Compare commits

..

1 Commits

Author SHA1 Message Date
Angelos Katharopoulos
870208eff5 Start sdpa vector 2025-06-16 17:38:39 -07:00
230 changed files with 4346 additions and 12201 deletions

View File

@@ -7,9 +7,15 @@ parameters:
nightly_build:
type: boolean
default: false
weekly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
linux_release:
type: boolean
default: false
jobs:
build_documentation:
@@ -32,7 +38,7 @@ jobs:
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
pip install . -v
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
@@ -64,9 +70,9 @@ jobs:
git push -f origin gh-pages
linux_build_and_test:
machine:
image: ubuntu-2204:current
resource_class: large
docker:
- image: cimg/python:3.9
steps:
- checkout
- run:
@@ -78,35 +84,36 @@ jobs:
- run:
name: Install dependencies
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
sudo apt-get update
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
uv pip install cmake
uv pip install -e ".[dev]" -v
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
echo "stubs"
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
python -m unittest discover python/tests -v
python3 -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build CPP only
command: |
source .venv/bin/activate
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
@@ -132,49 +139,51 @@ jobs:
- run:
name: Install dependencies
command: |
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
brew install openmpi uv
brew install python@3.9
brew install openmpi
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
pip install torch
pip install tensorflow
pip install unittest-xml-reporting
- run:
name: Install Python package
command: |
uv venv --python 3.9
uv pip install \
nanobind==2.4.0 \
cmake \
numpy \
torch \
tensorflow \
unittest-xml-reporting
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
uv pip install -e . -v
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
pip install -e . -v
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build example extension
command: |
source .venv/bin/activate
source env/bin/activate
cd examples/extensions
uv pip install -r requirements.txt
uv run --no-project setup.py build_ext --inplace
uv run --no-project python test.py
pip install -r requirements.txt
python setup.py build_ext -j8
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source .venv/bin/activate
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
- run:
name: Run CPP tests
@@ -183,7 +192,7 @@ jobs:
- run:
name: Build small binary
command: |
source .venv/bin/activate
source env/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
@@ -195,60 +204,37 @@ jobs:
- run:
name: Run Python tests with JIT
command: |
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e .
pip install -e . -v
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
uv run --no-project python -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
cuda_build_and_test:
parameters:
image_date:
type: string
default: "2023.11.1"
machine:
image: "linux-cuda-12:<< parameters.image_date >>"
image: linux-cuda-12:default
resource_class: gpu.nvidia.small.gen2
steps:
- checkout
- restore_cache:
keys:
- cuda-<< parameters.image_date >>-{{ arch }}-
- run:
name: Install dependencies
command: |
sudo apt-get update
sudo apt-get install libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
rm -rf ccache-4.11.3-linux-x86_64
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
python -m venv env
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
uv pip install -e ".[dev]" -v
pip install -e ".[dev]"
- run:
name: Run Python tests
command: |
source .venv/bin/activate
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
- run:
name: CCache report
command: |
ccache --show-stats
ccache --zero-stats
ccache --max-size 400MB
ccache --cleanup
- save_cache:
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
paths:
- /home/circleci/.cache/ccache
build_release:
parameters:
@@ -290,6 +276,7 @@ jobs:
command: |
source env/bin/activate
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
pip install . -v
- run:
name: Generate package stubs
@@ -301,18 +288,9 @@ jobs:
name: Build Python package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
python -m build -w
- when:
condition: << parameters.build_env >>
steps:
@@ -329,100 +307,52 @@ jobs:
python_version:
type: string
default: "3.9"
build_env:
extra_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
default: "DEV_RELEASE=1"
docker:
- image: ubuntu:20.04
steps:
- checkout
- run:
name: Build wheel
command: |
PYTHON=python<< parameters.python_version >>
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
TZ=Etc/UTC sudo apt-get -y install tzdata
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get update
apt-get upgrade -y
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
apt-get install -y apt-utils
apt-get install -y software-properties-common
add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get install -y build-essential git
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.build_env >> pip install ".[dev]" -v
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
pip install . -v
pip install typing_extensions
python setup.py generate_stubs
python setup.py clean --all
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
bash python/scripts/repair_linux.sh
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload packages
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
build_cuda_release:
parameters:
build_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Build wheel
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install zip
pip install auditwheel
pip install patchelf
pip install build
pip install twine
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build -w
bash python/scripts/repair_cuda.sh
- when:
condition: << parameters.build_env >>
steps:
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- run:
name: Upload package
command: |
twine upload wheelhouse/*.whl
source env/bin/activate
twine upload wheelhouse/*
- store_artifacts:
path: wheelhouse/
@@ -434,6 +364,7 @@ workflows:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
@@ -441,16 +372,14 @@ workflows:
parameters:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- cuda_build_and_test:
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
- cuda_build_and_test
- build_documentation
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
@@ -533,25 +462,6 @@ workflows:
branches:
ignore: /.*/
upload-docs: true
- build_linux_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
build_env: ["PYPI_RELEASE=1"]
prb:
when:
@@ -572,9 +482,6 @@ workflows:
requires: [ hold ]
- cuda_build_and_test:
requires: [ hold ]
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
nightly_build:
when:
and:
@@ -633,17 +540,11 @@ workflows:
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
weekly_build:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
- << pipeline.parameters.weekly_build >>
jobs:
- build_release:
matrix:
@@ -713,12 +614,14 @@ workflows:
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.linux_release >>
jobs:
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:
parameters:
build_env: ["DEV_RELEASE=1"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -19,7 +19,6 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -41,9 +41,7 @@ option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
# --------------------- Processor tests -------------------------
message(
@@ -66,17 +64,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
message(WARNING "Building for x86_64 arch is not officially supported.")
endif()
endif()
else()
set(MLX_BUILD_METAL OFF)
endif()
if(MLX_USE_CCACHE)
find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
endif()
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
# ----------------------------- Lib -----------------------------
@@ -243,16 +234,12 @@ target_include_directories(
# Do not add mlx_EXPORTS define for shared library.
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
if(USE_SYSTEM_FMT)
find_package(fmt REQUIRED)
else()
FetchContent_Declare(
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
endif()
FetchContent_MakeAvailable(fmt)
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
if(MLX_BUILD_PYTHON_BINDINGS)

View File

@@ -68,23 +68,18 @@ in the documentation.
## Installation
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
macOS, run:
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
```bash
**With `pip`**:
```
pip install mlx
```
To install the CUDA backend on Linux, run:
**With `conda`**:
```bash
pip install mlx[cuda]
```
To install a CPU-only Linux package, run:
```bash
pip install mlx[cpu]
conda install -c conda-forge mlx
```
Checkout the

View File

@@ -192,22 +192,6 @@ void time_reductions() {
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
TIME(argmin_along_1);
auto indices = mx::array({1});
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
std::vector<int> axes{0};
auto b = scatter(a, {indices}, updates, axes);
mx::eval(b);
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
TIME(max_along_0);
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
TIME(max_along_1);
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
TIME(min_along_0);
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
TIME(min_along_1);
}
void time_gather_scatter() {

View File

@@ -5,7 +5,6 @@ import os
import time
import torch
import torch.cuda
import torch.mps
@@ -45,10 +44,8 @@ def bench(f, *args):
def sync_if_needed(x):
if x.device == torch.device("mps"):
if x.device != torch.device("cpu"):
torch.mps.synchronize()
elif x.device == torch.device("cuda"):
torch.cuda.synchronize()
@torch.no_grad()
@@ -102,14 +99,6 @@ def reduction(op, axis, x):
sync_if_needed(x)
@torch.no_grad()
def sum_and_add(axis, x, y):
z = x.sum(axis=axis, keepdims=True)
for i in range(50):
z = (z + y).sum(axis=axis, keepdims=True)
sync_if_needed(x)
@torch.no_grad()
def softmax(axis, x):
ys = []
@@ -351,11 +340,7 @@ if __name__ == "__main__":
args.axis.pop(0)
torch.set_num_threads(1)
device = "mps"
if torch.cuda.is_available():
device = "cuda"
if args.cpu:
device = "cpu"
device = "cpu" if args.cpu else "mps"
types = args.dtype
if not types:
@@ -475,8 +460,5 @@ if __name__ == "__main__":
elif args.benchmark == "selu":
print(bench(selu, x))
elif args.benchmark == "sum_and_add":
print(bench(sum_and_add, axis, *xs))
else:
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")

View File

@@ -51,20 +51,6 @@ def time_maximum():
time_fn(mx.maximum, a, b)
def time_max():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.max, a, 0)
def time_min():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.min, a, 0)
def time_negative():
a = mx.random.uniform(shape=(10000, 1000))
mx.eval(a)
@@ -122,8 +108,6 @@ if __name__ == "__main__":
time_add()
time_matmul()
time_min()
time_max()
time_maximum()
time_exp()
time_negative()

View File

@@ -138,13 +138,13 @@ more concrete:
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<std::vector<array>, std::vector<int>> vmap(
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
/** The name of primitive. */
const char* name() const override {
return "Axpby";
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
}
/** Equivalence check **/
@@ -394,14 +394,14 @@ below.
out.set_data(allocator::malloc(out.nbytes()));
// Resolve name of kernel
std::stream kname;
kname = "axpby_general_" + type_to_name(out);
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
auto lib = d.get_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname, lib);
auto kernel = d.get_kernel(kname.str(), lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -13,7 +13,7 @@ silicon computer is
pip install mlx
To install from PyPI your system must meet the following requirements:
To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.9
@@ -23,39 +23,12 @@ To install from PyPI your system must meet the following requirements:
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
CUDA
^^^^
MLX has a CUDA backend which you can install with:
MLX is also available on conda-forge. To install MLX with conda do:
.. code-block:: shell
pip install mlx[cuda]
To install the CUDA package from PyPi your system must meet the following
requirements:
- Nvidia architecture >= SM 7.0 (Volta)
- Nvidia driver >= 550.54.14
- CUDA toolkit >= 12.0
- Linux distribution with glibc >= 2.35
- Python >= 3.9
CPU-only (Linux)
^^^^^^^^^^^^^^^^
For a CPU-only version of MLX that runs on Linux use:
.. code-block:: shell
pip install mlx[cpu]
To install the CPU-only package from PyPi your system must meet the following
requirements:
- Linux distribution with glibc >= 2.35
- Python >= 3.9
conda install conda-forge::mlx
Troubleshooting
@@ -92,8 +65,6 @@ Build Requirements
Python API
^^^^^^^^^^
.. _python install:
To build and install the MLX python library from source, first, clone MLX from
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
@@ -105,20 +76,20 @@ Then simply build and install MLX using pip:
.. code-block:: shell
pip install .
