mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
65 Commits
v0.26.5
...
jagrit06/c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
400f8457ea | ||
|
|
dfb5022eab | ||
|
|
ac207ce7aa | ||
|
|
fce53b61d6 | ||
|
|
8ae4a76308 | ||
|
|
7fde1b6a1e | ||
|
|
aa7b47481a | ||
|
|
56be773610 | ||
|
|
a9bdd67baa | ||
|
|
f2adb5638d | ||
|
|
728d4db582 | ||
|
|
db5c7efcf6 | ||
|
|
7bb96e4249 | ||
|
|
fa89f0b150 | ||
|
|
ca973d1e83 | ||
|
|
828c5f1137 | ||
|
|
7d86a5c108 | ||
|
|
0b807893a7 | ||
|
|
6ad0889c8a | ||
|
|
737dd6d1ac | ||
|
|
aaf78f4c6b | ||
|
|
8831064493 | ||
|
|
be9bc96da4 | ||
|
|
86258f292f | ||
|
|
b26d88591c | ||
|
|
86c6a15571 | ||
|
|
8b25ce62d5 | ||
|
|
da5912e4f2 | ||
|
|
daafee676f | ||
|
|
d32519c8ee | ||
|
|
b405591249 | ||
|
|
3bf81ed1bd | ||
|
|
2204182bba | ||
|
|
3628e5d497 | ||
|
|
a0ae49d397 | ||
|
|
254476718b | ||
|
|
3adba92ebe | ||
|
|
ef631d63af | ||
|
|
970dbe8e25 | ||
|
|
641be9463b | ||
|
|
ab0e608862 | ||
|
|
1588659062 | ||
|
|
b9e88fb976 | ||
|
|
4ad53414dd | ||
|
|
d1165b215e | ||
|
|
dcb8319f3d | ||
|
|
5597fa089c | ||
|
|
9acec364c2 | ||
|
|
7d9d6ef456 | ||
|
|
6f5874a2f2 | ||
|
|
70dc336785 | ||
|
|
4e504039f5 | ||
|
|
d1f4d291e8 | ||
|
|
e1840853ce | ||
|
|
0f5ce173da | ||
|
|
588854195f | ||
|
|
28d068bce6 | ||
|
|
d107d8d495 | ||
|
|
1e496ddb82 | ||
|
|
74eccbf3fa | ||
|
|
08638223ca | ||
|
|
56cc858af9 | ||
|
|
f55c4ed1d6 | ||
|
|
93d70419e7 | ||
|
|
63f663d9c6 |
@@ -7,6 +7,9 @@ parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
@@ -78,23 +81,24 @@ jobs:
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
sudo apt-get update
|
||||
sudo apt-get upgrade -y
|
||||
pip install --upgrade cmake
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
pip install -e ".[dev]"
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
python -m unittest discover python/tests -v
|
||||
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
@@ -102,6 +106,7 @@ jobs:
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j `nproc`
|
||||
@@ -127,33 +132,30 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install openmpi
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
pip install unittest-xml-reporting
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
uv venv --python 3.9
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
numpy \
|
||||
torch \
|
||||
tensorflow \
|
||||
unittest-xml-reporting
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
pip install -e . -v
|
||||
uv pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
@@ -162,16 +164,17 @@ jobs:
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
cd examples/extensions
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project python test.py
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
@@ -180,7 +183,7 @@ jobs:
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
@@ -192,34 +195,60 @@ jobs:
|
||||
- run:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
pip install -e . -v
|
||||
uv pip install -e .
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
|
||||
cuda_build_and_test:
|
||||
parameters:
|
||||
image_date:
|
||||
type: string
|
||||
default: "2023.11.1"
|
||||
machine:
|
||||
image: linux-cuda-12:2023.11.1
|
||||
image: "linux-cuda-12:<< parameters.image_date >>"
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- restore_cache:
|
||||
keys:
|
||||
- cuda-<< parameters.image_date >>-{{ arch }}-
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
python3 -m venv env
|
||||
source env/bin/activate
|
||||
uv venv
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
pip install -e ".[dev]"
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
paths:
|
||||
- /home/circleci/.cache/ccache
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
@@ -315,14 +344,10 @@ jobs:
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
sudo apt-get update
|
||||
sudo apt-get upgrade -y
|
||||
TZ=Etc/UTC sudo apt-get -y install tzdata
|
||||
sudo apt-get install -y apt-utils
|
||||
sudo apt-get install -y software-properties-common
|
||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install -y build-essential git
|
||||
$PYTHON -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
@@ -366,22 +391,27 @@ jobs:
|
||||
type: string
|
||||
default: ""
|
||||
machine:
|
||||
image: linux-cuda-12:default
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install zip
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build -w
|
||||
@@ -392,7 +422,6 @@ jobs:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
@@ -405,19 +434,24 @@ workflows:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
filters:
|
||||
@@ -538,6 +572,9 @@ workflows:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
nightly_build:
|
||||
when:
|
||||
and:
|
||||
@@ -601,3 +638,87 @@ workflows:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
|
||||
@@ -41,7 +41,9 @@ option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
message(
|
||||
@@ -68,6 +70,15 @@ else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
endif()
|
||||
|
||||
if(MLX_USE_CCACHE)
|
||||
find_program(CCACHE_PROGRAM ccache)
|
||||
if(CCACHE_PROGRAM)
|
||||
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# ----------------------------- Lib -----------------------------
|
||||
|
||||
include(FetchContent)
|
||||
@@ -232,12 +243,16 @@ target_include_directories(
|
||||
# Do not add mlx_EXPORTS define for shared library.
|
||||
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
|
||||
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
if(USE_SYSTEM_FMT)
|
||||
find_package(fmt REQUIRED)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
endif()
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
||||
|
||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||
|
||||
21
README.md
21
README.md
@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
@@ -68,18 +68,23 @@ in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
||||
macOS, run:
|
||||
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
```bash
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
**With `conda`**:
|
||||
To install the CUDA backend on Linux, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cuda]
|
||||
```
|
||||
conda install -c conda-forge mlx
|
||||
|
||||
To install a CPU-only Linux package, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cpu]
|
||||
```
|
||||
|
||||
Checkout the
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
sphinx-copybutton
|
||||
mlx
|
||||
|
||||
@@ -18,6 +18,7 @@ release = version
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
extensions = [
|
||||
"sphinx_copybutton",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
|
||||
@@ -394,14 +394,14 @@ below.
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
std::stream kname;
|
||||
kname = "axpby_general_" + type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
||||
@@ -13,7 +13,7 @@ silicon computer is
|
||||
|
||||
pip install mlx
|
||||
|
||||
To install from PyPI you must meet the following requirements:
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
@@ -26,12 +26,21 @@ To install from PyPI you must meet the following requirements:
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
|
||||
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
|
||||
MLX has a CUDA backend which you can install with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install "mlx[cuda]"
|
||||
pip install mlx[cuda]
|
||||
|
||||
To install the CUDA package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Nvidia architecture >= SM 7.0 (Volta)
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
^^^^^^^^^^^^^^^^
|
||||
@@ -40,7 +49,14 @@ For a CPU-only version of MLX that runs on Linux use:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install "mlx[cpu]"
|
||||
pip install mlx[cpu]
|
||||
|
||||
To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
state = tree_flatten(optimizer.state, destination={})
|
||||
mx.save_safetensors("optimizer.safetensors", state)
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
state = tree_unflatten(mx.load("optimizer.safetensors"))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
|
||||
@@ -7,17 +7,17 @@ Exporting Functions
|
||||
|
||||
MLX has an API to export and import functions to and from a file. This lets you
|
||||
run computations written in one MLX front-end (e.g. Python) in another MLX
|
||||
front-end (e.g. C++).
|
||||
front-end (e.g. C++).
|
||||
|
||||
This guide walks through the basics of the MLX export API with some examples.
|
||||
To see the full list of functions check-out the :ref:`API documentation
|
||||
<export>`.
|
||||
|
||||
Basics of Exporting
|
||||
Basics of Exporting
|
||||
-------------------
|
||||
|
||||
Let's start with a simple example:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
@@ -67,7 +67,7 @@ specified as variable positional arguments or as a tuple of arrays:
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
|
||||
|
||||
# Both arguments to fun are positional
|
||||
mx.export_function("add.mlxfn", fun, x, y)
|
||||
|
||||
@@ -133,7 +133,7 @@ parameters are also saved to the ``model.mlxfn`` file.
|
||||
For enclosed arrays inside an exported function, be extra careful to ensure
|
||||
they are evaluated. The computation graph that gets exported will include
|
||||
the computation that produces enclosed inputs.
|
||||
|
||||
|
||||
If the above example was missing ``mx.eval(model.parameters()``, the
|
||||
exported function would include the random initialization of the
|
||||
:obj:`mlx.nn.Module` parameters.
|
||||
@@ -150,8 +150,8 @@ parameters, pass them as inputs to the ``call`` wrapper:
|
||||
# Set the model's parameters to the input parameters
|
||||
model.update(tree_unflatten(list(params.items())))
|
||||
return model(x)
|
||||
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
|
||||
params = tree_flatten(model.parameters(), destination={})
|
||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||
|
||||
|
||||
@@ -169,8 +169,8 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
|
||||
# Also ok
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
With ``shapeless=False`` (which is the default), the second call to
|
||||
@@ -197,7 +197,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
def fun(x, y=None):
|
||||
constant = mx.array(3.0)
|
||||
if y is not None:
|
||||
x += y
|
||||
x += y
|
||||
return x + constant
|
||||
|
||||
with mx.exporter("fun.mlxfn", fun) as exporter:
|
||||
@@ -215,7 +215,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
print(out)
|
||||
|
||||
In the above example the function constant data, (i.e. ``constant``), is only
|
||||
saved once.
|
||||
saved once.
|
||||
|
||||
Transformations with Imported Functions
|
||||
---------------------------------------
|
||||
@@ -238,7 +238,7 @@ on imported functions just like regular Python functions:
|
||||
# Prints: array(1, dtype=float32)
|
||||
print(dfdx(x))
|
||||
|
||||
# Compile the imported function
|
||||
# Compile the imported function
|
||||
mx.compile(imported_fun)
|
||||
# Prints: array(0, dtype=float32)
|
||||
print(compiled_fun(x)[0])
|
||||
@@ -275,7 +275,7 @@ Import and run the function in C++ with only a few lines of code:
|
||||
// Prints: array(2, dtype=float32)
|
||||
std::cout << outputs[0] << std::endl;
|
||||
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
|
||||
mx::array>`` for keyword arguments when calling imported functions in C++.
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@@ -16,6 +17,19 @@
|
||||
|
||||
namespace my_ext {
|
||||
|
||||
// A helper function to find the location of the current binary on disk.
|
||||
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
||||
std::string current_binary_dir() {
|
||||
static std::string binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path().string();
|
||||
}();
|
||||
return binary_dir;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Operation Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -167,16 +181,15 @@ void Axpby::eval_gpu(
|
||||
}
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_";
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
std::string kname = "axpby_";
|
||||
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname += type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.25
|
||||
mlx>=0.21.0
|
||||
nanobind==2.2.0
|
||||
nanobind==2.4.0
|
||||
|
||||
@@ -3,8 +3,10 @@ from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
print(f"c shape: {c_cpu.shape}")
|
||||
print(f"c dtype: {c_cpu.dtype}")
|
||||
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
|
||||
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/small_vector.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -18,8 +19,8 @@ class Primitive;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using ShapeElem = int32_t;
|
||||
using Shape = std::vector<ShapeElem>;
|
||||
using Strides = std::vector<int64_t>;
|
||||
using Shape = SmallVector<ShapeElem>;
|
||||
using Strides = SmallVector<int64_t>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
|
||||
@@ -228,4 +228,31 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
||||
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -196,8 +196,11 @@ void shared_buffer_reshape(
|
||||
const Strides& out_strides,
|
||||
array& out);
|
||||
|
||||
// Like the swapaxes op but safe to call in eval_gpu.
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
template <typename T>
|
||||
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
return vec;
|
||||
}
|
||||
|
||||
@@ -288,6 +288,14 @@ void Compiled::eval_cpu(
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Force allocating shape/strides on heap so we can take their data() first
|
||||
// and then std::move them.
|
||||
// TODO: Refactor code to avoid heap allocation.
|
||||
shape.grow();
|
||||
for (auto& s : strides) {
|
||||
s.grow();
|
||||
}
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
|
||||
@@ -377,4 +377,10 @@ void copy_cpu_inplace(
|
||||
});
|
||||
}
|
||||
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -30,4 +30,7 @@ void copy_cpu_inplace(
|
||||
const std::optional<array>& dynamic_i_offset = std::nullopt,
|
||||
const std::optional<array>& dynamic_o_offset = std::nullopt);
|
||||
|
||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -13,9 +13,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return {arr, false};
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return {arr_copy, true};
|
||||
return {contiguous_copy_cpu(arr, stream), true};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -34,8 +32,7 @@ void AllReduce::eval_cpu(
|
||||
}
|
||||
return in;
|
||||
} else {
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_cpu(in, arr_copy, CopyType::General, s);
|
||||
array arr_copy = contiguous_copy_cpu(in, s);
|
||||
out.copy_shared_buffer(arr_copy);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
|
||||
@@ -87,8 +87,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||
return x;
|
||||
} else {
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, x_copy, CopyType::General, s);
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -136,9 +136,8 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return std::make_tuple(true, sty, arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
array arr_copy = contiguous_copy_cpu(arr, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -712,9 +712,7 @@ void fast::AffineQuantize::eval_cpu(
|
||||
if (arr.flags().row_contiguous) {
|
||||
return std::make_pair(arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
||||
return std::make_pair(arr_copy, true);
|
||||
return std::make_pair(contiguous_copy_cpu(arr, s), true);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -491,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
|
||||
@@ -250,10 +250,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Ensure contiguity
|
||||
auto in = inputs[0];
|
||||
if (!in.flags().row_contiguous) {
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_cpu(in, arr_copy, CopyType::General, stream());
|
||||
in = arr_copy;
|
||||
encoder.add_temporary(arr_copy);
|
||||
in = contiguous_copy_cpu(in, stream());
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
|
||||
@@ -131,8 +131,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, x_copy, CopyType::General, s);
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -333,47 +333,24 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
int axis = axis_;
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
|
||||
// Copy input to output
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch(
|
||||
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
return sort<bool>(out, axis_);
|
||||
case uint8:
|
||||
return sort<uint8_t>(out, axis_);
|
||||
case uint16:
|
||||
return sort<uint16_t>(out, axis_);
|
||||
case uint32:
|
||||
return sort<uint32_t>(out, axis_);
|
||||
case uint64:
|
||||
return sort<uint64_t>(out, axis_);
|
||||
case int8:
|
||||
return sort<int8_t>(out, axis_);
|
||||
case int16:
|
||||
return sort<int16_t>(out, axis_);
|
||||
case int32:
|
||||
return sort<int32_t>(out, axis_);
|
||||
case int64:
|
||||
return sort<int64_t>(out, axis_);
|
||||
case float32:
|
||||
return sort<float>(out, axis_);
|
||||
case float64:
|
||||
return sort<double>(out, axis_);
|
||||
case float16:
|
||||
return sort<float16_t>(out, axis_);
|
||||
case bfloat16:
|
||||
return sort<bfloat16_t>(out, axis_);
|
||||
case complex64:
|
||||
return sort<complex64_t>(out, axis_);
|
||||
}
|
||||
});
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
|
||||
dispatch_all_types(out.dtype(), [&](auto type_tag) {
|
||||
sort<MLX_GET_TYPE(type_tag)>(out, axis);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
@@ -15,18 +16,22 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
|
||||
@@ -35,6 +40,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
@@ -42,9 +48,18 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
else()
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||
|
||||
# Embed kernel sources in binary for JIT compilation.
|
||||
@@ -87,11 +102,18 @@ endif()
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
|
||||
|
||||
# Compute capability 7 is required for synchronization between CPU/GPU with
|
||||
# managed memory. TODO: Add more architectures for potential performance gain.
|
||||
set(MLX_CUDA_ARCHITECTURES
|
||||
"70;80"
|
||||
CACHE STRING "CUDA architectures")
|
||||
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
|
||||
# and requires drivers released after CUDA 12.4.
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
|
||||
endif()
|
||||
|
||||
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
|
||||
# managed memory.
|
||||
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
|
||||
set(MLX_CUDA_ARCHITECTURES "native")
|
||||
endif()
|
||||
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
|
||||
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
|
||||
"${MLX_CUDA_ARCHITECTURES}")
|
||||
@@ -123,6 +145,23 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
|
||||
# Use NVRTC and driver APIs.
|
||||
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
|
||||
# Use the frontend APIs of cuDNN.
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.12.1
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
|
||||
FetchContent_MakeAvailable(cudnn)
|
||||
target_link_libraries(mlx PRIVATE cudnn_frontend)
|
||||
# Link with the actual cuDNN libraries.
|
||||
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
|
||||
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -17,14 +16,66 @@ namespace cu {
|
||||
|
||||
constexpr int page_size = 16384;
|
||||
|
||||
// Any allocations smaller than this will try to use the small pool
|
||||
constexpr int small_block_size = 8;
|
||||
|
||||
// The small pool size in bytes. This should be a multiple of the host page
|
||||
// size and small_block_size.
|
||||
constexpr int small_pool_size = 4 * page_size;
|
||||
|
||||
SmallSizePool::SmallSizePool() {
|
||||
auto num_blocks = small_pool_size / small_block_size;
|
||||
buffer_ = new Block[num_blocks];
|
||||
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
curr->next = buffer_ + i;
|
||||
curr = curr->next;
|
||||
}
|
||||
curr->next = nullptr;
|
||||
}
|
||||
|
||||
SmallSizePool::~SmallSizePool() {
|
||||
CHECK_CUDA_ERROR(cudaFree(data_));
|
||||
delete[] buffer_;
|
||||
}
|
||||
|
||||
CudaBuffer* SmallSizePool::malloc() {
|
||||
if (next_free_ == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
Block* b = next_free_;
|
||||
uint64_t i = next_free_ - buffer_;
|
||||
next_free_ = next_free_->next;
|
||||
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
|
||||
b->buf.size = small_block_size;
|
||||
return &b->buf;
|
||||
}
|
||||
|
||||
void SmallSizePool::free(CudaBuffer* buf) {
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
b->next = next_free_;
|
||||
next_free_ = b;
|
||||
}
|
||||
|
||||
bool SmallSizePool::in_pool(CudaBuffer* buf) {
|
||||
constexpr int num_blocks = (small_pool_size / small_block_size);
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
int64_t block_num = b - buffer_;
|
||||
return block_num >= 0 && block_num < num_blocks;
|
||||
}
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}) {
|
||||
[this](CudaBuffer* buf) { cuda_free(buf); }) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
@@ -36,7 +87,9 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size < page_size) {
|
||||
if (size <= small_block_size) {
|
||||
size = 8;
|
||||
} else if (size < page_size) {
|
||||
size = next_power_of_2(size);
|
||||
} else {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
@@ -44,19 +97,25 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache.
