mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
11 Commits
v0.28.0
...
1ba18ff7d9
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1ba18ff7d9 | ||
|
|
37b440faa8 | ||
|
|
888b13ed63 | ||
|
|
4abb218d21 | ||
|
|
6441c21a94 | ||
|
|
dfb5022eab | ||
|
|
ac207ce7aa | ||
|
|
fce53b61d6 | ||
|
|
8ae4a76308 | ||
|
|
7fde1b6a1e | ||
|
|
aa7b47481a |
@@ -1,4 +1,5 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
sphinx-copybutton
|
||||
mlx
|
||||
|
||||
@@ -18,6 +18,7 @@ release = version
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
extensions = [
|
||||
"sphinx_copybutton",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
|
||||
@@ -228,31 +228,4 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
||||
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -196,9 +196,6 @@ void shared_buffer_reshape(
|
||||
const Strides& out_strides,
|
||||
array& out);
|
||||
|
||||
// Like the swapaxes op but safe to call in eval_gpu.
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
template <typename T>
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
|
||||
@@ -157,10 +157,12 @@ inline void build_kernel(
|
||||
#endif
|
||||
|
||||
// Start the kernel
|
||||
os << "void " << kernel_name << "(void** args) {" << std::endl;
|
||||
os << "void " << kernel_name
|
||||
<< "(int* shape, int64_t** strides, void** args) {" << std::endl;
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
@@ -175,8 +177,8 @@ inline void build_kernel(
|
||||
<< "];" << std::endl;
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
os << " const int64_t* " << xname << "_strides = strides["
|
||||
<< strides_index++ << "];" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -186,10 +188,8 @@ inline void build_kernel(
|
||||
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
|
||||
<< "*)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
|
||||
} else {
|
||||
// Add output size
|
||||
if (contiguous) {
|
||||
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
|
||||
@@ -288,17 +288,8 @@ void Compiled::eval_cpu(
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Force allocating shape/strides on heap so we can take their data() first
|
||||
// and then std::move them.
|
||||
// TODO: Refactor code to avoid heap allocation.
|
||||
shape.grow();
|
||||
for (auto& s : strides) {
|
||||
s.grow();
|
||||
}
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
@@ -306,9 +297,6 @@ void Compiled::eval_cpu(
|
||||
const auto& x = inputs[i];
|
||||
encoder.set_input_array(x);
|
||||
args.push_back((void*)x.data<void>());
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.push_back(strides[strides_index++].data());
|
||||
}
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
@@ -343,16 +331,20 @@ void Compiled::eval_cpu(
|
||||
args.push_back(x.data<void>());
|
||||
encoder.set_output_array(x);
|
||||
}
|
||||
if (!contiguous) {
|
||||
args.push_back((void*)shape.data());
|
||||
} else {
|
||||
if (contiguous) {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
auto fun = reinterpret_cast<void (*)(int*, int64_t**, void**)>(fn_ptr);
|
||||
encoder.dispatch([fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
shape = std::move(shape)]() mutable { fun(args.data()); });
|
||||
shape = std::move(shape)]() mutable {
|
||||
SmallVector<int64_t*> strides_ptrs;
|
||||
for (auto& s : strides) {
|
||||
strides_ptrs.push_back(s.data());
|
||||
}
|
||||
fun(shape.data(), strides_ptrs.data(), args.data());
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -491,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
|
||||
@@ -8,7 +8,6 @@ target_sources(
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||
@@ -45,18 +44,20 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
else()
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||
|
||||
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/add.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan2.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_binary.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/divide.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_and.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_or.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log_add_exp.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/minimum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/maximum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/multiply.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/power.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/remainder.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/not_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/subtract.cu)
|
||||
7
mlx/backend/cuda/binary/add.cu
Normal file
7
mlx/backend/cuda/binary/add.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Add)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(ArcTan2)
|
||||
} // namespace mlx::core
|
||||
@@ -99,39 +99,89 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -209,39 +259,61 @@ void binary_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out, large());
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
@@ -304,54 +376,4 @@ void binary_op_gpu(
|
||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
@@ -0,0 +1,27 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/divide.cu
Normal file
7
mlx/backend/cuda/binary/divide.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Divide)
|
||||
} // namespace mlx::core
|
||||
15
mlx/backend/cuda/binary/equal.cu
Normal file
15
mlx/backend/cuda/binary/equal.cu
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/greater.cu
Normal file
7
mlx/backend/cuda/binary/greater.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Greater)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(GreaterEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/less.cu
Normal file
7
mlx/backend/cuda/binary/less.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Less)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LessEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogAddExp)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalAnd)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalOr)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/maximum.cu
Normal file
7
mlx/backend/cuda/binary/maximum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Maximum)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/minimum.cu
Normal file
7
mlx/backend/cuda/binary/minimum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Minimum)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/multiply.cu
Normal file
7
mlx/backend/cuda/binary/multiply.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Multiply)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(NotEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/power.cu
Normal file
7
mlx/backend/cuda/binary/power.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Power)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/remainder.cu
Normal file
7
mlx/backend/cuda/binary/remainder.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Remainder)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/subtract.cu
Normal file
7