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
pip install -e ".[dev]"
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
python setup.py build_ext --inplace
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
Run the tests with:
@@ -136,8 +107,6 @@ IDE:
C++ API
^^^^^^^
.. _cpp install:
Currently, MLX must be built and installed from source.
Similarly to the python library, to build and install the MLX C++ library start
@@ -216,7 +185,6 @@ should point to the path to the built metal library.
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -245,50 +213,6 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists across reboots.
Linux
^^^^^
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
For example on Ubuntu, run the following:
.. code-block:: shell
apt-get update -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
From here follow the instructions to install either the :ref:`Python <python
install>` or :ref:`C++ <cpp install>` APIs.
CUDA
^^^^
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
and the CUDA toolkit. For example on Ubuntu, run the following:
.. code-block:: shell
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
.. code-block:: shell
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
To build the C++ package run:
.. code-block:: shell
mkdir -p build && cd build
cmake .. -DMLX_BUILD_CUDA=ON && make -j
Troubleshooting
^^^^^^^^^^^^^^^

View File

@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
optimizer.update(model, grads)
# Save the state
state = tree_flatten(optimizer.state, destination={})
mx.save_safetensors("optimizer.safetensors", state)
state = tree_flatten(optimizer.state)
mx.save_safetensors("optimizer.safetensors", dict(state))
# Later on, for example when loading from a checkpoint,
# recreate the optimizer and load the state
optimizer = optim.Adam(learning_rate=1e-2)
state = tree_unflatten(mx.load("optimizer.safetensors"))
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
optimizer.state = state
Note, not every optimizer configuation parameter is saved in the state. For

View File

@@ -19,4 +19,3 @@ Common Optimizers
Adamax
Lion
MultiOptimizer
Muon

View File

@@ -151,7 +151,7 @@ parameters, pass them as inputs to the ``call`` wrapper:
model.update(tree_unflatten(list(params.items())))
return model(x)
params = tree_flatten(model.parameters(), destination={})
params = dict(tree_flatten(model.parameters()))
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)

View File

@@ -1,6 +1,5 @@
// Copyright © 2023-2025 Apple Inc.
#include <dlfcn.h>
#include <iostream>
#include <sstream>
@@ -17,19 +16,6 @@
namespace my_ext {
// A helper function to find the location of the current binary on disk.
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
std::string current_binary_dir() {
static std::string binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path().string();
}();
return binary_dir;
}
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
///////////////////////////////////////////////////////////////////////////////
@@ -181,15 +167,16 @@ void Axpby::eval_gpu(
}
// Resolve name of kernel (corresponds to axpby.metal)
std::string kname = "axpby_";
kname += (contiguous_kernel ? "contiguous_" : "general_");
kname += type_to_name(out);
std::ostringstream kname;
kname << "axpby_";
kname << (contiguous_kernel ? "contiguous_" : "general_");
kname << type_to_name(out);
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
auto lib = d.get_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname, lib);
auto kernel = d.get_kernel(kname.str(), lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
const std::vector<mx::array>& inputs,
const std::vector<int>& axes) override;
/** The name of primitive. */
const char* name() const override {
return "Axpby";
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
}
/** Equivalence check **/

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.25
mlx>=0.21.0
nanobind==2.4.0
nanobind==2.2.0

View File

@@ -3,10 +3,8 @@ from mlx_sample_extensions import axpby
a = mx.ones((3, 4))
b = mx.ones((3, 4))
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
print(f"c shape: {c_cpu.shape}")
print(f"c dtype: {c_cpu.dtype}")
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")

View File

@@ -10,7 +10,6 @@
#include "mlx/allocator.h"
#include "mlx/dtype.h"
#include "mlx/event.h"
#include "mlx/small_vector.h"
namespace mlx::core {
@@ -19,8 +18,8 @@ class Primitive;
using Deleter = std::function<void(allocator::Buffer)>;
using ShapeElem = int32_t;
using Shape = SmallVector<ShapeElem>;
using Strides = SmallVector<int64_t>;
using Shape = std::vector<ShapeElem>;
using Strides = std::vector<int64_t>;
class array {
/* An array is really a node in a graph. It contains a shared ArrayDesc

View File

@@ -14,8 +14,6 @@ void print_constant(std::ostream& os, const array& x) {
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case float64:
return print_float_constant<double>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
@@ -52,8 +50,6 @@ std::string get_type_string(Dtype d) {
return "float16_t";
case bfloat16:
return "bfloat16_t";
case float64:
return "double";
case complex64:
return "complex64_t";
case bool_:

View File

@@ -18,12 +18,8 @@ std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
if constexpr (std::is_same_v<T, double>) {
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
} else {
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
}
os << x.item<T>() << std::setprecision(old_precision);
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>

View File

@@ -12,11 +12,16 @@ namespace mlx::core {
inline std::tuple<Shape, Strides, Strides> collapse_batches(
const array& a,
const array& b) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}};
// Get and check the shape for the batched dims
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
if (A_bshape != B_bshape) {
std::ostringstream msg;
msg << "[matmul] Got matrices with incorrectly broadcasted shapes: " << "A "
<< a.shape() << ", B " << b.shape() << ".";
throw std::runtime_error(msg.str());
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
@@ -37,11 +42,17 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
inline std::tuple<Shape, Strides, Strides, Strides>
collapse_batches(const array& a, const array& b, const array& c) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}, {0}};
// Get and check the shape for the batched dims
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
Shape C_bshape{c.shape().begin(), c.shape().end() - 2};
if (A_bshape != B_bshape || A_bshape != C_bshape) {
std::ostringstream msg;
msg << "[addmm] Got matrices with incorrectly broadcasted shapes: " << "A "
<< a.shape() << ", B " << b.shape() << ", B " << c.shape() << ".";
throw std::runtime_error(msg.str());
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
Strides C_bstride{c.strides().begin(), c.strides().end() - 2};

View File

@@ -5,9 +5,11 @@
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
Shape shape,
Strides strides,
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
@@ -17,15 +19,6 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
return std::make_pair(shape, strides);
}
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
return shapes_without_reduction_axes(
std::move(shape), std::move(strides), axes);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&

View File

@@ -51,9 +51,5 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
Shape shape,
Strides strides,
const std::vector<int>& axes);
} // namespace mlx::core

View File

@@ -1,20 +1,14 @@
// Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
std::filesystem::path current_binary_dir() {
static std::filesystem::path binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path();
}();
return binary_dir;
std::string get_primitive_string(Primitive* primitive) {
std::ostringstream op_t;
primitive->print(op_t);
return op_t.str();
}
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
@@ -205,15 +199,12 @@ Dims get_2d_grid_dims_common(
}
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX || divisor > 1) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
if (divisor > 1) {
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
@@ -228,31 +219,4 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
}
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
int ndim = x.ndim();
if (axis1 < 0) {
axis1 += ndim;
}
if (axis2 < 0) {
axis2 += ndim;
}
auto shape = x.shape();
std::swap(shape[axis1], shape[axis2]);
auto strides = x.strides();
std::swap(strides[axis1], strides[axis2]);
auto [data_size, row_contiguous, col_contiguous] =
check_contiguity(shape, strides);
bool contiguous = data_size == x.data_size();
array out(std::move(shape), x.dtype(), nullptr, {});
out.copy_shared_buffer(
x,
std::move(strides),
{contiguous, row_contiguous, col_contiguous},
x.data_size());
return out;
}
} // namespace mlx::core

View File

@@ -2,7 +2,6 @@
#pragma once
#include <filesystem>
#include <tuple>
#include <vector>
@@ -10,8 +9,7 @@
namespace mlx::core {
// Return the directory that contains current shared library.
std::filesystem::path current_binary_dir();
std::string get_primitive_string(Primitive* primitive);
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
@@ -196,11 +194,8 @@ void shared_buffer_reshape(
const Strides& out_strides,
array& out);
// Like the swapaxes op but safe to call in eval_gpu.
array swapaxes_in_eval(const array& x, int axis1, int axis2);
template <typename T>
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
vec.erase(std::next(vec.begin(), index));
return vec;
}

View File

@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// The decomposition is computed in place, so just copy the input to the
// output.
copy_cpu(
copy(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -231,7 +231,7 @@ inline void build_kernel(
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
os << x.primitive().name();
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
@@ -288,14 +288,6 @@ void Compiled::eval_cpu(
auto [contiguous, shape, strides] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Force allocating shape/strides on heap so we can take their data() first
// and then std::move them.
// TODO: Refactor code to avoid heap allocation.
shape.grow();
for (auto& s : strides) {
s.grow();
}
// Collect function input arguments.