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
if (mem_required >= memory_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache.
|
||||
int64_t mem_to_free =
|
||||
get_active_memory() + get_cache_memory() + size - memory_limit_;
|
||||
if (mem_to_free > 0) {
|
||||
buffer_cache_.release_cached_buffers(mem_to_free);
|
||||
}
|
||||
|
||||
// Try the scalar pool first
|
||||
if (size <= small_block_size) {
|
||||
buf = scalar_pool_.malloc();
|
||||
}
|
||||
lock.unlock();
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
if (!buf) {
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
@@ -67,7 +126,6 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
@@ -82,9 +140,7 @@ void CudaAllocator::free(Buffer buffer) {
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
lock.unlock();
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
cuda_free(buf);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -96,27 +152,14 @@ size_t CudaAllocator::size(Buffer buffer) const {
|
||||
return buf->size;
|
||||
}
|
||||
|
||||
void CudaAllocator::register_this_thread() {
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
allowed_threads_.insert(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
void CudaAllocator::cuda_free(void* buf) {
|
||||
// If cuda_free() is called from a unregistered thread, reschedule the call to
|
||||
// worker.
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
|
||||
if (!worker_) {
|
||||
worker_.reset(new Worker);
|
||||
}
|
||||
worker_->add_task([this, buf]() { this->cuda_free(buf); });
|
||||
worker_->end_batch();
|
||||
worker_->commit();
|
||||
return;
|
||||
}
|
||||
// This must be called with mutex_ aquired
|
||||
void CudaAllocator::cuda_free(CudaBuffer* buf) {
|
||||
if (scalar_pool_.in_pool(buf)) {
|
||||
scalar_pool_.free(buf);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
delete buf;
|
||||
}
|
||||
cudaFree(buf);
|
||||
}
|
||||
|
||||
size_t CudaAllocator::get_active_memory() const {
|
||||
|
||||
@@ -7,13 +7,10 @@
|
||||
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class Worker;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores cuda-managed unified memory.
|
||||
@@ -22,21 +19,35 @@ struct CudaBuffer {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
class SmallSizePool {
|
||||
private:
|
||||
union Block {
|
||||
Block* next;
|
||||
CudaBuffer buf;
|
||||
};
|
||||
|
||||
Block* buffer_{nullptr};
|
||||
void* data_{nullptr};
|
||||
Block* next_free_{nullptr};
|
||||
|
||||
public:
|
||||
SmallSizePool();
|
||||
~SmallSizePool();
|
||||
|
||||
SmallSizePool(const SmallSizePool&) = delete;
|
||||
SmallSizePool& operator=(const SmallSizePool&) = delete;
|
||||
|
||||
CudaBuffer* malloc();
|
||||
void free(CudaBuffer* buf);
|
||||
bool in_pool(CudaBuffer* buf);
|
||||
};
|
||||
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
// Register current thread as safe to free buffers.
|
||||
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
|
||||
// that may be waited by gpu stream (for example cpu stream threads), freeing
|
||||
// buffers there would result in dead lock.
|
||||
void register_this_thread();
|
||||
|
||||
// Call cudaFree in the safe thread.
|
||||
void cuda_free(void* buf);
|
||||
|
||||
size_t get_active_memory() const;
|
||||
size_t get_peak_memory() const;
|
||||
void reset_peak_memory();
|
||||
@@ -47,19 +58,18 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
friend CudaAllocator& allocator();
|
||||
|
||||
std::mutex worker_mutex_;
|
||||
std::unique_ptr<Worker> worker_;
|
||||
std::set<std::thread::id> allowed_threads_;
|
||||
|
||||
std::mutex mutex_;
|
||||
size_t memory_limit_;
|
||||
size_t max_pool_size_;
|
||||
BufferCache<CudaBuffer> buffer_cache_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
SmallSizePool scalar_pool_;
|
||||
};
|
||||
|
||||
CudaAllocator& allocator();
|
||||
|
||||
55
mlx/backend/cuda/arange.cu
Normal file
55
mlx/backend/cuda/arange.cu
Normal file
@@ -0,0 +1,55 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Arange::eval_gpu");
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -44,8 +44,11 @@ struct ArgMin {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] < best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -74,8 +77,11 @@ struct ArgMax {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] > best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -106,16 +112,15 @@ __global__ void arg_reduce_general(
|
||||
|
||||
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
|
||||
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
|
||||
in += in_idx;
|
||||
|
||||
Op op;
|
||||
T init = op.init();
|
||||
IndexValPair<T> best{0, init};
|
||||
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T vals[N_READS];
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().x;
|
||||
cub::LoadDirectBlocked(
|
||||
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
|
||||
best = op.reduce_many(best, vals, tid * N_READS);
|
||||
}
|
||||
|
||||
@@ -166,6 +171,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
|
||||
@@ -28,7 +28,7 @@ __global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a[0], b[0]);
|
||||
out_vec[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -49,7 +49,7 @@ __global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
|
||||
out_vec[i] = Op{}(a[0], b_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -70,7 +70,7 @@ __global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
|
||||
out_vec[i] = Op{}(a_vec[i], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -92,7 +92,7 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -128,7 +128,7 @@ __global__ void binary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
@@ -211,14 +211,18 @@ void binary_op_gpu_inplace(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::
|
||||
binary_g_nd<Op, InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -228,13 +232,12 @@ void binary_op_gpu_inplace(
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::binary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -248,8 +251,7 @@ void binary_op_gpu_inplace(
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
@@ -259,16 +261,12 @@ void binary_op_gpu_inplace(
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
|
||||
@@ -33,8 +33,8 @@ binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -60,9 +60,9 @@ binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
auto out = Op{}(a[0], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -88,9 +88,9 @@ binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec.val[i], b[0]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
auto out = Op{}(a_vec[i], b[0]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -117,9 +117,9 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -160,7 +160,7 @@ __global__ void binary_two_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
@@ -227,18 +227,18 @@ void binary_two_op_gpu_inplace(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
get_launch_args(out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -249,13 +249,13 @@ void binary_two_op_gpu_inplace(
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
get_launch_args(out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::binary_two_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -270,8 +270,7 @@ void binary_two_op_gpu_inplace(
|
||||
} else {
|
||||
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
@@ -281,7 +280,6 @@ void binary_two_op_gpu_inplace(
|
||||
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out_a.data_size(),
|
||||
out_a.shape(),
|
||||
out_a.strides(),
|
||||
@@ -291,6 +289,7 @@ void binary_two_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
|
||||
@@ -104,10 +104,41 @@ struct FusedKernelBuilder {
|
||||
" }\n";
|
||||
}
|
||||
|
||||
// Vectorized read loop
|
||||
if (contiguous) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
|
||||
xname,
|
||||
type);
|
||||
}
|
||||
}
|
||||
|
||||
// Create some space for the outputs
|
||||
for (const auto& x : outputs) {
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
|
||||
}
|
||||
|
||||
// Work loop
|
||||
os +=
|
||||
"\n"
|
||||
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
|
||||
if (!contiguous) {
|
||||
os +=
|
||||
"\n"
|
||||
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
|
||||
} else {
|
||||
os +=
|
||||
"\n"
|
||||
" #pragma unroll\n"
|
||||
" for (int i = 0; i < work_per_thread; i++) {\n";
|
||||
}
|
||||
|
||||
// Read inputs.
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
@@ -122,7 +153,7 @@ struct FusedKernelBuilder {
|
||||
} else if (is_scalar(x)) {
|
||||
value = fmt::format("{}[0]", xname);
|
||||
} else if (contiguous) {
|
||||
value = fmt::format("{}[index]", xname);
|
||||
value = fmt::format("vec_{}[i]", xname);
|
||||
} else {
|
||||
value = fmt::format("{}[{}_idx]", xname, xname);
|
||||
}
|
||||
@@ -150,25 +181,30 @@ struct FusedKernelBuilder {
|
||||
|
||||
// Write output.
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
||||
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
|
||||
}
|
||||
|
||||
// End of work loop
|
||||
os +=
|
||||
"\n"
|
||||
" index++;\n";
|
||||
if (!contiguous) {
|
||||
os += "\n";
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += " " + xname + "_idx += " + xname + "_strides[NDIM - 1];\n";
|
||||
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
|
||||
}
|
||||
}
|
||||
os += " }\n";
|
||||
|
||||
// Store the output to global memory
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(
|
||||
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
|
||||
namer.get_name(x));
|
||||
}
|
||||
|
||||
os += "}\n";
|
||||
}
|
||||
};
|
||||
@@ -192,6 +228,15 @@ void Compiled::eval_gpu(
|
||||
nvtx3::scoped_range r("Compiled::eval_gpu");
|
||||
auto& s = stream();
|
||||
|
||||
// Determine the work per thread for the vectorized reads/writes. We take it
|
||||
// as 16 over the max itemsize for the outputs. Another heuristic could be
|
||||
// over the max itemsize of all arrays.
|
||||
int max_size = 1;
|
||||
for (const auto& x : outputs) {
|
||||
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
|
||||
}
|
||||
int work_per_thread = 16 / max_size;
|
||||
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
|
||||
// Build source code.
|
||||
cu::FusedKernelBuilder builder{
|
||||
@@ -205,28 +250,23 @@ void Compiled::eval_gpu(
|
||||
builder.os += "\n} // namespace mlx::core::cu\n";
|
||||
// Build kernel names.
|
||||
std::vector<std::string> kernel_names;
|
||||
for (auto work_per_thread : std::array<int, 2>{1, 4}) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<int64_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<int64_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
|
||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t, {}>",
|
||||
lib_name(),
|
||||
i,
|
||||
work_per_thread));
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, int64_t, {}>",
|
||||
lib_name(),
|
||||
i,
|
||||
work_per_thread));
|
||||
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||
});
|
||||
|
||||
@@ -269,7 +309,6 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
|
||||
// Choose work per thread
|
||||
int work_per_thread = 4;
|
||||
if (!contiguous && shape.back() % work_per_thread != 0) {
|
||||
work_per_thread = 1;
|
||||
}
|
||||
@@ -294,8 +333,8 @@ void Compiled::eval_gpu(
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
546
mlx/backend/cuda/conv.cpp
Normal file
546
mlx/backend/cuda/conv.cpp
Normal file
@@ -0,0 +1,546 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Not all engines support it so can not use this API now.
|
||||
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
|
||||
|
||||
// Alias for better readability.
|
||||
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
|
||||
#define CONV_BACKWARD_INPUT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
|
||||
#define CONV_BACKWARD_WEIGHT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnDataType_t cudnn_dtype;
|
||||
std::array<int, MAX_NDIM> input_shape;
|
||||
std::array<int, MAX_NDIM> weight_shape;
|
||||
std::array<int, MAX_NDIM> stride;
|
||||
std::array<int, MAX_NDIM> padding_lo;
|
||||
std::array<int, MAX_NDIM> padding_hi;
|
||||
std::array<int, MAX_NDIM> dilation;
|
||||
int groups;
|
||||
bool flip;
|
||||
uint8_t input_alignment;
|
||||
uint8_t weight_alignment;
|
||||
uint8_t output_alignment;
|
||||
};
|
||||
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<
|
||||
ConvCacheKey,
|
||||
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
|
||||
cache(/* capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
auto nhwc_to_nchw(const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
auto strides = convert_vector<int64_t>(x.strides());
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigList get_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = false) {
|
||||
cudnn_frontend::GeneratorSource source;
|
||||
if (use_fallback) {
|
||||
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
};
|
||||
} else {
|
||||
source = [](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
};
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigGenerator generator(1, &source);
|
||||
auto configs = generator.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
bool execute_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
|
||||
|
||||
int64_t uids[3] = {'x', 'w', 'y'};
|
||||
void* data_ptrs[3] = {
|
||||
x.data<void>(),
|
||||
w.data<void>(),
|
||||
y.data<void>(),
|
||||
};
|
||||
|
||||
auto variantPack = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(3, data_ptrs)
|
||||
.setUids(3, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
|
||||
cudaGraph_t graph;
|
||||
cudaGraphCreate(&graph, 0);
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
|
||||
if (cudnnBackendPopulateCudaGraph(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
#else
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool try_engines(
|
||||
cu::CommandEncoder& encoder,
|
||||
const ConvCacheKey& cache_key,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
cudnn_frontend::EngineConfigList& configs,
|
||||
const std::string& op_graph_tag,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
for (auto& config : configs) {
|
||||
try {
|
||||
auto plan = cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
if (execute_plan(encoder, plan, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(plan)));
|
||||
return true;
|
||||
}
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
auto get_conv_op_settings(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const std::vector<int>& kernel_strides,
|
||||
const std::vector<int>& padding_lo_,
|
||||
const std::vector<int>& padding_hi_,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation) {
|
||||
auto padding_lo = convert_vector<int64_t>(padding_lo_);
|
||||
auto padding_hi = convert_vector<int64_t>(padding_hi_);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
for (int i = 0; i < padding_lo.size(); ++i) {
|
||||
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
|
||||
padding_lo[i] = wt_size - padding_lo[i] - 1;
|
||||
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
|
||||
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + padding_hi[i];
|
||||
}
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(input_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
padding_hi = padding_lo;
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_strides));
|
||||
|
||||
} else {
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_strides),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const SmallVector<int64_t>& stride,
|
||||
const SmallVector<int64_t>& padding_lo,
|
||||
const SmallVector<int64_t>& padding_hi,
|
||||
const SmallVector<int64_t>& dilation) {
|
||||
try {
|
||||
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
|
||||
? CUDNN_DATA_FLOAT
|
||||
: dtype_to_cudnn_type(dtype);
|
||||
auto conv_desc = cudnn_frontend::ConvDescBuilder()
|
||||
.setDataType(compute_dtype)
|
||||
.setMathMode(CUDNN_CROSS_CORRELATION)
|
||||
.setNDims(stride.size())
|
||||
.setStrides(stride.size(), stride.data())
|
||||
.setPrePadding(padding_lo.size(), padding_lo.data())
|
||||
.setPostPadding(padding_hi.size(), padding_hi.data())
|
||||
.setDilation(dilation.size(), dilation.data())
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_tensor('x', x))
|
||||
.setwDesc(build_tensor('w', w))
|
||||
.setyDesc(build_tensor('y', y))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
|
||||
return cudnn_frontend::OperationGraphBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setOperationGraph(ops.size(), ops.data())
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
|
||||
throw;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
std::tuple<array, array, array> prepare_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = swapaxes_in_eval(in, 0, -1);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
Shape shape(out.shape());
|
||||
std::swap(shape.front(), shape.back());
|
||||
Strides strides(shape.size(), 1);
|
||||
for (int i = shape.size() - 2; i >= 0; --i) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
array intermediate(std::move(shape), out.dtype(), nullptr, {});
|
||||
intermediate.copy_shared_buffer(
|
||||
out, std::move(strides), {true, true, false}, out.data_size());
|
||||
out = intermediate;
|
||||
}
|
||||
|
||||
// cuDNN requires contiguous input.
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
return {std::move(in), std::move(wt), std::move(out)};
|
||||
}
|
||||
|
||||
// Get the x/w/y args from the in/wt/out args depending on backend type.
|
||||
inline std::tuple<array&, array&, array&> dispatch_args(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& out) {
|
||||
switch (backend_type) {
|
||||
case CONV_BACKWARD_INPUT:
|
||||
return {out, wt, in};
|
||||
case CONV_BACKWARD_WEIGHT:
|
||||
return {in, out, wt};
|
||||
default:
|
||||
return {in, wt, out};
|
||||
}
|
||||
}
|
||||
|
||||
// Register inputs and outputs before actually running conv op. Can only be
|
||||
// called once per eval_gpu.
|
||||
void register_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& intermediate_out,
|
||||
array& final_out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_input_array(wt);
|
||||
encoder.set_output_array(final_out);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
// Turn |out| into a strided array, which will have C_in and C_out swapped
|
||||
// in vjp and the final |grad_weight| will then be contiguous.
|
||||
Strides strides = intermediate_out.strides();
|
||||
std::swap(strides.front(), strides.back());
|
||||
final_out.copy_shared_buffer(
|
||||
intermediate_out,
|
||||
std::move(strides),
|
||||
{false, false, false},
|
||||
intermediate_out.data_size());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
nvtx3::scoped_range r("Convolution::eval_gpu");
|
||||
if (out_.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(inputs.size() == 2);
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
array out = out_;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
Dtype dtype = out.dtype();
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Search cache.