mlx/backend/cuda/binary/subtract.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Subtract)
|
||||
} // namespace mlx::core
|
||||
@@ -127,45 +127,99 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_two_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_two_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -225,42 +279,64 @@ void binary_two_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out_a.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
|
||||
@@ -336,6 +336,42 @@ std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
|
||||
array group_transpose(
|
||||
const array& x,
|
||||
int groups,
|
||||
int group_dim,
|
||||
int axis1,
|
||||
int axis2,
|
||||
Stream s) {
|
||||
if (groups == 1) {
|
||||
return swapaxes_in_eval(x, axis1, axis2);
|
||||
}
|
||||
int ndim = x.ndim();
|
||||
if (group_dim < 0) {
|
||||
group_dim += ndim;
|
||||
}
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
if (group_dim <= axis1) {
|
||||
axis1 += 1;
|
||||
}
|
||||
if (group_dim <= axis2) {
|
||||
axis2 += 1;
|
||||
}
|
||||
auto shape = x.shape();
|
||||
shape.insert(shape.begin() + group_dim, groups);
|
||||
shape[group_dim + 1] = shape[group_dim + 1] / groups;
|
||||
array x_trans = reshape_in_eval(x, std::move(shape), s);
|
||||
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
|
||||
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
|
||||
return x_trans;
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
@@ -345,13 +381,14 @@ std::tuple<array, array, array> prepare_args(
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
int groups,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
wt = group_transpose(wt, groups, 0, 0, -1, s);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = swapaxes_in_eval(in, 0, -1);
|
||||
in = group_transpose(in, groups, -1, 0, -1, s);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
@@ -457,7 +494,8 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
|
||||
std::tie(in, wt, out) =
|
||||
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!execute_plan(encoder, plan, x, w, y)) {
|
||||
@@ -490,7 +528,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, s);
|
||||
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
|
||||
@@ -10,37 +10,80 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_gg_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), strides_in.data(), strides_out.data());
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto in_stride_x = strides_in[NDIM - 1];
|
||||
auto out_stride_x = strides_out[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data());
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_gg(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides_out,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto in_stride_x = strides_in[ndim - 1];
|
||||
auto out_stride_x = strides_out[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data(),
|
||||
ndim);
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -69,33 +112,52 @@ void copy_general(
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = data_size / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
rest,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_gg<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
|
||||
@@ -10,33 +10,67 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_g_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto stride_x = strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -61,30 +95,49 @@ void copy_general_input(
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
|
||||
@@ -146,6 +146,23 @@ inline __device__ void store_vector(
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ void store_vector(
|
||||
T* ptr,
|
||||
uint32_t offset,
|
||||
const AlignedVector<T, N>& vec,
|
||||
SizeT size,
|
||||
int64_t stride) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size && stride == 1) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
|
||||
ptr[stride * (offset * N + i)] = vec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Type limits utils
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -1,208 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__global__ void set_mm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
const __grid_constant__ Strides c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
|
||||
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
|
||||
&batch_mode,
|
||||
sizeof(batch_mode)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
|
||||
{static_cast<int>(batch_count * 3)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{static_cast<int>(batch_count * 4)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
reinterpret_cast<void*>(c_pointers),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -7,10 +7,12 @@
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(Device& device) {
|
||||
CublasPreference(cu::Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
@@ -33,7 +35,7 @@ struct CublasPreference {
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
||||
cublasLtMatmulPreference_t cublas_preference(cu::Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
@@ -52,7 +54,7 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -70,7 +72,7 @@ cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -102,8 +104,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
|
||||
return desc;
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
} // namespace
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
@@ -155,8 +159,8 @@ Matmul::Matmul(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
CublasGemm::CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
@@ -171,7 +175,7 @@ Matmul::Matmul(
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: Matmul(
|
||||
: CublasGemm(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
@@ -190,7 +194,7 @@ Matmul::Matmul(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
Matmul::~Matmul() {
|
||||
CublasGemm::~CublasGemm() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
@@ -198,7 +202,73 @@ Matmul::~Matmul() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void Matmul::run_impl(
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
return;
|
||||
}
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
c_batch_strides,
|
||||
alpha,
|
||||
beta);
|
||||
return;
|
||||
}
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c.data<void>(),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
void CublasGemm::execute(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
@@ -256,29 +326,4 @@ void Matmul::run_impl(
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
void Matmul::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c /* = std::nullopt */,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
if (c) {
|
||||
encoder.set_input_array(*c);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c ? c->data<void>() : nullptr,
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -5,13 +5,13 @@
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <optional>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
class Matmul {
|
||||
namespace mlx::core {
|
||||
|
||||
class CublasGemm {
|
||||
public:
|
||||
Matmul(
|
||||
Device& device,
|
||||
CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
@@ -25,8 +25,8 @@ class Matmul {
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride);
|
||||
|
||||
Matmul(
|
||||
Device& device,
|
||||
CublasGemm(
|
||||
cu::Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
@@ -42,25 +42,39 @@ class Matmul {
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride);
|
||||
|
||||
~Matmul();
|
||||
~CublasGemm();
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c = std::nullopt,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
private:
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides);
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -68,15 +82,14 @@ class Matmul {
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
private:
|
||||
void run_impl(
|
||||
void execute(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
@@ -97,4 +110,4 @@ class Matmul {
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -4,16 +4,16 @@
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
namespace mlx::core {
|
||||
|
||||
void Matmul::run_batched(
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
@@ -22,7 +22,7 @@ void Matmul::run_batched(
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
@@ -33,16 +33,16 @@ void Matmul::run_batched(
|
||||
}
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
encoder.set_input_array(a);
|
||||
@@ -56,7 +56,7 @@ void Matmul::run_batched(
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
@@ -70,4 +70,4 @@ void Matmul::run_batched(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
} // namespace mlx::core
|
||||
327
mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu
Normal file
327
mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu
Normal file
@@ -0,0 +1,327 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <int NDIM>
|
||||
__global__ void set_mm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_mm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
__global__ void set_addmm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
const __grid_constant__ Strides c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
|
||||
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
|
||||
&batch_mode,
|
||||
sizeof(batch_mode)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(void*) * 3),
|
||||
{batch_count * 3},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
execute(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
const Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{batch_count * 4},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
const_param<ndim_constant()>(c_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
execute(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
reinterpret_cast<void*>(c_pointers),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -97,7 +97,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
cu::Matmul matmul(
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -111,14 +111,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b);
|
||||
return;
|
||||
}
|
||||
|
||||
matmul.run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -186,7 +179,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::Matmul matmul(
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -202,12 +195,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b, c, alpha_, beta_);
|
||||
return;
|
||||
}
|
||||
matmul.run_batched(
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
@@ -39,52 +39,98 @@ ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename T, typename IdxT, int NDIM>
|
||||
template <typename Op, typename T, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void ternary_g_nd(
|
||||
const bool* a,
|
||||
const T* b,
|
||||
const T* c,
|
||||
T* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
c_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx], c[c_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
auto c_stride_x = c_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
c_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, false);
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, T(0));
|
||||
auto c_vec =
|
||||
load_vector<N_READS>(c + c_idx, index_x, shape_x, c_stride_x, T(0));
|
||||
|
||||
AlignedVector<T, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i], c_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename T, typename IdxT>
|
||||
template <typename Op, typename T, typename IdxT, int N_READS>
|
||||
__global__ void ternary_g(
|
||||
const bool* a,
|
||||
const T* b,
|
||||
const T* c,
|
||||
T* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
const __grid_constant__ Strides c_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc(
|
||||
index,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
c_strides.data(),
|
||||
ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx], c[c_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
auto c_stride_x = c_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
c_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, false);
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, T(0));
|
||||
auto c_vec =
|
||||
load_vector<N_READS>(c + c_idx, index_x, shape_x, c_stride_x, T(0));
|
||||
|
||||
AlignedVector<T, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i], c_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -123,36 +169,55 @@ void ternary_op_gpu_inplace(
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel =
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides),
|
||||
const_param<dims_constant()>(c_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::ternary_g<Op, DType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::ternary_g<Op, DType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
|
||||
@@ -37,19 +37,36 @@ __global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto idx = elem_to_loc(index, shape.data(), strides.data(), ndim);
|
||||
out[index] = Op{}(in[idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -127,8 +144,7 @@ void unary_op_gpu_inplace(
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
if (contig) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
constexpr int N_READS = 16 / sizeof(OutType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large, N_READS);
|
||||
encoder.add_kernel_node(
|
||||
@@ -142,18 +158,30 @@ void unary_op_gpu_inplace(
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large);
|
||||
auto ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT, 1>;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
kernel = cu::unary_g<Op, InType, OutType, IdxT, 4>;
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
encoder.add_kernel_node(
|
||||
cu::unary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides),
|
||||
shape.size());
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
|
||||
34
mlx/backend/cuda/unary/CMakeLists.txt
Normal file
34
mlx/backend/cuda/unary/CMakeLists.txt
Normal file