std::vector<void*> args;
int strides_index = 1;

View File

@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
wt.size(),
0);
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
copy(wt_transpose, gemm_wt, CopyType::General, stream);
temps.push_back(gemm_wt);
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
temps.push_back(in_padded_slice);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C};
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
// Fill with zeros
std::vector<array> temps = {array(0, conv_dtype)};
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = 0;
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
}
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
temps.push_back(gemm_wt_);
// Calculate the total size of the spatial dimensions
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}

View File

@@ -295,11 +295,7 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream) {
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(src);
encoder.set_output_array(dst);
@@ -309,7 +305,7 @@ void copy_cpu_inplace(
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
}
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
bool donated = set_copy_output_data(src, dst, ctype);
if (donated && src.dtype() == dst.dtype()) {
// If the output has the same type as the input then there is nothing to
@@ -319,10 +315,10 @@ void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_cpu_inplace(src, dst, ctype, stream);
copy_inplace(src, dst, ctype, stream);
}
void copy_cpu_inplace(
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -377,10 +373,4 @@ void copy_cpu_inplace(
});
}
array contiguous_copy_cpu(const array& arr, Stream stream) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return arr_copy;
}
} // namespace mlx::core

View File

@@ -10,14 +10,10 @@
namespace mlx::core {
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream);
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -30,7 +26,4 @@ void copy_cpu_inplace(
const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_cpu(const array& arr, Stream stream);
} // namespace mlx::core

View File

@@ -13,7 +13,9 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
if (arr.flags().row_contiguous) {
return {arr, false};
} else {
return {contiguous_copy_cpu(arr, stream), true};
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
}
};
@@ -32,7 +34,8 @@ void AllReduce::eval_cpu(
}
return in;
} else {
array arr_copy = contiguous_copy_cpu(in, s);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, s);
out.copy_shared_buffer(arr_copy);
return arr_copy;
}

View File

@@ -135,7 +135,7 @@ void Eig::eval_cpu(
: array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy_cpu(
copy(
a,
a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
values.set_data(allocator::malloc(values.nbytes()));
copy_cpu(
copy(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
copy_cpu(
copy(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(src, out, ctype, stream());
copy(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> inds;
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(src, out, ctype, stream());
copy(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(idx);

View File

@@ -115,7 +115,7 @@ void inverse_impl(
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy_cpu(
copy(
a,
inv,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -2,7 +2,6 @@
#include "mlx/backend/cpu/jit_compiler.h"
#include <algorithm>
#include <sstream>
#include <vector>

View File

@@ -87,7 +87,8 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}

View File

@@ -31,7 +31,7 @@ void luf_impl(
strides[ndim - 1] = M;
strides[ndim - 2] = 1;
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_cpu_inplace(
copy_inplace(
a,
lu,
a.shape(),

View File

@@ -6,7 +6,6 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h"
@@ -53,58 +52,6 @@ inline void mask_matrix(
}
}
template <typename T>
inline void segmented_mm(
const T* a,
const T* b,
const uint32_t* segments,
T* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides,
size_t num_segments,
const Shape& segments_shape,
const Strides& segments_strides) {
int ndim = a_shape.size();
Shape a_copy = a_shape;
Shape b_copy = b_shape;
int32_t M = a_copy[ndim - 2];
int32_t N = b_copy[ndim - 1];
for (int i = 0; i < num_segments; i++) {
uint32_t k_start =
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
uint32_t k_end =
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
if (k_end <= k_start) {
std::fill_n(out + i * M * N, M * N, T(0));
continue;
}
a_copy[ndim - 1] = k_end - k_start;
b_copy[ndim - 2] = k_end - k_start;
matmul<T>(
a + k_start * a_strides[ndim - 1],
b + k_start * b_strides[ndim - 2],
out + i * M * N,
a_transposed,
b_transposed,
lda,
ldb,
N,
1.0,
0.0,
1,
a_copy,
a_strides,
b_copy,
b_strides);
}
}
} // namespace
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -124,20 +71,21 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::Vector, s);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true);
}
return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::Vector, s);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true);
}
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
array arr_copy = contiguous_copy_cpu(arr, s);
return std::make_tuple(false, stx, arr_copy, true);
}
};
@@ -385,7 +333,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -489,121 +437,4 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
encoder.add_temporaries(std::move(temps));
}
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& encoder = cpu::get_command_encoder(stream());
auto check_transpose = [&s, &encoder](const array& x) {
auto stx = x.strides()[x.ndim() - 2];
auto sty = x.strides()[x.ndim() - 1];
if (stx == x.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, x);
} else if (stx == 1 && sty == x.shape(-2)) {
return std::make_tuple(true, sty, x);
} else {
array xc(x.shape(), x.dtype(), nullptr, {});
copy_cpu(x, xc, CopyType::General, s);
encoder.add_temporary(xc);
int64_t stx = x.shape(-1);
return std::make_tuple(false, stx, xc);
}
};
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
auto& segments = inputs[2];
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(segments);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
segments = array::unsafe_weak_copy(segments),
out_ptr = out.data<void>(),
a_transposed = a_transposed,
b_transposed = b_transposed,
lda = lda,
ldb = ldb]() {
switch (a.dtype()) {
case float64:
segmented_mm<double>(
a.data<double>(),
b.data<double>(),
segments.data<uint32_t>(),
static_cast<double*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float32:
segmented_mm<float>(
a.data<float>(),
b.data<float>(),
segments.data<uint32_t>(),
static_cast<float*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float16:
segmented_mm<float16_t>(
a.data<float16_t>(),
b.data<float16_t>(),
segments.data<uint32_t>(),
static_cast<float16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case bfloat16:
segmented_mm<bfloat16_t>(
a.data<bfloat16_t>(),
b.data<bfloat16_t>(),
segments.data<uint32_t>(),
static_cast<bfloat16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
default:
throw std::invalid_argument(
"Segmented mm supports only real float types.");
}
});
}
} // namespace mlx::core

View File

@@ -81,7 +81,7 @@ void matmul_general(
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, stream);
copy(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy_cpu(c, out, ctype, stream());
copy(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}

View File

@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
copy_inplace(in, out, CopyType::General, out.primitive().stream());
} else {
shared_buffer_reshape(in, out_strides, out);
}
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(in, out, ctype, stream());
copy(in, out, ctype, stream());
}
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
}
}
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy_cpu(in, out, CopyType::General, stream());
copy(in, out, CopyType::General, stream());
}
}
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
ctype = CopyType::General;
}
copy_cpu(in, out, ctype, stream());
copy(in, out, ctype, stream());
}
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy_cpu(val, out, CopyType::Scalar, stream());
copy(val, out, CopyType::Scalar, stream());
// Find offset for start of input values
size_t data_offset = 0;
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
}
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
auto [out_offset, donated] =
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_);
// Do copy
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
copy_inplace(in_tmp, tmp, CopyType::General, stream());
} else {
copy_cpu_inplace(in, tmp, CopyType::General, stream());
copy_inplace(in, tmp, CopyType::General, stream());
}
auto flags = out.flags();

View File

@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes()));

View File

@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -712,7 +712,9 @@ void fast::AffineQuantize::eval_cpu(
if (arr.flags().row_contiguous) {
return std::make_pair(arr, false);
} else {
return std::make_pair(contiguous_copy_cpu(arr, s), true);
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
}
};

View File

@@ -325,15 +325,7 @@ struct MaxReduce {
};
template <int N, typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
T operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
};
@@ -350,15 +342,7 @@ struct MinReduce {
};
template <int N, typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
T operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
};
@@ -543,10 +527,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);

View File

@@ -250,8 +250,10 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
// Ensure contiguity
auto in = inputs[0];
if (!in.flags().row_contiguous) {
in = contiguous_copy_cpu(in, stream());
encoder.add_temporary(in);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, stream());
in = arr_copy;
encoder.add_temporary(arr_copy);
}
out.set_data(allocator::malloc(out.nbytes()));

View File

@@ -131,7 +131,8 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -8,7 +8,7 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -333,23 +333,44 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
int axis = axis_;
if (axis < 0) {
axis += in.ndim();
}
// Copy input to output
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
dispatch_all_types(out.dtype(), [&](auto type_tag) {
sort<MLX_GET_TYPE(type_tag)>(out, axis);
});
encoder.dispatch(
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
switch (out.dtype()) {
case bool_:
return sort<bool>(out, axis_);
case uint8:
return sort<uint8_t>(out, axis_);
case uint16:
return sort<uint16_t>(out, axis_);
case uint32:
return sort<uint32_t>(out, axis_);
case uint64:
return sort<uint64_t>(out, axis_);
case int8:
return sort<int8_t>(out, axis_);
case int16:
return sort<int16_t>(out, axis_);
case int32:
return sort<int32_t>(out, axis_);
case int64:
return sort<int64_t>(out, axis_);
case float32:
return sort<float>(out, axis_);
case float64:
return sort<double>(out, axis_);
case float16:
return sort<float16_t>(out, axis_);
case bfloat16:
return sort<bfloat16_t>(out, axis_);
case complex64:
return sort<complex64_t>(out, axis_);
}
});
}
@@ -405,10 +426,8 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Copy input to output
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);

View File

@@ -31,7 +31,7 @@ void svd_impl(
// lapack clobbers the input, so we have to make a copy.
array in(a.shape(), a.dtype(), nullptr, {});
copy_cpu(
copy(
a,
in,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -6,59 +6,42 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/init_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/segmented_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
# Embed kernel sources in binary for JIT compilation.
@@ -83,11 +66,6 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Enable calling host constexpr functions from device. This is needed because
# the constexpr version of isnan is host only.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
# Explicitly pass this flag to suppress the warning, it is safe to set it to
# true but the warning wouldn't be suppressed.
@@ -101,18 +79,11 @@ endif()
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
# and requires drivers released after CUDA 12.4.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
endif()
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
# managed memory.
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
set(MLX_CUDA_ARCHITECTURES "native")
endif()
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"70;80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
@@ -144,27 +115,6 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
# Use NVRTC and driver APIs.
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
# Use the frontend APIs of cuDNN.
FetchContent_Declare(
cudnn
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
GIT_TAG v1.12.1
GIT_SHALLOW TRUE
EXCLUDE_FROM_ALL)
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
FetchContent_MakeAvailable(cudnn)
target_link_libraries(mlx PRIVATE cudnn_frontend)
# Link with the actual cuDNN libraries.
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)

View File

@@ -2,7 +2,7 @@
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/utils.h"
#include "mlx/backend/cuda/worker.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
@@ -14,68 +14,14 @@ namespace mlx::core {
namespace cu {
constexpr int page_size = 16384;
// Any allocations smaller than this will try to use the small pool
constexpr int small_block_size = 8;
// The small pool size in bytes. This should be a multiple of the host page
// size and small_block_size.