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
dtype_to_cudnn_type(dtype),
|
||||
fixed_vector(in.shape()),
|
||||
fixed_vector(wt.shape()),
|
||||
fixed_vector(kernel_strides_),
|
||||
fixed_vector(padding_lo_),
|
||||
fixed_vector(padding_hi_),
|
||||
fixed_vector(kernel_dilation_),
|
||||
groups_,
|
||||
flip_,
|
||||
get_alignment(in),
|
||||
get_alignment(wt),
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!execute_plan(encoder, plan, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// There is no reliable way to deduce the proper cuDNN backend for the
|
||||
// convolution, so we make a best guess and then try.
|
||||
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
|
||||
if (flip_) {
|
||||
// When weight is flipped, we assume it is backward input convolution.
|
||||
try_backends.push_back(CONV_BACKWARD_INPUT);
|
||||
} else {
|
||||
// Otherwise it could be backward weight convolution or forward convolution,
|
||||
// mathematically there is no difference so we have to use heuristics.
|
||||
// Empirically backward convolutions have large kernel dimensions, and
|
||||
// usually have |in| and |wt| transposed.
|
||||
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
|
||||
wt.shape(2) > out.shape(2)) {
|
||||
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
|
||||
} else {
|
||||
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
|
||||
}
|
||||
}
|
||||
|
||||
// Try to build op graph.
|
||||
cudnnBackendDescriptorType_t backend_type;
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
padding_hi_,
|
||||
kernel_dilation_,
|
||||
input_dilation_);
|
||||
op_graph = build_op_graph(
|
||||
encoder,
|
||||
try_backend,
|
||||
dtype,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
stride,
|
||||
padding_lo,
|
||||
padding_hi,
|
||||
dilation);
|
||||
if (op_graph) {
|
||||
backend_type = try_backend;
|
||||
in = std::move(in_copy);
|
||||
wt = std::move(wt_copy);
|
||||
out = std::move(out_copy);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!op_graph) {
|
||||
throw std::runtime_error("[conv] Can not build op graph.");
|
||||
}
|
||||
|
||||
// Get ready to execute the graph.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Try to run plans based on heuristics.
|
||||
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
auto tag = op_graph->getTag();
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
// Then try fallback plans.
|
||||
configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("[conv] Unable to find a working engine.");
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -22,7 +22,7 @@ __global__ void copy_s(const In* in, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = cast_to<Out>(in[0]);
|
||||
out_vec[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -43,7 +43,7 @@ __global__ void copy_v(const In* in, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
|
||||
out_vec[i] = cast_to<Out>(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -65,23 +65,18 @@ void copy_contiguous(
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
out.data_size());
|
||||
|
||||
@@ -37,7 +37,7 @@ __global__ void copy_gg(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
@@ -71,14 +71,13 @@ void copy_general(
|
||||
data_size *= s;
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
@@ -87,13 +86,13 @@ void copy_general(
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_gg<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
|
||||
@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
|
||||
const int64_t* offset_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
|
||||
}
|
||||
@@ -74,14 +74,16 @@ void copy_general_dynamic(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::
|
||||
copy_gg_dynamic_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_gg_dynamic_nd<
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -92,13 +94,12 @@ void copy_general_dynamic(
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_gg_dynamic<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -34,7 +34,7 @@ __global__ void copy_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
}
|
||||
@@ -63,14 +63,12 @@ void copy_general_input(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -78,13 +76,12 @@ void copy_general_input(
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::copy_g<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
@@ -9,12 +10,23 @@
|
||||
#include <future>
|
||||
#include <unordered_set>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
if (err != CUDNN_STATUS_SUCCESS) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed: {}.", name, cudnnGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
@@ -22,7 +34,7 @@ int cuda_graph_cache_size() {
|
||||
return cache_size;
|
||||
}
|
||||
|
||||
namespace cu {
|
||||
} // namespace
|
||||
|
||||
Device::Device(int device) : device_(device) {
|
||||
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
|
||||
@@ -40,11 +52,18 @@ Device::Device(int device) : device_(device) {
|
||||
}
|
||||
// The cublasLt handle is used by matmul.
|
||||
make_current();
|
||||
cublasLtCreate(<_);
|
||||
CHECK_CUBLAS_ERROR(cublasLtCreate(<_));
|
||||
// The cudnn handle is used by Convolution.
|
||||
CHECK_CUDNN_ERROR(cudnnCreate(&cudnn_));
|
||||
|
||||
// Initialize the jit module cache here ensures it is not
|
||||
// unloaded before any evaluation is done
|
||||
get_jit_module_cache();
|
||||
}
|
||||
|
||||
Device::~Device() {
|
||||
cublasLtDestroy(lt_);
|
||||
CHECK_CUDNN_ERROR(cudnnDestroy(cudnn_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtDestroy(lt_));
|
||||
}
|
||||
|
||||
void Device::make_current() {
|
||||
@@ -66,29 +85,19 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
size_t num_nodes;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, NULL, &num_nodes));
|
||||
if (num_nodes == 1) {
|
||||
cudaGraphNode_t captured_node;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, &captured_node, &num_nodes));
|
||||
CUDA_KERNEL_NODE_PARAMS params;
|
||||
CHECK_CUDA_ERROR(cuGraphKernelNodeGetParams(captured_node, ¶ms));
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, enc.graph_, NULL, 0, ¶ms));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
} else {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddChildGraphNode(&node, enc.graph_, NULL, 0, graph));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
|
||||
if (discard) {
|
||||
return;
|
||||
}
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph));
|
||||
enc.add_graph_node(graph);
|
||||
}
|
||||
|
||||
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
@@ -175,21 +184,11 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
||||
}
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(Device& d) : device_(d), stream_(d) {
|
||||
CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
void clear_graphs(std::unordered_map<std::string, cudaGraphExec_t>& graphs) {
|
||||
for (auto& [_, graph_exec] : graphs) {
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
}
|
||||
graphs.clear();
|
||||
}
|
||||
|
||||
CommandEncoder::~CommandEncoder() {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
@@ -215,22 +214,22 @@ void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
kernel_params.blockDim = block_dim;
|
||||
kernel_params.kernelParams = params;
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
add_kernel_node(kernel_params);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
@@ -241,13 +240,30 @@ void CommandEncoder::add_kernel_node(
|
||||
kernel_params.blockDimY = block_dim.y;
|
||||
kernel_params.blockDimZ = block_dim.z;
|
||||
kernel_params.kernelParams = params;
|
||||
CUgraphNode node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
add_kernel_node(kernel_params);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const cudaKernelNodeParams& params) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
CUgraphNode node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
@@ -264,7 +280,7 @@ void CommandEncoder::commit() {
|
||||
graph_key_ += ".";
|
||||
graph_key_ += std::to_string(empty_node_count_);
|
||||
|
||||
cudaGraphExec_t& graph_exec = graph_cache_[graph_key_];
|
||||
CudaGraphExec& graph_exec = graph_cache_[graph_key_];
|
||||
|
||||
if (graph_exec != nullptr) {
|
||||
cudaGraphExecUpdateResult update_result;
|
||||
@@ -278,25 +294,19 @@ void CommandEncoder::commit() {
|
||||
#endif // CUDART_VERSION >= 12000
|
||||
if (update_result != cudaGraphExecUpdateSuccess) {
|
||||
cudaGetLastError(); // reset error
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
graph_exec = nullptr;
|
||||
graph_exec.reset();
|
||||
}
|
||||
}
|
||||
if (graph_exec == nullptr) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
|
||||
graph_exec.instantiate(graph_);
|
||||
}
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// TODO smarter cache policy
|
||||
if (graph_cache_.size() > cuda_graph_cache_size()) {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
to_nodes_.clear();
|
||||
graph_key_.clear();
|
||||
@@ -306,7 +316,6 @@ void CommandEncoder::commit() {
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.end_batch();
|
||||
worker_.commit(stream_);
|
||||
}
|
||||
|
||||
@@ -315,7 +324,6 @@ void CommandEncoder::synchronize() {
|
||||
auto p = std::make_shared<std::promise<void>>();
|
||||
std::future<void> f = p->get_future();
|
||||
add_completed_handler([p = std::move(p)]() { p->set_value(); });
|
||||
worker_.end_batch();
|
||||
commit();
|
||||
f.wait();
|
||||
}
|
||||
@@ -333,6 +341,4 @@ CommandEncoder& get_command_encoder(Stream s) {
|
||||
return device(s.device).get_command_encoder(s);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -3,11 +3,13 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cudnn.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
|
||||
#include <unordered_map>
|
||||
@@ -21,6 +23,7 @@ class CommandEncoder {
|
||||
~CaptureContext();
|
||||
cudaGraph_t graph;
|
||||
CommandEncoder& enc;
|
||||
bool discard{false};
|
||||
};
|
||||
struct ConcurrentContext {
|
||||
ConcurrentContext(CommandEncoder& enc);
|
||||
@@ -29,7 +32,6 @@ class CommandEncoder {
|
||||
};
|
||||
|
||||
explicit CommandEncoder(Device& d);
|
||||
~CommandEncoder();
|
||||
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
@@ -45,25 +47,39 @@ class CommandEncoder {
|
||||
void set_output_array(const array& arr);
|
||||
|
||||
template <typename F, typename... Params>
|
||||
void
|
||||
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
|
||||
void add_kernel_node(
|
||||
F* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
Params&&... params) {
|
||||
constexpr size_t num = sizeof...(Params);
|
||||
void* ptrs[num];
|
||||
size_t i = 0;
|
||||
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
|
||||
std::forward<Params>(params)),
|
||||
...);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
|
||||
}
|
||||
|
||||
void add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
void
|
||||
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
|
||||
void add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
@@ -73,6 +89,10 @@ class CommandEncoder {
|
||||
void maybe_commit();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
CudaStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
@@ -106,7 +126,7 @@ class CommandEncoder {
|
||||
std::string graph_key_;
|
||||
std::vector<GraphNode> concurrent_nodes_;
|
||||
std::vector<std::shared_ptr<array::Data>> temporaries_;
|
||||
std::unordered_map<std::string, cudaGraphExec_t> graph_cache_;
|
||||
LRUCache<std::string, CudaGraphExec> graph_cache_;
|
||||
std::vector<std::uintptr_t> active_deps_;
|
||||
std::vector<std::uintptr_t> active_outputs_;
|
||||
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
|
||||
@@ -137,12 +157,16 @@ class Device {
|
||||
cublasLtHandle_t lt_handle() const {
|
||||
return lt_;
|
||||
}
|
||||
cudnnHandle_t cudnn_handle() const {
|
||||
return cudnn_;
|
||||
}
|
||||
|
||||
private:
|
||||
int device_;
|
||||
int compute_capability_major_;
|
||||
int compute_capability_minor_;
|
||||
cublasLtHandle_t lt_;
|
||||
cudnnHandle_t cudnn_;
|
||||
std::unordered_map<int, CommandEncoder> encoders_;
|
||||
};
|
||||
|
||||
|
||||
@@ -1,15 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -49,11 +49,7 @@ inline __device__ void atomic_add(__half* out, __half val) {
|
||||
}
|
||||
|
||||
inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
|
||||
#if __CUDA_ARCH__ < 900
|
||||
atomic_add_general(out, val);
|
||||
#else
|
||||
atomicAdd(out, val);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
|
||||
|
||||
@@ -32,23 +32,120 @@ using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
||||
template <typename T, int N>
|
||||
struct alignas(sizeof(T) * N) AlignedVector {
|
||||
T val[N];
|
||||
|
||||
__device__ T& operator[](int i) {
|
||||
return val[i];
|
||||
}
|
||||
|
||||
__device__ T operator[](int i) const {
|
||||
return val[i];
|
||||
}
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
inline __host__ __device__ bool is_aligned(T* x) {
|
||||
return (reinterpret_cast<uintptr_t>(x) % (N * sizeof(T))) == 0;
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> unsafe_load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset) {
|
||||
if (is_aligned<N>(ptr)) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] = ptr[offset * N + i];
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ AlignedVector<T, N>
|
||||
load_vector(const T* ptr, uint32_t offset, SizeT size, T fallback) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] = (N * offset + i) < size ? ptr[offset * N + i] : fallback;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset,
|
||||
SizeT size,
|
||||
int64_t stride,
|
||||
T fallback) {
|
||||
if (is_aligned<N>(ptr) && stride == 1 && (offset + 1) * N <= size) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] =
|
||||
(N * offset + i) < size ? ptr[stride * (offset * N + i)] : fallback;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ void
|
||||
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
unsafe_store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ void
|
||||
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
if (is_aligned<N>(ptr)) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
ptr[offset * N + i] = vec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ void store_vector(
|
||||
T* ptr,
|
||||
uint32_t offset,
|
||||
const AlignedVector<T, N>& vec,
|
||||
SizeT size) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
|
||||
ptr[offset * N + i] = vec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Type limits utils
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -204,20 +301,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
}
|
||||
|
||||
// Optimized version when ndim is larger than 4.
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ IdxT
|
||||
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
|
||||
IdxT loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
loc += (elem % shape[i]) * IdxT(strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return loc;
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
@@ -235,7 +320,7 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
|
||||
@@ -19,8 +19,6 @@ void new_stream(Stream s) {
|
||||
cudaFree(nullptr);
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
// The main thread is safe to free buffers.
|
||||
cu::allocator().register_this_thread();
|
||||
}
|
||||
|
||||
void eval(array& arr) {
|
||||
@@ -38,18 +36,15 @@ void eval(array& arr) {
|
||||
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
std::unordered_set<std::shared_ptr<array::Data>> buffers;
|
||||
for (auto& in : arr.inputs()) {
|
||||
buffers.insert(in.data_shared_ptr());
|
||||
// Except for the donated one.
|
||||
if (in.data_shared_ptr() != arr.data_shared_ptr()) {
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
}
|
||||
for (auto& s : arr.siblings()) {
|
||||
buffers.insert(s.data_shared_ptr());
|
||||
encoder.add_temporary(s);
|
||||
}
|
||||
// Remove the output if it was donated to by an input.
|
||||
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
|
||||
buffers.erase(it);
|
||||
}
|
||||
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
|
||||
encoder.maybe_commit();
|
||||
}
|
||||
|
||||
|
||||
@@ -110,24 +110,26 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
// Allocate cuda::atomic on managed memory.
|
||||
Atomic* ac;
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
|
||||
new (ac) Atomic(0);
|
||||
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
|
||||
ptr->~Atomic();
|
||||
allocator().cuda_free(ptr);
|
||||
});
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
delete ptr;
|
||||
});
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
}
|
||||
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(ac_.get(), value);
|
||||
event_wait(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
@@ -138,17 +140,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
wait(encoder.stream(), value);
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(ac_.get(), value);
|
||||
event_signal(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
@@ -162,18 +164,18 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
signal(encoder.stream(), value);
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return ac_->load() >= value;
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return ac_->load();
|
||||
return to_atomic(buf_)->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -55,12 +56,8 @@ class SharedEvent {
|
||||
bool is_signaled(uint64_t value) const;
|
||||
uint64_t value() const;
|
||||
|
||||
const std::shared_ptr<Atomic>& atomic() const {
|
||||
return ac_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::shared_ptr<Atomic> ac_;
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
329
mlx/backend/cuda/gemms/cublas_gemm.cpp
Normal file
329
mlx/backend/cuda/gemms/cublas_gemm.cpp
Normal file
@@ -0,0 +1,329 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(cu::Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
~CublasPreference() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(cu::Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()),
|
||||
pref_(cublas_preference(device)),
|
||||
M_(a_rows),
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: CublasGemm(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
CublasGemm::~CublasGemm() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
return;
|
||||
}
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
c_batch_strides,
|
||||
alpha,
|
||||
beta);
|
||||
return;
|
||||
}
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c.data<void>(),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
void CublasGemm::execute(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
// Ensure workspace is 256-byte aligned
|
||||
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
|
||||
array workspace(
|
||||
allocator::malloc(nbytes),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
113
mlx/backend/cuda/gemms/cublas_gemm.h
Normal file
113
mlx/backend/cuda/gemms/cublas_gemm.h
Normal file
@@ -0,0 +1,113 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
class CublasGemm {
|
||||
public:
|
||||
CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride);
|
||||
|
||||
CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride);
|
||||
|
||||
~CublasGemm();
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
private:
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
void execute(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
73
mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp
Normal file
73
mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp
Normal file
@@ -0,0 +1,73 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha,
|
||||
beta);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
327
mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu
Normal file
327
mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu
Normal file
@@ -0,0 +1,327 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <int NDIM>
|
||||
__global__ void set_mm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_mm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
__global__ void set_addmm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
const __grid_constant__ Strides c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
|
||||
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
|
||||
&batch_mode,
|
||||
sizeof(batch_mode)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(void*) * 3),
|
||||
{batch_count * 3},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
execute(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{batch_count * 4},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
const_param<ndim_constant()>(c_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
execute(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
reinterpret_cast<void*>(c_pointers),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
173
mlx/backend/cuda/gemms/gemv.cu
Normal file
173
mlx/backend/cuda/gemms/gemv.cu
Normal file
@@ -0,0 +1,173 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
auto g_idx = block.group_index();
|
||||
auto t_idx = block.thread_index();
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
float sum = 0.0f;
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat =
|
||||
unsafe_load_vector<n_per_thread>(mat + row * cols + col, 0);
|
||||
