|
||||||
N_READS,
|
|
||||||
inclusive.value,
|
|
||||||
reverse.value>;
|
|
||||||
int block_dim = cuda::ceil_div(axis_size, N_READS);
|
|
||||||
block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE;
|
|
||||||
block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE);
|
|
||||||
encoder.add_kernel_node(
|
|
||||||
kernel,
|
|
||||||
in.data_size() / axis_size,
|
|
||||||
block_dim,
|
|
||||||
in.data<T>(),
|
|
||||||
out.data<U>(),
|
|
||||||
axis_size);
|
|
||||||
} else {
|
|
||||||
constexpr int BM = WARP_SIZE;
|
|
||||||
constexpr int BN = WARP_SIZE;
|
|
||||||
auto kernel = cu::strided_scan<
|
|
||||||
T,
|
|
||||||
U,
|
|
||||||
Op,
|
|
||||||
N_READS,
|
|
||||||
BM,
|
|
||||||
BN,
|
|
||||||
inclusive.value,
|
|
||||||
reverse.value>;
|
|
||||||
int64_t stride = in.strides()[axis_];
|
|
||||||
int64_t stride_blocks = cuda::ceil_div(stride, BN);
|
|
||||||
dim3 num_blocks = get_2d_grid_dims(
|
|
||||||
in.shape(), in.strides(), axis_size * stride);
|
|
||||||
if (num_blocks.x * stride_blocks <= UINT32_MAX) {
|
|
||||||
num_blocks.x *= stride_blocks;
|
|
||||||
} else {
|
|
||||||
num_blocks.y *= stride_blocks;
|
|
||||||
}
|
|
||||||
int block_dim = (BN / N_READS) * WARP_SIZE;
|
|
||||||
encoder.add_kernel_node(
|
|
||||||
kernel,
|
|
||||||
num_blocks,
|
|
||||||
block_dim,
|
|
||||||
in.data<T>(),
|
|
||||||
out.data<U>(),
|
|
||||||
axis_size,
|
|
||||||
stride,
|
|
||||||
stride_blocks);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
throw std::runtime_error(fmt::format(
|
|
||||||
"Can not do scan op {} on inputs of {} with result of {}.",
|
|
||||||
op_to_string<Op>(),
|
|
||||||
dtype_to_string(in.dtype()),
|
|
||||||
dtype_to_string(out.dtype())));
|
|
||||||
}
|
|
||||||
});
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
|
||||||
@@ -43,7 +43,7 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
|||||||
// Thread reduce.
|
// Thread reduce.
|
||||||
AccT prevmax;
|
AccT prevmax;
|
||||||
AccT maxval = Limits<AccT>::finite_min();
|
AccT maxval = Limits<AccT>::finite_min();
|
||||||
AccT normalizer = cast_to<AccT>(0);
|
AccT normalizer = 0;
|
||||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||||
AccT vals[N_READS];
|
AccT vals[N_READS];
|
||||||
cub::LoadDirectBlocked(
|
cub::LoadDirectBlocked(
|
||||||
@@ -125,7 +125,8 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -72,7 +72,8 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
|||||||
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
|
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
|
||||||
if (!is_segmented_sort) {
|
if (!is_segmented_sort) {
|
||||||
array trans = swapaxes_in_eval(in, axis, last_dim);
|
array trans = swapaxes_in_eval(in, axis, last_dim);
|
||||||
in = contiguous_copy_gpu(trans, s);
|
in = array(trans.shape(), trans.dtype(), nullptr, {});
|
||||||
|
copy_gpu(trans, in, CopyType::General, s);
|
||||||
encoder.add_temporary(in);
|
encoder.add_temporary(in);
|
||||||
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||||
encoder.add_temporary(out);
|
encoder.add_temporary(out);
|
||||||
|
|||||||
@@ -15,27 +15,12 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename Op, typename T, typename IdxT, int N_READS>
|
template <typename Op, typename T, typename IdxT>
|
||||||
__global__ void
|
__global__ void
|
||||||
ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
|
ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(a[index], b[index], c[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(a[i], b[i], c[i]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto a_vec = load_vector<N_READS>(a, index);
|
|
||||||
auto b_vec = load_vector<N_READS>(b, index);
|
|
||||||
auto c_vec = load_vector<N_READS>(c, index);
|
|
||||||
|
|
||||||
AlignedVector<T, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i], c_vec.val[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -164,18 +149,11 @@ void ternary_op_gpu_inplace(
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||||
// TODO: Choose optimized value based on type size.
|
auto kernel = cu::ternary_v<Op, DType, IdxT>;
|
||||||
constexpr int N_READS = 4;
|
|
||||||
auto kernel = cu::ternary_v<Op, DType, IdxT, N_READS>;
|
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel,
|
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||||
out.data_size(),
|
|
||||||
out.shape(),
|
|
||||||
out.strides(),
|
|
||||||
large(),
|
|
||||||
N_READS);
|
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
|
|||||||
@@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
#include "mlx/backend/common/unary.h"
|
#include "mlx/backend/common/unary.h"
|
||||||
#include "mlx/backend/cuda/device.h"
|
#include "mlx/backend/cuda/device.h"
|
||||||
|
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||||
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
|
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
|
||||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
@@ -17,24 +18,11 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
template <typename Op, typename In, typename Out, typename IdxT>
|
||||||
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
|
if (index < size) {
|
||||||
if ((index + 1) * N_READS > size) {
|
out[index] = Op{}(in[index]);
|
||||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
||||||
out[i] = Op{}(in[i]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
auto in_vec = load_vector<N_READS>(in, index);
|
|
||||||
|
|
||||||
AlignedVector<Out, N_READS> out_vec;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < N_READS; ++i) {
|
|
||||||
out_vec.val[i] = Op{}(in_vec.val[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
store_vector<N_READS>(out, index, out_vec);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -70,10 +58,10 @@ constexpr bool supports_unary_op() {
|
|||||||
!std::is_same_v<In, bool>;
|
!std::is_same_v<In, bool>;
|
||||||
}
|
}
|
||||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
||||||
return std::is_same_v<In, Out> && !mlx::core::is_complex_v<In>;
|
return std::is_same_v<In, Out> && !std::is_same_v<In, complex64_t>;
|
||||||
}
|
}
|
||||||
if (std::is_same_v<Op, Conjugate>) {
|
if (std::is_same_v<Op, Conjugate>) {
|
||||||
return std::is_same_v<In, Out> && mlx::core::is_complex_v<In>;
|
return std::is_same_v<In, Out> && std::is_same_v<In, complex64_t>;
|
||||||
}
|
}
|
||||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
||||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
||||||
@@ -87,7 +75,7 @@ constexpr bool supports_unary_op() {
|
|||||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||||
}
|
}
|
||||||
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
||||||
return mlx::core::is_complex_v<In> && std::is_same_v<Out, float>;
|
return std::is_same_v<In, complex64_t> && std::is_same_v<Out, float>;
|
||||||
}
|
}
|
||||||
if (std::is_same_v<Op, LogicalNot>) {
|
if (std::is_same_v<Op, LogicalNot>) {
|
||||||
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
||||||
@@ -101,7 +89,7 @@ template <typename Op>
|
|||||||
void unary_op_gpu_inplace(
|
void unary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
auto& in = inputs[0];
|
auto& in = inputs[0];
|
||||||
if (in.size() == 0) {
|
if (in.size() == 0) {
|
||||||
@@ -124,20 +112,14 @@ void unary_op_gpu_inplace(
|
|||||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||||
dispatch_bool(large, [&](auto large) {
|
dispatch_bool(large, [&](auto large) {
|
||||||
|
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||||
using InType = cuda_type_t<CTYPE_IN>;
|
using InType = cuda_type_t<CTYPE_IN>;
|
||||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||||
|
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||||
if (contig) {
|
if (contig) {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
auto kernel = cu::unary_v<Op, InType, OutType, IdxT>;
|
||||||
// TODO: Choose optimized value based on type size.