@@ -0,0 +1,34 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/abs.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arccos.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arccosh.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arcsin.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arcsinh.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctanh.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_invert.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/ceil.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conjugate.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/cos.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/cosh.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/erf.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/erf_inv.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/exp.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/expm1.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/floor.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/imag.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log1p.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_not.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/negative.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/real.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/round.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/sigmoid.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/sign.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/sin.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/sinh.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/sqrt.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/square.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/tan.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/tanh.cu)
|
||||
7
mlx/backend/cuda/unary/abs.cu
Normal file
7
mlx/backend/cuda/unary/abs.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Abs)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arccos.cu
Normal file
7
mlx/backend/cuda/unary/arccos.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcCos)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arccosh.cu
Normal file
7
mlx/backend/cuda/unary/arccosh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcCosh)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arcsin.cu
Normal file
7
mlx/backend/cuda/unary/arcsin.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcSin)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arcsinh.cu
Normal file
7
mlx/backend/cuda/unary/arcsinh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcSinh)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arctan.cu
Normal file
7
mlx/backend/cuda/unary/arctan.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcTan)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/arctanh.cu
Normal file
7
mlx/backend/cuda/unary/arctanh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ArcTanh)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/bitwise_invert.cu
Normal file
7
mlx/backend/cuda/unary/bitwise_invert.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(BitwiseInvert)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/ceil.cu
Normal file
7
mlx/backend/cuda/unary/ceil.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Ceil)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/conjugate.cu
Normal file
7
mlx/backend/cuda/unary/conjugate.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Conjugate)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/cos.cu
Normal file
7
mlx/backend/cuda/unary/cos.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Cos)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/cosh.cu
Normal file
7
mlx/backend/cuda/unary/cosh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Cosh)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/erf.cu
Normal file
7
mlx/backend/cuda/unary/erf.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Erf)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/erf_inv.cu
Normal file
7
mlx/backend/cuda/unary/erf_inv.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(ErfInv)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/exp.cu
Normal file
7
mlx/backend/cuda/unary/exp.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Exp)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/expm1.cu
Normal file
7
mlx/backend/cuda/unary/expm1.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Expm1)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/floor.cu
Normal file
7
mlx/backend/cuda/unary/floor.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Floor)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/imag.cu
Normal file
7
mlx/backend/cuda/unary/imag.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Imag)
|
||||
} // namespace mlx::core
|
||||
21
mlx/backend/cuda/unary/log.cu
Normal file
21
mlx/backend/cuda/unary/log.cu
Normal file
@@ -0,0 +1,21 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Log::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
unary_op_gpu<cu::Log>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::two:
|
||||
unary_op_gpu<cu::Log2>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::ten:
|
||||
unary_op_gpu<cu::Log10>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/log1p.cu
Normal file
7
mlx/backend/cuda/unary/log1p.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Log1p)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/logical_not.cu
Normal file
7
mlx/backend/cuda/unary/logical_not.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(LogicalNot)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/negative.cu
Normal file
7
mlx/backend/cuda/unary/negative.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Negative)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/real.cu
Normal file
7
mlx/backend/cuda/unary/real.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Real)
|
||||
} // namespace mlx::core
|
||||
18
mlx/backend/cuda/unary/round.cu
Normal file
18
mlx/backend/cuda/unary/round.cu
Normal file
@@ -0,0 +1,18 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Round::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
auto& s = out.primitive().stream();
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_op_gpu<cu::Round>(inputs, out, name(), s);
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/sigmoid.cu
Normal file
7
mlx/backend/cuda/unary/sigmoid.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Sigmoid)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/sign.cu
Normal file
7
mlx/backend/cuda/unary/sign.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Sign)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/sin.cu
Normal file
7
mlx/backend/cuda/unary/sin.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Sin)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/sinh.cu
Normal file
7
mlx/backend/cuda/unary/sinh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Sinh)
|
||||
} // namespace mlx::core
|
||||
15
mlx/backend/cuda/unary/sqrt.cu
Normal file
15
mlx/backend/cuda/unary/sqrt.cu
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Sqrt::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Sqrt::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (recip_) {
|
||||
unary_op_gpu<cu::Rsqrt>(inputs, out, "Rsqrt", s);
|
||||
} else {
|
||||
unary_op_gpu<cu::Sqrt>(inputs, out, "Sqrt", s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/square.cu