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum +=
|
||||
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void
|
||||
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void gemv_batched(
|
||||
const T* mat,
|
||||
const T* vec,
|
||||
T* out,
|
||||
int rows,
|
||||
int cols,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides mat_batch_strides,
|
||||
const __grid_constant__ Strides vec_batch_strides,
|
||||
int batch_ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto batch_idx = block.group_index().y;
|
||||
auto [vec_offset, mat_offset] = elem_to_loc(
|
||||
batch_idx,
|
||||
batch_shape.data(),
|
||||
vec_batch_strides.data(),
|
||||
mat_batch_strides.data(),
|
||||
batch_ndim);
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(
|
||||
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
|
||||
}
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
|
||||
return K % 32 == 0 && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_n_per_thread(int n_per_thread, F&& f) {
|
||||
switch (n_per_thread) {
|
||||
case 1:
|
||||
f(std::integral_constant<int, 1>{});
|
||||
break;
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
const DataType* vec;
|
||||
int rows;
|
||||
int cols = K;
|
||||
auto mat_strides = const_param(a_batch_strides);
|
||||
auto vec_strides = const_param(b_batch_strides);
|
||||
|
||||
if (M == 1) {
|
||||
mat = b.data<DataType>();
|
||||
vec = a.data<DataType>();
|
||||
rows = N;
|
||||
std::swap(mat_strides, vec_strides);
|
||||
} else {
|
||||
mat = a.data<DataType>();
|
||||
vec = b.data<DataType>();
|
||||
rows = M;
|
||||
}
|
||||
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
|
||||
int n_per_t;
|
||||
if (K % 128 == 0 && is_aligned<4>(mat) && is_aligned<4>(vec)) {
|
||||
n_per_t = 4;
|
||||
} else if (K % 64 == 0 && is_aligned<2>(mat) && is_aligned<2>(vec)) {
|
||||
n_per_t = 2;
|
||||
} else {
|
||||
n_per_t = 1;
|
||||
}
|
||||
dispatch_n_per_thread(n_per_t, [&](auto n_per_thread) {
|
||||
if (batch_count == 1) {
|
||||
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks_x,
|
||||
block_dims,
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
dim3{num_blocks_x, batch_count},
|
||||
block_dims,
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
mat_strides,
|
||||
vec_strides,
|
||||
batch_shape.size());
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
24
mlx/backend/cuda/gemms/gemv.h
Normal file
24
mlx/backend/cuda/gemms/gemv.h
Normal file
@@ -0,0 +1,24 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
301
mlx/backend/cuda/gemms/steel_gemm.cu
Normal file
301
mlx/backend/cuda/gemms/steel_gemm.cu
Normal file
@@ -0,0 +1,301 @@
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/gemms/steel_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
#include "mlx/backend/cuda/steel/gemm.cuh"
|
||||
#include "mlx/backend/cuda/steel/mma.cuh"
|
||||
#include "mlx/backend/cuda/steel/tiles.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
struct GemmParams {
|
||||
int M;
|
||||
int N;
|
||||
int K;
|
||||
int lda;
|
||||
int ldb;
|
||||
int ldd;
|
||||
|
||||
int NblockM;
|
||||
int NblockN;
|
||||
int NblockK;
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
int SL,
|
||||
int Nstages>
|
||||
__global__ void kernel_steel_gemm(
|
||||
const T* a,
|
||||
const T* b,
|
||||
T* d,
|
||||
__grid_constant__ const GemmParams params) {
|
||||
const int bM_idx = (blockIdx.y << SL) + (blockIdx.x & ((1 << SL) - 1));
|
||||
const int bN_idx = blockIdx.x >> SL;
|
||||
|
||||
if (params.NblockN <= bN_idx || params.NblockM <= bM_idx) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int d_row = bM_idx * BM;
|
||||
const int d_col = bN_idx * BN;
|
||||
const size_t d_row_long = size_t(d_row);
|
||||
const size_t d_col_long = size_t(d_col);
|
||||
|
||||
a += transpose_a ? d_row_long : d_row_long * params.K;
|
||||
b += transpose_b ? d_col_long * params.K : d_col_long;
|
||||
d += d_row_long * params.ldd + d_col_long;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
|
||||
const int lane_idx = warp.thread_rank();
|
||||
const int warp_idx = warp.meta_group_rank();
|
||||
|
||||
const int wm = warp_idx / WN;
|
||||
const int wn = warp_idx % WN;
|
||||
|
||||
constexpr int SM = BM / WM;
|
||||
constexpr int SN = BN / WN;
|
||||
constexpr int SK = BK;
|
||||
constexpr int TK = SK / 16;
|
||||
|
||||
constexpr int NUM_WARPS = WM * WN;
|
||||
|
||||
// Allocate shared memory
|
||||
extern __shared__ char shmem[];
|
||||
SharedTile<T, BM, BK>(&as)[Nstages] =
|
||||
*(SharedTile<T, BM, BK>(*)[Nstages])(&shmem[0]);
|
||||
SharedTile<T, BN, BK>(&bs)[Nstages] = *(SharedTile<T, BN, BK>(*)[Nstages])(
|
||||
&shmem[sizeof(T) * Nstages * BM * BK]);
|
||||
|
||||
// Allocate registers for the MMA
|
||||
RegisterTile<float, SM, SN> C;
|
||||
RegisterTile<T, SM, 16> A[TK];
|
||||
RegisterTile<T, SN, 16> B[TK];
|
||||
|
||||
// Zero the accumulators
|
||||
C.fill(0);
|
||||
|
||||
// Start gmem -> smem copies
|
||||
int k_block_read = 0;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int bk = 0; bk < (Nstages - 1); bk++) {
|
||||
load_async<NUM_WARPS>(
|
||||
as[bk], as[bk].base_addr(), a + k_block_read, params.K);
|
||||
load_async<NUM_WARPS>(
|
||||
bs[bk], bs[bk].base_addr(), b + k_block_read, params.K);
|
||||
k_block_read += BK;
|
||||
cp_async_commit();
|
||||
}
|
||||
|
||||
int smem_pipe_read = 0;
|
||||
int smem_pipe_write = Nstages - 1;
|
||||
|
||||
// Wait till only 1 remains laoding
|
||||
cp_async_wait<1>();
|
||||
block.sync();
|
||||
|
||||
const int offset_m = wm * SM;
|
||||
const int offset_n = wn * SN;
|
||||
|
||||
// Start smem -> register copy
|
||||
A[0].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
B[0].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
|
||||
// Main loop
|
||||
for (int kb = 0; kb < params.NblockK; kb++) {
|
||||
// Prepare next registers
|
||||
{
|
||||
A[1].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
16 + lane_idx / 16 * 8);
|
||||
B[1].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
16 + lane_idx / 16 * 8);
|
||||
}
|
||||
|
||||
// Prepare next smem
|
||||
if ((kb + Nstages - 1) < params.NblockK) {
|
||||
load_async<NUM_WARPS>(
|
||||
as[smem_pipe_write],
|
||||
as[smem_pipe_write].base_addr(),
|
||||
a + k_block_read,
|
||||
params.K);
|
||||
load_async<NUM_WARPS>(
|
||||
bs[smem_pipe_write],
|
||||
bs[smem_pipe_write].base_addr(),
|
||||
b + k_block_read,
|
||||
params.K);
|
||||
}
|
||||
k_block_read += BK;
|
||||
|
||||
cp_async_commit();
|
||||
|
||||
smem_pipe_write = smem_pipe_read;
|
||||
smem_pipe_read = smem_pipe_read + 1;
|
||||
smem_pipe_read = (smem_pipe_read == Nstages) ? 0 : smem_pipe_read;
|
||||
|
||||
// Do current gemm
|
||||
mma_t(C, A[0], B[0]);
|
||||
|
||||
// Do wait for next register
|
||||
cp_async_wait<1>();
|
||||
block.sync();
|
||||
|
||||
// Prepare next register (smem_pipe_read has moved to the next)
|
||||
{
|
||||
A[0].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
B[0].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
}
|
||||
|
||||
// Do current gemm
|
||||
mma_t(C, A[1], B[1]);
|
||||
}
|
||||
|
||||
// Wait and clear
|
||||
cp_async_wait_all();
|
||||
block.sync();
|
||||
|
||||
C.store_global(d, params.ldd, offset_m, offset_n);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void dispatch_steel_gemm(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& d,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int lda,
|
||||
int ldb,
|
||||
int ldd,
|
||||
bool a_transposed,
|
||||
bool b_transposed) {
|
||||
using DataType = cuda_type_t<float16_t>;
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(d);
|
||||
|
||||
constexpr int BM = 128;
|
||||
constexpr int BN = 128;
|
||||
constexpr int BK = 32;
|
||||
|
||||
constexpr int WM = 2;
|
||||
constexpr int WN = 2;
|
||||
|
||||
constexpr int SL = 0;
|
||||
constexpr int Nstages = 3;
|
||||
|
||||
constexpr uint32_t smem_bytes = BK * (BM + BN) * Nstages * sizeof(DataType);
|
||||
|
||||
const int NblockM = (M + BM - 1) / BM;
|
||||
const int NblockN = (N + BN - 1) / BN;
|
||||
const int NblockK = (K + BK - 1) / BK;
|
||||
|
||||
cu::GemmParams params{
|
||||
/* int M = */ M,
|
||||
/* int N = */ N,
|
||||
/* int K = */ K,
|
||||
/* int lda = */ lda,
|
||||
/* int ldb = */ ldb,
|
||||
/* int ldd = */ ldd,
|
||||
|
||||
/* int NblockM = */ NblockM,
|
||||
/* int NblockN = */ NblockN,
|
||||
/* int NblockK = */ NblockK,
|
||||
};
|
||||
|
||||
// Prepare launch grid params
|
||||
int tile = 1 << SL;
|
||||
int tm = (NblockM + tile - 1) / tile;
|
||||
int tn = NblockN * tile;
|
||||
|
||||
dim3 grid_dim(tn, tm, 1);
|
||||
dim3 block_dim(32 * WM * WN, 1, 1);
|
||||
|
||||
dispatch_bool(a_transposed, [&](auto ta_) {
|
||||
dispatch_bool(b_transposed, [&](auto tb_) {
|
||||
constexpr bool ta = ta_.value;
|
||||
constexpr bool tb = tb_.value;
|
||||
|
||||
auto kernel = cu::ab_t_aligned<DataType, BM, BN, BK>;
|
||||
cudaFuncSetAttribute(
|
||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid_dim,
|
||||
block_dim,
|
||||
smem_bytes,
|
||||
a.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
d.data<DataType>(),
|
||||
N,
|
||||
K);
|
||||
|
||||
// auto kernel = cu::kernel_steel_gemm<DataType, BM, BN, BK, WM, WN, ta,
|
||||
// tb, SL, Nstages>;
|
||||
|
||||
// cudaFuncSetAttribute(kernel,
|
||||
// cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
|
||||
|
||||
// encoder.add_kernel_node(
|
||||
// kernel,
|
||||
// grid_dim,
|
||||
// block_dim,
|
||||
// smem_bytes,
|
||||
// a.data<DataType>(),
|
||||
// b.data<DataType>(),
|
||||
// d.data<DataType>(),
|
||||
// params);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
27
mlx/backend/cuda/gemms/steel_gemm.h
Normal file
27
mlx/backend/cuda/gemms/steel_gemm.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void dispatch_steel_gemm(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& d,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int lda,
|
||||
int ldb,
|
||||
int ldd,
|
||||
bool a_transposed,
|
||||
bool b_transposed);
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -29,12 +29,12 @@ void append_indices_arg(
|
||||
const std::vector<array>& inputs,
|
||||
int nidx,
|
||||
int idx_ndim) {
|
||||
std::vector<const void*> indices(nidx);
|
||||
SmallVector<const void*> indices(nidx);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
indices[i] = inputs[i + 1].data<void>();
|
||||
}
|
||||
args.append(std::move(indices));
|
||||
std::vector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
inputs[i + 1].shape().begin(),
|
||||
@@ -42,7 +42,7 @@ void append_indices_arg(
|
||||
indices_shape.data() + i * idx_ndim);
|
||||
}
|
||||
args.append(std::move(indices_shape));
|
||||
std::vector<int64_t> indices_strides(nidx * idx_ndim);
|
||||
SmallVector<int64_t> indices_strides(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
inputs[i + 1].strides().begin(),
|
||||
@@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append<int32_t>(src.ndim());
|
||||
args.append_ndim(slice_sizes_);
|
||||
args.append(slice_size);
|
||||
args.append(axes_);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -128,8 +128,8 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append_ndim(out.shape());
|
||||
args.append_ndim(out.strides());
|
||||
args.append<int32_t>(out.ndim());
|
||||
args.append(axes_);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -229,8 +229,8 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -317,8 +317,8 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -421,8 +421,8 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,121 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <cuda/std/utility>
|
||||
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Iterating non-contiguous array.
|
||||
template <typename Iterator, typename IdxT = int64_t>
|
||||
class general_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides)
|
||||
: super_t(it),
|
||||
index_(index),
|
||||
ndim_(ndim),
|
||||
shape_(cuda::std::move(shape)),
|
||||
strides_(cuda::std::move(strides)) {}
|
||||
|
||||
__host__ __device__ IdxT index() const {
|
||||
return index_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Shape& shape() const {
|
||||
return shape_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Strides& strides() const {
|
||||
return strides_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const general_iterator& other) const {
|
||||
return this->base() == other.base() && this->index() == other.index();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->index_ += n;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->index_ += 1;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->index_ -= 1;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const general_iterator& other) const {
|
||||
_CCCL_ASSERT(
|
||||
this->base() == other.base(),
|
||||
"Underlying iterator must point to same base iterator");
|
||||
return other.index() - this->index();
|
||||
}
|
||||
|
||||
// The dereference is device-only to avoid accidental running in host.
|
||||
__device__ typename super_t::reference dereference() const {
|
||||
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
|
||||
return *(this->base() + offset);
|
||||
}
|
||||
|
||||
IdxT index_;
|
||||
int ndim_;
|
||||
Shape shape_;
|
||||
Strides strides_;
|
||||
};
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
__host__ __device__ auto make_general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides) {
|
||||
return general_iterator<Iterator, IdxT>(
|
||||
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterator(
|
||||
Iterator it,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
return make_general_iterator<IdxT>(
|
||||
it, 0, shape.size(), const_param(shape), const_param(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterators(
|
||||
Iterator it,
|
||||
IdxT size,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
auto ndim = shape.size();
|
||||
auto shape_arg = const_param(shape);
|
||||
auto strides_arg = const_param(strides);
|
||||
return std::make_pair(
|
||||
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
|
||||
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,60 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <thrust/iterator/iterator_facade.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// RandomAccessIterator for strided access to array entries.
|
||||
template <typename Iterator, typename Stride = int64_t>
|
||||
class strided_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ strided_iterator(Iterator it, Stride stride)
|
||||
: super_t(it), stride_(stride) {}
|
||||
|
||||
__host__ __device__ Stride stride() const {
|
||||
return stride_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const strided_iterator& other) const {
|
||||
return this->base() == other.base();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->base_reference() += n * stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->base_reference() += stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->base_reference() -= stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const strided_iterator& other) const {
|
||||
const difference_type dist = other.base() - this->base();
|
||||
_CCCL_ASSERT(
|
||||
dist % stride() == 0,
|
||||
"Underlying iterator difference must be divisible by the stride");
|
||||
return dist / stride();
|
||||
}
|
||||
|
||||
Stride stride_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -9,7 +9,6 @@
|
||||
#include <cstdlib>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <unordered_map>
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nvrtc.h>
|
||||
@@ -330,11 +329,16 @@ CUfunction JitModule::get_kernel(const std::string& kernel_name) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
static std::unordered_map<std::string, JitModule> map;
|
||||
return map;
|
||||
}
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
const KernelBuilder& builder) {
|
||||
static std::unordered_map<std::string, JitModule> map;
|
||||
auto& map = get_jit_module_cache();
|
||||
auto it = map.find(name);
|
||||
if (it == map.end()) {
|
||||
it = map.try_emplace(name, cu::device(device), name, builder).first;
|
||||
|
||||
@@ -40,19 +40,14 @@ struct KernelArgs {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(std::vector<T> vec) {
|
||||
if (vec.empty()) {
|
||||
// The nullptr can not be used as arg, pass something not null.
|
||||
append(std::monostate{});
|
||||
} else {
|
||||
append_ptr(vec.data());
|
||||
storage_.emplace_back(std::move(vec));
|
||||
}
|
||||
void append(SmallVector<T> vec) {
|
||||
storage_.emplace_back(std::move(vec));
|
||||
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
|
||||
}
|
||||
|
||||
// Make sure the arg is copied to an array with size of NDIM.
|
||||
template <size_t NDIM = MAX_NDIM, typename T>
|
||||
void append_ndim(std::vector<T> vec) {
|
||||
void append_ndim(SmallVector<T> vec) {
|
||||
if (vec.size() > NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", NDIM));
|
||||
@@ -76,9 +71,9 @@ struct KernelArgs {
|
||||
int32_t,
|
||||
uint32_t,
|
||||
int64_t,
|
||||
std::vector<const void*>,
|
||||
std::vector<int32_t>,
|
||||
std::vector<int64_t>>;
|
||||
SmallVector<const void*>,
|
||||
SmallVector<int32_t>,
|
||||
SmallVector<int64_t>>;
|
||||
std::deque<Arg> storage_;
|
||||
};
|
||||
|
||||
@@ -99,6 +94,8 @@ class JitModule {
|
||||
std::unordered_map<std::string, CUfunction> kernels_;
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
|
||||
@@ -30,4 +30,25 @@ std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2) {
|
||||
return std::make_pair(dim3(gx, gy, gz), dim3(bx, by, bz));
|
||||
}
|
||||
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = 1024;
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
|
||||
} else {
|
||||
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
|
||||
}
|
||||
return std::make_tuple(num_blocks, block_dim);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -101,7 +101,7 @@ inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
|
||||
|
||||
// Utility to copy data from vector to array in host.
|
||||
template <int NDIM = MAX_NDIM, typename T = int32_t>
|
||||
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
|
||||
inline cuda::std::array<T, NDIM> const_param(const SmallVector<T>& vec) {
|
||||
if (vec.size() > NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", NDIM));
|
||||
@@ -120,53 +120,19 @@ dim3 get_2d_grid_dims(
|
||||
size_t divisor);
|
||||
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
|
||||
// Return a block size that achieves maximum potential occupancy for kernel.
|
||||
template <typename T>
|
||||
inline uint max_occupancy_block_dim(T kernel) {
|
||||
int _, block_dim;
|
||||
if constexpr (std::is_same_v<T, CUfunction>) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
|
||||
} else {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
|
||||
}
|
||||
return block_dim;
|
||||
}
|
||||
|
||||
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
|
||||
// assuming each thread handles |work_per_thread| elements of |arr|.
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = max_occupancy_block_dim(kernel);
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
|
||||
} else {
|
||||
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
|
||||
}
|
||||
return std::make_tuple(num_blocks, block_dim);
|
||||
}
|
||||
int work_per_thread = 1);
|
||||
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1) {
|
||||
inline std::tuple<dim3, uint>
|
||||
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
|
||||
return get_launch_args(
|
||||
kernel, arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -11,8 +10,6 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -75,9 +72,11 @@ __global__ void layer_norm(
|
||||
float sum = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS] = {};
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
sum += static_cast<float>(xn[i]);
|
||||
}
|
||||
}
|
||||
sum = BlockReduceT{block, temp}.Sum(sum);
|
||||
|
||||
@@ -88,11 +87,18 @@ __global__ void layer_norm(
|
||||
float normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
normalizer += t * t;
|
||||
if ((index + 1) * N_READS <= axis_size) {
|
||||
auto xn = load_vector<N_READS>(x, index);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
normalizer += t * t;
|
||||
}
|
||||
} else {
|
||||
for (int i = index * N_READS; i < axis_size; ++i) {
|
||||
float t = static_cast<float>(x[i]) - mean;
|
||||
normalizer += t * t;
|
||||
}
|
||||
}
|
||||
}
|
||||
normalizer = BlockReduceT{block, temp}.Sum(normalizer);
|
||||
@@ -101,17 +107,15 @@ __global__ void layer_norm(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T bn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size);
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
auto bn = load_vector<N_READS>(b, index, axis_size, b_stride, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
|
||||
}
|
||||
cub::StoreDirectBlocked(index, out, xn, axis_size);
|
||||
store_vector<N_READS>(out, index, xn, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -144,9 +148,11 @@ __global__ void layer_norm_vjp(
|
||||
float sum = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS] = {};
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
sum += static_cast<float>(xn[i]);
|
||||
}
|
||||
}
|
||||
sum = BlockReduceF{block, temp.f}.Sum(sum);
|
||||
|
||||
@@ -156,19 +162,28 @@ __global__ void layer_norm_vjp(
|
||||
// Normalizer.