|
|
||||||
constexpr int N_READS = 4;
|
|
||||||
auto kernel = cu::unary_v<Op, InType, OutType, IdxT, N_READS>;
|
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel,
|
kernel, out.data_size(), out.shape(), out.strides(), large);
|
||||||
out.data_size(),
|
|
||||||
out.shape(),
|
|
||||||
out.strides(),
|
|
||||||
large,
|
|
||||||
N_READS);
|
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
@@ -146,7 +128,6 @@ void unary_op_gpu_inplace(
|
|||||||
out.data<OutType>(),
|
out.data<OutType>(),
|
||||||
out.data_size());
|
out.data_size());
|
||||||
} else {
|
} else {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
|
||||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT>;
|
auto kernel = cu::unary_g<Op, InType, OutType, IdxT>;
|
||||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||||
@@ -177,17 +158,17 @@ template <typename Op>
|
|||||||
void unary_op_gpu(
|
void unary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
set_unary_output_data(inputs[0], out);
|
set_unary_output_data(inputs[0], out);
|
||||||
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
#define UNARY_GPU(func) \
|
#define UNARY_GPU(func) \
|
||||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||||
auto& s = out.primitive().stream(); \
|
auto& s = out.primitive().stream(); \
|
||||||
unary_op_gpu<cu::func>(inputs, out, name(), s); \
|
unary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
|
||||||
}
|
}
|
||||||
|
|
||||||
UNARY_GPU(Abs)
|
UNARY_GPU(Abs)
|
||||||
@@ -223,15 +204,16 @@ UNARY_GPU(Tanh)
|
|||||||
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||||
nvtx3::scoped_range r("Log::eval_gpu");
|
nvtx3::scoped_range r("Log::eval_gpu");
|
||||||
auto& s = out.primitive().stream();
|
auto& s = out.primitive().stream();
|
||||||
|
auto op = get_primitive_string(this);
|
||||||
switch (base_) {
|
switch (base_) {
|
||||||
case Base::e:
|
case Base::e:
|
||||||
unary_op_gpu<cu::Log>(inputs, out, name(), s);
|
unary_op_gpu<cu::Log>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case Base::two:
|
case Base::two:
|
||||||
unary_op_gpu<cu::Log2>(inputs, out, name(), s);
|
unary_op_gpu<cu::Log2>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
case Base::ten:
|
case Base::ten:
|
||||||
unary_op_gpu<cu::Log10>(inputs, out, name(), s);
|
unary_op_gpu<cu::Log10>(inputs, out, op, s);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -242,7 +224,7 @@ void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
const auto& in = inputs[0];
|
const auto& in = inputs[0];
|
||||||
auto& s = out.primitive().stream();
|
auto& s = out.primitive().stream();
|
||||||
if (issubdtype(in.dtype(), inexact)) {
|
if (issubdtype(in.dtype(), inexact)) {
|
||||||
unary_op_gpu<cu::Round>(inputs, out, name(), s);
|
unary_op_gpu<cu::Round>(inputs, out, get_primitive_string(this), s);
|
||||||
} else {
|
} else {
|
||||||
// No-op integer types
|
// No-op integer types
|
||||||
out.copy_shared_buffer(in);
|
out.copy_shared_buffer(in);
|
||||||
|
|||||||
@@ -61,7 +61,7 @@ const char* dtype_to_cuda_type(const Dtype& dtype) {
|
|||||||
case float64:
|
case float64:
|
||||||
return "double";
|
return "double";
|
||||||
case complex64:
|
case complex64:
|
||||||
return "complex64_t";
|
return "cuComplex";
|
||||||
default:
|
default:
|
||||||
return "unknown";
|
return "unknown";
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -46,10 +46,4 @@ void copy_gpu_inplace(
|
|||||||
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
|
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
array contiguous_copy_gpu(const array& arr, const Stream& s) {
|
|
||||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
|
||||||
copy_gpu(arr, arr_copy, CopyType::General, s);
|
|
||||||
return arr_copy;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -43,7 +43,4 @@ void copy_gpu_inplace(
|
|||||||
// Fill the output with the scalar val
|
// Fill the output with the scalar val
|
||||||
void fill_gpu(const array& val, array& out, const Stream& s);
|
void fill_gpu(const array& val, array& out, const Stream& s);
|
||||||
|
|
||||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
|
||||||
array contiguous_copy_gpu(const array& arr, const Stream& s);
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -63,7 +63,6 @@ if(MLX_METAL_JIT)
|
|||||||
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
|
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
|
||||||
make_jit_source(steel/gemm/kernels/steel_gemm_gather)
|
make_jit_source(steel/gemm/kernels/steel_gemm_gather)
|
||||||
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
|
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
|
||||||
make_jit_source(steel/gemm/kernels/steel_gemm_segmented)
|
|
||||||
make_jit_source(
|
make_jit_source(
|
||||||
steel/conv/conv
|
steel/conv/conv
|
||||||
kernels/steel/utils.h
|
kernels/steel/utils.h
|
||||||
|
|||||||
@@ -7,20 +7,20 @@
|
|||||||
|
|
||||||
#define BINARY_GPU(func) \
|
#define BINARY_GPU(func) \
|
||||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||||
binary_op_gpu(inputs, out, name()); \
|
binary_op_gpu(inputs, out, get_primitive_string(this)); \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define BINARY_GPU_MULTI(func) \
|
#define BINARY_GPU_MULTI(func) \
|
||||||
void func::eval_gpu( \
|
void func::eval_gpu( \
|
||||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||||
binary_op_gpu(inputs, outputs, name()); \
|
binary_op_gpu(inputs, outputs, get_primitive_string(this)); \
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
std::string get_kernel_name(
|
std::string get_kernel_name(
|
||||||
BinaryOpType bopt,
|
BinaryOpType bopt,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const array& a,
|
const array& a,
|
||||||
bool large,
|
bool large,
|
||||||
int ndim,
|
int ndim,
|
||||||
@@ -65,7 +65,7 @@ std::string get_kernel_name(
|
|||||||
void binary_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
auto& a = inputs[0];
|
auto& a = inputs[0];
|
||||||
auto& b = inputs[1];
|
auto& b = inputs[1];
|
||||||
@@ -165,7 +165,7 @@ void binary_op_gpu_inplace(
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
assert(inputs.size() == 2);
|
assert(inputs.size() == 2);
|
||||||
auto& a = inputs[0];
|
auto& a = inputs[0];
|
||||||
@@ -179,7 +179,7 @@ void binary_op_gpu(
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op) {
|
const std::string& op) {
|
||||||
auto& s = outputs[0].primitive().stream();
|
auto& s = outputs[0].primitive().stream();
|
||||||
binary_op_gpu(inputs, outputs, op, s);
|
binary_op_gpu(inputs, outputs, op, s);
|
||||||
}
|
}
|
||||||
@@ -187,7 +187,7 @@ void binary_op_gpu(
|
|||||||
void binary_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
std::vector<array> outputs = {out};
|
std::vector<array> outputs = {out};
|
||||||
binary_op_gpu_inplace(inputs, outputs, op, s);
|
binary_op_gpu_inplace(inputs, outputs, op, s);
|
||||||
@@ -196,7 +196,7 @@ void binary_op_gpu_inplace(
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s) {
|
const Stream& s) {
|
||||||
assert(inputs.size() == 2);
|
assert(inputs.size() == 2);
|
||||||
auto& a = inputs[0];
|
auto& a = inputs[0];
|
||||||
@@ -209,7 +209,7 @@ void binary_op_gpu(
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op) {
|
const std::string& op) {
|
||||||
auto& s = out.primitive().stream();
|
auto& s = out.primitive().stream();
|
||||||
binary_op_gpu(inputs, out, op, s);
|
binary_op_gpu(inputs, out, op, s);
|
||||||
}
|
}
|
||||||
@@ -237,19 +237,19 @@ BINARY_GPU(Subtract)
|
|||||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||||
switch (op_) {
|
switch (op_) {
|
||||||
case BitwiseBinary::And:
|
case BitwiseBinary::And:
|
||||||
binary_op_gpu(inputs, out, name());
|
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::Or:
|
case BitwiseBinary::Or:
|
||||||
binary_op_gpu(inputs, out, name());
|
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::Xor:
|
case BitwiseBinary::Xor:
|
||||||
binary_op_gpu(inputs, out, name());
|
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::LeftShift:
|
case BitwiseBinary::LeftShift:
|
||||||
binary_op_gpu(inputs, out, name());
|
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||||
break;
|
break;
|
||||||
case BitwiseBinary::RightShift:
|
case BitwiseBinary::RightShift:
|
||||||
binary_op_gpu(inputs, out, name());
|
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -9,25 +9,25 @@ namespace mlx::core {
|
|||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s);
|
const Stream& s);
|
||||||
|
|
||||||
void binary_op_gpu(
|
void binary_op_gpu(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s);
|
const Stream& s);
|
||||||
|
|
||||||
void binary_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
std::vector<array>& outputs,
|
std::vector<array>& outputs,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s);
|
const Stream& s);
|
||||||
|
|
||||||
void binary_op_gpu_inplace(
|
void binary_op_gpu_inplace(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
array& out,
|
array& out,
|
||||||
const char* op,
|
const std::string& op,
|
||||||
const Stream& s);
|
const Stream& s);
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -212,7 +212,9 @@ inline void build_kernel(
|
|||||||
get_type_string(x.dtype()),
|
get_type_string(x.dtype()),
|
||||||
namer.get_name(x.inputs()[0]));
|
namer.get_name(x.inputs()[0]));
|
||||||
} else {
|
} else {
|
||||||
os += x.primitive().name();
|
std::ostringstream ss;
|
||||||
|
x.primitive().print(ss);
|
||||||
|
os += ss.str();
|
||||||
os += "()(";
|
os += "()(";
|
||||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||||
os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i]));
|
os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i]));
|
||||||
|
|||||||
@@ -149,7 +149,8 @@ void explicit_gemm_conv_group_ND_gpu(
|
|||||||
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
||||||
|
|
||||||
// Materialize
|
// Materialize
|
||||||
array wt_transpose = contiguous_copy_gpu(wt_view, s);
|
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
|
||||||
|
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
|
||||||
|
|
||||||
// Perform gemm
|
// Perform gemm
|
||||||
std::vector<array> copies = {in_unfolded, wt_transpose};
|
std::vector<array> copies = {in_unfolded, wt_transpose};
|
||||||
@@ -960,12 +961,16 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
auto in = inputs[0];
|
auto in = inputs[0];
|
||||||
auto wt = inputs[1];
|
auto wt = inputs[1];
|
||||||
if (!in.flags().row_contiguous) {
|
if (!in.flags().row_contiguous) {
|
||||||
in = contiguous_copy_gpu(in, s);
|
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||||
copies.push_back(in);
|
copy_gpu(in, arr_copy, CopyType::General, s);
|
||||||
|
copies.push_back(arr_copy);
|
||||||
|
in = arr_copy;
|
||||||
}
|
}
|
||||||
if (!wt.flags().row_contiguous) {
|
if (!wt.flags().row_contiguous) {
|
||||||
wt = contiguous_copy_gpu(wt, s);
|
array arr_copy(wt.shape(), wt.dtype(), nullptr, {});
|
||||||
copies.push_back(wt);
|
copy_gpu(wt, arr_copy, CopyType::General, s);
|
||||||
|
copies.push_back(arr_copy);
|
||||||
|
wt = arr_copy;
|
||||||
}
|
}
|
||||||
|
|
||||||
// 3D conv
|
// 3D conv
|
||||||
|
|||||||
@@ -86,7 +86,7 @@ void copy_gpu_inplace(
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
work_per_thread = get_work_per_thread(out.dtype(), out.data_size());
|
work_per_thread = get_work_per_thread(out.dtype(), out.data_size());
|
||||||
if (!large && work_per_thread > 1) {
|
if (work_per_thread > 1) {
|
||||||
kernel_name += "n";
|
kernel_name += "n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,18 +1,20 @@
|
|||||||
// Copyright © 2023-2024 Apple Inc.
