mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
2 Commits
v0.28.0
...
7fde1b6a1e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7fde1b6a1e | ||
|
|
aa7b47481a |
@@ -10,7 +10,34 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__global__ void set_mm_device_pointers(
|
||||
template <int NDIM>
|
||||
__global__ void set_mm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_mm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
@@ -38,7 +65,38 @@ __global__ void set_mm_device_pointers(
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers(
|
||||
template <int NDIM>
|
||||
__global__ void set_addmm_device_pointers_nd(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc_nd<NDIM>(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data());
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers_g(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
@@ -89,37 +147,62 @@ void Matmul::run_batched(
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
|
||||
{static_cast<int>(batch_count * 3)},
|
||||
allocator::malloc(batch_count * sizeof(void*) * 3),
|
||||
{batch_count * 3},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
@@ -150,7 +233,7 @@ void Matmul::run_batched(
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
@@ -159,30 +242,58 @@ void Matmul::run_batched(
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{static_cast<int>(batch_count * 4)},
|
||||
{batch_count * 4},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
int block_dims = std::min(batch_count, 256);
|
||||
int num_blocks = cuda::ceil_div(batch_count, block_dims);
|
||||
int64_t batch_stride = M_ * N_;
|
||||
int item_size = out.itemsize();
|
||||
|
||||
int ndim = batch_shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_nd<ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
const_param<ndim_constant()>(b_batch_strides),
|
||||
const_param<ndim_constant()>(c_batch_strides),
|
||||
batch_stride,
|
||||
batch_count);
|
||||
});
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers_g,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
batch_stride,
|
||||
ndim,
|
||||
batch_count);
|
||||
}
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
|
||||
31
mlx/ops.cpp
31
mlx/ops.cpp
@@ -2381,9 +2381,20 @@ array logsumexp(
|
||||
throw std::invalid_argument(
|
||||
"[logsumexp] Received non-empty axes for array with 0 dimensions.");
|
||||
}
|
||||
bool reduce_last_dim =
|
||||
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
|
||||
if (reduce_last_dim) {
|
||||
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
|
||||
// is [1, 1, ..., N].
|
||||
for (int i = axes.size() - 2; i >= 0; --i) {
|
||||
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
|
||||
reduce_last_dim = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
bool is_complex = issubdtype(a.dtype(), complexfloating);
|
||||
if (!is_complex && axes.size() == 1 &&
|
||||
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
|
||||
if (!is_complex && reduce_last_dim) {
|
||||
auto dtype = at_least_float(a.dtype());
|
||||
auto out_shape = a.shape();
|
||||
out_shape.back() = 1;
|
||||
@@ -3403,10 +3414,20 @@ array softmax(
|
||||
throw std::invalid_argument(
|
||||
"[softmax] Received non-empty axes for array with 0 dimensions.");
|
||||
}
|
||||
|
||||
bool reduce_last_dim =
|
||||
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
|
||||
if (reduce_last_dim) {
|
||||
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
|
||||
// is [1, 1, ..., N].
|
||||
for (int i = axes.size() - 2; i >= 0; --i) {
|
||||
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
|
||||
reduce_last_dim = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
bool is_complex = issubdtype(a.dtype(), complexfloating);
|
||||
if (!is_complex && axes.size() == 1 &&
|
||||
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
|
||||
if (!is_complex && reduce_last_dim) {
|
||||
auto dtype = at_least_float(a.dtype());
|
||||
return array(
|
||||
a.shape(),
|
||||
|
||||
Reference in New Issue
Block a user