|
||||
float3 factors = {};
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T xn[N_READS];
|
||||
T wn[N_READS] = {};
|
||||
T gn[N_READS] = {};
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
|
||||
if ((index + 1) * N_READS <= axis_size) {
|
||||
auto xn = load_vector<N_READS>(x, index);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
}
|
||||
} else {
|
||||
for (int i = index * N_READS; i < axis_size; ++i) {
|
||||
float t = static_cast<float>(x[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
}
|
||||
}
|
||||
}
|
||||
factors = BlockReduceF3{block, temp.f3}.Reduce(factors, plus_f3, {});
|
||||
@@ -180,12 +195,10 @@ __global__ void layer_norm_vjp(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
float wi = wn[i];
|
||||
@@ -195,9 +208,9 @@ __global__ void layer_norm_vjp(
|
||||
wn[i] = gi * xi;
|
||||
}
|
||||
}
|
||||
cub::StoreDirectBlocked(index, gx, xn, axis_size);
|
||||
store_vector<N_READS>(gx, index, xn, axis_size);
|
||||
if constexpr (HAS_W) {
|
||||
cub::StoreDirectBlocked(index, gw, wn, axis_size);
|
||||
store_vector<N_READS>(gw, index, wn, axis_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -258,14 +271,15 @@ void LayerNorm::eval_gpu(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
|
||||
constexpr uint32_t N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
@@ -365,10 +379,10 @@ void LayerNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
constexpr int N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
@@ -378,6 +392,7 @@ void LayerNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -43,20 +43,19 @@ __global__ void logsumexp(const T* in, T* out, int axis_size) {
|
||||
AccT maxval = Limits<AccT>::finite_min();
|
||||
AccT normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
AccT vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
r * BLOCK_DIM + block.thread_rank(),
|
||||
make_cast_iterator<AccT>(in),
|
||||
vals,
|
||||
axis_size,
|
||||
Limits<AccT>::min());
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, Limits<T>::min());
|
||||
prevmax = maxval;
|
||||
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
maxval = max_op(maxval, static_cast<AccT>(vals[i]));
|
||||
}
|
||||
// Online normalizer calculation for softmax:
|
||||
// https://github.com/NVIDIA/online-softmax
|
||||
normalizer = normalizer * softmax_exp(prevmax - maxval);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
normalizer = normalizer + softmax_exp(vals[i] - maxval);
|
||||
normalizer =
|
||||
normalizer + softmax_exp(static_cast<AccT>(vals[i]) - maxval);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -143,14 +142,15 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "logsumexp", [&](auto type_tag) {
|
||||
constexpr int N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::logsumexp<DataType, float, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
159
mlx/backend/cuda/lru_cache.h
Normal file
159
mlx/backend/cuda/lru_cache.h
Normal file
@@ -0,0 +1,159 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
typename K,
|
||||
typename V,
|
||||
template <typename...> typename M = std::unordered_map>
|
||||
class LRUCache {
|
||||
public:
|
||||
using value_type = std::pair<K, V>;
|
||||
using list_type = std::list<value_type>;
|
||||
using iterator = typename list_type::iterator;
|
||||
using const_iterator = typename list_type::const_iterator;
|
||||
using map_type = M<K, iterator>;
|
||||
|
||||
explicit LRUCache(size_t capacity) : capacity_(capacity) {
|
||||
if (capacity == 0) {
|
||||
throw std::runtime_error("LRUCache requires capacity > 0.");
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
size_t capacity() const {
|
||||
return capacity_;
|
||||
}
|
||||
bool empty() const {
|
||||
return vlist_.empty();
|
||||
}
|
||||
|
||||
void resize(size_t new_capacity) {
|
||||
capacity_ = new_capacity;
|
||||
trim();
|
||||
}
|
||||
|
||||
iterator begin() {
|
||||
return vlist_.begin();
|
||||
}
|
||||
const_iterator begin() const {
|
||||
return vlist_.begin();
|
||||
}
|
||||
iterator end() {
|
||||
return vlist_.end();
|
||||
}
|
||||
const_iterator end() const {
|
||||
return vlist_.end();
|
||||
}
|
||||
|
||||
void clear() {
|
||||
map_.clear();
|
||||
vlist_.clear();
|
||||
}
|
||||
|
||||
iterator find(const K& key) {
|
||||
auto it = map_.find(key);
|
||||
if (it == map_.end())
|
||||
return end();
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return it->second;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
std::pair<iterator, bool> emplace(const K& key, U&& value) {
|
||||
auto it = map_.find(key);
|
||||
if (it != map_.end()) {
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
trim();
|
||||
|
||||
return {vlist_.begin(), true};
|
||||
}
|
||||
|
||||
iterator erase(iterator pos) {
|
||||
map_.erase(pos->first);
|
||||
return vlist_.erase(pos);
|
||||
}
|
||||
|
||||
V& operator[](const K& key) {
|
||||
auto it = find(key);
|
||||
if (it == end()) {
|
||||
it = emplace(key, V{}).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
private:
|
||||
void trim() {
|
||||
while (map_.size() > capacity_) {
|
||||
auto last = std::prev(vlist_.end());
|
||||
map_.erase(last->first);
|
||||
vlist_.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
};
|
||||
|
||||
// Turn a POD struct into a container key by doing bytes compare.
|
||||
template <typename T>
|
||||
struct BytesKey {
|
||||
T pod;
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
BytesKey(T pod) : pod(std::move(pod)) {}
|
||||
|
||||
BytesKey(const BytesKey& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
BytesKey(BytesKey&& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
bool operator==(const BytesKey& other) const {
|
||||
auto* ptr1 = reinterpret_cast<const uint8_t*>(&pod);
|
||||
auto* ptr2 = reinterpret_cast<const uint8_t*>(&other.pod);
|
||||
return memcmp(ptr1, ptr2, sizeof(T)) == 0;
|
||||
}
|
||||
};
|
||||
|
||||
// Compute hash according to the bytes value of T.
|
||||
template <typename T>
|
||||
struct BytesHash {
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
size_t operator()(const T& pod) const {
|
||||
auto* ptr = reinterpret_cast<const uint8_t*>(&pod);
|
||||
uint32_t value = 0x811C9DC5;
|
||||
for (int i = 0; i < sizeof(T); ++i) {
|
||||
value ^= ptr[i];
|
||||
value *= 0x01000193;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename K, typename V>
|
||||
using BytesKeyHashMap = std::unordered_map<K, V, BytesHash<K>>;
|
||||
|
||||
template <typename K, typename V>
|
||||
using LRUBytesKeyCache = LRUCache<BytesKey<K>, V, BytesKeyHashMap>;
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -2,289 +2,17 @@
|
||||
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <fmt/format.h>
|
||||
#include "mlx/backend/cuda/gemms/steel_gemm.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
|
||||
void check_cublas_error(const char* name, cublasStatus_t err) {
|
||||
if (err != CUBLAS_STATUS_SUCCESS) {
|
||||
// TODO: Use cublasGetStatusString when it is widely available.
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
|
||||
}
|
||||
}
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
~CublasPreference() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
|
||||
class MatMul {
|
||||
public:
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()), pref_(cublas_preference(device)) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cuda_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: MatMul(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
~MatMul() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
void* a,
|
||||
void* b,
|
||||
void* c = nullptr,
|
||||
float alpha = 1,
|
||||
float beta = 0) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
out_desc_,
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
private:
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order =
|
||||
transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
@@ -353,10 +81,43 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
if (out.dtype() == float16 && batch_count == 1 && !a_transposed &&
|
||||
b_transposed) {
|
||||
return dispatch_steel_gemm(
|
||||
/* const Stream& s = */ s,
|
||||
/* cu::CommandEncoder& encoder = */ encoder,
|
||||
/* const array& a = */ a,
|
||||
/* const array& b = */ b,
|
||||
/* array& d = */ out,
|
||||
/* int M = */ M,
|
||||
/* int N = */ N,
|
||||
/* int K = */ K,
|
||||
/* int lda = */ lda,
|
||||
/* int ldb = */ ldb,
|
||||
/* int ldd = */ N,
|
||||
/* bool a_transposed = */ a_transposed,
|
||||
/* bool b_transposed = */ b_transposed);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::MatMul matmul(
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -370,28 +131,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -459,7 +199,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::MatMul matmul(
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -475,42 +215,18 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
alpha_,
|
||||
beta_);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha_,
|
||||
beta_);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
c_batch_strides,
|
||||
alpha_,
|
||||
beta_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
55
mlx/backend/cuda/primitives.cpp
Normal file
55
mlx/backend/cuda/primitives.cpp
Normal file
@@ -0,0 +1,55 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define NO_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
#define NO_GPU_USE_FALLBACK(func) \
|
||||
bool func::use_fallback(Stream s) { \
|
||||
return true; \
|
||||
} \
|
||||
NO_GPU_MULTI(func)
|
||||
|
||||
#define NO_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace fast {
|
||||
NO_GPU_MULTI(CustomKernel)
|
||||
} // namespace fast
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
} // namespace distributed
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,104 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/arange.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Arange::eval_gpu");
|
||||
assert(inputs.size() == 0);
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
}
|
||||
|
||||
bool fast::ScaledDotProductAttention::use_fallback(
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
bool has_mask,
|
||||
bool has_arr_mask,
|
||||
bool do_causal,
|
||||
Stream s) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#define NO_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
#define NO_GPU_USE_FALLBACK(func) \
|
||||
bool func::use_fallback(Stream s) { \
|
||||
return true; \
|
||||
} \
|
||||
NO_GPU_MULTI(func)
|
||||
|
||||
#define NO_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(Convolution)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace fast {
|
||||
NO_GPU(ScaledDotProductAttention)
|
||||
NO_GPU_MULTI(CustomKernel)
|
||||
} // namespace fast
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
} // namespace distributed
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -2,30 +2,17 @@
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_pack_factor() {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_bytes_per_pack() {
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
||||
}
|
||||
|
||||
template <typename T, int group_size, int bits>
|
||||
__global__ void
|
||||
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
|
||||
@@ -240,144 +227,102 @@ __global__ void affine_dequantize(
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
namespace {
|
||||
|
||||
inline array ensure_row_contiguous(
|
||||
const array& x,
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (!x.flags().row_contiguous) {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
template <typename F>
|
||||
void dispatch_groups(int group_size, F&& f) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
f(std::integral_constant<int, 32>{});
|
||||
break;
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bits(int bits, F&& f) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
case 5:
|
||||
f(std::integral_constant<int, 5>{});
|
||||
break;
|
||||
case 6:
|
||||
f(std::integral_constant<int, 6>{});
|
||||
break;
|
||||
case 8:
|
||||
f(std::integral_constant<int, 8>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& w_pre = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
auto w = ensure_row_contiguous(w_pre, enc, s);
|
||||
enc.set_input_array(w);
|
||||
if (dequantize_) {
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(out);
|
||||
} else {
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
enc.set_output_array(out);
|
||||
enc.set_output_array(scales);
|
||||
enc.set_output_array(biases);
|
||||
}
|
||||
|
||||
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
|
||||
|
||||
// Treat uint32 as uint8 in kernel
|
||||
int uint8_per_uint32 = 4;
|
||||
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
|
||||
: bits_ == 6 ? 4
|
||||
: 8 / bits_;
|
||||
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
|
||||
size_t size =
|
||||
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
|
||||
// Calculate the number of elements per thread
|
||||
int per_thread = group_size_ / WARP_SIZE;
|
||||
size_t size = w.size() / per_thread;
|
||||
|
||||
// Calculate the thread grid that we need to launch
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() /= per_thread;
|
||||
|
||||
if (dequantize_) {
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
} else {
|
||||
grid_shape.back() /= per_thread;
|
||||
}
|
||||
|
||||
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
|
||||
enc.set_input_array(w);
|
||||
enc.set_output_array(wq);
|
||||
enc.set_output_array(scales);
|
||||
enc.set_output_array(biases);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if (dequantize_) {
|
||||
auto kernel =
|
||||
cu::affine_dequantize<DataType, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
w.data<uint8_t>(),
|
||||
inputs[1].data<DataType>(),
|
||||
inputs[2].data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
out.size());
|
||||
} else {
|
||||
auto kernel =
|
||||
cu::affine_quantize<DataType, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
w.data<DataType>(),
|
||||
out.data<uint8_t>(),
|
||||
outputs[1].data<DataType>(),
|
||||
outputs[2].data<DataType>(),
|
||||
w.size());
|
||||
}
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
w.data<T>(),
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
|
||||
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
|
||||
constexpr int uint8_per_uint32 = 4;
|
||||
int packs_per_int;
|
||||
switch (bits_) {
|
||||
case 3:
|
||||
case 5:
|
||||
packs_per_int = 8;
|
||||
break;
|
||||
case 6:
|
||||
packs_per_int = 4;
|
||||
break;
|
||||
default:
|
||||
packs_per_int = 8 / bits_;
|
||||
}
|
||||
|
||||
size_t size = w.size() / packs_per_int;
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
|
||||
enc.set_input_array(wq);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(w);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
80
mlx/backend/cuda/quantized/quantized.cpp
Normal file
80
mlx/backend/cuda/quantized/quantized.cpp
Normal file
@@ -0,0 +1,80 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/quantized/quantized.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
inline array ensure_row_contiguous(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (!x.flags().row_contiguous) {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
inline array ensure_row_contiguous_matrix(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (x.ndim() < 2) {
|
||||
if (x.strides()[0] == 1) {
|
||||
return x;
|
||||
}
|
||||
} else {
|
||||
auto stride_0 = x.strides()[x.ndim() - 2];
|
||||
auto stride_1 = x.strides()[x.ndim() - 1];
|
||||
if (stride_0 == x.shape(-1) && stride_1 == 1) {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("AffineQuantize::eval_gpu");
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
if (dequantize_) {
|
||||
auto wq = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
auto& w = outputs[0];
|
||||
|
||||
w.set_data(allocator::malloc(w.nbytes()));
|
||||
|
||||
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
auto w = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto& wq = outputs[0];
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
|
||||
wq.set_data(allocator::malloc(wq.nbytes()));
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
27
mlx/backend/cuda/quantized/quantized.h
Normal file
27
mlx/backend/cuda/quantized/quantized.h
Normal file
@@ -0,0 +1,27 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
||||
59
mlx/backend/cuda/quantized/quantized_utils.cuh
Normal file
59
mlx/backend/cuda/quantized/quantized_utils.cuh
Normal file
@@ -0,0 +1,59 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_pack_factor() {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_bytes_per_pack() {
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename F>
|
||||
void dispatch_groups(int group_size, F&& f) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
f(std::integral_constant<int, 32>{});
|
||||
break;
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bits(int bits, F&& f) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
case 5:
|
||||
f(std::integral_constant<int, 5>{});
|
||||
break;
|
||||
case 6:
|
||||
f(std::integral_constant<int, 6>{});
|
||||
break;
|
||||
case 8:
|
||||
f(std::integral_constant<int, 8>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -170,6 +170,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbitsc,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
@@ -180,6 +181,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbits,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
|
||||
@@ -5,8 +5,6 @@
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/fill.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
|
||||
@@ -120,6 +120,7 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
intermediate.data<U>(),
|
||||
block_step,
|
||||
@@ -146,6 +147,7 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
out.data<U>(),
|
||||
block_step,
|
||||
|
||||
@@ -230,7 +230,7 @@ void col_reduce_looped(
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, indata, out.data<U>(), args);
|
||||
kernel, grid, blocks, 0, indata, out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -41,7 +41,8 @@ void init_reduce(
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
|
||||
grid.x = (grid.x + 1023) / 1024;
|
||||
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, out.data<U>(), out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -269,7 +269,7 @@ void row_reduce_simple(
|
||||
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), size);
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -322,7 +322,7 @@ void row_reduce_looped(
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), args);
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -11,8 +10,6 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -58,7 +55,7 @@ __global__ void rms_norm(
|
||||
const T* w,
|
||||
T* out,
|
||||
float eps,
|
||||
int32_t axis_size,
|
||||
uint32_t axis_size,
|
||||
int64_t w_stride) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
@@ -73,8 +70,8 @@ __global__ void rms_norm(
|
||||
float normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
normalizer += t * t;
|
||||
@@ -86,15 +83,14 @@ __global__ void rms_norm(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float norm = static_cast<float>(xn[i]) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm);
|
||||
float y = static_cast<float>(xn[i]) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(y);
|
||||
}
|
||||
cub::StoreDirectBlocked(index, out, xn, axis_size);
|
||||
store_vector<N_READS>(out, index, xn, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -126,13 +122,10 @@ __global__ void rms_norm_vjp(
|
||||
// Normalizer.