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
|
#include <filesystem>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
#define NS_PRIVATE_IMPLEMENTATION
|
#define NS_PRIVATE_IMPLEMENTATION
|
||||||
#define CA_PRIVATE_IMPLEMENTATION
|
#define CA_PRIVATE_IMPLEMENTATION
|
||||||
#define MTL_PRIVATE_IMPLEMENTATION
|
#define MTL_PRIVATE_IMPLEMENTATION
|
||||||
|
|
||||||
#include "mlx/backend/common/utils.h"
|
|
||||||
#include "mlx/backend/metal/device.h"
|
#include "mlx/backend/metal/device.h"
|
||||||
#include "mlx/backend/metal/metal.h"
|
#include "mlx/backend/metal/metal.h"
|
||||||
#include "mlx/backend/metal/utils.h"
|
#include "mlx/backend/metal/utils.h"
|
||||||
#include "mlx/utils.h"
|
#include "mlx/utils.h"
|
||||||
|
|
||||||
|
namespace fs = std::filesystem;
|
||||||
|
|
||||||
namespace mlx::core::metal {
|
namespace mlx::core::metal {
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
@@ -78,7 +80,12 @@ MTL::Library* try_load_bundle(
|
|||||||
std::pair<MTL::Library*, NS::Error*> load_colocated_library(
|
std::pair<MTL::Library*, NS::Error*> load_colocated_library(
|
||||||
MTL::Device* device,
|
MTL::Device* device,
|
||||||
const std::string& relative_path) {
|
const std::string& relative_path) {
|
||||||
auto path = current_binary_dir() / relative_path;
|
std::string binary_dir = get_binary_directory();
|
||||||
|
if (binary_dir.size() == 0) {
|
||||||
|
return {nullptr, nullptr};
|
||||||
|
}
|
||||||
|
|
||||||
|
auto path = fs::path(binary_dir) / relative_path;
|
||||||
if (!path.has_extension()) {
|
if (!path.has_extension()) {
|
||||||
path.replace_extension(".metallib");
|
path.replace_extension(".metallib");
|
||||||
}
|
}
|
||||||
@@ -190,7 +197,7 @@ MTL::Library* load_library(
|
|||||||
|
|
||||||
std::ostringstream msg;
|
std::ostringstream msg;
|
||||||
msg << "Failed to load the metallib " << lib_name << ".metallib. "
|
msg << "Failed to load the metallib " << lib_name << ".metallib. "
|
||||||
<< "We attempted to load it from <" << current_binary_dir() << "/"
|
<< "We attempted to load it from <" << get_binary_directory() << "/"
|
||||||
<< lib_name << ".metallib" << ">";
|
<< lib_name << ".metallib" << ">";
|
||||||
#ifdef SWIFTPM_BUNDLE
|
#ifdef SWIFTPM_BUNDLE
|
||||||
msg << " and from the Swift PM bundle.";
|
msg << " and from the Swift PM bundle.";
|
||||||
|
|||||||
@@ -3,6 +3,8 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <Metal/Metal.hpp>
|
#include <Metal/Metal.hpp>
|
||||||
|
#include <dlfcn.h>
|
||||||
|
#include <filesystem>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
#include <shared_mutex>
|
#include <shared_mutex>
|
||||||
@@ -13,8 +15,22 @@
|
|||||||
#include "mlx/array.h"
|
#include "mlx/array.h"
|
||||||
#include "mlx/device.h"
|
#include "mlx/device.h"
|
||||||
|
|
||||||
|
namespace fs = std::filesystem;
|
||||||
|
|
||||||
namespace mlx::core::metal {
|
namespace mlx::core::metal {
|
||||||
|
|
||||||
|
// Note, this function must be left inline in a header so that it is not
|
||||||
|
// dynamically linked.
|
||||||
|
inline std::string get_binary_directory() {
|
||||||
|
Dl_info info;
|
||||||
|
std::string directory;
|
||||||
|
int success = dladdr((void*)get_binary_directory, &info);
|
||||||
|
if (success) {
|
||||||
|
directory = fs::path(info.dli_fname).remove_filename().c_str();
|
||||||
|
}
|
||||||
|
return directory;
|
||||||
|
}
|
||||||
|
|
||||||
using MTLFCList =
|
using MTLFCList =
|
||||||
std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>;
|
std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>;
|
||||||
|
|
||||||
|
|||||||
@@ -575,17 +575,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
compute_encoder.set_output_array(out, 2);
|
compute_encoder.set_output_array(out, 2);
|
||||||
|
|
||||||
// Set source info
|
// Set source info
|
||||||
if (ndim > 1) {
|
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
|
||||||
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
|
compute_encoder.set_vector_bytes(remove_index(upd.strides(), axis_), 4);
|
||||||
compute_encoder.set_vector_bytes(remove_index(upd.strides(), axis_), 4);
|
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
|
||||||
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
|
|
||||||
} else {
|
|
||||||
// The following will be ignored in the kernel but we still have to set
|
|
||||||
// some value so that metal validation passes.