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
auto num_blocks = small_pool_size / small_block_size;
buffer_ = new Block[num_blocks];
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
curr->next = buffer_ + i;
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(data_));
delete[] buffer_;
}
CudaBuffer* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
uint64_t i = next_free_ - buffer_;
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
return &b->buf;
}
void SmallSizePool::free(CudaBuffer* buf) {
auto b = reinterpret_cast<Block*>(buf);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(CudaBuffer* buf) {
constexpr int num_blocks = (small_pool_size / small_block_size);
auto b = reinterpret_cast<Block*>(buf);
int64_t block_num = b - buffer_;
return block_num >= 0 && block_num < num_blocks;
}
CudaAllocator::CudaAllocator()
: buffer_cache_(
page_size,
getpagesize(),
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
[this](CudaBuffer* buf) {
cuda_free(buf->data);
delete buf;
}) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
@@ -85,38 +31,23 @@ CudaAllocator::CudaAllocator()
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size <= small_block_size) {
size = 8;
} else if (size < page_size) {
size = next_power_of_2(size);
} else {
size = page_size * ((size + page_size - 1) / page_size);
}
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure try to reclaim memory from the cache.
int64_t mem_to_free =
get_active_memory() + get_cache_memory() + size - memory_limit_;
if (mem_to_free > 0) {
buffer_cache_.release_cached_buffers(mem_to_free);
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache.
size_t mem_required = get_active_memory() + get_cache_memory() + size;
if (mem_required >= memory_limit_) {
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
}
// Try the scalar pool first
if (size <= small_block_size) {
buf = scalar_pool_.malloc();
}
lock.unlock();
if (!buf) {
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
}
lock.lock();
}
active_memory_ += size;
@@ -126,6 +57,7 @@ Buffer CudaAllocator::malloc(size_t size) {
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{buf};
}
@@ -140,7 +72,9 @@ void CudaAllocator::free(Buffer buffer) {
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
cuda_free(buf);
lock.unlock();
cuda_free(buf->data);
delete buf;
}
}
@@ -152,14 +86,28 @@ size_t CudaAllocator::size(Buffer buffer) const {
return buf->size;
}
// This must be called with mutex_ aquired
void CudaAllocator::cuda_free(CudaBuffer* buf) {
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
cudaFree(buf->data);
delete buf;
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
void CudaAllocator::cuda_free(void* buf) {
// If cuda_free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([this, buf]() { this->cuda_free(buf); });
worker_->end_batch();
worker_->commit();
return;
}
}
cudaFree(buf);
}
size_t CudaAllocator::get_active_memory() const {

View File

@@ -7,10 +7,13 @@
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
@@ -19,35 +22,21 @@ struct CudaBuffer {
size_t size;
};
class SmallSizePool {
private:
union Block {
Block* next;
CudaBuffer buf;
};
Block* buffer_{nullptr};
void* data_{nullptr};
Block* next_free_{nullptr};
public:
SmallSizePool();
~SmallSizePool();
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
CudaBuffer* malloc();
void free(CudaBuffer* buf);
bool in_pool(CudaBuffer* buf);
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
// Call cudaFree in the safe thread.
void cuda_free(void* buf);
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
@@ -58,18 +47,19 @@ class CudaAllocator : public allocator::Allocator {
void clear_cache();
private:
void cuda_free(CudaBuffer* buf);
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t max_pool_size_;
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
SmallSizePool scalar_pool_;
};
CudaAllocator& allocator();

View File

@@ -1,55 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
namespace mlx::core {
namespace cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace cu
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(stream());
encoder.set_output_array(out);
auto capture = encoder.capture_context();
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(encoder.stream()),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
}
} // namespace mlx::core

View File

@@ -1,8 +1,7 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -44,11 +43,8 @@ struct ArgMin {
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
__device__ IndexValPair<T>
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
for (int i = 0; i < N; i++) {
if (vals[i] < best.val) {
best.val = vals[i];
@@ -77,11 +73,8 @@ struct ArgMax {
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
__device__ IndexValPair<T>
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
for (int i = 0; i < N; i++) {
if (vals[i] > best.val) {
best.val = vals[i];
@@ -112,15 +105,16 @@ __global__ void arg_reduce_general(
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
in += in_idx;
Op op;
T init = op.init();
IndexValPair<T> best{0, init};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
T vals[N_READS];
auto tid = r * BLOCK_DIM + block.thread_index().x;
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
cub::LoadDirectBlocked(
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
best = op.reduce_many(best, vals, tid * N_READS);
}
@@ -157,22 +151,27 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
using InType = cuda_type_t<CTYPE>;
constexpr uint32_t N_READS = 4;
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
auto kernel =
cu::arg_reduce_general<T, cu::ArgMax<T>, block_dim(), N_READS>;
dim3 block_dims{BLOCK_DIM, 1, 1};
auto kernel = &cu::arg_reduce_general<
InType,
cu::ArgMax<InType>,
BLOCK_DIM,
N_READS>;
if (reduce_type_ == ArgReduce::ArgMin) {
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, block_dim(), N_READS>;
kernel = &cu::arg_reduce_general<
InType,
cu::ArgMin<InType>,
BLOCK_DIM,
N_READS>;
}
encoder.add_kernel_node(
kernel,
num_blocks,
block_dim(),
0,
in.data<T>(),
kernel<<<num_blocks, block_dims, 0, stream>>>(
in.data<InType>(),
out.data<uint32_t>(),
out.size(),
const_param(shape),
@@ -183,6 +182,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
axis_size);
});
});
});
}
} // namespace mlx::core

View File

@@ -3,6 +3,7 @@
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -16,86 +17,35 @@ namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (int i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[0], b[0]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[i]);
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[0], b[index]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[0]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[index], b[0]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[i]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[index], b[index]);
}
}
@@ -128,7 +78,7 @@ __global__ void binary_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
auto [a_idx, b_idx] = elem_to_loc_4d(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]);
}
@@ -175,12 +125,13 @@ constexpr bool supports_binary_op() {
template <typename Op>
void binary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const char* op,
std::vector<array>& outputs,
std::string_view op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
auto& out = outputs[0];
if (out.size() == 0) {
return;
}
@@ -189,55 +140,43 @@ void binary_op_gpu_inplace(
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_ALL_TYPES(a.dtype(), CTYPE_IN, {
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
bool large = a.data_size() > INT32_MAX ||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel =
&cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
auto [num_blocks, block_dims] =
get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
const_param<NDIM>(shape),
const_param<NDIM>(a_strides),
const_param<NDIM>(b_strides));
});
} else {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -249,24 +188,19 @@ void binary_op_gpu_inplace(
}
});
} else {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -282,26 +216,50 @@ void binary_op_gpu_inplace(
}
});
});
});
}
template <typename Op>
void binary_op_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs,
std::string_view op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt);
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
template <typename Op>
void binary_op_gpu(
const std::vector<array>& inputs,
array& out,
const char* op,
std::string_view op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
binary_op_gpu_inplace<Op>(inputs, out, op, s);
std::vector<array> outputs{out};
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
#define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \
binary_op_gpu<cu::func>(inputs, out, name(), s); \
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
}
#define BINARY_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = outputs[0].primitive().stream(); \
binary_op_gpu<cu::func>(inputs, outputs, get_primitive_string(this), s); \
}
BINARY_GPU(Add)
@@ -325,31 +283,33 @@ BINARY_GPU(Subtract)
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s);
} else {
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
binary_op_gpu<cu::Equal>(inputs, out, op, s);
}
}
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
switch (op_) {
case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s);
break;
case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s);
break;
case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s);
break;
case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
binary_op_gpu<cu::LeftShift>(inputs, out, op, s);
break;
case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
binary_op_gpu<cu::RightShift>(inputs, out, op, s);
break;
}
}

View File

@@ -1,333 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_two_g_nd(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_two_g(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out>
constexpr bool supports_binary_two_op() {
if (std::is_same_v<Op, DivMod>) {
return std::is_same_v<In, Out> &&
(std::is_integral_v<Out> || is_floating_v<Out>);
}
return false;
}
} // namespace cu
template <typename Op>
void binary_two_op_gpu_inplace(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
auto& out_a = outputs[0];
auto& out_b = outputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
if (out_a.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out_a);
encoder.set_output_array(out_b);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out_a.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) =
collapse_contiguous_dims(a, b, out_a);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
} else {
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out_a.data_size(),
out_a.shape(),
out_a.strides(),
large(),
N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.data_size());
});
}
} else {
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out_a.dtype())));
}
});
});
}
template <typename Op>
void binary_two_op_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt);
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
void DivMod::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("DivMod::eval_gpu");
auto& s = outputs[0].primitive().stream();
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
}
} // namespace mlx::core

View File

@@ -3,7 +3,6 @@
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
@@ -53,10 +52,9 @@ struct FusedKernelBuilder {
// Build function signature.
if (contiguous) {
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
os += "template <typename IdxT = uint32_t>\n";
} else {
os +=
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
os += "template <int NDIM, typename IdxT = uint32_t>\n";
}
os += fmt::format("__global__ void {}(\n", kernel_name + name);
for (size_t i = 0; i < params.size(); ++i) {
@@ -68,77 +66,12 @@ struct FusedKernelBuilder {
}
os += ") {\n";
// Index. For non contiguous kernels we create a separate index
// variable per variable otherwise everyone uses `index`.
// Index.
os +=
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
" IdxT index = cg::this_grid().thread_rank();\n"
" if (index >= size) {\n"
" return;\n"
" }\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " IdxT " + xname + "_idx = 0;\n";
}
os += " {\n";
os += " IdxT loc = index;\n";
os +=
" #pragma unroll\n"
" for (int i = NDIM - 1; i >= 0; i--) {\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
"_strides[i]);\n";
}
os +=
" loc /= shape[i];\n"
" }\n"
" }\n";
}
// Vectorized read loop
if (contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
if (is_scalar(x) || is_constant(i)) {
continue;
}
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
xname,
type);
}
}
// Create some space for the outputs
for (const auto& x : outputs) {
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
}
// Work loop
if (!contiguous) {
os +=
"\n"
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
} else {
os +=
"\n"
" #pragma unroll\n"
" for (int i = 0; i < work_per_thread; i++) {\n";
}
// Read inputs.
for (size_t i = 0; i < inputs.size(); ++i) {
@@ -153,9 +86,12 @@ struct FusedKernelBuilder {
} else if (is_scalar(x)) {
value = fmt::format("{}[0]", xname);
} else if (contiguous) {
value = fmt::format("vec_{}[i]", xname);
value = fmt::format("{}[index]", xname);
} else {
value = fmt::format("{}[{}_idx]", xname, xname);
std::string index = fmt::format(
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
xname);
value = fmt::format("{}[{}]", xname, index);
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
@@ -169,7 +105,9 @@ struct FusedKernelBuilder {
value = fmt::format(
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
} else {
value = x.primitive().name();
std::ostringstream ss;
x.primitive().print(ss);
value = ss.str();
value += "{}(";
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
@@ -181,28 +119,7 @@ struct FusedKernelBuilder {
// Write output.
for (const auto& x : outputs) {
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
}
// End of work loop
if (!contiguous) {
os += "\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
}
}
os += " }\n";
// Store the output to global memory
for (const auto& x : outputs) {
os += fmt::format(
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
namer.get_name(x));
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
}
os += "}\n";
@@ -228,15 +145,6 @@ void Compiled::eval_gpu(
nvtx3::scoped_range r("Compiled::eval_gpu");
auto& s = stream();
// Determine the work per thread for the vectorized reads/writes. We take it
// as 16 over the max itemsize for the outputs. Another heuristic could be
// over the max itemsize of all arrays.
int max_size = 1;
for (const auto& x : outputs) {
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
}
int work_per_thread = 16 / max_size;
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
// Build source code.
cu::FusedKernelBuilder builder{
@@ -249,24 +157,16 @@ void Compiled::eval_gpu(
builder.build("_strided", false);
builder.os += "\n} // namespace mlx::core::cu\n";
// Build kernel names.
std::vector<std::string> kernel_names;
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
lib_name(),
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<int64_t, {}>",
lib_name(),
work_per_thread));
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
std::vector<std::string> kernel_names = {
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()),
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
};
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i));
kernel_names.push_back(
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i));
}
}
return std::make_pair(std::move(builder.os), std::move(kernel_names));
});
@@ -278,7 +178,6 @@ void Compiled::eval_gpu(
// Whether to use large index.
bool large = compiled_use_large_index(inputs, outputs, contiguous);
cu::KernelArgs args;
// Put inputs.