|
||||
float2 factors = {};
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T xn[N_READS];
|
||||
T wn[N_READS] = {};
|
||||
T gn[N_READS] = {};
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
float wi = wn[i];
|
||||
@@ -149,12 +142,9 @@ __global__ void rms_norm_vjp(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = xn[i];
|
||||
float wi = wn[i];
|
||||
@@ -164,9 +154,9 @@ __global__ void rms_norm_vjp(
|
||||
wn[i] = static_cast<T>(gi * xi * normalizer);
|
||||
}
|
||||
}
|
||||
cub::StoreDirectBlocked(index, gx, xn, axis_size);
|
||||
store_vector<N_READS>(gx, index, xn, axis_size);
|
||||
if constexpr (HAS_W) {
|
||||
cub::StoreDirectBlocked(index, gw, wn, axis_size);
|
||||
store_vector<N_READS>(gw, index, wn, axis_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -224,14 +214,15 @@ void RMSNorm::eval_gpu(
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
|
||||
constexpr uint32_t N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::rms_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
@@ -313,11 +304,10 @@ void RMSNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
constexpr int N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::rms_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
@@ -327,6 +317,7 @@ void RMSNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -325,6 +325,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -341,6 +342,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -360,6 +362,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -381,6 +384,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
|
||||
781
mlx/backend/cuda/scaled_dot_product_attention.cu
Normal file
781
mlx/backend/cuda/scaled_dot_product_attention.cu
Normal file
@@ -0,0 +1,781 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/transforms_impl.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
#define PRAGMA_LOOP_UNROLL #pragma unroll
|
||||
|
||||
struct AttnParams {
|
||||
int B;
|
||||
int H;
|
||||
int D;
|
||||
|
||||
int qL;
|
||||
int kL;
|
||||
|
||||
int gqa_factor;
|
||||
float scale;
|
||||
|
||||
int64_t Q_strides[3];
|
||||
int64_t K_strides[3];
|
||||
int64_t V_strides[3];
|
||||
int64_t O_strides[3];
|
||||
};
|
||||
|
||||
template <typename T, bool do_causal, int D>
|
||||
__global__ void kernel_sdpav_1pass(
|
||||
const T* Q,
|
||||
const T* K,
|
||||
const T* V,
|
||||
T* O,
|
||||
__grid_constant__ const AttnParams params) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
|
||||
constexpr int v_per_thread = D / BD;
|
||||
|
||||
const int inner_k_stride = BN * int(params.K_strides[2]);
|
||||
const int inner_v_stride = BN * int(params.V_strides[2]);
|
||||
|
||||
typedef float U;
|
||||
|
||||
U q[v_per_thread];
|
||||
U k[v_per_thread];
|
||||
U o[v_per_thread];
|
||||
|
||||
__shared__ U outputs[BN][BD + 1];
|
||||
__shared__ U max_scores[BN];
|
||||
__shared__ U sum_exp_scores[BN];
|
||||
|
||||
const U scale_log2 = params.scale * 1.44269504089f;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
|
||||
const int lane_idx = warp.thread_rank();
|
||||
const int warp_idx = warp.meta_group_rank();
|
||||
|
||||
// Adjust to thread block and thread
|
||||
const int batch_idx = blockIdx.z;
|
||||
const int head_idx = blockIdx.x;
|
||||
const int kv_head_idx = head_idx / params.gqa_factor;
|
||||
|
||||
const int q_seq_idx = blockIdx.y;
|
||||
const int kv_seq_idx = warp_idx;
|
||||
|
||||
Q += batch_idx * params.Q_strides[0] + // Batch
|
||||
head_idx * params.Q_strides[1] + // Head
|
||||
q_seq_idx * params.Q_strides[2]; // Sequence
|
||||
|
||||
K += batch_idx * params.K_strides[0] + // Batch
|
||||
kv_head_idx * params.K_strides[1] + // Head
|
||||
kv_seq_idx * params.K_strides[2]; // Sequence
|
||||
|
||||
V += batch_idx * params.V_strides[0] + // Batch
|
||||
kv_head_idx * params.V_strides[1] + // Head
|
||||
kv_seq_idx * params.V_strides[2]; // Sequence
|
||||
|
||||
O += batch_idx * params.O_strides[0] + // Batch
|
||||
head_idx * params.O_strides[1] + // Head
|
||||
q_seq_idx * params.O_strides[2]; // Sequence
|
||||
|
||||
// Read the query and 0 the output accumulator
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
q[i] = scale_log2 * static_cast<U>(Q[v_per_thread * lane_idx + i]);
|
||||
}
|
||||
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -INFINITY;
|
||||
U sum_exp_score = 0.f;
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += BN) {
|
||||
bool use_key = true;
|
||||
if constexpr (do_causal) {
|
||||
use_key = i <= (params.kL - params.qL + q_seq_idx);
|
||||
}
|
||||
|
||||
if (use_key) {
|
||||
// Read the key
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
k[j] = K[v_per_thread * lane_idx + j];
|
||||
}
|
||||
|
||||
// Compute the i-th score
|
||||
U score = 0.f;
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
score += q[j] * k[j];
|
||||
}
|
||||
|
||||
// Warp sum
|
||||
score = cg::reduce(warp, score, cg::plus<U>());
|
||||
|
||||
// Update the accumulators
|
||||
U new_max = max(max_score, score);
|
||||
U factor = exp2f(max_score - new_max);
|
||||
U exp_score = exp2f(score - new_max);
|
||||
|
||||
max_score = new_max;
|
||||
sum_exp_score = sum_exp_score * factor + exp_score;
|
||||
|
||||
// Update the output accumulator
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
o[j] = o[j] * factor +
|
||||
exp_score * static_cast<U>(V[v_per_thread * lane_idx + j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Move the pointers to the next kv
|
||||
K += inner_k_stride;
|
||||
V += inner_v_stride;
|
||||
}
|
||||
|
||||
if (lane_idx == 0) {
|
||||
max_scores[warp_idx] = max_score;
|
||||
sum_exp_scores[warp_idx] = sum_exp_score;
|
||||
}
|
||||
block.sync();
|
||||
|
||||
max_score = max_scores[lane_idx];
|
||||
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
|
||||
U factor = exp2f(max_score - new_max);
|
||||
sum_exp_score =
|
||||
cg::reduce(warp, sum_exp_scores[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
outputs[lane_idx][warp_idx] = o[i];
|
||||
block.sync();
|
||||
U ot = outputs[warp_idx][lane_idx] * factor;
|
||||
o[i] = cg::reduce(warp, ot, cg::plus<U>()) * sum_exp_score;
|
||||
block.sync();
|
||||
}
|
||||
|
||||
// And write the output
|
||||
if (lane_idx == 0) {
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
O[v_per_thread * warp_idx + i] = static_cast<T>(o[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, bool do_causal, int D>
|
||||
__global__ void kernel_sdpav_2pass_1(
|
||||
const T* Q,
|
||||
const T* K,
|
||||
const T* V,
|
||||
float* partials,
|
||||
float* sums,
|
||||
float* maxs,
|
||||
__grid_constant__ const AttnParams params) {
|
||||
constexpr int BN = 8;
|
||||
constexpr int BD = 32;
|
||||
constexpr int blocks = 32;
|
||||
|
||||
constexpr int v_per_thread = D / BD;
|
||||
|
||||
const int inner_k_stride = blocks * BN * int(params.K_strides[2]);
|
||||
const int inner_v_stride = blocks * BN * int(params.V_strides[2]);
|
||||
|
||||
typedef float U;
|
||||
|
||||
U q[v_per_thread];
|
||||
U k[v_per_thread];
|
||||
U o[v_per_thread];
|
||||
|
||||
__shared__ U outputs[BN][BD + 1];
|
||||
__shared__ U max_scores[BN];
|
||||
__shared__ U sum_exp_scores[BN];
|
||||
|
||||
const U scale_log2 = params.scale * 1.44269504089f;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
|
||||
const int lane_idx = warp.thread_rank();
|
||||
const int warp_idx = warp.meta_group_rank();
|
||||
|
||||
// Adjust to thread block and thread
|
||||
const int batch_idx = blockIdx.z / blocks;
|
||||
const int block_idx = blockIdx.z % blocks;
|
||||
const int head_idx = blockIdx.x;
|
||||
const int kv_head_idx = head_idx / params.gqa_factor;
|
||||
|
||||
const int q_seq_idx = blockIdx.y;
|
||||
const int kv_seq_idx = block_idx * BN + warp_idx;
|
||||
|
||||
Q += batch_idx * params.Q_strides[0] + // Batch
|
||||
head_idx * params.Q_strides[1] + // Head
|
||||
q_seq_idx * params.Q_strides[2]; // Sequence
|
||||
|
||||
K += batch_idx * params.K_strides[0] + // Batch
|
||||
kv_head_idx * params.K_strides[1] + // Head
|
||||
kv_seq_idx * params.K_strides[2]; // Sequence
|
||||
|
||||
V += batch_idx * params.V_strides[0] + // Batch
|
||||
kv_head_idx * params.V_strides[1] + // Head
|
||||
kv_seq_idx * params.V_strides[2]; // Sequence
|
||||
|
||||
const int p_stride_s = blocks;
|
||||
const int p_stride_h = params.qL * p_stride_s;
|
||||
const int p_stride_b = params.H * p_stride_h;
|
||||
const int p_offset = batch_idx * p_stride_b + // Batch
|
||||
head_idx * p_stride_h + // Head
|
||||
q_seq_idx * p_stride_s + // Sequence
|
||||
block_idx; // Block
|
||||
|
||||
partials += p_offset * D;
|
||||
sums += p_offset;
|
||||
maxs += p_offset;
|
||||
|
||||
// Read the query and 0 the output accumulator
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
q[i] = scale_log2 * static_cast<U>(Q[v_per_thread * lane_idx + i]);
|
||||
}
|
||||
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -1e9;
|
||||
U sum_exp_score = 0.f;
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += blocks * BN) {
|
||||
bool use_key = true;
|
||||
if constexpr (do_causal) {
|
||||
use_key = i <= (params.kL - params.qL + q_seq_idx);
|
||||
}
|
||||
|
||||
if (use_key) {
|
||||
// Read the key
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
k[j] = K[v_per_thread * lane_idx + j];
|
||||
}
|
||||
|
||||
// Compute the i-th score
|
||||
U score = 0.f;
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
score += q[j] * k[j];
|
||||
}
|
||||
|
||||
// Warp sum
|
||||
score = cg::reduce(warp, score, cg::plus<U>());
|
||||
|
||||
// Update the accumulators
|
||||
U new_max = max(max_score, score);
|
||||
U factor = exp2f(max_score - new_max);
|
||||
U exp_score = exp2f(score - new_max);
|
||||
|
||||
max_score = new_max;
|
||||
sum_exp_score = sum_exp_score * factor + exp_score;
|
||||
|
||||
// Update the output accumulator
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 0; j < v_per_thread; j++) {
|
||||
o[j] = o[j] * factor +
|
||||
exp_score * static_cast<U>(V[v_per_thread * lane_idx + j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Move the pointers to the next kv
|
||||
K += inner_k_stride;
|
||||
V += inner_v_stride;
|
||||
}
|
||||
|
||||
if (lane_idx == 0) {
|
||||
max_scores[warp_idx] = max_score;
|
||||
sum_exp_scores[warp_idx] = sum_exp_score;
|
||||
}
|
||||
|
||||
block.sync();
|
||||
|
||||
max_score = (lane_idx < BN) ? max_scores[lane_idx] : -1e9;
|
||||
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
|
||||
U factor = exp2f(max_score - new_max);
|
||||
sum_exp_score = (lane_idx < BN) ? sum_exp_scores[lane_idx] : 0.f;
|
||||
sum_exp_score = cg::reduce(warp, sum_exp_score * factor, cg::plus<U>());
|
||||
|
||||
// Write the sum and new max
|
||||
if (warp_idx == 0) {
|
||||
sums[0] = sum_exp_score;
|
||||
maxs[0] = new_max;
|
||||
}
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
auto ff = exp2f(max_scores[warp_idx] - new_max);
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
outputs[warp_idx][lane_idx] = o[i] * ff;
|
||||
block.sync();
|
||||
|
||||
if (warp_idx == 0) {
|
||||
U ot = outputs[0][lane_idx];
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int j = 1; j < BN; j++) {
|
||||
ot += outputs[j][lane_idx];
|
||||
warp.sync();
|
||||
}
|
||||
o[i] = ot;
|
||||
}
|
||||
block.sync();
|
||||
}
|
||||
|
||||
if (warp_idx == 0) {
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
partials[v_per_thread * lane_idx + i] = o[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, bool do_causal, int D>
|
||||
__global__ void kernel_sdpav_2pass_2(
|
||||
const float* partials,
|
||||
const float* sums,
|
||||
const float* maxs,
|
||||
T* O,
|
||||
__grid_constant__ const AttnParams params) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
constexpr int blocks = 32;
|
||||
|
||||
constexpr int v_per_thread = D / BD;
|
||||
|
||||
typedef float U;
|
||||
|
||||
U o[v_per_thread];
|
||||
__shared__ U outputs[BN][BD + 1];
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
|
||||
const int lane_idx = warp.thread_rank();
|
||||
const int warp_idx = warp.meta_group_rank();
|
||||
|
||||
// Adjust to thread block and thread
|
||||
const int batch_idx = blockIdx.z;
|
||||
const int head_idx = blockIdx.x;
|
||||
const int q_seq_idx = blockIdx.y;
|
||||
|
||||
const int p_stride_s = blocks;
|
||||
const int p_stride_h = params.qL * p_stride_s;
|
||||
const int p_stride_b = params.H * p_stride_h;
|
||||
const int p_offset = batch_idx * p_stride_b + // Batch
|
||||
head_idx * p_stride_h + // Head
|
||||
q_seq_idx * p_stride_s; // Sequence
|
||||
|
||||
partials += p_offset * D + warp_idx * D;
|
||||
sums += p_offset;
|
||||
maxs += p_offset;
|
||||
|
||||
O += batch_idx * params.O_strides[0] + // Batch
|
||||
head_idx * params.O_strides[1] + // Head
|
||||
q_seq_idx * params.O_strides[2]; // Sequence
|
||||
|
||||
U max_score = maxs[lane_idx];
|
||||
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
|
||||
U factor = exp2f(max_score - new_max);
|
||||
U sum_exp_score = cg::reduce(warp, sums[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
o[i] = partials[v_per_thread * lane_idx + i];
|
||||
}
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
outputs[lane_idx][warp_idx] = o[i];
|
||||
block.sync();
|
||||
U ot = outputs[warp_idx][lane_idx] * factor;
|
||||
o[i] = cg::reduce(warp, ot, cg::plus<U>()) * sum_exp_score;
|
||||
block.sync();
|
||||
}
|
||||
|
||||
// And write the output
|
||||
if (lane_idx == 0) {
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
O[v_per_thread * warp_idx + i] = static_cast<T>(o[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename F>
|
||||
void dispatch_headdim(int n, F&& f) {
|
||||
switch (n) {
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 96:
|
||||
f(std::integral_constant<int, 96>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void sdpa_vector_1pass_fallback(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
encoder.set_output_array(o);
|
||||
|
||||
cu::AttnParams params{
|
||||
/* int B = */ q.shape(0),
|
||||
/* int H = */ q.shape(1),
|
||||
/* int D = */ q.shape(3),
|
||||
|
||||
/* int qL = */ q.shape(2),
|
||||
/* int kL = */ k.shape(2),
|
||||
|
||||
/* int gqa_factor = */ q.shape(1) / k.shape(1),
|
||||
/* float scale = */ scale,
|
||||
|
||||
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
|
||||
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
|
||||
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
|
||||
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
|
||||
|
||||
dim3 grid_dim(params.H, params.qL, params.B);
|
||||
dim3 block_dim(1024, 1, 1);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_1pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
auto kernel =
|
||||
cu::kernel_sdpav_1pass<DataType, do_causal.value, headdim.value>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid_dim,
|
||||
block_dim,
|
||||
0,
|
||||
q.data<DataType>(),
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
o.data<DataType>(),
|
||||
params);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void sdpa_vector_2pass_fallback(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
cu::AttnParams params{
|
||||
/* int B = */ q.shape(0),
|
||||
/* int H = */ q.shape(1),
|
||||
/* int D = */ q.shape(3),
|
||||
|
||||
/* int qL = */ q.shape(2),
|
||||
/* int kL = */ k.shape(2),
|
||||
|
||||
/* int gqa_factor = */ q.shape(1) / k.shape(1),
|
||||
/* float scale = */ scale,
|
||||
|
||||
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
|
||||
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
|
||||
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
|
||||
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
|
||||
|
||||
// Allocate the intermediates
|
||||
int blocks = 32;
|
||||
|
||||
Shape intermediate_shape;
|
||||
intermediate_shape.reserve(o.ndim() + 1);
|
||||
intermediate_shape.insert(
|
||||
intermediate_shape.end(), o.shape().begin(), o.shape().end() - 1);
|
||||
intermediate_shape.push_back(blocks);
|
||||
intermediate_shape.push_back(o.shape().back());
|
||||
|
||||
array intermediate(intermediate_shape, float32, nullptr, {});
|
||||
intermediate_shape.pop_back();
|
||||
array sums(intermediate_shape, float32, nullptr, {});
|
||||
array maxs(std::move(intermediate_shape), float32, nullptr, {});
|
||||
|
||||
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
||||
sums.set_data(allocator::malloc(sums.nbytes()));
|
||||
maxs.set_data(allocator::malloc(maxs.nbytes()));
|
||||
|
||||
encoder.add_temporary(intermediate);
|
||||
encoder.add_temporary(sums);
|
||||
encoder.add_temporary(maxs);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_2pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
{
|
||||
auto kernel = cu::
|
||||
kernel_sdpav_2pass_1<DataType, do_causal.value, headdim.value>;
|
||||
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
encoder.set_output_array(intermediate);
|
||||
encoder.set_output_array(sums);
|
||||
encoder.set_output_array(maxs);
|
||||
|
||||
dim3 grid_dim(params.H, params.qL, params.B * 32);
|
||||
dim3 block_dim(8 * 32, 1, 1);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid_dim,
|
||||
block_dim,
|
||||
0,
|
||||
q.data<DataType>(),
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
intermediate.data<float>(),
|
||||
sums.data<float>(),
|
||||
maxs.data<float>(),
|
||||
params);
|
||||
}
|
||||
|
||||
{
|
||||
auto kernel = cu::
|
||||
kernel_sdpav_2pass_2<DataType, do_causal.value, headdim.value>;
|
||||
|
||||
encoder.set_input_array(intermediate);
|
||||
encoder.set_input_array(sums);
|
||||
encoder.set_input_array(maxs);
|
||||
encoder.set_output_array(o);
|
||||
|
||||
dim3 grid_dim(params.H, params.qL, params.B);
|
||||
dim3 block_dim(1024, 1, 1);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid_dim,
|
||||
block_dim,
|
||||
0,
|
||||
intermediate.data<float>(),
|
||||
sums.data<float>(),
|
||||
maxs.data<float>(),
|
||||
o.data<DataType>(),
|
||||
params);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void sdpa_vector_fallback(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
int kL = k.shape(2);
|
||||
|
||||
if (kL > 1024) {
|
||||
return sdpa_vector_2pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
} else {
|
||||
return sdpa_vector_1pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace fast {
|
||||
|
||||
bool ScaledDotProductAttention::use_fallback(
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
bool has_mask,
|
||||
bool has_arr_mask,
|
||||
bool do_causal,
|
||||
Stream s) {
|
||||
if (detail::in_grad_tracing()) {
|
||||
return true;
|
||||
}
|
||||
if (s.device == Device::cpu) {
|
||||
return true;
|
||||
}
|
||||
|
||||
const int value_head_dim = v.shape(-1);
|
||||
const int query_head_dim = q.shape(-1);
|
||||
const int query_sequence_length = q.shape(2);
|
||||
const int key_sequence_length = k.shape(2);
|
||||
|
||||
const bool sdpa_supported_head_dim = query_head_dim == value_head_dim &&
|
||||
(query_head_dim == 64 || query_head_dim == 96 || query_head_dim == 128);
|
||||
|
||||
const bool supported_vector_config =
|
||||
sdpa_supported_head_dim && query_sequence_length < 4;
|
||||
|
||||
const bool supported_config = supported_vector_config;
|
||||
|
||||
return has_arr_mask || !supported_config;
|
||||
}
|
||||
|
||||
void ScaledDotProductAttention::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out) {
|
||||
nvtx3::scoped_range r("ScaledDotProductAttention::eval_gpu");
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
auto& q_pre = inputs[0];
|
||||
auto& k_pre = inputs[1];
|
||||
auto& v_pre = inputs[2];
|
||||
auto& o = out;
|
||||
|
||||
std::vector<array> copies;
|
||||
|
||||
// Define some copy functions to ensure the layout of the inputs is as
|
||||
// expected.
|
||||
copies.reserve(3);
|
||||
auto copy_unless = [&copies, &s](
|
||||
auto predicate, const array& arr) -> const array& {
|
||||
if (!predicate(arr)) {
|
||||
array arr_copy = contiguous_copy_gpu(arr, s);
|
||||
copies.push_back(std::move(arr_copy));
|
||||
return copies.back();
|
||||
} else {
|
||||
return arr;
|
||||
}
|
||||
};
|
||||
|
||||
// We are in vector mode ie single query
|
||||
if (q_pre.shape(2) < 4) {
|
||||
auto q_copy_unless = [](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return true;
|
||||
}
|
||||
auto& strides = arr.strides();
|
||||
auto& shape = arr.shape();
|
||||
if (shape[0] == 1 || shape[1] == 1) {
|
||||
// If either the batch or head dimension is a singleton, the other can
|
||||
// be transposed with the sequence dimension
|
||||
auto bidx = shape[0] == 1 ? 1 : 0;
|
||||
return (strides[3] == 1) && (strides[2] == shape[3] * shape[bidx]) &&
|
||||
(strides[bidx] == shape[3]);
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
auto kv_copy_unless = [](const array& arr) {
|
||||
// keys and values should be copied if:
|
||||
// - the last dimension is not contiguous
|
||||
// - the batch and head dim are not contiguous
|
||||
auto& strides = arr.strides();
|
||||
auto& shape = arr.shape();
|
||||
if (strides.back() != 1) {
|
||||
return false;
|
||||
}
|
||||
if (shape[0] == 1 || shape[1] == 1) {
|
||||
return true;
|
||||
}
|
||||
return (strides[0] == strides[1] * shape[1]);
|
||||
};
|
||||
|
||||
const auto& q = copy_unless(q_copy_unless, q_pre);
|
||||
const auto& k = copy_unless(kv_copy_unless, k_pre);
|
||||
const auto& v = copy_unless(kv_copy_unless, v_pre);
|
||||
|
||||
for (const auto& cp : copies) {
|
||||
encoder.add_temporary(cp);
|
||||
}
|
||||
|
||||
// Donate the query if possible
|
||||
if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) {
|
||||
o.copy_shared_buffer(q);
|
||||
} else {
|
||||
int64_t str_oD = 1;
|
||||
int64_t str_oH = o.shape(3);
|
||||
int64_t str_oL = o.shape(1) * str_oH;
|
||||
int64_t str_oB = o.shape(2) * str_oL;
|
||||
size_t data_size = o.shape(0) * str_oB;
|
||||
|
||||
array::Flags flags{
|
||||
/* bool contiguous = */ 1,
|
||||
/* bool row_contiguous = */ o.shape(2) == 1,
|
||||
/* bool col_contiguous = */ 0,
|
||||
};
|
||||
|
||||
o.set_data(
|
||||
allocator::malloc(o.nbytes()),
|
||||
data_size,
|
||||
{str_oB, str_oH, str_oL, str_oD},
|
||||
flags);
|
||||
}
|
||||
|
||||
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
|
||||
}
|
||||
|
||||
// Full attention mode should never reach here
|
||||
else {
|
||||
throw std::runtime_error("Doesn't support matrix yet.");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace fast
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -414,6 +414,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
in.data_size() / axis_size,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size);
|
||||
@@ -443,6 +444,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size,
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -45,20 +44,21 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
AccT maxval = Limits<AccT>::finite_min();
|
||||
AccT normalizer = cast_to<AccT>(0);
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
AccT vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
r * BLOCK_DIM + block.thread_rank(),
|
||||
make_cast_iterator<AccT>(in),
|
||||
vals,
|
||||
axis_size,
|
||||
Limits<AccT>::min());
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, Limits<T>::min());
|
||||
prevmax = maxval;
|
||||
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
maxval = max_op(maxval, static_cast<AccT>(vals[i]));
|
||||
}
|
||||
|
||||
// Online normalizer calculation for softmax:
|
||||
// https://github.com/NVIDIA/online-softmax
|
||||
normalizer = normalizer * softmax_exp(prevmax - maxval);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
normalizer = normalizer + softmax_exp(vals[i] - maxval);
|
||||
normalizer =
|
||||
normalizer + softmax_exp(static_cast<AccT>(vals[i]) - maxval);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,12 +95,11 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
// Write output.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(index, in, vals, axis_size);
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, T(0));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = softmax_exp(static_cast<AccT>(vals[i]) - maxval) * normalizer;
|
||||
}
|
||||
cub::StoreDirectBlocked(index, out, vals, axis_size);
|
||||
store_vector<N_READS>(out, index, vals, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -141,9 +140,9 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "softmax", [&](auto type_tag) {
|
||||
constexpr int N_READS = 4;
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::softmax<DataType, DataType, block_dim(), N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, block_dim(), N_READS>;
|
||||
@@ -152,6 +151,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
@@ -13,7 +13,6 @@
|
||||
#include <cub/device/device_segmented_sort.cuh>
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -27,29 +26,6 @@ struct ModOp {
|
||||
}
|
||||
};
|
||||
|
||||
// We can not use any op in eval, make an utility.