|
|
||||||
compute_encoder.set_vector_bytes(idx.shape(), 3);
|
|
||||||
compute_encoder.set_vector_bytes(upd.strides(), 4);
|
|
||||||
compute_encoder.set_vector_bytes(idx.strides(), 5);
|
|
||||||
}
|
|
||||||
compute_encoder.set_bytes(ndim - 1, 6);
|
compute_encoder.set_bytes(ndim - 1, 6);
|
||||||
compute_encoder.set_bytes(axis_, 7);
|
compute_encoder.set_bytes(axis_, 7);
|
||||||
compute_encoder.set_bytes(out.shape(axis_), 8);
|
compute_encoder.set_bytes(out.shape(axis_), 8);
|
||||||
|
|||||||
@@ -34,7 +34,6 @@ const char* steel_gemm_fused();
|
|||||||
const char* steel_gemm_masked();
|
const char* steel_gemm_masked();
|
||||||
const char* steel_gemm_splitk();
|
const char* steel_gemm_splitk();
|
||||||
const char* steel_gemm_gather();
|
const char* steel_gemm_gather();
|
||||||
const char* steel_gemm_segmented();
|
|
||||||
const char* conv();
|
const char* conv();
|
||||||
const char* steel_conv();
|
const char* steel_conv();
|
||||||
const char* steel_conv_general();
|
const char* steel_conv_general();
|
||||||
|
|||||||
@@ -8,6 +8,12 @@ using namespace fmt::literals;
|
|||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
|
std::string op_name(const array& arr) {
|
||||||
|
std::ostringstream op_t;
|
||||||
|
arr.primitive().print(op_t);
|
||||||
|
return op_t.str();
|
||||||
|
}
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_arange_kernel(
|
MTL::ComputePipelineState* get_arange_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
@@ -27,7 +33,7 @@ MTL::ComputePipelineState* get_unary_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op) {
|
const std::string op) {
|
||||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||||
auto lib = d.get_library(lib_name, [&]() {
|
auto lib = d.get_library(lib_name, [&]() {
|
||||||
auto in_t = get_type_string(in_type);
|
auto in_t = get_type_string(in_type);
|
||||||
@@ -52,10 +58,10 @@ MTL::ComputePipelineState* get_unary_kernel(
|
|||||||
}
|
}
|
||||||
|
|
||||||
void append_binary_kernels(
|
void append_binary_kernels(
|
||||||
const std::string& lib_name,
|
const std::string lib_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op,
|
const std::string op,
|
||||||
std::string& kernel_source) {
|
std::string& kernel_source) {
|
||||||
const std::array<std::pair<std::string, std::string>, 7> kernel_types = {{
|
const std::array<std::pair<std::string, std::string>, 7> kernel_types = {{
|
||||||
{"ss", "binary_ss"},
|
{"ss", "binary_ss"},
|
||||||
@@ -106,7 +112,7 @@ MTL::ComputePipelineState* get_binary_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op) {
|
const std::string op) {
|
||||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||||
auto lib = d.get_library(lib_name, [&]() {
|
auto lib = d.get_library(lib_name, [&]() {
|
||||||
std::string kernel_source;
|
std::string kernel_source;
|
||||||
@@ -123,7 +129,7 @@ MTL::ComputePipelineState* get_binary_two_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op) {
|
const std::string op) {
|
||||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||||
auto lib = d.get_library(lib_name, [&]() {
|
auto lib = d.get_library(lib_name, [&]() {
|
||||||
std::string kernel_source = metal::utils();
|
std::string kernel_source = metal::utils();
|
||||||
@@ -138,7 +144,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
|||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype type,
|
Dtype type,
|
||||||
const char* op) {
|
const std::string op) {
|
||||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||||
auto lib = d.get_library(lib_name, [&]() {
|
auto lib = d.get_library(lib_name, [&]() {
|
||||||
auto t_str = get_type_string(type);
|
auto t_str = get_type_string(type);
|
||||||
@@ -646,43 +652,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
|||||||
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
||||||
}
|
}
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
|
||||||
metal::Device& d,
|
|
||||||
const std::string& kernel_name,
|
|
||||||
const std::string& hash_name,
|
|
||||||
const metal::MTLFCList& func_consts,
|
|
||||||
const array& out,
|
|
||||||
bool transpose_a,
|
|
||||||
bool transpose_b,
|
|
||||||
int bm,
|
|
||||||
int bn,
|
|
||||||
int bk,
|
|
||||||
int wm,
|
|
||||||
int wn) {
|
|
||||||
const auto& lib_name = kernel_name;
|
|
||||||
auto lib = d.get_library(lib_name, [&]() {
|
|
||||||
std::string kernel_source;
|
|
||||||
concatenate(
|
|
||||||
kernel_source,
|
|
||||||
metal::utils(),
|
|
||||||
metal::gemm(),
|
|
||||||
metal::steel_gemm_segmented(),
|
|
||||||
get_template_definition(
|
|
||||||
lib_name,
|
|
||||||
"segmented_mm",
|
|
||||||
get_type_string(out.dtype()),
|
|
||||||
bm,
|
|
||||||
bn,
|
|
||||||
bk,
|
|
||||||
wm,
|
|
||||||
wn,
|
|
||||||
transpose_a,
|
|
||||||
transpose_b));
|
|
||||||
return kernel_source;
|
|
||||||
});
|
|
||||||
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
|
||||||
}
|
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
|
|||||||
@@ -19,27 +19,27 @@ MTL::ComputePipelineState* get_unary_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op);
|
const std::string op);
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_binary_kernel(
|
MTL::ComputePipelineState* get_binary_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op);
|
const std::string op);
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_binary_two_kernel(
|
MTL::ComputePipelineState* get_binary_two_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype in_type,
|
Dtype in_type,
|
||||||
Dtype out_type,
|
Dtype out_type,
|
||||||
const char* op);
|
const std::string op);
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_ternary_kernel(
|
MTL::ComputePipelineState* get_ternary_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype type,
|
Dtype type,
|
||||||
const char* op);
|
const std::string op);
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_copy_kernel(
|
MTL::ComputePipelineState* get_copy_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
@@ -175,20 +175,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
|||||||
int wn,
|
int wn,
|
||||||
bool rhs);
|
bool rhs);
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
|
||||||
metal::Device& d,
|
|
||||||
const std::string& kernel_name,
|
|
||||||
const std::string& hash_name,
|
|
||||||
const metal::MTLFCList& func_consts,
|
|
||||||
const array& out,
|
|
||||||
bool transpose_a,
|
|
||||||
bool transpose_b,
|
|
||||||
int bm,
|
|
||||||
int bn,
|
|
||||||
int bk,
|
|
||||||
int wm,
|
|
||||||
int wn);
|
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_steel_conv_kernel(
|
MTL::ComputePipelineState* get_steel_conv_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
@@ -257,10 +243,8 @@ MTL::ComputePipelineState* get_gather_qmm_kernel(
|
|||||||
|
|
||||||
// Create a GPU kernel template definition for JIT compilation
|
// Create a GPU kernel template definition for JIT compilation
|
||||||
template <typename... Args>
|
template <typename... Args>
|
||||||
std::string get_template_definition(
|
std::string
|
||||||
std::string_view name,
|
get_template_definition(std::string name, std::string func, Args... args) {
|
||||||
std::string_view func,
|
|
||||||
Args... args) {
|
|
||||||
std::ostringstream s;
|
std::ostringstream s;
|
||||||
s << func << "<";
|
s << func << "<";
|
||||||
bool first = true;
|
bool first = true;
|
||||||
|
|||||||
@@ -71,7 +71,6 @@ set(STEEL_HEADERS
|
|||||||
steel/gemm/kernels/steel_gemm_fused.h
|
steel/gemm/kernels/steel_gemm_fused.h
|
||||||
steel/gemm/kernels/steel_gemm_gather.h
|
steel/gemm/kernels/steel_gemm_gather.h
|
||||||
steel/gemm/kernels/steel_gemm_masked.h
|
steel/gemm/kernels/steel_gemm_masked.h
|
||||||
steel/gemm/kernels/steel_gemm_segmented.h
|
|
||||||
steel/gemm/kernels/steel_gemm_splitk.h
|
steel/gemm/kernels/steel_gemm_splitk.h
|
||||||
steel/utils/type_traits.h
|
steel/utils/type_traits.h
|
||||||
steel/utils/integral_constant.h)
|
steel/utils/integral_constant.h)
|
||||||
@@ -121,7 +120,6 @@ if(NOT MLX_METAL_JIT)
|
|||||||
build_kernel(steel/gemm/kernels/steel_gemm_gather ${STEEL_HEADERS})
|
build_kernel(steel/gemm/kernels/steel_gemm_gather ${STEEL_HEADERS})
|
||||||
build_kernel(steel/gemm/kernels/steel_gemm_masked ${STEEL_HEADERS})
|
build_kernel(steel/gemm/kernels/steel_gemm_masked ${STEEL_HEADERS})
|
||||||
build_kernel(steel/gemm/kernels/steel_gemm_splitk ${STEEL_HEADERS})
|
build_kernel(steel/gemm/kernels/steel_gemm_splitk ${STEEL_HEADERS})
|
||||||
build_kernel(steel/gemm/kernels/steel_gemm_segmented ${STEEL_HEADERS})
|
|
||||||
build_kernel(gemv_masked steel/utils.h)
|
build_kernel(gemv_masked steel/utils.h)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|||||||
@@ -1,134 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
// Copyright © 2008-2013 NVIDIA Corporation
|
|
||||||
// Copyright © 2013 Filipe RNC Maia
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
//
|
|
||||||
// Forked from
|
|
||||||
// https://github.com/NVIDIA/cccl/blob/main/thrust/thrust/detail/complex/cexpf.h
|
|
||||||
|
|
||||||
// TODO: We should use thrust::exp but the thrust header in old CUDA versions
|
|
||||||
// can not be used in JIT.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <metal_math>
|
|
||||||
|
|
||||||
using ieee_float_shape_type = union {
|
|
||||||
float value;
|
|
||||||
uint32_t word;
|
|
||||||
};
|
|
||||||
|
|
||||||
inline void get_float_word(thread uint32_t& i, float d) {
|
|
||||||
ieee_float_shape_type gf_u;
|
|
||||||
gf_u.value = (d);
|
|
||||||
(i) = gf_u.word;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline void get_float_word(thread int32_t& i, float d) {