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
@@ -286,42 +185,35 @@ void Compiled::eval_gpu(
continue;
}
const auto& x = inputs[i];
args.append(x);
mod.append_arg(x);
if (!contiguous && !is_scalar(x)) {
args.append_ptr(strides_vec[strides_index++].data());
mod.append_arg(strides_vec[strides_index++]);
}
}
// Put outputs.
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
for (auto& x : outputs) {
args.append(x);
mod.append_arg(x);
}
// Put shape and size.
if (!contiguous) {
args.append_ptr(shape.data());
mod.append_arg(shape);
}
if (large) {
args.append<int64_t>(outputs[0].data_size());
mod.append_arg<int64_t>(outputs[0].data_size());
} else {
args.append<uint32_t>(outputs[0].data_size());
}
// Choose work per thread
if (!contiguous && shape.back() % work_per_thread != 0) {
work_per_thread = 1;
mod.append_arg<uint32_t>(outputs[0].data_size());
}
// Launch kernel.
const char* index_type = large ? "int64_t" : "uint32_t";
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
if (contiguous) {
kernel_name +=
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
kernel_name += fmt::format("_contiguous<{}>", index_type);
} else {
kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type);
}
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
@@ -330,11 +222,9 @@ void Compiled::eval_gpu(
for (const auto& out : outputs) {
encoder.set_output_array(out);
}
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
encoder.launch_kernel([&](cudaStream_t stream) {
mod.launch_kernel(stream, kernel_name, outputs[0], large);
});
}
} // namespace mlx::core

View File

@@ -1,546 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <cudnn_frontend_find_plan.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
namespace mlx::core {
namespace {
// Not all engines support it so can not use this API now.
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
// Alias for better readability.
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
#define CONV_BACKWARD_INPUT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
#define CONV_BACKWARD_WEIGHT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
struct ConvCacheKey {
int device_id;
cudnnDataType_t cudnn_dtype;
std::array<int, MAX_NDIM> input_shape;
std::array<int, MAX_NDIM> weight_shape;
std::array<int, MAX_NDIM> stride;
std::array<int, MAX_NDIM> padding_lo;
std::array<int, MAX_NDIM> padding_hi;
std::array<int, MAX_NDIM> dilation;
int groups;
bool flip;
uint8_t input_alignment;
uint8_t weight_alignment;
uint8_t output_alignment;
};
auto& conv_cache() {
static LRUBytesKeyCache<
ConvCacheKey,
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
cache(/* capacity */ 128);
return cache;
}
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
auto nhwc_to_nchw(const array& x) {
auto shape = convert_vector<int64_t>(x.shape());
shape.insert(shape.begin() + 1, shape.back());
shape.erase(shape.end() - 1);
auto strides = convert_vector<int64_t>(x.strides());
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return CUDNN_DATA_INT8;
case int32:
return CUDNN_DATA_INT32;
case uint8:
return CUDNN_DATA_UINT8;
case float16:
return CUDNN_DATA_HALF;
case bfloat16:
return CUDNN_DATA_BFLOAT16;
case float32:
return CUDNN_DATA_FLOAT;
case float64:
return CUDNN_DATA_DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
}
}
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
auto [shape, strides] = nhwc_to_nchw(x);
return cudnn_frontend::TensorBuilder()
.setDim(shape.size(), shape.data())
.setStrides(strides.size(), strides.data())
.setId(id)
.setAlignment(get_alignment(x))
.setDataType(dtype_to_cudnn_type(x.dtype()))
.build();
}
cudnn_frontend::EngineConfigList get_engine_configs(
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph,
bool use_fallback = false) {
cudnn_frontend::GeneratorSource source;
if (use_fallback) {
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
.setOperationGraph(op_graph)
.setOperation(backend_type)
.build();
return fallback.getFallbackList();
};
} else {
source = [](cudnn_frontend::OperationGraph& op_graph) {
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
.setOperationGraph(op_graph)
.setHeurMode(CUDNN_HEUR_MODE_A)
.build();
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
};
}
cudnn_frontend::EngineConfigGenerator generator(1, &source);
auto configs = generator.generate_engine_config(op_graph);
cudnn_frontend::EngineConfigList filtered_configs;
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
if (cudnn_frontend::hasNumericalNote<
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
return true;
}
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
dtype == float32 && !env::enable_tf32()) {
return true;
}
return false;
});
return filtered_configs;
}
bool execute_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
array& x,
array& w,
array& y) {
int workspace_size = plan.getWorkspaceSize();
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
int64_t uids[3] = {'x', 'w', 'y'};
void* data_ptrs[3] = {
x.data<void>(),
w.data<void>(),
y.data<void>(),
};
auto variantPack = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(3, data_ptrs)
.setUids(3, uids)
.build();
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
cudaGraph_t graph;
cudaGraphCreate(&graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
if (cudnnBackendPopulateCudaGraph(
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
encoder.add_graph_node(graph);
#else
auto capture = encoder.capture_context();
if (cudnnBackendExecute(
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
CUDNN_STATUS_SUCCESS) {
// Discard the captured graph when failed.
capture.discard = true;
return false;
}
#endif
encoder.add_temporary(workspace);
return true;
}
bool try_engines(
cu::CommandEncoder& encoder,
const ConvCacheKey& cache_key,
cudnnBackendDescriptorType_t backend_type,
cudnn_frontend::EngineConfigList& configs,
const std::string& op_graph_tag,
array& x,
array& w,
array& y) {
for (auto& config : configs) {
try {
auto plan = cudnn_frontend::ExecutionPlanBuilder()
.setHandle(encoder.device().cudnn_handle())
.setEngineConfig(config, op_graph_tag)
.build();
if (execute_plan(encoder, plan, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(plan)));
return true;
}
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
throw;
}
}
}
return false;
}
auto get_conv_op_settings(
cudnnBackendDescriptorType_t backend_type,
array& x,
array& w,
array& y,
const std::vector<int>& kernel_strides,
const std::vector<int>& padding_lo_,
const std::vector<int>& padding_hi_,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation) {
auto padding_lo = convert_vector<int64_t>(padding_lo_);
auto padding_hi = convert_vector<int64_t>(padding_hi_);
if (backend_type == CONV_BACKWARD_INPUT) {
for (int i = 0; i < padding_lo.size(); ++i) {
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
padding_lo[i] = wt_size - padding_lo[i] - 1;
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
padding_hi[i] = out_size - in_size + padding_hi[i];
}
return std::make_tuple(
convert_vector<int64_t>(input_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
padding_hi = padding_lo;
return std::make_tuple(
convert_vector<int64_t>(kernel_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_strides));
} else {
return std::make_tuple(
convert_vector<int64_t>(kernel_strides),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
}
}
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
array& x,
array& w,
array& y,
const SmallVector<int64_t>& stride,
const SmallVector<int64_t>& padding_lo,
const SmallVector<int64_t>& padding_hi,
const SmallVector<int64_t>& dilation) {
try {
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
? CUDNN_DATA_FLOAT
: dtype_to_cudnn_type(dtype);
auto conv_desc = cudnn_frontend::ConvDescBuilder()
.setDataType(compute_dtype)
.setMathMode(CUDNN_CROSS_CORRELATION)
.setNDims(stride.size())
.setStrides(stride.size(), stride.data())
.setPrePadding(padding_lo.size(), padding_lo.data())
.setPostPadding(padding_hi.size(), padding_hi.data())
.setDilation(dilation.size(), dilation.data())
.build();
auto op = cudnn_frontend::OperationBuilder(backend_type)
.setxDesc(build_tensor('x', x))
.setwDesc(build_tensor('w', w))
.setyDesc(build_tensor('y', y))
.setcDesc(conv_desc)
.build();
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
return cudnn_frontend::OperationGraphBuilder()
.setHandle(encoder.device().cudnn_handle())
.setOperationGraph(ops.size(), ops.data())
.build();
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
throw;
}
return std::nullopt;
}
}
// Do necessary transposes and copies to prepare the inputs and outputs for
// building the cuDNN conv op. It is safe to be called multiple times in one
// eval_gpu, with cost of possible redundant copies.
std::tuple<array, array, array> prepare_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array in,
array wt,
array out,
Stream s) {
// Transpose the args depending on the backend type.
// TODO: Handle groups.
if (backend_type == CONV_BACKWARD_INPUT) {
wt = swapaxes_in_eval(wt, 0, -1);
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
in = swapaxes_in_eval(in, 0, -1);
wt = swapaxes_in_eval(wt, 0, -1);
// Create a contiguous array that shares the data with |out|, but with dim
// C_in and C_out swapped.