|
||||
array swapaxes_in_eval(const array& in, int axis1, int axis2) {
|
||||
std::vector<int> axes(in.ndim());
|
||||
std::iota(axes.begin(), axes.end(), 0);
|
||||
std::swap(axes[axis1], axes[axis2]);
|
||||
// TODO: Share the code with Transpose::eval.
|
||||
Shape shape(axes.size());
|
||||
Strides strides(in.ndim());
|
||||
for (size_t ax = 0; ax < axes.size(); ++ax) {
|
||||
shape[ax] = in.shape()[axes[ax]];
|
||||
strides[ax] = in.strides()[axes[ax]];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (flags.contiguous) {
|
||||
auto [_, row_contiguous, col_contiguous] = check_contiguity(shape, strides);
|
||||
flags.row_contiguous = row_contiguous;
|
||||
flags.col_contiguous = col_contiguous;
|
||||
}
|
||||
array out(shape, in.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
struct OffsetTransform {
|
||||
int nsort;
|
||||
|
||||
|
||||
9
mlx/backend/cuda/steel/defines.cuh
Normal file
9
mlx/backend/cuda/steel/defines.cuh
Normal file
@@ -0,0 +1,9 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#define MLX_UNROLL _Pragma("unroll")
|
||||
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
||||
#define MLX_CUDA_SM_80_ENABLED
|
||||
#endif
|
||||
101
mlx/backend/cuda/steel/gemm.cuh
Normal file
101
mlx/backend/cuda/steel/gemm.cuh
Normal file
@@ -0,0 +1,101 @@
|
||||
|
||||
#include "mlx/backend/cuda/steel/mma.cuh"
|
||||
#include "mlx/backend/cuda/steel/tiles.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
/**
|
||||
* An example gemm written with the utils.
|
||||
*
|
||||
* Computes A @ B.T when A and B are all aligned with the block sizes.
|
||||
*/
|
||||
template <typename T, int BM, int BN, int BK>
|
||||
__global__ void ab_t_aligned(const T* a, const T* b, T* y, int N, int K) {
|
||||
constexpr int WARPS_M = 2;
|
||||
constexpr int WARPS_N = 2;
|
||||
constexpr int NUM_WARPS = WARPS_M * WARPS_N;
|
||||
constexpr int WARP_STEP_M = BM / WARPS_M;
|
||||
constexpr int WARP_STEP_N = BN / WARPS_N;
|
||||
|
||||
// Precompute some offsets for each thread
|
||||
const int warpid = threadIdx.x / 32;
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int wm = warpid / WARPS_N;
|
||||
const int wn = warpid % WARPS_N;
|
||||
const int offset_m = wm * WARP_STEP_M;
|
||||
const int offset_n = wn * WARP_STEP_N;
|
||||
|
||||
// Allocate shared memory
|
||||
extern __shared__ char shmem[];
|
||||
SharedTile<T, BM, BK>(&as)[2] = *(SharedTile<T, BM, BK>(*)[2])(&shmem[0]);
|
||||
SharedTile<T, BN, BK>(&bs)[2] =
|
||||
*(SharedTile<T, BN, BK>(*)[2])(&shmem[sizeof(T) * 2 * BM * BK]);
|
||||
|
||||
// Allocate registers for the MMA
|
||||
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
|
||||
RegisterTile<T, BM / WARPS_M, 16> A;
|
||||
RegisterTile<T, BN / WARPS_N, 16> B;
|
||||
|
||||
// Move the global pointers to the tile
|
||||
a += blockIdx.y * BM * K;
|
||||
b += blockIdx.x * BN * K;
|
||||
y += blockIdx.y * BM * N + blockIdx.x * BN;
|
||||
|
||||
// Zero the accumulators
|
||||
C.fill(0);
|
||||
|
||||
// Start the SM pipeline
|
||||
load_async<NUM_WARPS>(as[0], as[0].base_addr(), a, K);
|
||||
load_async<NUM_WARPS>(bs[0], bs[0].base_addr(), b, K);
|
||||
cp_async_commit();
|
||||
|
||||
int tic = 0;
|
||||
for (int k_block = BK; k_block < K; k_block += BK) {
|
||||
load_async<NUM_WARPS>(as[tic ^ 1], as[tic ^ 1].base_addr(), a + k_block, K);
|
||||
load_async<NUM_WARPS>(bs[tic ^ 1], bs[tic ^ 1].base_addr(), b + k_block, K);
|
||||
cp_async_commit();
|
||||
cp_async_wait<1>();
|
||||
__syncthreads();
|
||||
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < BK / 16; k++) {
|
||||
A.load(
|
||||
as[tic],
|
||||
as[tic].base_addr(),
|
||||
offset_m + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
B.load(
|
||||
bs[tic],
|
||||
bs[tic].base_addr(),
|
||||
offset_n + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
|
||||
mma_t(C, A, B);
|
||||
}
|
||||
|
||||
tic ^= 1;
|
||||
}
|
||||
|
||||
// Empty the pipeline
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < BK / 16; k++) {
|
||||
A.load(
|
||||
as[tic],
|
||||
as[tic].base_addr(),
|
||||
offset_m + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
B.load(
|
||||
bs[tic],
|
||||
bs[tic].base_addr(),
|
||||
offset_n + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
|
||||
mma_t(C, A, B);
|
||||
}
|
||||
|
||||
C.store_global(y, N, offset_m, offset_n);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
117
mlx/backend/cuda/steel/mma.cuh
Normal file
117
mlx/backend/cuda/steel/mma.cuh
Normal file
@@ -0,0 +1,117 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/steel/defines.cuh"
|
||||
#include "mlx/backend/cuda/steel/tiles.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
/**
|
||||
* Fallback mma.
|
||||
*
|
||||
* We should probably a) implement a fallback or complain about it to the
|
||||
* compiler.
|
||||
*/
|
||||
template <typename U, typename T>
|
||||
__device__ inline void
|
||||
mma_t(Tile16x16<U>& C, Tile16x16<T>& A, Tile16x16<T>& B) {}
|
||||
|
||||
/**
|
||||
* Multiply the 16x16 bfloat16 tiles and accumulate the result in one 16x16
|
||||
* float tile.
|
||||
*
|
||||
* We actually perform C += A @ B.T
|
||||
*/
|
||||
__device__ __forceinline__ void mma_t(
|
||||
Tile16x16<float>& C,
|
||||
Tile16x16<__nv_bfloat16>& A,
|
||||
Tile16x16<__nv_bfloat16>& B) {
|
||||
#if defined(MLX_CUDA_SM_80_ENABLED)
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[0].x),
|
||||
"+f"(C.values[0].y),
|
||||
"+f"(C.values[1].x),
|
||||
"+f"(C.values[1].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[0])),
|
||||
"r"(*(uint32_t*)(&B.values[2])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[0].x),
|
||||
"f"(C.values[0].y),
|
||||
"f"(C.values[1].x),
|
||||
"f"(C.values[1].y));
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[2].x),
|
||||
"+f"(C.values[2].y),
|
||||
"+f"(C.values[3].x),
|
||||
"+f"(C.values[3].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[1])),
|
||||
"r"(*(uint32_t*)(&B.values[3])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[2].x),
|
||||
"f"(C.values[2].y),
|
||||
"f"(C.values[3].x),
|
||||
"f"(C.values[3].y));
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply larger register tiles by delegating to mma_t.
|
||||
*/
|
||||
template <typename U, typename T, int M, int N, int K>
|
||||
__device__ __forceinline__ void mma_t(
|
||||
RegisterTile<U, M, N>& C,
|
||||
RegisterTile<T, M, K>& A,
|
||||
RegisterTile<T, N, K>& B) {
|
||||
constexpr int TILES_M = RegisterTile<T, M, K>::TILES_Y;
|
||||
constexpr int TILES_K = RegisterTile<T, M, K>::TILES_X;
|
||||
constexpr int TILES_N = RegisterTile<T, N, K>::TILES_Y;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < TILES_K; k++) {
|
||||
MLX_UNROLL
|
||||
for (int m = 0; m < TILES_M; m++) {
|
||||
MLX_UNROLL
|
||||
for (int n = 0; n < TILES_N; n++) {
|
||||
mma_t(
|
||||
C.data[m * TILES_N + n],
|
||||
A.data[m * TILES_K + k],
|
||||
B.data[n * TILES_K + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
473
mlx/backend/cuda/steel/tiles.cuh
Normal file
473
mlx/backend/cuda/steel/tiles.cuh
Normal file
@@ -0,0 +1,473 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/steel/utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Map types to their vector of 2 type float -> float2, double -> double2 etc
|
||||
template <typename T>
|
||||
struct Vector2;
|
||||
template <>
|
||||
struct Vector2<double> {
|
||||
using type = double2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<float> {
|
||||
using type = float2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__half> {
|
||||
using type = __half2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__nv_bfloat16> {
|
||||
using type = __nv_bfloat162;
|
||||
};
|
||||
template <typename T>
|
||||
using Vector2_t = typename Vector2<T>::type;
|
||||
|
||||
/**
|
||||
* The basic building block for Ampere mmas. A 16x16 tile distributed across
|
||||
* the warp.
|
||||
*
|
||||
* Each thread holds 8 values. They are distributed according to
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-fragment-mma-16816-float
|
||||
*
|
||||
* For use instructions see the individual methods eg load().
|
||||
*/
|
||||
template <typename T>
|
||||
struct Tile16x16 {
|
||||
using T2 = Vector2_t<T>;
|
||||
|
||||
T2 values[4];
|
||||
|
||||
__device__ inline void fill(T v) {
|
||||
T2 v2 = {v, v};
|
||||
for (int i = 0; i < 4; i++) {
|
||||
values[i] = v2;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Load a 16x16 tile from shared memory.
|
||||
*
|
||||
* The instruction is a bit weird in the sense that the address provided by
|
||||
* each thread and the elements loaded are not the same.
|
||||
*
|
||||
* We load 4 8x8 tiles. The tile rows are stored contiguously in memory. As a
|
||||
* result the warp provides 4*8 = 32 addresses one per row.
|
||||
*
|
||||
* Threads 0-7 provide the addresses for the first tile, 8-15 for the second
|
||||
* and so on. For instance to load a non swizzled tile we would do
|
||||
*
|
||||
* base_addr + (laneid % 16) * BK + (laneid / 2) * 8
|
||||
*
|
||||
* See
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-instructions-ldmatrix
|
||||
*/
|
||||
__device__ __forceinline__ void load(uint32_t row_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(row_address));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Store the tile to the address pointed to by `x`.
|
||||
*
|
||||
* The provided pointer is a generic pointer but this is meant to be used to
|
||||
* store to global memory. For storing to shared memory we should use
|
||||
* `stmatrix`.
|
||||
*
|
||||
* This also showcases the format of the tile quite nicely. Each register is
|
||||
* holding to adjacent values. The indices are
|
||||
*
|
||||
* row + 0, col + 0
|
||||
* row + 8, col + 0
|
||||
* row + 0, col + 8
|
||||
* row + 8, col + 8
|
||||
*
|
||||
* Given that we are dealing with Vector2_t<U> the column offsets are 4
|
||||
* instead of 8.
|
||||
*/
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N) {
|
||||
using U2 = Vector2_t<U>;
|
||||
U2* x2 = reinterpret_cast<U2*>(x);
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if constexpr (std::is_same_v<U2, T2>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] = values[0];
|
||||
x2[(row + 0) * (N / 2) + col + 4] = values[2];
|
||||
x2[(row + 8) * (N / 2) + col + 0] = values[1];
|
||||
x2[(row + 8) * (N / 2) + col + 4] = values[3];
|
||||
} else if constexpr (
|
||||
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[0].x, values[0].y);
|
||||
x2[(row + 0) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[2].x, values[2].y);
|
||||
x2[(row + 8) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[1].x, values[1].y);
|
||||
x2[(row + 8) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[3].x, values[3].y);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global_safe(U* x, int N, int max_rows) {
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if (row < max_rows) {
|
||||
x[(row + 0) * N + 2 * col + 0] = static_cast<U>(values[0].x);
|
||||
x[(row + 0) * N + 2 * col + 1] = static_cast<U>(values[0].y);
|
||||
x[(row + 0) * N + 2 * col + 8] = static_cast<U>(values[2].x);
|
||||
x[(row + 0) * N + 2 * col + 9] = static_cast<U>(values[2].y);
|
||||
}
|
||||
if (row + 8 < max_rows) {
|
||||
x[(row + 8) * N + 2 * col + 0] = static_cast<U>(values[1].x);
|
||||
x[(row + 8) * N + 2 * col + 1] = static_cast<U>(values[1].y);
|
||||
x[(row + 8) * N + 2 * col + 8] = static_cast<U>(values[3].x);
|
||||
x[(row + 8) * N + 2 * col + 9] = static_cast<U>(values[3].y);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// /**
|
||||
// * A simple container of multiple Tile16x16.
|
||||
// *
|
||||
// * Provides utility functions for loading and manipulating collections of
|
||||
// basic
|
||||
// * tiles.
|
||||
// */
|
||||
// template <typename T, int ROWS_, int COLS_>
|
||||
// struct RegisterTile {
|
||||
// static constexpr int ROWS = ROWS_;
|
||||
// static constexpr int COLS = COLS_;
|
||||
// static constexpr int TILES_X = COLS / 16;
|
||||
// static constexpr int TILES_Y = ROWS / 16;
|
||||
|
||||
// Tile16x16<T> data[TILES_X * TILES_Y];
|
||||
|
||||
// __device__ inline void fill(T v) {
|
||||
// MLX_UNROLL
|
||||
// for (int i = 0; i < TILES_Y; i++) {
|
||||
// MLX_UNROLL
|
||||
// for (int j = 0; j < TILES_X; j++) {
|
||||
// data[i * TILES_X + j].fill(v);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// template <typename Tile>
|
||||
// __device__ __forceinline__ void
|
||||
// load(Tile& tile, uint32_t base_address, int row, int col) {
|
||||
// MLX_UNROLL
|
||||
// for (int i = 0; i < TILES_Y; i++) {
|
||||
// MLX_UNROLL
|
||||
// for (int j = 0; j < TILES_X; j++) {
|
||||
// data[i * TILES_X + j].load(
|
||||
// tile.loc(base_address, row + i * 16, col + j * 16));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// template <typename Tile, typename F>
|
||||
// __device__ __forceinline__ void
|
||||
// load(Tile& tile, F f, uint32_t base_address, int row, int col) {
|
||||
// MLX_UNROLL
|
||||
// for (int i = 0; i < TILES_Y; i++) {
|
||||
// MLX_UNROLL
|
||||
// for (int j = 0; j < TILES_X; j++) {
|
||||
// f(data[i * TILES_X + j],
|
||||
// tile,
|
||||
// base_address,
|
||||
// row + i * 16,
|
||||
// col + j * 16);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// template <typename U>
|
||||
// __device__ inline void store_global(U* x, int N, int row, int col) {
|
||||
// MLX_UNROLL
|
||||
// for (int i = 0; i < TILES_Y; i++) {
|
||||
// MLX_UNROLL
|
||||
// for (int j = 0; j < TILES_X; j++) {
|
||||
// data[i * TILES_X + j].store_global(
|
||||
// x + (row + i * 16) * N + col + j * 16, N);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// template <typename U>
|
||||
// __device__ inline void
|
||||
// store_global_safe(U* x, int N, int row, int col, int max_rows) {
|
||||
// MLX_UNROLL
|
||||
// for (int i = 0; i < TILES_Y; i++) {
|
||||
// MLX_UNROLL
|
||||
// for (int j = 0; j < TILES_X; j++) {
|
||||
// data[i * TILES_X + j].store_global_safe(
|
||||
// x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i *
|
||||
// 16);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
/**
|
||||
* A simple container of multiple Tile16x16.
|
||||
*
|
||||
* Provides utility functions for loading and manipulating collections of basic
|
||||
* tiles.
|
||||
*/
|
||||
template <typename T, int ROWS_, int COLS_>
|
||||
struct RegisterTile {
|
||||
static constexpr int ROWS = ROWS_;
|
||||
static constexpr int COLS = COLS_;
|
||||
static constexpr int TILES_X = COLS / 16;
|
||||
static constexpr int TILES_Y = ROWS / 16;
|
||||
|
||||
Tile16x16<T> data[TILES_X * TILES_Y];
|
||||
|
||||
__device__ inline void fill(T v) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].fill(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Tile>
|
||||
__device__ inline void
|
||||
load(Tile& tile, uint32_t base_address, int row, int col) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].load(
|
||||
tile.loc(base_address, row + i * 16, col + j * 16));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N, int row, int col) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].store_global(
|
||||
x + (row + i * 16) * N + col + j * 16, N);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int ROWS_, int COLS_>
|
||||
struct SharedTile {
|
||||
static constexpr int ROWS = ROWS_;
|
||||
static constexpr int COLS = COLS_;
|
||||
static constexpr int TILES_X = COLS / 16;
|
||||
static constexpr int TILES_Y = ROWS / 16;
|
||||
static constexpr int NUMEL = ROWS * COLS;
|
||||
|
||||
// Swizzle taken from ThunderKittens. Should be changed when we switch to
|
||||
// cute Layouts.