|
|
||||||
ieee_float_shape_type gf_u;
|
|
||||||
gf_u.value = (d);
|
|
||||||
(i) = gf_u.word;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline void set_float_word(thread float& d, uint32_t i) {
|
|
||||||
ieee_float_shape_type sf_u;
|
|
||||||
sf_u.word = (i);
|
|
||||||
(d) = sf_u.value;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline float frexp_expf(float x, thread int* expt) {
|
|
||||||
const uint32_t k = 235;
|
|
||||||
const float kln2 = 162.88958740F;
|
|
||||||
|
|
||||||
float exp_x;
|
|
||||||
uint32_t hx;
|
|
||||||
|
|
||||||
exp_x = metal::exp(x - kln2);
|
|
||||||
get_float_word(hx, exp_x);
|
|
||||||
*expt = (hx >> 23) - (0x7f + 127) + k;
|
|
||||||
set_float_word(exp_x, (hx & 0x7fffff) | ((0x7f + 127) << 23));
|
|
||||||
return exp_x;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline complex64_t ldexp_cexpf(complex64_t z, int expt) {
|
|
||||||
float x, y, exp_x, scale1, scale2;
|
|
||||||
int ex_expt, half_expt;
|
|
||||||
|
|
||||||
x = z.real;
|
|
||||||
y = z.imag;
|
|
||||||
exp_x = frexp_expf(x, &ex_expt);
|
|
||||||
expt += ex_expt;
|
|
||||||
|
|
||||||
half_expt = expt / 2;
|
|
||||||
set_float_word(scale1, (0x7f + half_expt) << 23);
|
|
||||||
half_expt = expt - half_expt;
|
|
||||||
set_float_word(scale2, (0x7f + half_expt) << 23);
|
|
||||||
|
|
||||||
return complex64_t{
|
|
||||||
metal::cos(y) * exp_x * scale1 * scale2,
|
|
||||||
metal::sin(y) * exp_x * scale1 * scale2};
|
|
||||||
}
|
|
||||||
|
|
||||||
inline complex64_t cexpf(const thread complex64_t& z) {
|
|
||||||
float x, y, exp_x;
|
|
||||||
uint32_t hx, hy;
|
|
||||||
|
|
||||||
const uint32_t exp_ovfl = 0x42b17218, cexp_ovfl = 0x43400074;
|
|
||||||
|
|
||||||
x = z.real;
|
|
||||||
y = z.imag;
|
|
||||||
|
|
||||||
get_float_word(hy, y);
|
|
||||||
hy &= 0x7fffffff;
|
|
||||||
|
|
||||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
|
||||||
if (hy == 0) {
|
|
||||||
return complex64_t{metal::exp(x), y};
|
|
||||||
}
|
|
||||||
get_float_word(hx, x);
|
|
||||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
|
||||||
if ((hx & 0x7fffffff) == 0) {
|
|
||||||
return complex64_t{metal::cos(y), metal::sin(y)};
|
|
||||||
}
|
|
||||||
if (hy >= 0x7f800000) {
|
|
||||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
|
||||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
|
||||||
return complex64_t{y - y, y - y};
|
|
||||||
} else if (hx & 0x80000000) {
|
|
||||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
|
||||||
return complex64_t{0.0, 0.0};
|
|
||||||
} else {
|
|
||||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
|
||||||
return complex64_t{x, y - y};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (hx >= exp_ovfl && hx <= cexp_ovfl) {
|
|
||||||
/*
|
|
||||||
* x is between 88.7 and 192, so we must scale to avoid
|
|
||||||
* overflow in expf(x).
|
|
||||||
*/
|
|
||||||
return ldexp_cexpf(z, 0);
|
|
||||||
} else {
|
|
||||||
/*
|
|
||||||
* Cases covered here:
|
|
||||||
* - x < exp_ovfl and exp(x) won't overflow (common case)
|
|
||||||
* - x > cexp_ovfl, so exp(x) * s overflows for all s > 0
|
|
||||||
* - x = +-Inf (generated by exp())
|
|
||||||
* - x = NaN (spurious inexact exception from y)
|
|
||||||
*/
|
|
||||||
exp_x = metal::exp(x);
|
|
||||||
return complex64_t{exp_x * metal::cos(y), exp_x * metal::sin(y)};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -31,7 +31,6 @@ inline void threadgroup_sum(
|
|||||||
for (int i = 0; i < N; i++) {
|
for (int i = 0; i < N; i++) {
|
||||||
x[i] = simd_sum(x[i]);
|
x[i] = simd_sum(x[i]);
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (simd_lane_id == 0) {
|
if (simd_lane_id == 0) {
|
||||||
for (int i = 0; i < N; i++) {
|
for (int i = 0; i < N; i++) {
|
||||||
xs[N * simd_group_id + i] = x[i];
|
xs[N * simd_group_id + i] = x[i];
|
||||||
|
|||||||
@@ -643,14 +643,14 @@ struct QuantizedBlockLoader {
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (reduction_dim == 1 && bi >= src_tile_dim.x) {
|
if (reduction_dim == 1 && bi >= src_tile_dim.y) {
|
||||||
for (int i = 0; i < n_reads * pack_factor; i++) {
|
for (int i = 0; i < n_reads * pack_factor; i++) {
|
||||||
dst[i] = T(0);
|
dst[i] = T(0);
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (reduction_dim == 0 && bi >= src_tile_dim.y) {
|
if (reduction_dim == 0 && bi >= src_tile_dim.x) {
|
||||||
for (int i = 0; i < n_reads * pack_factor; i++) {
|
for (int i = 0; i < n_reads * pack_factor; i++) {
|
||||||
dst[i] = T(0);
|
dst[i] = T(0);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -164,15 +164,7 @@ struct Min {
|
|||||||
DEFINE_SIMD_REDUCE()
|
DEFINE_SIMD_REDUCE()
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
metal::enable_if_t<metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
T simd_reduce_impl(T val) {
|
||||||
return simd_min(val);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
metal::enable_if_t<!metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
|
||||||
if (simd_any(val != val)) {
|
|
||||||
return static_cast<T>(NAN);
|
|
||||||
}
|
|
||||||
return simd_min(val);
|
return simd_min(val);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -184,38 +176,11 @@ struct Min {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Operator
|
// Operator
|
||||||
template <typename T>
|
U operator()(U a, U b) {
|
||||||
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T a, T b) {
|
|
||||||
return a < b ? a : b;
|
return a < b ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T a, T b) {
|
|
||||||
if (metal::isnan(a) || metal::isnan(b)) {
|
|
||||||
return static_cast<T>(NAN);
|
|
||||||
} else {
|
|
||||||
return a < b ? a : b;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <>
|
|
||||||
complex64_t operator()(complex64_t a, complex64_t b) {
|
|
||||||
bool real_is_nan = metal::isnan(a.real) || metal::isnan(b.real);
|
|
||||||
bool imag_is_nan = metal::isnan(a.imag) || metal::isnan(b.imag);
|
|
||||||
|
|
||||||
if (!real_is_nan && !imag_is_nan) {
|
|
||||||
return a < b ? a : b;
|
|
||||||
} else if (real_is_nan && !imag_is_nan) {
|
|
||||||
return complex64_t(
|
|
||||||
static_cast<float>(NAN), a.imag < b.imag ? a.imag : b.imag);
|
|
||||||
} else if (!real_is_nan && imag_is_nan) {
|
|
||||||
return complex64_t(
|
|
||||||
a.real < b.real ? a.real : b.real, static_cast<float>(NAN));
|
|
||||||
} else {
|
|
||||||
return complex64_t(static_cast<float>(NAN), static_cast<float>(NAN));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename U>
|
template <typename U>
|
||||||
struct Max {
|
struct Max {
|
||||||
DEFINE_SIMD_REDUCE()
|
DEFINE_SIMD_REDUCE()
|
||||||
|
|||||||
@@ -1,266 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
using namespace mlx::steel;
|
|
||||||
|
|
||||||
constant bool segments_contiguous [[function_constant(199)]];
|
|
||||||
constant bool align_M [[function_constant(200)]];
|
|
||||||
constant bool align_N [[function_constant(201)]];
|
|
||||||
|
|
||||||
template <
|
|
||||||
typename T,
|
|
||||||
int BM,
|
|
||||||
int BN,
|
|
||||||
int BK,
|
|
||||||
int WM,
|
|
||||||
int WN,
|
|
||||||
bool transpose_a,
|
|
||||||
bool transpose_b,
|
|
||||||
typename AccumType = float>
|
|
||||||
[[kernel, max_total_threads_per_threadgroup(WM* WN * 32)]] void segmented_mm(
|
|
||||||
const device T* A [[buffer(0)]],
|
|
||||||
const device T* B [[buffer(1)]],
|
|
||||||
const device uint32_t* segments [[buffer(2)]],
|
|
||||||
device T* C [[buffer(3)]],
|
|
||||||
const constant GEMMParams* params [[buffer(4)]],
|
|
||||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
||||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
|
||||||
uint3 tid [[threadgroup_position_in_grid]]) {
|
|
||||||
using gemm_kernel = GEMMKernel<
|
|
||||||
T,
|
|
||||||
T,
|
|
||||||
BM,
|
|
||||||
BN,
|
|
||||||
BK,
|
|
||||||
WM,
|
|
||||||
WN,
|
|
||||||
transpose_a,
|
|
||||||
transpose_b,
|
|
||||||
true,
|
|
||||||
true,
|
|
||||||
AccumType>;
|
|
||||||
|
|
||||||
using loader_a_t = typename gemm_kernel::loader_a_t;
|
|
||||||
using loader_b_t = typename gemm_kernel::loader_b_t;
|
|
||||||
using mma_t = typename gemm_kernel::mma_t;
|
|
||||||
|
|
||||||
if (params->tiles_n <= static_cast<int>(tid.x) ||
|
|
||||||
params->tiles_m <= static_cast<int>(tid.y)) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Prepare threadgroup memory
|
|
||||||
threadgroup T As[gemm_kernel::tgp_mem_size_a];
|
|
||||||
threadgroup T Bs[gemm_kernel::tgp_mem_size_b];
|
|
||||||
|
|
||||||
// Find the block in A, B, C
|
|
||||||
const int c_row = tid.y * BM;
|
|
||||||
const int c_col = tid.x * BN;
|
|
||||||
const size_t c_row_long = size_t(c_row);
|
|
||||||
const size_t c_col_long = size_t(c_col);
|
|
||||||
|
|
||||||
// Prepare threadgroup bounds
|
|
||||||
const short tgp_bm = align_M ? BM : short(min(BM, params->M - c_row));
|
|
||||||
const short tgp_bn = align_N ? BN : short(min(BN, params->N - c_col));
|
|
||||||
|
|
||||||
// Move the pointers to the output tile
|
|
||||||
A += transpose_a ? c_row_long : c_row_long * params->lda;
|
|
||||||
B += transpose_b ? c_col_long * params->ldb : c_col_long;
|
|
||||||
C += c_row_long * params->ldd + c_col_long;
|
|
||||||
|
|
||||||
// Move the pointers to the start of the segment
|
|
||||||
uint32_t k_start, k_end;
|
|
||||||
if (segments_contiguous) {
|
|
||||||
k_start = segments[2 * tid.z];
|
|
||||||
k_end = segments[2 * tid.z + 1];
|
|
||||||
} else {
|
|
||||||
// We accept either contiguous (above) or weird strides where the beginning
|
|
||||||
// of the next one is the previous one. Basically the last two strides are
|
|
||||||
// both 1!