Shape shape(out.shape());
std::swap(shape.front(), shape.back());
Strides strides(shape.size(), 1);
for (int i = shape.size() - 2; i >= 0; --i) {
strides[i] = shape[i + 1] * strides[i + 1];
}
array intermediate(std::move(shape), out.dtype(), nullptr, {});
intermediate.copy_shared_buffer(
out, std::move(strides), {true, true, false}, out.data_size());
out = intermediate;
}
// cuDNN requires contiguous input.
if (!in.flags().row_contiguous) {
in = contiguous_copy_gpu(in, s);
encoder.add_temporary(in);
}
if (!wt.flags().row_contiguous) {
wt = contiguous_copy_gpu(wt, s);
encoder.add_temporary(wt);
}
return {std::move(in), std::move(wt), std::move(out)};
}
// Get the x/w/y args from the in/wt/out args depending on backend type.
inline std::tuple<array&, array&, array&> dispatch_args(
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& out) {
switch (backend_type) {
case CONV_BACKWARD_INPUT:
return {out, wt, in};
case CONV_BACKWARD_WEIGHT:
return {in, out, wt};
default:
return {in, wt, out};
}
}
// Register inputs and outputs before actually running conv op. Can only be
// called once per eval_gpu.
void register_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& intermediate_out,
array& final_out) {
encoder.set_input_array(in);
encoder.set_input_array(wt);
encoder.set_output_array(final_out);
if (backend_type == CONV_BACKWARD_WEIGHT) {
// Turn |out| into a strided array, which will have C_in and C_out swapped
// in vjp and the final |grad_weight| will then be contiguous.
Strides strides = intermediate_out.strides();
std::swap(strides.front(), strides.back());
final_out.copy_shared_buffer(
intermediate_out,
std::move(strides),
{false, false, false},
intermediate_out.data_size());
}
}
} // namespace
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
nvtx3::scoped_range r("Convolution::eval_gpu");
if (out_.size() == 0) {
return;
}
assert(inputs.size() == 2);
array in = inputs[0];
array wt = inputs[1];
array out = out_;
out.set_data(allocator::malloc(out.nbytes()));
Dtype dtype = out.dtype();
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
// Search cache.
ConvCacheKey cache_key{
encoder.device().cuda_device(),
dtype_to_cudnn_type(dtype),
fixed_vector(in.shape()),
fixed_vector(wt.shape()),
fixed_vector(kernel_strides_),
fixed_vector(padding_lo_),
fixed_vector(padding_hi_),
fixed_vector(kernel_dilation_),
groups_,
flip_,
get_alignment(in),
get_alignment(wt),
get_alignment(out)};
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
auto& [backend_type, plan] = it->second;
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (!execute_plan(encoder, plan, x, w, y)) {
throw std::runtime_error("[conv] Cached plan failed to execute.");
}
return;
}
// There is no reliable way to deduce the proper cuDNN backend for the
// convolution, so we make a best guess and then try.
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
if (flip_) {
// When weight is flipped, we assume it is backward input convolution.
try_backends.push_back(CONV_BACKWARD_INPUT);
} else {
// Otherwise it could be backward weight convolution or forward convolution,
// mathematically there is no difference so we have to use heuristics.
// Empirically backward convolutions have large kernel dimensions, and
// usually have |in| and |wt| transposed.
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
wt.shape(2) > out.shape(2)) {
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
} else {
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
}
}
// Try to build op graph.
cudnnBackendDescriptorType_t backend_type;
std::optional<cudnn_frontend::OperationGraph> op_graph;
for (auto try_backend : try_backends) {
auto [in_copy, wt_copy, out_copy] =
prepare_args(encoder, try_backend, in, wt, out, s);
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
try_backend,
x,
w,
y,
kernel_strides_,
padding_lo_,
padding_hi_,
kernel_dilation_,
input_dilation_);
op_graph = build_op_graph(
encoder,
try_backend,
dtype,
x,
w,
y,
stride,
padding_lo,
padding_hi,
dilation);
if (op_graph) {
backend_type = try_backend;
in = std::move(in_copy);
wt = std::move(wt_copy);
out = std::move(out_copy);
break;
}
}
if (!op_graph) {
throw std::runtime_error("[conv] Can not build op graph.");
}
// Get ready to execute the graph.
register_args(encoder, backend_type, in, wt, out, out_);
// Try to run plans based on heuristics.
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
auto tag = op_graph->getTag();
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
// Then try fallback plans.
configs = get_engine_configs(backend_type, dtype, *op_graph);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
throw std::runtime_error("[conv] Unable to find a working engine.");
}
} // namespace mlx::core

View File

@@ -24,6 +24,7 @@ void copy_gpu_inplace(
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
return;

View File

@@ -10,6 +10,15 @@
namespace mlx::core {
#define MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, ...) \
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, { \
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, { \
using InType = cuda_type_t<CTYPE_IN>; \
using OutType = cuda_type_t<CTYPE_OUT>; \
__VA_ARGS__; \
}); \
})
void copy_contiguous(
cu::CommandEncoder& encoder,
CopyType ctype,

View File

@@ -10,43 +10,19 @@ namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int N_READS>
template <typename In, typename Out, typename IdxT>
__global__ void copy_s(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in[0]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = CastOp<In, Out>{}(in[0]);
}
}
template <typename In, typename Out, typename IdxT, int N_READS>
template <typename In, typename Out, typename IdxT>
__global__ void copy_v(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[i]);
}
} else {
auto in_vec = load_vector<N_READS>(in, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = CastOp<In, Out>{}(in[index]);
}
}
@@ -59,24 +35,17 @@ void copy_contiguous(
array& out,
int64_t in_offset,
int64_t out_offset) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
auto kernel = cu::copy_s<InType, OutType, IdxT>;
if (ctype == CopyType::Vector) {
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
kernel = cu::copy_v<InType, OutType, IdxT>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());

View File

@@ -37,7 +37,7 @@ __global__ void copy_gg(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
auto [idx_in, idx_out] = elem_to_loc_4d(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
@@ -55,47 +55,33 @@ void copy_general(
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
int ndim = shape.size();
size_t data_size = 1;
for (auto& s : shape)
data_size *= s;
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
num_blocks,
block_dims,
0,
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel = cu::copy_gg_nd<InType, OutType, IdxT, NDIM>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
data_size,
const_param<ndim_constant()>(shape),
const_param<ndim_constant()>(strides_in),
const_param<ndim_constant()>(strides_out));
out.size(),
const_param<NDIM>(shape),
const_param<NDIM>(strides_in),
const_param<NDIM>(strides_out));
});
} else { // ndim >= 4
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
cu::copy_gg<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
data_size,
out.size(),
const_param(shape),
const_param(strides_in),
const_param(strides_out),

View File

@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
const int64_t* offset_out) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
auto [idx_in, idx_out] = elem_to_loc_4d(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
}
@@ -61,45 +61,32 @@ void copy_general_dynamic(
const Strides& strides_out,
const array& dynamic_offset_in,
const array& dynamic_offset_out) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_gg_dynamic_nd<
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel = cu::copy_gg_dynamic_nd<InType, OutType, IdxT, NDIM>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in),
const_param<dims_constant()>(strides_out),
const_param<NDIM>(shape),
const_param<NDIM>(strides_in),
const_param<NDIM>(strides_out),
dynamic_offset_in.data<int64_t>(),
dynamic_offset_out.data<int64_t>());
});
} else { // ndim >= 4
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_gg_dynamic<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
out.size(),

View File

@@ -34,7 +34,7 @@ __global__ void copy_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
}
@@ -50,38 +50,29 @@ void copy_general_input(
int64_t offset_out,
const Shape& shape,
const Strides& strides_in) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
num_blocks,
block_dims,
0,
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel = cu::copy_g_nd<InType, OutType, IdxT, NDIM>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in));
const_param<NDIM>(shape),
const_param<NDIM>(strides_in));
});
} else { // ndim >= 4
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_g<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
auto kernel = cu::copy_g<InType, OutType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
in_ptr,
out_ptr,
out.size(),

View File

@@ -1,41 +1,38 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/utils.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <future>
#include <unordered_set>
namespace mlx::core::cu {
namespace mlx::core {
namespace {
namespace cu {
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
// This should be less than 255
constexpr int default_max_nodes_per_graph = 20;
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
void check_cudnn_error(const char* name, cudnnStatus_t err) {
if (err != CUDNN_STATUS_SUCCESS) {
throw std::runtime_error(
fmt::format("{} failed: {}.", name, cudnnGetErrorString(err)));
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
int cuda_graph_cache_size() {
static int cache_size = []() {
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
}();
return cache_size;
}
} // namespace
Device::Device(int device) : device_(device) {
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
&compute_capability_major_, cudaDevAttrComputeCapabilityMajor, device_));
@@ -52,18 +49,11 @@ Device::Device(int device) : device_(device) {
}
// The cublasLt handle is used by matmul.
make_current();
CHECK_CUBLAS_ERROR(cublasLtCreate(&lt_));
// The cudnn handle is used by Convolution.