|
||||
//
|
||||
// See inludes/types/shared/st.cuh
|
||||
//
|
||||
// I do feel that it is too math heavy and can be improved. Also the math is
|
||||
// done every time although the addresses don't change from load to load. I
|
||||
// guess we are expecting the compiler to figure that out.
|
||||
static constexpr int swizzle_bytes =
|
||||
(sizeof(T) == 2 ? (TILES_X % 4 == 0 ? 128 : (TILES_X % 2 == 0 ? 64 : 32))
|
||||
: (sizeof(T) == 4 ? (TILES_X % 2 == 0 ? 128 : 64) : 0));
|
||||
|
||||
T data[ROWS * COLS];
|
||||
|
||||
__device__ inline uint32_t base_addr() const {
|
||||
return __cvta_generic_to_shared(&data[0]);
|
||||
}
|
||||
|
||||
// Return a pointer to the element at (row, col) using the swizzle.
|
||||
__device__ static inline T* ptr(T* ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint64_t addr =
|
||||
(uint64_t)(&ptr
|
||||
[outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols]);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (T*)(addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + row * COLS + col;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the location of the element at (row, col) using the swizzle.
|
||||
__device__ static inline uint32_t loc(uint32_t ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint32_t addr = ptr +
|
||||
sizeof(T) *
|
||||
(outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + sizeof(T) * (row * COLS + col);
|
||||
}
|
||||
}
|
||||
|
||||
// Convenience functions to edit elements going through the swizzle.
|
||||
__device__ inline T& operator()(int row, int col) {
|
||||
return *ptr(data, row, col);
|
||||
}
|
||||
__device__ inline void store(float4& v, int row, int col) {
|
||||
*(reinterpret_cast<float4*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float2& v, int row, int col) {
|
||||
*(reinterpret_cast<float2*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float& v, int row, int col) {
|
||||
*(reinterpret_cast<float*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
template <int N>
|
||||
__device__ inline void store(T (&v)[N], int row, int col) {
|
||||
if constexpr (sizeof(T) * N == 4) {
|
||||
store(*(reinterpret_cast<float*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 8) {
|
||||
store(*(reinterpret_cast<float2*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 16) {
|
||||
store(*(reinterpret_cast<float4*>(&v[0])), row, col);
|
||||
} else {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < N; i++) {
|
||||
*ptr(data, row, col + i) = v[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Load the tile from global memory by loading 16 bytes at a time and storing
|
||||
* them immediately.
|
||||
*
|
||||
* Can also be used as a fallback for architectures before sm_80.
|
||||
*/
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void load(Tile& tile, const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
float4 tmp;
|
||||
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
|
||||
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The asynchronous equivalent of load.
|
||||
*
|
||||
* Loads the tile from global memory by submitting a bunch of async copy
|
||||
* instructions. The copy won't start until commit is called and we don't have
|
||||
* a guarantee it will finish until wait is called.
|
||||
*
|
||||
* It should be used as follows
|
||||
*
|
||||
* load(...)
|
||||
* load(...)
|
||||
* cp_async_commit()
|
||||
* do_other_stuff()
|
||||
* cp_async_wait_all()
|
||||
* do_stuff_with_shmem()
|
||||
*/
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void
|
||||
load_async(Tile& tile, uint32_t base_address, const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
cp_async<16>(
|
||||
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
|
||||
x + i * STEP_ROWS * N);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Same as load_async but checks if we can load the row.
|
||||
*
|
||||
* NOTE: It should be changed to use a predicated cp async instead.
|
||||
*/
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void load_async_safe(
|
||||
Tile& tile,
|
||||
uint32_t base_address,
|
||||
const T* x,
|
||||
int N,
|
||||
int max_rows) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
if (row + i * STEP_ROWS < max_rows) {
|
||||
cp_async<16>(
|
||||
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
|
||||
x + i * STEP_ROWS * N);
|
||||
} else {
|
||||
float4 tmp = {0, 0, 0, 0};
|
||||
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
89
mlx/backend/cuda/steel/utils.cuh
Normal file
89
mlx/backend/cuda/steel/utils.cuh
Normal file
@@ -0,0 +1,89 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/steel/defines.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
/**
|
||||
* Copy bytes from the global memory address pointed to by x to the smem
|
||||
* address pointed to by row_address.
|
||||
*
|
||||
* A simple wrapper over the PTX.
|
||||
*/
|
||||
template <int N, typename T>
|
||||
__device__ inline void cp_async(uint32_t row_address, const T* x) {
|
||||
static_assert(
|
||||
N == 16 || N == 8 || N == 4,
|
||||
"cp.async is only supported for N in {4, 8, 16}.");
|
||||
#if defined(MLX_CUDA_SM_80_ENABLED)
|
||||
if constexpr (N == 16) {
|
||||
asm volatile(
|
||||
"cp.async.ca.shared::cta.global [%0], [%1], 16;\n" ::"r"(row_address),
|
||||
"l"(reinterpret_cast<const int4*>(x)));
|
||||
} else if constexpr (N == 8) {
|
||||
asm volatile(
|
||||
"cp.async.ca.shared::cta.global [%0], [%1], 8;\n" ::"r"(row_address),
|
||||
"l"(reinterpret_cast<const int2*>(x)));
|
||||
} else if constexpr (N == 4) {
|
||||
asm volatile(
|
||||
"cp.async.ca.shared::cta.global [%0], [%1], 4;\n" ::"r"(row_address),
|
||||
"l"(reinterpret_cast<const int*>(x)));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Submit all the previous async copies to be executed.
|
||||
*/
|
||||
__device__ inline void cp_async_commit() {
|
||||
#if defined(MLX_CUDA_SM_80_ENABLED)
|
||||
asm volatile("cp.async.commit_group;\n" ::);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Wait for all but N of the async copies to finish.
|
||||
*/
|
||||
template <int N>
|
||||
__device__ inline void cp_async_wait() {
|
||||
#if defined(MLX_CUDA_SM_80_ENABLED)
|
||||
if constexpr (N == 0) {
|
||||
asm volatile("cp.async.wait_all;\n" ::);
|
||||
} else {
|
||||
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Wait for all the async copies to finish.
|
||||
*/
|
||||
__device__ inline void cp_async_wait_all() {
|
||||
cp_async_wait<0>();
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract ``bits`` bits from the 32 bit value.
|
||||
*
|
||||
* Single instruction shift and mask.
|
||||
*/
|
||||
template <int bits>
|
||||
__device__ inline uint32_t extract_bits(uint32_t value, int start_bit) {
|
||||
static_assert(
|
||||
bits == 2 || bits == 4 || bits == 8,
|
||||
"extract_bits only supports 2, 4, 8 for now.");
|
||||
uint32_t result;
|
||||
if constexpr (bits == 2) {
|
||||
asm("bfe.u32 %0, %1, %2, 2;" : "=r"(result) : "r"(value), "r"(start_bit));
|
||||
} else if constexpr (bits == 4) {
|
||||
asm("bfe.u32 %0, %1, %2, 4;" : "=r"(result) : "r"(value), "r"(start_bit));
|
||||
} else if constexpr (bits == 8) {
|
||||
asm("bfe.u32 %0, %1, %2, 8;" : "=r"(result) : "r"(value), "r"(start_bit));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -32,7 +32,7 @@ ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
|
||||
AlignedVector<T, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i], c_vec.val[i]);
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i], c_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -76,7 +76,7 @@ __global__ void ternary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc_4d(
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc(
|
||||
index,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
@@ -125,14 +125,12 @@ void ternary_op_gpu_inplace(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
@@ -144,13 +142,12 @@ void ternary_op_gpu_inplace(
|
||||
const_param<dims_constant()>(c_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::ternary_g<Op, DType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
@@ -166,20 +163,14 @@ void ternary_op_gpu_inplace(
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::ternary_v<Op, DType, IdxT, N_READS>;
|
||||
constexpr int N_READS = 16 / sizeof(DType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::ternary_v<Op, DType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
@@ -204,7 +195,7 @@ void ternary_op_gpu(
|
||||
}
|
||||
|
||||
void Select::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("select::eval_gpu");
|
||||
nvtx3::scoped_range r("Select::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
ternary_op_gpu<cu::Select>(inputs, out, s);
|
||||
}
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -31,7 +30,7 @@ __global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(in_vec.val[i]);
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -48,7 +47,7 @@ __global__ void unary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto idx = elem_to_loc_4d(index, shape.data(), strides.data(), ndim);
|
||||
auto idx = elem_to_loc(index, shape.data(), strides.data(), ndim);
|
||||
out[index] = Op{}(in[idx]);
|
||||
}
|
||||
}
|
||||
@@ -130,30 +129,25 @@ void unary_op_gpu_inplace(
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::unary_v<Op, InType, OutType, IdxT, N_READS>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large,
|
||||
N_READS);
|
||||
out.data_size(), out.shape(), out.strides(), large, N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::unary_v<Op, InType, OutType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
cu::unary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
|
||||
@@ -17,6 +17,35 @@ CudaStream::~CudaStream() {
|
||||
CHECK_CUDA_ERROR(cudaStreamDestroy(stream_));
|
||||
}
|
||||
|
||||
CudaGraphExec::CudaGraphExec(cudaGraphExec_t handle) : handle_(handle) {}
|
||||
|
||||
CudaGraphExec::CudaGraphExec(CudaGraphExec&& other) : handle_(other.handle_) {
|
||||
other.handle_ = nullptr;
|
||||
};
|
||||
|
||||
CudaGraphExec::~CudaGraphExec() {
|
||||
reset();
|
||||
}
|
||||
|
||||
void CudaGraphExec::instantiate(cudaGraph_t graph) {
|
||||
CHECK_CUDA_ERROR(cudaGraphInstantiate(&handle_, graph, nullptr, nullptr, 0));
|
||||
}
|
||||
|
||||
void CudaGraphExec::reset() {
|
||||
if (handle_ != nullptr) {
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(handle_));
|
||||
handle_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void check_cublas_error(const char* name, cublasStatus_t err) {
|
||||
if (err != CUBLAS_STATUS_SUCCESS) {
|
||||
// TODO: Use cublasGetStatusString when it is widely available.
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
|
||||
}
|
||||
}
|
||||
|
||||
void check_cuda_error(const char* name, cudaError_t err) {
|
||||
if (err != cudaSuccess) {
|
||||
throw std::runtime_error(
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
@@ -32,11 +33,34 @@ class CudaStream {
|
||||
cudaStream_t stream_;
|
||||
};
|
||||
|
||||
// Move-able RAII handle of cudaGraphExec_t.
|
||||
class CudaGraphExec {
|
||||
public:
|
||||
CudaGraphExec(cudaGraphExec_t handle = nullptr);
|
||||
CudaGraphExec(CudaGraphExec&& other);
|
||||
~CudaGraphExec();
|
||||
|
||||
CudaGraphExec(const CudaGraphExec&) = delete;
|
||||
CudaGraphExec& operator=(const CudaGraphExec&) = delete;
|
||||
|
||||
void instantiate(cudaGraph_t graph);
|
||||
void reset();
|
||||
|
||||
operator cudaGraphExec_t() const {
|
||||
return handle_;
|
||||
}
|
||||
|
||||
private:
|
||||
cudaGraphExec_t handle_;
|
||||
};
|
||||
|
||||
// Throw exception if the cuda API does not succeed.
|
||||
void check_cublas_error(const char* name, cublasStatus_t err);
|
||||
void check_cuda_error(const char* name, cudaError_t err);
|
||||
void check_cuda_error(const char* name, CUresult err);
|
||||
|
||||
// The macro version that prints the command that failed.
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
|
||||
|
||||
// Convert Dtype to CUDA C++ types.
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
@@ -12,10 +11,10 @@ Worker::Worker()
|
||||
|
||||
Worker::~Worker() {
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
std::lock_guard lock(mtx_);
|
||||
stop_ = true;
|
||||
}
|
||||
worker_event_.signal(batch_ + 1);
|
||||
cond_.notify_one();
|
||||
worker_.join();
|
||||
}
|
||||
|
||||
@@ -23,53 +22,41 @@ void Worker::add_task(std::function<void()> task) {
|
||||
pending_tasks_.push_back(std::move(task));
|
||||
}
|
||||
|
||||
void Worker::consume_in_this_thread() {
|
||||
for (auto& task : pending_tasks_) {
|
||||
task();
|
||||
}
|
||||
pending_tasks_.clear();
|
||||
}
|
||||
|
||||
void Worker::end_batch() {
|
||||
batch_++;
|
||||
void Worker::signal(void* data) {
|
||||
auto w = static_cast<Worker*>(data);
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
worker_tasks_[batch_] = std::move(pending_tasks_);
|
||||
std::lock_guard lock(w->mtx_);
|
||||
w->signaled_batch_++;
|
||||
}
|
||||
uncommited_batches_++;
|
||||
}
|
||||
|
||||
void Worker::commit() {
|
||||
if (uncommited_batches_ == 0) {
|
||||
return;
|
||||
}
|
||||
uncommited_batches_ = 0;
|
||||
worker_event_.signal(batch_);
|
||||
w->cond_.notify_one();
|
||||
}
|
||||
|
||||
void Worker::commit(cudaStream_t stream) {
|
||||
if (uncommited_batches_ == 0) {
|
||||
// Move pending tasks into tasks
|
||||
if (pending_tasks_.empty()) {
|
||||
return;
|
||||
}
|
||||
uncommited_batches_ = 0;
|
||||
// Signal the |worker_event_| in |signal_stream_| after the kernels in
|
||||
// |stream_| finish running.
|
||||
{
|
||||
std::lock_guard lock(mtx_);
|
||||
// Move pending tasks into ready tasks
|
||||
worker_tasks_[++committed_batch_] = std::move(pending_tasks_);
|
||||
}
|
||||
signal_event_.record(stream);
|
||||
signal_event_.wait(signal_stream_);
|
||||
worker_event_.signal(signal_stream_, batch_);
|
||||
cudaLaunchHostFunc(signal_stream_, signal, this);
|
||||
}
|
||||
|
||||
void Worker::thread_fn() {
|
||||
// The worker thread is safe to free buffers.
|
||||
allocator().register_this_thread();
|
||||
|
||||
while (!stop_) {
|
||||
uint64_t batch = worker_event_.value();
|
||||
uint64_t current_batch = 0;
|
||||
Tasks tasks;
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
// Move tasks in signaled batches.
|
||||
auto end = worker_tasks_.upper_bound(batch);
|
||||
std::unique_lock<std::mutex> lk(mtx_);
|
||||
cond_.wait(lk, [this, ¤t_batch] {
|
||||
return this->signaled_batch_ > current_batch || this->stop_;
|
||||
});
|
||||
current_batch = signaled_batch_;
|
||||
auto end = worker_tasks_.upper_bound(current_batch);
|
||||
for (auto it = worker_tasks_.begin(); it != end; ++it) {
|
||||
if (tasks.empty()) {
|
||||
tasks = std::move(it->second);
|
||||
@@ -85,7 +72,6 @@ void Worker::thread_fn() {
|
||||
auto task = std::move(tasks[i]);
|
||||
task();
|
||||
}
|
||||
worker_event_.wait(batch + 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
@@ -24,38 +25,24 @@ class Worker {
|
||||
// Add a pending |task| that will run when consumed or commited.
|
||||
void add_task(std::function<void()> task);
|
||||
|
||||
// Run pending tasks immediately in current thread.
|
||||
void consume_in_this_thread();
|
||||
|
||||
// Put pending tasks in a batch.
|
||||
void end_batch();
|
||||
|
||||
// Inform worker thread to run current batches now.
|
||||
void commit();
|
||||
|
||||
// Inform worker thread to run current batches after kernels in |stream|
|
||||
// finish running.
|
||||
void commit(cudaStream_t stream);
|
||||
|
||||
// Return how many batches have been added but not committed yet.
|
||||
size_t uncommited_batches() const {
|
||||
return uncommited_batches_;
|
||||
}
|
||||
|
||||
private:
|
||||
void thread_fn();
|
||||
static void signal(void*);
|
||||
|
||||
uint64_t batch_{0};
|
||||
size_t uncommited_batches_{0};
|
||||
void thread_fn();
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cond_;
|
||||
|
||||
uint64_t committed_batch_{0};
|
||||
uint64_t signaled_batch_{0};
|
||||
|
||||
// Cuda stream and event for signaling kernel completion.
|
||||
CudaStream signal_stream_;
|
||||
CudaEvent signal_event_;
|
||||
|
||||
// Worker thread.
|
||||
SharedEvent worker_event_;
|
||||
std::thread worker_;
|
||||
std::mutex worker_mutex_;
|
||||
bool stop_{false};
|
||||
|
||||
// Tasks are put in |pending_tasks_| first, and then moved to
|
||||
@@ -63,6 +50,7 @@ class Worker {
|
||||
using Tasks = std::vector<std::function<void()>>;
|
||||
Tasks pending_tasks_;
|
||||
std::map<uint64_t, Tasks> worker_tasks_;
|
||||
std::thread worker_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -133,6 +133,7 @@ void NumberOfElements::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void Pad::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
MLX_PROFILER_RANGE("Pad::eval_gpu");
|
||||
// Inputs must be base input array and scalar val array
|
||||
assert(inputs.size() == 2);
|
||||
auto& in = inputs[0];
|
||||
|
||||
@@ -128,8 +128,7 @@ Buffer MetalAllocator::malloc(size_t size) {
|
||||
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache
|
||||
if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) {
|
||||
num_resources_ -=
|
||||
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
|
||||
|
||||
@@ -60,6 +60,16 @@ struct CommandEncoder {
|
||||
enc_->updateFence(fence);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_vector_bytes(const SmallVector<T>& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
|
||||
}
|
||||
template <typename T>
|
||||
void set_vector_bytes(const SmallVector<T>& vec, int idx) {
|
||||
return set_vector_bytes(vec, vec.size(), idx);
|
||||
}
|
||||
|
||||
// TODO: Code is duplicated but they should be deleted soon.
|
||||
template <typename T>
|
||||
void set_vector_bytes(const std::vector<T>& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
|
||||
@@ -94,7 +104,7 @@ struct CommandEncoder {
|
||||
};
|
||||
|
||||
// Outputs of all kernels in the encoder including temporaries
|
||||
std::unordered_set<const void*> outputs() {
|
||||
std::unordered_set<const void*>& outputs() {
|
||||
return all_outputs_;
|
||||
};
|
||||
|
||||
|
||||
@@ -14,6 +14,10 @@ Event::Event(Stream stream) : stream_(stream) {
|
||||
auto p = metal::new_scoped_memory_pool();
|
||||
event_ = std::shared_ptr<void>(
|
||||
metal::device(Device::gpu).mtl_device()->newSharedEvent(), dtor);
|
||||
if (event_ == nullptr) {
|
||||
throw std::runtime_error(
|
||||
"[Event::Event] Failed to create Metal shared event.");
|
||||
}
|
||||
}
|
||||
|
||||
void Event::wait() {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user