Normal file
7
mlx/backend/cuda/unary/square.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Square)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/tan.cu
Normal file
7
mlx/backend/cuda/unary/tan.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Tan)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/unary/tanh.cu
Normal file
7
mlx/backend/cuda/unary/tanh.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
UNARY_GPU(Tanh)
|
||||
} // namespace mlx::core
|
||||
215
mlx/backend/cuda/unary/unary.cuh
Normal file
215
mlx/backend/cuda/unary/unary.cuh
Normal file
@@ -0,0 +1,215 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_unary_op() {
|
||||
if (std::is_same_v<Op, Abs> || std::is_same_v<Op, Negative> ||
|
||||
std::is_same_v<Op, Sign> || std::is_same_v<Op, Square>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCosh> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTanh> || std::is_same_v<Op, Erf> ||
|
||||
std::is_same_v<Op, ErfInv> || std::is_same_v<Op, Expm1> ||
|
||||
std::is_same_v<Op, Sigmoid>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseInvert>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
||||
return std::is_same_v<In, Out> && !mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Conjugate>) {
|
||||
return std::is_same_v<In, Out> && mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
||||
std::is_same_v<Op, Cosh> || std::is_same_v<Op, Exp> ||
|
||||
std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p> ||
|
||||
std::is_same_v<Op, Round> || std::is_same_v<Op, Rsqrt> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Sin> ||
|
||||
std::is_same_v<Op, Sinh> || std::is_same_v<Op, Tan> ||
|
||||
std::is_same_v<Op, Tanh>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
||||
return mlx::core::is_complex_v<In> && std::is_same_v<Out, float>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalNot>) {
|
||||
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& in = inputs[0];
|
||||
if (in.size() == 0) {
|
||||
return;
|
||||
}
|
||||
bool contig = in.flags().contiguous;
|
||||
bool large;
|
||||
if (!contig) {
|
||||
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
||||
} else {
|
||||
large = in.data_size() > UINT32_MAX;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
dispatch_bool(large, [&](auto large) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
if (contig) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(OutType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large, N_READS);
|
||||
encoder.add_kernel_node(
|
||||
cu::unary_v<Op, InType, OutType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT, 1>;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
kernel = cu::unary_g<Op, InType, OutType, IdxT, 4>;
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do unary op {} on input of {} with output of {}.",
|
||||
op,
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
set_unary_output_data(inputs[0], out);
|
||||
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
#define UNARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
unary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -52,4 +52,70 @@ array contiguous_copy_gpu(const array& arr, const Stream& s) {
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
void reshape_gpu(const array& in, array& out, Stream s) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
copy_gpu_inplace(
|
||||
in,
|
||||
out,
|
||||
in.shape(),
|
||||
in.strides(),
|
||||
make_contiguous_strides(in.shape()),
|
||||
0,
|
||||
0,
|
||||
CopyType::General,
|
||||
s);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
}
|
||||
|
||||
array flatten_in_eval(const array& x, int start_axis, int end_axis, Stream s) {
|
||||
int ndim = x.ndim();
|
||||
if (start_axis < 0) {
|
||||
start_axis += ndim;
|
||||
}
|
||||
if (end_axis < 0) {
|
||||
end_axis += ndim;
|
||||
}
|
||||
start_axis = std::max(0, start_axis);
|
||||
end_axis = std::min(ndim - 1, end_axis);
|
||||
|
||||
return reshape_in_eval(x, Flatten::output_shape(x, start_axis, end_axis), s);
|
||||
}
|
||||
|
||||
array reshape_in_eval(const array& x, Shape shape, Stream s) {
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
reshape_gpu(x, out, s);
|
||||
return out;
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -46,4 +46,12 @@ void fill_gpu(const array& val, array& out, const Stream& s);
|
||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
||||
array contiguous_copy_gpu(const array& arr, const Stream& s);
|
||||
|
||||
// Copy data from |in| and transpose to |out|'s shape.
|
||||
void reshape_gpu(const array& in, array& out, Stream s);
|
||||
|
||||
// Like the normal ops but safe to call in eval_gpu.
|
||||
array flatten_in_eval(const array& x, int start_axis, int end_axis, Stream s);
|
||||
array reshape_in_eval(const array& x, Shape shape, Stream s);
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -20,29 +20,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
void reshape(const array& in, array& out, Stream s) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
copy_gpu_inplace(
|
||||
in,
|
||||
out,
|
||||
in.shape(),
|
||||
in.strides(),
|
||||
make_contiguous_strides(in.shape()),
|
||||
0,
|
||||
0,
|
||||
CopyType::General,
|
||||
s);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void AsStrided::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
MLX_PROFILER_RANGE("AsStrided::eval_gpu");
|
||||
eval(inputs, out);
|
||||
@@ -124,7 +101,7 @@ void Full::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Flatten::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
MLX_PROFILER_RANGE("Flatten::eval_gpu");
|
||||
reshape(inputs[0], out, stream());
|
||||
reshape_gpu(inputs[0], out, stream());
|
||||
}
|
||||
|
||||
void NumberOfElements::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -150,7 +127,7 @@ void Pad::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Reshape::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
MLX_PROFILER_RANGE("Reshape::eval_gpu");
|
||||
reshape(inputs[0], out, stream());
|
||||
reshape_gpu(inputs[0], out, stream());
|
||||
}
|
||||
|
||||
void Split::eval_gpu(
|
||||
@@ -224,7 +201,7 @@ void Transpose::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Unflatten::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
MLX_PROFILER_RANGE("Unflatten::eval_gpu");
|
||||
reshape(inputs[0], out, stream());
|
||||
reshape_gpu(inputs[0], out, stream());
|
||||
}
|
||||
|
||||
void View::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
@@ -60,22 +60,12 @@ struct CommandEncoder {
|
||||
enc_->updateFence(fence);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_vector_bytes(const SmallVector<T>& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
|
||||
template <typename Vec, typename = std::enable_if_t<is_vector_v<Vec>>>
|
||||
void set_vector_bytes(const Vec& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(typename Vec::value_type), idx);
|
||||
}
|
||||
template <typename T>
|
||||
void set_vector_bytes(const SmallVector<T>& vec, int idx) {
|
||||
return set_vector_bytes(vec, vec.size(), idx);
|
||||
}
|
||||
|
||||
// TODO: Code is duplicated but they should be deleted soon.