CHECK_CUDNN_ERROR(cudnnCreate(&cudnn_));
// Initialize the jit module cache here ensures it is not
// unloaded before any evaluation is done
get_jit_module_cache();
cublasLtCreate(&lt_);
}
Device::~Device() {
CHECK_CUDNN_ERROR(cudnnDestroy(cudnn_));
CHECK_CUBLAS_ERROR(cublasLtDestroy(lt_));
cublasLtDestroy(lt_);
}
void Device::make_current() {
@@ -76,256 +66,45 @@ void Device::make_current() {
}
}
CommandEncoder& Device::get_command_encoder(Stream s) {
auto it = encoders_.find(s.index);
if (it == encoders_.end()) {
it = encoders_.try_emplace(s.index, *this).first;
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
enc.device().make_current();
CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
}
CommandEncoder::CaptureContext::~CaptureContext() {
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
if (discard) {
return;
}
enc.add_graph_node(graph);
}
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
: enc(enc) {
enc.in_concurrent_ = true;
}
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
enc.in_concurrent_ = false;
// Use an empty graph node for synchronization
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
enc.empty_node_count_++;
CHECK_CUDA_ERROR(cudaGraphAddEmptyNode(&empty.node, enc.graph_, NULL, 0));
// Insert the concurrent -> empty node dependencies
for (auto& from : enc.concurrent_nodes_) {
enc.from_nodes_.push_back(from.node);
enc.to_nodes_.push_back(empty.node);
enc.graph_key_ += from.id;
enc.graph_key_ += from.node_type;
enc.graph_key_ += empty.id;
enc.graph_key_ += empty.node_type;
}
// Insert the input -> concurrent node dependencies without updating output
// nodes
auto outputs = std::move(enc.active_outputs_);
enc.insert_graph_dependencies(std::move(enc.concurrent_nodes_));
// Update output node to be the empty node
for (auto o : outputs) {
enc.node_map_.emplace(o, empty).first->second = empty;
}
}
void CommandEncoder::insert_graph_dependencies(GraphNode node) {
if (node.node_type == 'G') {
graph_node_count_++;
}
node.id = std::to_string(node_count_++);
if (in_concurrent_) {
concurrent_nodes_.push_back(std::move(node));
} else {
std::vector<GraphNode> nodes;
nodes.push_back(std::move(node));
insert_graph_dependencies(std::move(nodes));
}
}
void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
std::vector<GraphNode> deps;
{
// Dependencies must be added in the same order to produce a consistent
// topology
std::unordered_set<cudaGraphNode_t> set_deps;
for (auto d : active_deps_) {
if (auto it = node_map_.find(d); it != node_map_.end()) {
auto [_, inserted] = set_deps.insert(it->second.node);
if (inserted) {
deps.push_back(it->second);
}
}
}
}
active_deps_.clear();
for (auto o : active_outputs_) {
for (auto& node : nodes) {
node_map_.emplace(o, node).first->second = node;
}
}
active_outputs_.clear();
for (auto& from : deps) {
for (auto& to : nodes) {
from_nodes_.push_back(from.node);
to_nodes_.push_back(to.node);
graph_key_ += from.id;
graph_key_ += from.node_type;
graph_key_ += to.id;
graph_key_ += to.node_type;
}
}
}
CommandEncoder::CommandEncoder(Device& d)
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::set_input_array(const array& arr) {
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
}
void CommandEncoder::set_output_array(const array& arr) {
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
active_outputs_.push_back(id);
}
void CommandEncoder::maybe_commit() {
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
commit();
}
}
void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
kernel_params.blockDim = block_dim;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
add_kernel_node(kernel_params);
}
void CommandEncoder::add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDimX = grid_dim.x;
kernel_params.gridDimY = grid_dim.y;
kernel_params.gridDimZ = grid_dim.z;
kernel_params.blockDimX = block_dim.x;
kernel_params.blockDimY = block_dim.y;
kernel_params.blockDimZ = block_dim.z;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
add_kernel_node(kernel_params);
}
void CommandEncoder::add_kernel_node(const cudaKernelNodeParams& params) {
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddKernelNode(&node, graph_, NULL, 0, &params));
insert_graph_dependencies(GraphNode{node, 'K'});
}
void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
CUgraphNode node;
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, graph_, NULL, 0, &params));
insert_graph_dependencies(GraphNode{node, 'K'});
}
void CommandEncoder::add_graph_node(cudaGraph_t child) {
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
insert_graph_dependencies(GraphNode{node, 'G'});
}
void CommandEncoder::commit() {
nvtx3::scoped_range r("CommandEncoder::commit");
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
if (node_count_ > 0) {
if (!from_nodes_.empty()) {
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
}
graph_key_ += ".";
graph_key_ += std::to_string(node_count_);
graph_key_ += ".";
graph_key_ += std::to_string(graph_node_count_);
graph_key_ += ".";
graph_key_ += std::to_string(empty_node_count_);
CudaGraphExec& graph_exec = graph_cache_[graph_key_];
if (graph_exec != nullptr) {
cudaGraphExecUpdateResult update_result;
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo info;
cudaGraphExecUpdate(graph_exec, graph_, &info);
update_result = info.result;
#else
cudaGraphNode_t error_node;
cudaGraphExecUpdate(graph_exec, graph_, &error_node, &update_result);
#endif // CUDART_VERSION >= 12000
if (update_result != cudaGraphExecUpdateSuccess) {
cudaGetLastError(); // reset error
graph_exec.reset();
}
}
if (graph_exec == nullptr) {
graph_exec.instantiate(graph_);
}
device_.make_current();
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
// Reset state
node_count_ = 0;
graph_node_count_ = 0;
empty_node_count_ = 0;
from_nodes_.clear();
to_nodes_.clear();
graph_key_.clear();
node_map_.clear();
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
// Put completion handlers in a batch.
worker_.commit(stream_);
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::synchronize() {
cudaStreamSynchronize(stream_);
auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); });
commit();
f.wait();
void CommandEncoder::commit() {
worker_.commit(stream_.last_cuda_stream());
}
Device& device(mlx::core::Device device) {
@@ -337,8 +116,14 @@ Device& device(mlx::core::Device device) {
return it->second;
}
CommandEncoder& get_command_encoder(Stream s) {
return device(s.device).get_command_encoder(s);
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
} // namespace mlx::core::cu
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core

View File

@@ -3,133 +3,45 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
#include <cublasLt.h>
#include <cuda.h>
#include <cudnn.h>
#include <thrust/execution_policy.h>
#include <unordered_map>
namespace mlx::core::cu {
class CommandEncoder {
class Device;
class CommandEncoder;
class DeviceStream {
public:
struct CaptureContext {
CaptureContext(CommandEncoder& enc);
~CaptureContext();
cudaGraph_t graph;
CommandEncoder& enc;
bool discard{false};
};
struct ConcurrentContext {
ConcurrentContext(CommandEncoder& enc);
~ConcurrentContext();
CommandEncoder& enc;
};
explicit DeviceStream(Device& device);
explicit CommandEncoder(Device& d);
DeviceStream(const DeviceStream&) = delete;
DeviceStream& operator=(const DeviceStream&) = delete;
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
// Wait until kernels in the stream complete.
void synchronize();
CaptureContext capture_context() {
return CaptureContext{*this};
}
ConcurrentContext concurrent_context() {
return ConcurrentContext{*this};
}
// Return a cuda stream for launching kernels.
cudaStream_t schedule_cuda_stream();
void set_input_array(const array& arr);
void set_output_array(const array& arr);
// Return the last cuda stream used.
cudaStream_t last_cuda_stream();
template <typename F, typename... Params>
void add_kernel_node(
F* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
Params&&... params) {
constexpr size_t num = sizeof...(Params);
void* ptrs[num];
size_t i = 0;
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
std::forward<Params>(params)),
...);
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
}
void add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
// Low-level graph helpers.
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
void add_graph_node(cudaGraph_t child);
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void maybe_commit();
void commit();
CommandEncoder& get_encoder();
Device& device() {
return device_;
}
CudaStream& stream() {
return stream_;
}
// Wait until kernels and completion handlers are finished
void synchronize();
private:
struct GraphNode {
cudaGraphNode_t node;
// K = kernel
// E = empty
// G = subgraph
char node_type;
std::string id;
};
void insert_graph_dependencies(GraphNode node);
void insert_graph_dependencies(std::vector<GraphNode> nodes);
Device& device_;
CudaStream stream_;
cudaGraph_t graph_;
Worker worker_;
char node_count_{0};
char graph_node_count_{0};
char empty_node_count_{0};
bool in_concurrent_{false};
std::vector<cudaGraphNode_t> from_nodes_;
std::vector<cudaGraphNode_t> to_nodes_;
std::string graph_key_;
std::vector<GraphNode> concurrent_nodes_;
std::vector<std::shared_ptr<array::Data>> temporaries_;
LRUCache<std::string, CudaGraphExec> graph_cache_;
std::vector<std::uintptr_t> active_deps_;
std::vector<std::uintptr_t> active_outputs_;
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
std::unique_ptr<CommandEncoder> encoder_;
};
class Device {
@@ -143,7 +55,7 @@ class Device {
// Make this device the current cuda device, required by some cuda calls.
void make_current();
CommandEncoder& get_command_encoder(Stream s);
DeviceStream& get_stream(Stream s);
int cuda_device() const {
return device_;
@@ -157,20 +69,70 @@ class Device {
cublasLtHandle_t lt_handle() const {
return lt_;
}
cudnnHandle_t cudnn_handle() const {
return cudnn_;
}
private:
int device_;
int compute_capability_major_;
int compute_capability_minor_;
cublasLtHandle_t lt_;
cudnnHandle_t cudnn_;
std::unordered_map<int, CommandEncoder> encoders_;
std::unordered_map<int, DeviceStream> streams_;
};
class CommandEncoder {
public:
explicit CommandEncoder(DeviceStream& stream);
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
void set_input_array(const array& arr) {}
void set_output_array(const array& arr) {}
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void end_encoding();
void commit();
// Schedule a cuda stream for |fun| to launch kernels, and check error
// afterwards.
template <typename F>
void launch_kernel(F&& fun) {
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
}
template <typename F>
void launch_kernel(cudaStream_t stream, F&& fun) {
device_.make_current();
fun(stream);
check_cuda_error("kernel launch", cudaGetLastError());
has_gpu_work_ = true;
}
Device& device() {
return device_;
}
DeviceStream& stream() {
return stream_;
}
bool has_gpu_work() const {
return has_gpu_work_;
}
private:
Device& device_;
DeviceStream& stream_;
Worker worker_;
bool has_gpu_work_{false};
std::vector<std::shared_ptr<array::Data>> temporaries_;
};
Device& device(mlx::core::Device device);
DeviceStream& get_stream(Stream s);
CommandEncoder& get_command_encoder(Stream s);
// Return an execution policy that does not sync for result.