|
|
||||||
k_start = segments[tid.z];
|
|
||||||
k_end = segments[tid.z + 1];
|
|
||||||
}
|
|
||||||
A += transpose_a ? k_start * params->lda : k_start;
|
|
||||||
B += transpose_b ? k_start : k_start * params->ldb;
|
|
||||||
C += tid.z * params->batch_stride_d;
|
|
||||||
|
|
||||||
// Prepare threadgroup mma operation
|
|
||||||
thread mma_t mma_op(simd_group_id, simd_lane_id);
|
|
||||||
|
|
||||||
// Prepare threadgroup loading operations
|
|
||||||
thread loader_a_t loader_a(A, params->lda, As, simd_group_id, simd_lane_id);
|
|
||||||
thread loader_b_t loader_b(B, params->ldb, Bs, simd_group_id, simd_lane_id);
|
|
||||||
|
|
||||||
// Matrix level alignment so only check K
|
|
||||||
if (align_M && align_N) {
|
|
||||||
uint32_t k = k_start + BK;
|
|
||||||
for (; k <= k_end; k += BK) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Load elements into threadgroup
|
|
||||||
loader_a.load_unsafe();
|
|
||||||
loader_b.load_unsafe();
|
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Multiply and accumulate threadgroup elements
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
|
|
||||||
// Prepare for next iteration
|
|
||||||
loader_a.next();
|
|
||||||
loader_b.next();
|
|
||||||
}
|
|
||||||
short k_remain = BK - short(k - k_end);
|
|
||||||
const short2 tile_dims_A =
|
|
||||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
|
||||||
const short2 tile_dims_B =
|
|
||||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
|
||||||
if (k_remain > 0) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
loader_a.load_safe(tile_dims_A);
|
|
||||||
loader_b.load_safe(tile_dims_B);
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
}
|
|
||||||
mma_op.store_result(C, params->ldd);
|
|
||||||
} else {
|
|
||||||
// Tile aligned do the same as above
|
|
||||||
if ((align_M || tgp_bm == BM) && (align_N || tgp_bn == BN)) {
|
|
||||||
uint32_t k = k_start + BK;
|
|
||||||
for (; k <= k_end; k += BK) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Load elements into threadgroup
|
|
||||||
loader_a.load_unsafe();
|
|
||||||
loader_b.load_unsafe();
|
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Multiply and accumulate threadgroup elements
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
|
|
||||||
// Prepare for next iteration
|
|
||||||
loader_a.next();
|
|
||||||
loader_b.next();
|
|
||||||
}
|
|
||||||
short k_remain = BK - short(k - k_end);
|
|
||||||
const short2 tile_dims_A =
|
|
||||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
|
||||||
const short2 tile_dims_B =
|
|
||||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
|
||||||
if (k_remain > 0) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
loader_a.load_safe(tile_dims_A);
|
|
||||||
loader_b.load_safe(tile_dims_B);
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
}
|
|
||||||
mma_op.store_result(C, params->ldd);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Tile partially aligned check rows
|
|
||||||
else if (align_N || tgp_bn == BN) {
|
|
||||||
uint32_t k = k_start + BK;
|
|
||||||
for (; k <= k_end; k += BK) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Load elements into threadgroup
|
|
||||||
loader_a.load_safe(
|
|
||||||
transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm));
|
|
||||||
loader_b.load_unsafe();
|
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Multiply and accumulate threadgroup elements
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
|
|
||||||
// Prepare for next iteration
|
|
||||||
loader_a.next();
|
|
||||||
loader_b.next();
|
|
||||||
}
|
|
||||||
short k_remain = BK - short(k - k_end);
|
|
||||||
const short2 tile_dims_A =
|
|
||||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
|
||||||
const short2 tile_dims_B =
|
|
||||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
|
||||||
if (k_remain > 0) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
loader_a.load_safe(tile_dims_A);
|
|
||||||
loader_b.load_safe(tile_dims_B);
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
}
|
|
||||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Tile partially aligned check cols
|
|
||||||
else if (align_M || tgp_bm == BM) {
|
|
||||||
uint32_t k = k_start + BK;
|
|
||||||
for (; k <= k_end; k += BK) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Load elements into threadgroup
|
|
||||||
loader_a.load_unsafe();
|
|
||||||
loader_b.load_safe(
|
|
||||||
transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK));
|
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Multiply and accumulate threadgroup elements
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
|
|
||||||
// Prepare for next iteration
|
|
||||||
loader_a.next();
|
|
||||||
loader_b.next();
|
|
||||||
}
|
|
||||||
short k_remain = BK - short(k - k_end);
|
|
||||||
const short2 tile_dims_A =
|
|
||||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
|
||||||
const short2 tile_dims_B =
|
|
||||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
|
||||||
if (k_remain > 0) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
loader_a.load_safe(tile_dims_A);
|
|
||||||
loader_b.load_safe(tile_dims_B);
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
}
|
|
||||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Nothing aligned so check both rows and cols
|
|
||||||
else {
|
|
||||||
uint32_t k = k_start + BK;
|
|
||||||
for (; k <= k_end; k += BK) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Load elements into threadgroup
|
|
||||||
loader_a.load_safe(
|
|
||||||
transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm));
|
|
||||||
loader_b.load_safe(
|
|
||||||
transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK));
|
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
// Multiply and accumulate threadgroup elements
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
|
|
||||||
// Prepare for next iteration
|
|
||||||
loader_a.next();
|
|
||||||
loader_b.next();
|
|
||||||
}
|
|
||||||
short k_remain = BK - short(k - k_end);
|
|
||||||
const short2 tile_dims_A =
|
|
||||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
|
||||||
const short2 tile_dims_B =
|
|
||||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
|
||||||
if (k_remain > 0) {
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
loader_a.load_safe(tile_dims_A);
|
|
||||||
loader_b.load_safe(tile_dims_B);
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
mma_op.mma(As, Bs);
|
|
||||||
}
|
|
||||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,43 +0,0 @@
|
|||||||
// Copyright © 2024 Apple Inc.