|
||||
template <typename T>
|
||||
void set_vector_bytes(const std::vector<T>& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
|
||||
}
|
||||
template <typename T>
|
||||
void set_vector_bytes(const std::vector<T>& vec, int idx) {
|
||||
template <typename Vec, typename = std::enable_if_t<is_vector_v<Vec>>>
|
||||
void set_vector_bytes(const Vec& vec, int idx) {
|
||||
return set_vector_bytes(vec, vec.size(), idx);
|
||||
}
|
||||
|
||||
|
||||
@@ -166,115 +166,6 @@ instantiate_naive_unfold_nd_dims(float32, float);
|
||||
instantiate_naive_unfold_nd_dims(float16, half);
|
||||
instantiate_naive_unfold_nd_dims(bfloat16, bfloat16_t);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Slow and naive conv2d kernels
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
const int BM, /* Threadgroup rows (in threads) */
|
||||
const int BN, /* Threadgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN, /* Thread cols (in elements) */
|
||||
const int BC = 16>
|
||||
[[kernel]] void naive_conv_2d(
|
||||
const device T* in [[buffer(0)]],
|
||||
const device T* wt [[buffer(1)]],
|
||||
device T* out [[buffer(2)]],
|
||||
const constant MLXConvParams<2>& params [[buffer(3)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
(void)simd_gid;
|
||||
(void)simd_lid;
|
||||
|
||||
out += tid.z * params.out_strides[0];
|
||||
in += tid.z * params.in_strides[0];
|
||||
|
||||
int out_o = tid.y * BN * TN + lid.y * TN;
|
||||
int out_hw = tid.x * BM * TM + lid.x * TM;
|
||||
|
||||
int out_h[TM];
|
||||
int out_w[TN];
|
||||
|
||||
for (int m = 0; m < TM; ++m) {
|
||||
int mm = (out_hw + m);
|
||||
out_h[m] = mm / params.oS[1];
|
||||
out_w[m] = mm % params.oS[1];
|
||||
}
|
||||
|
||||
T in_local[TM];
|
||||
T wt_local[TN];
|
||||
T out_local[TM * TN] = {T(0)};
|
||||
|
||||
for (int h = 0; h < params.wS[0]; ++h) {
|
||||
for (int w = 0; w < params.wS[1]; ++w) {
|
||||
for (int c = 0; c < params.C; ++c) {
|
||||
// Local in
|
||||
for (int m = 0; m < TM; m++) {
|
||||
int i = out_h[m] * params.str[0] - params.pad[0] + h * params.kdil[0];
|
||||
int j = out_w[m] * params.str[1] - params.pad[1] + w * params.kdil[1];
|
||||
|
||||
bool valid = i >= 0 && i < params.iS[0] && j >= 0 && j < params.iS[1];
|
||||
in_local[m] = valid
|
||||
? in[i * params.in_strides[1] + j * params.in_strides[2] + c]
|
||||
: T(0);
|
||||
}
|
||||
|
||||
// Load weight
|
||||
for (int n = 0; n < TN; ++n) {
|
||||
int o = out_o + n;
|
||||
wt_local[n] = o < params.O
|
||||
? wt[o * params.wt_strides[0] + h * params.wt_strides[1] +
|
||||
w * params.wt_strides[2] + c]
|
||||
: T(0);
|
||||
}
|
||||
|
||||
// Accumulate
|
||||
for (int m = 0; m < TM; ++m) {
|
||||
for (int n = 0; n < TN; ++n) {
|
||||
out_local[m * TN + n] += in_local[m] * wt_local[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int m = 0; m < TM; ++m) {
|
||||
for (int n = 0; n < TN; ++n) {
|
||||
if (out_h[m] < params.oS[0] && out_w[m] < params.oS[1] &&
|
||||
(out_o + n) < params.O)
|
||||
out[out_h[m] * params.out_strides[1] +
|
||||
out_w[m] * params.out_strides[2] + out_o + n] =
|
||||
out_local[m * TN + n];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Instantiations
|
||||
|
||||
#define instantiate_naive_conv_2d(name, itype, bm, bn, tm, tn) \
|
||||
template [[host_name("naive_conv_2d_" #name "_bm" #bm "_bn" #bn "_tm" #tm \
|
||||
"_tn" #tn)]] [[kernel]] void \
|
||||
naive_conv_2d<itype, bm, bn, tm, tn>( \
|
||||
const device itype* in [[buffer(0)]], \
|
||||
const device itype* wt [[buffer(1)]], \
|
||||
device itype* out [[buffer(2)]], \
|
||||
const constant MLXConvParams<2>& params [[buffer(3)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
#define instantiate_naive_conv_2d_blocks(name, itype) \
|
||||
instantiate_naive_conv_2d(name, itype, 16, 8, 4, 4) \
|
||||
instantiate_naive_conv_2d(name, itype, 16, 8, 2, 4)
|
||||
|
||||
instantiate_naive_conv_2d_blocks(float32, float);
|
||||
instantiate_naive_conv_2d_blocks(float16, half);
|
||||
instantiate_naive_conv_2d_blocks(bfloat16, bfloat16_t);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Depthwise convolution kernels
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -134,6 +134,10 @@ instantiate_and_or(and, And)
|
||||
instantiate_and_or(or, Or)
|
||||
|
||||
#define instantiate_sum_prod(name, op) \
|
||||
instantiate_reduce_functions(name, uint8, uint8_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, uint16, uint16_t, uint32_t, op) \
|
||||
instantiate_reduce_functions(name, uint32, uint32_t, uint32_t, op) \
|
||||
instantiate_reduce_functions(name, uint64, uint64_t, uint64_t, op) \
|
||||
instantiate_reduce_functions(name, int8, int8_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int16, int16_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \
|
||||
|
||||
@@ -247,15 +247,25 @@ std::pair<Dtype, Dtype> remap_reduce_types(
|
||||
const std::string& op_name) {
|
||||
if (op_name == "sum" || op_name == "prod") {
|
||||
if (issubdtype(in.dtype(), integer)) {
|
||||
switch (in.dtype().size()) {
|
||||
case 1:
|
||||
switch (in.dtype()) {
|
||||
case uint8:
|
||||
return {uint8, uint32};
|
||||
case uint16:
|
||||
return {uint16, uint32};
|
||||
case uint32:
|
||||
return {uint32, uint32};
|
||||
case uint64:
|
||||
return {uint64, uint64};
|
||||
case int8:
|
||||
return {int8, int32};
|
||||
case 2:
|
||||
case int16:
|
||||
return {int16, int32};
|
||||
case 4:
|
||||
case int32:
|
||||
return {int32, int32};
|
||||
case 8:
|
||||
case int64:
|
||||
return {int64, int64};
|
||||
default:
|
||||
throw std::runtime_error("Unsupported integer type");
|
||||
}
|
||||
}
|
||||
if (in.dtype() == bool_) {
|
||||
|
||||
31
mlx/ops.cpp
31
mlx/ops.cpp
@@ -2381,9 +2381,20 @@ array logsumexp(
|
||||
throw std::invalid_argument(
|
||||
"[logsumexp] Received non-empty axes for array with 0 dimensions.");
|
||||
}
|
||||
bool reduce_last_dim =
|
||||
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
|
||||
if (reduce_last_dim) {
|
||||
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
|
||||
// is [1, 1, ..., N].