|
|
||||||
|
|
||||||
// clang-format off
|
|
||||||
#include "mlx/backend/metal/kernels/utils.h"
|
|
||||||
#include "mlx/backend/metal/kernels/steel/gemm/gemm.h"
|
|
||||||
#include "mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h"
|
|
||||||
|
|
||||||
#define instantiate_segmented_mm(tname, trans_a, trans_b, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
|
||||||
instantiate_kernel( \
|
|
||||||
"steel_segmented_mm_" #tname "_" #iname "_" #oname "_bm" #bm "_bn" #bn \
|
|
||||||
"_bk" #bk "_wm" #wm "_wn" #wn, \
|
|
||||||
segmented_mm, \
|
|
||||||
itype, \
|
|
||||||
bm, \
|
|
||||||
bn, \
|
|
||||||
bk, \
|
|
||||||
wm, \
|
|
||||||
wn, \
|
|
||||||
trans_a, \
|
|
||||||
trans_b, \
|
|
||||||
float)
|
|
||||||
|
|
||||||
#define instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
|
||||||
instantiate_segmented_mm(nn, false, false, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
|
||||||
instantiate_segmented_mm(nt, false, true , iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
|
||||||
instantiate_segmented_mm(tn, true , false, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
|
||||||
instantiate_segmented_mm(tt, true , true , iname, itype, oname, otype, bm, bn, bk, wm, wn)
|
|
||||||
|
|
||||||
#define instantiate_segmented_mm_shapes_helper(iname, itype, oname, otype) \
|
|
||||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 64, 16, 2, 2) \
|
|
||||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 64, 16, 1, 2) \
|
|
||||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 32, 32, 2, 2) \
|
|
||||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 32, 64, 16, 1, 2) \
|
|
||||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 32, 32, 16, 2, 2)
|
|
||||||
// clang-format on
|
|
||||||
|
|
||||||
instantiate_segmented_mm_shapes_helper(float16, half, float16, half);
|
|
||||||
instantiate_segmented_mm_shapes_helper(
|
|
||||||
bfloat16,
|
|
||||||
bfloat16_t,
|
|
||||||
bfloat16,
|
|
||||||
bfloat16_t);
|
|
||||||
instantiate_segmented_mm_shapes_helper(float32, float, float32, float);
|
|
||||||
@@ -5,7 +5,6 @@
|
|||||||
#include <metal_integer>
|
#include <metal_integer>
|
||||||
#include <metal_math>
|
#include <metal_math>
|
||||||
|
|
||||||
#include "mlx/backend/metal/kernels/cexpf.h"
|
|
||||||
#include "mlx/backend/metal/kernels/erf.h"
|
#include "mlx/backend/metal/kernels/erf.h"
|
||||||
#include "mlx/backend/metal/kernels/expm1f.h"
|
#include "mlx/backend/metal/kernels/expm1f.h"
|
||||||
|
|
||||||
@@ -179,7 +178,8 @@ struct Exp {
|
|||||||
return metal::precise::exp(x);
|
return metal::precise::exp(x);
|
||||||
};
|
};
|
||||||
complex64_t operator()(complex64_t x) {
|
complex64_t operator()(complex64_t x) {
|
||||||
return cexpf(x);
|
auto m = metal::precise::exp(x.real);
|
||||||
|
return {m * metal::precise::cos(x.imag), m * metal::precise::sin(x.imag)};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@@ -25,7 +25,8 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
d.add_temporary(x_copy, s.index);
|
d.add_temporary(x_copy, s.index);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -33,7 +33,8 @@ std::tuple<bool, int64_t, array> check_transpose(
|
|||||||
} else if (stx == 1 && (!is_vector || sty == arr.shape(-2))) {
|
} else if (stx == 1 && (!is_vector || sty == arr.shape(-2))) {
|
||||||
return std::make_tuple(true, sty, arr);
|
return std::make_tuple(true, sty, arr);
|
||||||
} else {
|
} else {
|
||||||
array arr_copy = contiguous_copy_gpu(arr, s);
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
|
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||||
copies.push_back(arr_copy);
|
copies.push_back(arr_copy);
|
||||||
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
||||||
}
|
}
|
||||||
@@ -42,7 +43,8 @@ std::tuple<bool, int64_t, array> check_transpose(
|
|||||||
inline array
|
inline array
|
||||||
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
|
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
|
||||||
if (!x.flags().row_contiguous) {
|
if (!x.flags().row_contiguous) {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
d.add_temporary(x_copy, s.index);
|
d.add_temporary(x_copy, s.index);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
} else {
|
} else {
|
||||||
@@ -73,7 +75,8 @@ ensure_batch_contiguous(const array& x, metal::Device& d, const Stream& s) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
d.add_temporary(x_copy, s.index);
|
d.add_temporary(x_copy, s.index);
|
||||||
return std::make_tuple(false, x_copy.strides()[x_copy.ndim() - 2], x_copy);
|
return std::make_tuple(false, x_copy.strides()[x_copy.ndim() - 2], x_copy);
|
||||||
}
|
}
|
||||||
@@ -1861,165 +1864,4 @@ void GatherMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
gather_mm(a, b, lhs_indices, rhs_indices, out, M, N, K, d, s);
|
gather_mm(a, b, lhs_indices, rhs_indices, out, M, N, K, d, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
void segmented_mm(
|
|
||||||
const array& a_,
|
|
||||||
const array& b_,
|
|
||||||
const array& segments_,
|
|
||||||
array& out,
|
|
||||||
int M,
|
|
||||||
int N,
|
|
||||||
int K,
|
|
||||||
metal::Device& d,
|
|
||||||
const Stream& s) {
|
|
||||||
auto check_segments_layout = [&d, &s](const array& x) {
|
|
||||||
// Contiguous so return early
|
|
||||||
if (x.flags().row_contiguous) {
|
|
||||||
return std::make_tuple(true, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool rc = true;
|
|
||||||
for (int i = 0; i < x.ndim() - 2; i++) {
|
|
||||||
rc &=
|
|
||||||
(x.strides(i + 1) * x.shape(i) == x.strides(i)) || (x.shape(i) == 1);
|
|
||||||
}
|
|
||||||
rc &= x.strides(x.ndim() - 1) == 1;
|
|
||||||
if (x.ndim() > 1) {
|
|
||||||
rc &= x.strides(x.ndim() - 2) == 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (rc) {
|
|
||||||
return std::make_tuple(false, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
|
||||||
d.add_temporary(x_copy, s.index);
|
|
||||||
return std::make_tuple(true, x_copy);
|
|
||||||
};
|
|
||||||
|
|
||||||
// Copy if needed
|
|
||||||
std::vector<array> copies;
|
|
||||||
auto [transpose_a, lda, a] = check_transpose(copies, s, a_, false);
|
|
||||||
auto [transpose_b, ldb, b] = check_transpose(copies, s, b_, false);
|
|
||||||
auto [segments_contiguous, segments] = check_segments_layout(segments_);
|
|
||||||
d.add_temporaries(std::move(copies), s.index);
|
|
||||||
|
|
||||||
// Determine dispatch kernel
|
|
||||||
int bm = 64, bn = 64, bk = 16;
|
|
||||||
int wm = 2, wn = 2;
|
|
||||||
size_t batch_size_out = out.size() / M / N;
|
|
||||||
|
|
||||||
char devc = d.get_architecture().back();
|
|
||||||
GEMM_TPARAM_MACRO(devc)
|
|
||||||
|
|
||||||
const bool align_M = (M % bm) == 0;
|
|
||||||
const bool align_N = (N % bn) == 0;
|
|
||||||
|
|
||||||
// Define the kernel name
|
|
||||||
std::string base_name;
|
|
||||||
base_name.reserve(128);
|
|
||||||
concatenate(
|
|
||||||
base_name,
|
|
||||||
"steel_segmented_mm_",
|
|
||||||
transpose_a ? 't' : 'n',
|
|
||||||
transpose_b ? 't' : 'n',
|
|
||||||
"_",
|
|
||||||
type_to_name(a),
|
|
||||||
"_",
|
|
||||||
type_to_name(out),
|
|
||||||
"_bm",
|
|
||||||
bm,
|
|
||||||
"_bn",
|
|
||||||
bn,
|
|
||||||
"_bk",
|
|
||||||
bk,
|
|
||||||
"_wm",
|
|
||||||
wm,
|
|
||||||
"_wn",
|
|
||||||
wn);
|
|
||||||
|
|
||||||
metal::MTLFCList func_consts = {
|
|
||||||
{&segments_contiguous, MTL::DataType::DataTypeBool, 199},
|
|
||||||
{&align_M, MTL::DataType::DataTypeBool, 200},
|
|
||||||
{&align_N, MTL::DataType::DataTypeBool, 201},
|
|
||||||
};
|
|
||||||
|
|
||||||
// And the kernel hash that includes the function constants
|
|
||||||
std::string hash_name;
|
|
||||||
hash_name.reserve(128);
|
|
||||||
concatenate(
|
|
||||||
hash_name,
|
|
||||||
base_name,
|
|
||||||
"_segments_contiguous_",
|
|
||||||
segments_contiguous ? 't' : 'n',
|
|
||||||
"_align_M_",
|
|
||||||
align_M ? 't' : 'n',
|
|
||||||
"_align_N_",
|
|
||||||
align_N ? 't' : 'n');
|
|
||||||
|
|
||||||
// Get and set the kernel
|
|
||||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
||||||
auto kernel = get_steel_gemm_segmented_kernel(
|
|
||||||
d,
|
|
||||||
base_name,
|
|
||||||
hash_name,
|
|
||||||
func_consts,
|
|
||||||
out,
|
|
||||||
transpose_a,
|
|
||||||
transpose_b,
|
|
||||||
bm,
|
|
||||||
bn,
|
|
||||||
bk,
|
|
||||||
wm,
|
|
||||||
wn);
|
|
||||||
compute_encoder.set_compute_pipeline_state(kernel);
|
|
||||||
|
|
||||||
// Prepare the matmul params
|
|
||||||
steel::GEMMParams params{
|
|
||||||
/* const int M = */ M,
|
|
||||||
/* const int N = */ N,
|
|
||||||
/* const int K = */ K,
|
|
||||||
/* const int lda = */ static_cast<int>(lda),
|
|
||||||
/* const int ldb = */ static_cast<int>(ldb),
|
|
||||||
/* const int ldd = */ N,
|
|
||||||
/* const int tiles_n = */ (N + bn - 1) / bn,
|
|
||||||
/* const int tiles_m = */ (M + bm - 1) / bm,
|
|
||||||
/* const int64_t batch_stride_a = */ 0,
|
|
||||||
/* const int64_t batch_stride_b = */ 0,
|
|
||||||
/* const int64_t batch_stride_d = */ M * N,
|
|
||||||
/* const int swizzle_log = */ 0,
|
|
||||||
/* const int gemm_k_iterations_aligned = */ 0,
|
|
||||||
/* const int batch_ndim = */ 0};
|
|
||||||
|
|
||||||
// Prepare the grid
|
|
||||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
|
||||||
MTL::Size grid_dims =
|
|
||||||
MTL::Size(params.tiles_n, params.tiles_m, batch_size_out);
|
|
||||||
|
|
||||||
// Launch kernel
|
|
||||||
compute_encoder.set_input_array(a, 0);
|
|
||||||
compute_encoder.set_input_array(b, 1);
|
|
||||||
compute_encoder.set_input_array(segments, 2);
|
|
||||||
compute_encoder.set_output_array(out, 3);
|
|
||||||
compute_encoder.set_bytes(params, 4);
|
|
||||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
||||||
}
|
|
||||||
|
|
||||||
void SegmentedMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
||||||
auto& s = stream();
|
|
||||||
auto& d = metal::device(s.device);
|
|
||||||
|
|
||||||
auto& a = inputs[0];
|
|
||||||
auto& b = inputs[1];
|
|
||||||
auto& segments = inputs[2];
|
|
||||||
|
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
|
||||||
|
|
||||||
// Extract shapes from inputs.
|
|
||||||
int M = a.shape(-2);
|
|
||||||
int N = b.shape(-1);
|
|
||||||
int K = a.shape(-1);
|
|
||||||
|
|
||||||
segmented_mm(a, b, segments, out, M, N, K, d, s);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -18,7 +18,7 @@ MTL::ComputePipelineState* get_unary_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype,
|
Dtype,
|
||||||
Dtype,
|
Dtype,
|
||||||
const char*) {
|
const std::string) {
|
||||||
return d.get_kernel(kernel_name);
|
return d.get_kernel(kernel_name);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -27,7 +27,7 @@ MTL::ComputePipelineState* get_binary_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype,
|
Dtype,
|
||||||
Dtype,
|
Dtype,
|
||||||
const char*) {
|
const std::string) {
|
||||||
return d.get_kernel(kernel_name);
|
return d.get_kernel(kernel_name);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -36,7 +36,7 @@ MTL::ComputePipelineState* get_binary_two_kernel(
|
|||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype,
|
Dtype,
|
||||||
Dtype,
|
Dtype,
|
||||||
const char*) {
|
const std::string) {
|
||||||
return d.get_kernel(kernel_name);
|
return d.get_kernel(kernel_name);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -44,7 +44,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
|||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
Dtype,
|
Dtype,
|
||||||
const char*) {
|
const std::string) {
|
||||||
return d.get_kernel(kernel_name);
|
return d.get_kernel(kernel_name);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -210,22 +210,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
|||||||
return d.get_kernel(kernel_name, hash_name, func_consts);
|
return d.get_kernel(kernel_name, hash_name, func_consts);
|
||||||
}
|
}
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
|
||||||
metal::Device& d,
|
|
||||||
const std::string& kernel_name,
|
|
||||||
const std::string& hash_name,
|
|
||||||
const metal::MTLFCList& func_consts,
|
|
||||||
const array&,
|
|
||||||
bool,
|
|
||||||
bool,
|
|
||||||
int,
|
|
||||||
int,
|
|
||||||
int,
|
|
||||||
int,
|
|
||||||
int) {
|
|
||||||
return d.get_kernel(kernel_name, hash_name, func_consts);
|
|
||||||
}
|
|
||||||
|
|
||||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||||
metal::Device& d,
|
metal::Device& d,
|
||||||
const std::string& kernel_name,
|
const std::string& kernel_name,
|
||||||
|
|||||||
@@ -40,7 +40,8 @@ void RMSNorm::eval_gpu(
|
|||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
@@ -106,7 +107,9 @@ void RMSNormVJP::eval_gpu(
|
|||||||
if (x.flags().row_contiguous) {
|
if (x.flags().row_contiguous) {
|
||||||
return {x, false};
|
return {x, false};
|
||||||
}
|
}
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
|
||||||
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
return {x_copy, true};
|
return {x_copy, true};
|
||||||
};
|
};
|
||||||
bool donate_x = inputs[0].is_donatable();
|
bool donate_x = inputs[0].is_donatable();
|
||||||
@@ -238,7 +241,8 @@ void LayerNorm::eval_gpu(
|
|||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
out.copy_shared_buffer(x_copy);
|
out.copy_shared_buffer(x_copy);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
@@ -315,7 +319,8 @@ void LayerNormVJP::eval_gpu(
|
|||||||
if (x.flags().row_contiguous) {
|
if (x.flags().row_contiguous) {
|
||||||
return {x, false};
|
return {x, false};
|
||||||
}
|
}
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
return {x_copy, true};
|
return {x_copy, true};
|
||||||
};
|
};
|
||||||
bool donate_x = inputs[0].is_donatable();
|
bool donate_x = inputs[0].is_donatable();
|
||||||
|
|||||||
@@ -20,7 +20,8 @@ namespace {
|
|||||||
inline array
|
inline array
|
||||||
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
|
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
|
||||||
if (!x.flags().row_contiguous) {
|
if (!x.flags().row_contiguous) {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
d.add_temporary(x_copy, s.index);
|
d.add_temporary(x_copy, s.index);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
} else {
|
} else {
|
||||||
@@ -37,7 +38,8 @@ inline array ensure_row_contiguous_matrix(
|
|||||||
if (stride_0 == x.shape(-1) && stride_1 == 1) {
|
if (stride_0 == x.shape(-1) && stride_1 == 1) {
|
||||||
return x;
|
return x;
|
||||||
} else {
|
} else {
|
||||||
array x_copy = contiguous_copy_gpu(x, s);
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy_gpu(x, x_copy, CopyType::General, s);
|
||||||
d.add_temporary(x_copy, s.index);
|
d.add_temporary(x_copy, s.index);
|
||||||
return x_copy;
|
return x_copy;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -989,7 +989,8 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|||||||
// input for the axes with stride smaller than the minimum reduction
|
// input for the axes with stride smaller than the minimum reduction
|
||||||
// stride.
|
// stride.
|
||||||
if (plan.type == GeneralReduce) {
|
if (plan.type == GeneralReduce) {
|
||||||
array in_copy = contiguous_copy_gpu(in, s);
|
array in_copy(in.shape(), in.dtype(), nullptr, {});
|
||||||
|
copy_gpu(in, in_copy, CopyType::General, s);
|
||||||
d.add_temporary(in_copy, s.index);
|
d.add_temporary(in_copy, s.index);
|
||||||
in = in_copy;
|
in = in_copy;
|
||||||
plan = get_reduction_plan(in, axes_);
|
plan = get_reduction_plan(in, axes_);
|
||||||
|
|||||||
@@ -398,7 +398,8 @@ void ScaledDotProductAttention::eval_gpu(
|
|||||||
auto copy_unless = [&copies, &s](
|
auto copy_unless = [&copies, &s](
|
||||||
auto predicate, const array& arr) -> const array& {
|
auto predicate, const array& arr) -> const array& {
|
||||||
if (!predicate(arr)) {
|
if (!predicate(arr)) {
|
||||||
array arr_copy = contiguous_copy_gpu(arr, s);
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
|
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||||
copies.push_back(std::move(arr_copy));
|
copies.push_back(std::move(arr_copy));
|
||||||
return copies.back();
|
return copies.back();
|
||||||
} else {
|
} else {
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user