|
||||
for (int i = axes.size() - 2; i >= 0; --i) {
|
||||
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
|
||||
reduce_last_dim = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
bool is_complex = issubdtype(a.dtype(), complexfloating);
|
||||
if (!is_complex && axes.size() == 1 &&
|
||||
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
|
||||
if (!is_complex && reduce_last_dim) {
|
||||
auto dtype = at_least_float(a.dtype());
|
||||
auto out_shape = a.shape();
|
||||
out_shape.back() = 1;
|
||||
@@ -3403,10 +3414,20 @@ array softmax(
|
||||
throw std::invalid_argument(
|
||||
"[softmax] Received non-empty axes for array with 0 dimensions.");
|
||||
}
|
||||
|
||||
bool reduce_last_dim =
|
||||
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
|
||||
if (reduce_last_dim) {
|
||||
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
|
||||
// is [1, 1, ..., N].
|
||||
for (int i = axes.size() - 2; i >= 0; --i) {
|
||||
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
|
||||
reduce_last_dim = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
bool is_complex = issubdtype(a.dtype(), complexfloating);
|
||||
if (!is_complex && axes.size() == 1 &&
|
||||
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
|
||||
if (!is_complex && reduce_last_dim) {
|
||||
auto dtype = at_least_float(a.dtype());
|
||||
return array(
|
||||
a.shape(),
|
||||
|
||||
@@ -440,6 +440,7 @@ class SmallVector {
|
||||
end_ = begin_;
|
||||
}
|
||||
|
||||
private:
|
||||
// Grows the backing store by a factor of two, and at least to {min_capacity}.
|
||||
// TODO: Move to private after removing external code using this method.
|
||||
MLX_NOINLINE void grow(size_t min_capacity = 0) {
|
||||
@@ -469,7 +470,6 @@ class SmallVector {
|
||||
end_of_storage_ = new_storage + new_capacity;
|
||||
}
|
||||
|
||||
private:
|
||||
MLX_NOINLINE void free_storage() {
|
||||
std::destroy_n(begin_, end_ - begin_);
|
||||
if (is_big()) {
|
||||
@@ -519,6 +519,18 @@ class SmallVector {
|
||||
std::is_trivially_destructible<T>::value;
|
||||
};
|
||||
|
||||
template <typename>
|
||||
struct is_vector : std::false_type {};
|
||||
|
||||
template <typename T, size_t Size, typename Allocator>
|
||||
struct is_vector<SmallVector<T, Size, Allocator>> : std::true_type {};
|
||||
|
||||
template <typename T, typename Allocator>
|
||||
struct is_vector<std::vector<T, Allocator>> : std::true_type {};
|
||||
|
||||
template <typename Vec>
|
||||
inline constexpr bool is_vector_v = is_vector<Vec>::value;
|
||||
|
||||
#undef MLX_HAS_BUILTIN
|
||||
#undef MLX_HAS_ATTRIBUTE
|
||||
#undef MLX_LIKELY
|
||||
|
||||
@@ -259,43 +259,6 @@ std::ostream& operator<<(std::ostream& os, array a) {
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const SmallVector<int>& v) {
|
||||
os << "(";
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
os << v[i] << ((i == v.size() - 1) ? "" : ",");
|
||||
}
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const SmallVector<int64_t>& v) {
|
||||
os << "(";
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
os << v[i] << ((i == v.size() - 1) ? "" : ",");
|
||||
}
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
// TODO: Code is duplicated but they should be deleted soon.
|
||||
std::ostream& operator<<(std::ostream& os, const std::vector<int>& v) {
|
||||
os << "(";
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
os << v[i] << ((i == v.size() - 1) ? "" : ",");
|
||||
}
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const std::vector<int64_t>& v) {
|
||||
os << "(";
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
os << v[i] << ((i == v.size() - 1) ? "" : ",");
|
||||
}
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
namespace env {
|
||||
|
||||
int get_var(const char* name, int default_value) {
|
||||
|
||||
17
mlx/utils.h
17
mlx/utils.h
@@ -100,10 +100,6 @@ std::ostream& operator<<(std::ostream& os, const Stream& s);
|
||||
std::ostream& operator<<(std::ostream& os, const Dtype& d);
|
||||
std::ostream& operator<<(std::ostream& os, const Dtype::Kind& k);
|
||||
std::ostream& operator<<(std::ostream& os, array a);
|
||||
std::ostream& operator<<(std::ostream& os, const SmallVector<int>& v);
|
||||
std::ostream& operator<<(std::ostream& os, const SmallVector<int64_t>& v);
|
||||
std::ostream& operator<<(std::ostream& os, const std::vector<int>& v);
|
||||
std::ostream& operator<<(std::ostream& os, const std::vector<int64_t>& v);
|
||||
inline std::ostream& operator<<(std::ostream& os, const complex64_t& v) {
|
||||
return os << v.real() << (v.imag() >= 0 ? "+" : "") << v.imag() << "j";
|
||||
}
|
||||
@@ -114,6 +110,19 @@ inline std::ostream& operator<<(std::ostream& os, const bfloat16_t& v) {
|
||||
return os << static_cast<float>(v);
|
||||
}
|
||||
|
||||
template <typename Vec, typename = std::enable_if_t<is_vector_v<Vec>>>
|
||||
inline std::ostream& operator<<(std::ostream& os, const Vec& v) {
|
||||
os << "(";
|
||||
for (auto it = v.begin(); it != v.end(); ++it) {
|
||||
os << *it;
|
||||
if (it != std::prev(v.end())) {
|
||||
os << ",";
|
||||
}
|
||||
}
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
inline bool is_power_of_2(int n) {
|
||||
return ((n & (n - 1)) == 0) && n != 0;
|
||||
}
|
||||
|
||||
@@ -2,6 +2,6 @@
|
||||
requires = [
|
||||
"setuptools>=80",
|
||||
"nanobind==2.4.0",
|
||||
"cmake>=3.25",
|
||||
"cmake>=3.25,<4.1",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
@@ -17,7 +17,6 @@ cuda_skip = {
|
||||
"TestConv.test_1d_conv_with_2d",
|
||||
"TestConv.test_conv_1d_groups_flipped",
|
||||
"TestConv.test_conv_general_flip_grad",
|
||||
"TestConv.test_conv_groups_grad",
|
||||
"TestConv.test_torch_conv_2D",
|
||||
"TestConv.test_torch_conv_depthwise",
|
||||
"TestConv.test_torch_conv_general",
|
||||
|
||||
@@ -155,6 +155,19 @@ TEST_CASE("test gpu reduce") {
|
||||
CHECK_EQ(prod(a, Device::gpu).item<int32_t>(), 1);
|
||||
}
|
||||
|
||||
// sum and prod overflow
|
||||
{
|
||||
auto a = full({256, 2, 2}, 1u, uint8);
|
||||
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 256 * 4);
|
||||
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
|
||||
|
||||
a = full({65535, 2, 2}, 1u, uint16);
|
||||
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 65535 * 4);
|
||||
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("test gpu reduce with axes") {
|
||||
// reducing only some axes and irregular layouts
|
||||
{
|
||||
array a(1.0f);
|
||||
|
||||
@@ -915,6 +915,23 @@ TEST_CASE("test reduction ops") {
|
||||
CHECK(array_equal(sum(x, 1), array({3.0f, 6.0f}, {2})).item<bool>());
|
||||
}
|
||||
|
||||
// Test unsigned sum
|
||||
{
|
||||
const int num_elems = 1000;
|
||||
|
||||
auto x = astype(full({num_elems}, 255), uint8);
|
||||
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 255 * num_elems);
|
||||
|
||||
x = astype(full({num_elems}, 65535), uint16);
|
||||
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 65535 * num_elems);
|
||||
|
||||
x = full({3, 3, 3}, 10000, uint32);
|
||||
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 270000);
|
||||
|
||||
x = full({3, 3, 3}, 10000, uint64);
|
||||
CHECK_EQ(sum(x, Device::cpu).item<uint64_t>(), 270000);
|
||||
}
|
||||
|
||||
// Test prod
|
||||
{
|
||||
auto x = array({});
|
||||
@@ -947,6 +964,21 @@ TEST_CASE("test reduction ops") {
|
||||
CHECK(array_equal(prod(x, 1), array({true, false})).item<bool>());
|
||||
}
|
||||
|
||||
// Test unsigned prod
|
||||
{
|
||||
auto x = array({255, 255}, {2}, uint8);
|
||||
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 65025);
|
||||
|
||||
x = array({65535, 2}, {2}, uint16);
|
||||
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 131070);
|
||||
|
||||
x = array({100000, 2}, {2}, uint32);
|
||||
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 200000);
|
||||
|
||||
x = array({100000, 2}, {2}, uint64);
|
||||
CHECK_EQ(prod(x, Device::cpu).item<uint64_t>(), 200000);
|
||||
}
|
||||
|
||||
// Test all
|
||||
{
|
||||
auto x = array({});
|
||||
|
||||
Reference in New Issue
Block a user