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace mlx::core::cu

View File

@@ -2,7 +2,7 @@
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include <cuda/atomic>
@@ -48,16 +48,25 @@ inline __device__ void atomic_add(__half* out, __half val) {
atomicAdd(out, val);
}
inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
atomic_add_general(out, val);
}
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
#if __CUDA_ARCH__ < 800
inline __device__ void atomic_add(cuComplex* out, cuComplex val) {
#if __CUDA_ARCH__ < 900
atomic_add_general(out, val);
#else
atomicAdd(out, val);
#endif
}
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
#if __CUDA_ARCH__ < 800
#if CCCL_VERSION >= 2008000
atomic_add_general(out, val);
#else
bool cccl_version_too_old_for_bfloat16_atomic_add = false;
assert(cccl_version_too_old_for_bfloat16_atomic_add);
#endif
#else
atomicAdd(out, val);
#endif
}
} // namespace mlx::core::cu

View File

@@ -1,7 +1,10 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cuComplex.h>
#include <cuda/std/array>
namespace mlx::core::cu {
@@ -19,7 +22,7 @@ struct FloorDivide {
if constexpr (cuda::std::is_integral_v<T>) {
return x / y;
} else {
return truncf(x / y);
return trunc(x / y);
}
}
};
@@ -44,7 +47,7 @@ struct Remainder {
} else {
return x % y;
}
} else if constexpr (is_complex_v<T>) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return x % y;
} else {
T r = fmod(x, y);
@@ -66,12 +69,14 @@ struct Equal {
struct NaNEqual {
template <typename T>
__device__ bool operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
if constexpr (std::is_same_v<T, cuComplex>) {
return x == y ||
(isnan(x.real()) && isnan(y.real()) && isnan(x.imag()) &&
isnan(y.imag())) ||
(x.real() == y.real() && isnan(x.imag()) && isnan(y.imag())) ||
(isnan(x.real()) && isnan(y.real()) && x.imag() == y.imag());
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) && isnan(cuCimagf(x)) &&
isnan(cuCimagf(y))) ||
(cuCrealf(x) == cuCrealf(y) && isnan(cuCimagf(x)) &&
isnan(cuCimagf(y))) ||
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) &&
cuCimagf(x) == cuCimagf(y));
} else {
return x == y || (isnan(x) && isnan(y));
}
@@ -109,27 +114,6 @@ struct LessEqual {
struct LogAddExp {
template <typename T>
__device__ T operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag()) || isnan(y.real()) ||
isnan(y.imag())) {
return {
cuda::std::numeric_limits<float>::quiet_NaN(),
cuda::std::numeric_limits<float>::quiet_NaN()};
}
auto max = x.real() > y.real() ? x : y;
auto min = x.real() < y.real() ? x : y;
auto min_real = min.real();
auto max_real = max.real();
if (!isfinite(min_real) && (min_real == max_real)) {
if (min_real < 0) {
return min;
} else {
return Log{}(Exp{}(min) + Exp{}(max));
}
} else {
return Log1p{}(Exp{}(min - max)) + max;
}
} else {
if (isnan(x) || isnan(y)) {
return cuda::std::numeric_limits<T>::quiet_NaN();
}
@@ -139,8 +123,27 @@ struct LogAddExp {
maxval == cuda::std::numeric_limits<T>::infinity())
? maxval
: T(float(maxval) + log1p(expf(minval - maxval)));
}
};
__device__ cuComplex operator()(cuComplex x, cuComplex y) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
isnan(cuCimagf(y))) {
return {
cuda::std::numeric_limits<float>::quiet_NaN(),
cuda::std::numeric_limits<float>::quiet_NaN()};
}
constexpr float inf = cuda::std::numeric_limits<float>::infinity();
auto maxval = x > y ? x : y;
auto minval = x < y ? x : y;
if (cuCrealf(minval) == -inf || cuCrealf(maxval) == inf)
return maxval;
float m = exp(cuCrealf(minval) - cuCrealf(maxval));
cuComplex dexp{
m * cos(cuCimagf(minval) - cuCimagf(maxval)),
m * sin(cuCimagf(minval) - cuCimagf(maxval)),
};
return maxval + log1p(dexp);
}
};
struct Maximum {
@@ -148,8 +151,8 @@ struct Maximum {
__device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) {
return max(x, y);
} else if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag())) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
return x;
}
return x > y ? x : y;
@@ -167,8 +170,8 @@ struct Minimum {
__device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) {
return min(x, y);
} else if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag())) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
return x;
}
return x < y ? x : y;
@@ -191,8 +194,8 @@ struct Multiply {
struct NotEqual {
template <typename T>
__device__ bool operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
return x.real() != y.real() || x.imag() != y.imag();
if constexpr (std::is_same_v<T, cuComplex>) {
return cuCrealf(x) != cuCrealf(y) || cuCimagf(x) != cuCimagf(y);
} else {
return x != y;
}
@@ -212,8 +215,19 @@ struct Power {
base *= base;
}
return res;
} else if constexpr (is_complex_v<T>) {
return pow(base, exp);
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (base.y == 0 && base.x == 0) {
if (isnan(exp.x) || isnan(exp.y)) {
auto nan = cuda::std::numeric_limits<float>::quiet_NaN();
return make_cuFloatComplex(nan, nan);
}
return make_cuFloatComplex(0.0, 0.0);
}
auto x_theta = atan2f(base.y, base.x);
auto x_ln_r = 0.5 * logf(base.x * base.x + base.y * base.y);
auto mag = expf(exp.x * x_ln_r - exp.y * x_theta);
auto phase = exp.y * x_ln_r + exp.x * x_theta;
return make_cuFloatComplex(mag * cosf(phase), mag * sinf(phase));
} else {
return powf(base, exp);
}

View File

@@ -2,10 +2,7 @@
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuComplex.h>
#include <thrust/iterator/transform_iterator.h>
namespace mlx::core::cu {
@@ -20,48 +17,34 @@ struct CastOp {
}
};
// Castings between complex and boolean.
template <typename T>
struct CastOp<complex_t<T>, bool> {
static constexpr bool is_castable = true;
__device__ bool operator()(complex_t<T> x) {
return x.real() != 0 && x.imag() != 0;
}
};
template <typename T>
struct CastOp<bool, complex_t<T>> {
static constexpr bool is_castable = true;
__device__ complex_t<T> operator()(bool x) {
return x ? complex_t<T>{1, 1} : complex_t<T>{0, 0};
}
};
// Converting a complex number to real number discards the imaginary part.
template <typename T, typename DstT>
struct CastOp<complex_t<T>, DstT, cuda::std::enable_if_t<!is_complex_v<DstT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<T, DstT>;
template <typename DstT>
struct CastOp<
cuComplex,
DstT,
cuda::std::enable_if_t<!cuda::std::is_same_v<cuComplex, DstT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<float, DstT>;
__device__ DstT operator()(complex_t<T> x) {
static_assert(!is_complex_v<DstT>);
return static_cast<DstT>(x.real());
__device__ DstT operator()(cuComplex x) {
static_assert(!cuda::std::is_same_v<cuComplex, DstT>);
return static_cast<DstT>(cuCrealf(x));
}
};
// Allow converting a real number to complex number.
template <typename SrcT, typename T>
struct CastOp<SrcT, complex_t<T>, cuda::std::enable_if_t<!is_complex_v<SrcT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, T>;
template <typename SrcT>
struct CastOp<
SrcT,
cuComplex,
cuda::std::enable_if_t<!cuda::std::is_same_v<SrcT, cuComplex>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, float>;
__device__ complex_t<T> operator()(SrcT x) {
static_assert(!is_complex_v<SrcT>);
return complex_t<T>{static_cast<T>(x), 0};
__device__ cuComplex operator()(SrcT x) {
static_assert(!cuda::std::is_same_v<SrcT, cuComplex>);
return cuComplex{static_cast<float>(x), 0};
}
};
// Do nothing when no casting is needed.
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
@@ -74,51 +57,9 @@ struct CastOp<
}
};
// In CUDA 11 the half types do not define conversions between some types,
// provide fallbacks here.
#if CUDART_VERSION < 12000
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
DstT,
cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
(cuda::std::is_same_v<DstT, __half> ||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
static constexpr bool is_castable = true;
__device__ DstT operator()(SrcT x) {
return DstT(static_cast<float>(x));
}
};
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
DstT,
cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
!cuda::std::is_same_v<DstT, __half> &&
!cuda::std::is_same_v<DstT, __nv_bfloat16> &&
(cuda::std::is_same_v<SrcT, __half> ||
cuda::std::is_same_v<SrcT, __nv_bfloat16>)>> {
static constexpr bool is_castable = true;
__device__ DstT operator()(SrcT x) {
return DstT(static_cast<float>(x));
}
};
#endif // CUDART_VERSION < 12000
// Helper to deduce the SrcT.
template <typename DstT, typename SrcT>
inline __host__ __device__ auto cast_to(SrcT x) {
return CastOp<SrcT, DstT>{}(x);
}
// Return an iterator that cast the value to DstT using CastOp.
template <typename DstT, typename Iterator>
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
__host__ __device__ auto make_cast_iterator(Iterator it) {
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
if constexpr (std::is_same_v<SrcT, DstT>) {
return it;

View File

@@ -1,60 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
// Make multiplication and division faster.
#define LIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS
#include <cuda/std/complex>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
// TODO: Consider using a faster implementation as cuda::std::complex has to
// conform to C++ standard.
template <typename T>
using complex_t = cuda::std::complex<T>;
using complex64_t = complex_t<float>;
using complex128_t = complex_t<double>;
template <typename T>
struct is_complex : cuda::std::false_type {};
template <typename T>
struct is_complex<cuda::std::complex<T>> : cuda::std::true_type {};
template <typename T>
inline constexpr bool is_complex_v = is_complex<T>::value;
// cuda::std::complex is missing some operators.
template <typename T>
inline __host__ __device__ complex_t<T> operator%(
complex_t<T> a,
complex_t<T> b) {
T r = a.real() - floor(a.real() / b.real()) * b.real();
T i = a.imag() - floor(a.imag() / b.imag()) * b.imag();
return complex_t<T>{r, i};
}
template <typename T>
inline __host__ __device__ bool operator>(complex_t<T> a, complex_t<T> b) {
return (a.real() > b.real()) || (a.real() == b.real() && a.imag() > b.imag());
}
template <typename T>
inline __host__ __device__ bool operator<(complex_t<T> a, complex_t<T> b) {
return operator>(b, a);
}
template <typename T>
inline __host__ __device__ bool operator<=(complex_t<T> a, complex_t<T> b) {
return !(a > b);
}
template <typename T>
inline __host__ __device__ bool operator>=(complex_t<T> a, complex_t<T> b) {
return !(a < b);
}
} // namespace mlx::core::cu

View File

@@ -5,7 +5,7 @@
#pragma once
// The maximum dimensions of shape/strides passed as kernel parameters.
#define MAX_NDIM 10
#define MAX_NDIM 8
// All existing NVIDIA hardware has a fixed 32 warp size. Though a built-in
// warpSize variable exists, using it would prevent compile-time optimizations.

View File

@@ -0,0 +1,240 @@
// Copyright © 2025 Apple Inc.
// Copyright © 2017-2024 The Simons Foundation, Inc.
//
// FINUFFT is licensed under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance with the
// License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Forked from
// https://github.com/flatironinstitute/finufft/blob/main/include/cufinufft/contrib/helper_math.h
#pragma once
#include <cuComplex.h>
// This header provides some helper functions for cuComplex types.
// It mainly wraps existing CUDA implementations to provide operator overloads
// e.g. cuAdd, cuSub, cuMul, cuDiv, cuCreal, cuCimag, cuCabs, cuCarg, cuConj are
// all provided by CUDA
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCadd(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCsub(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCmul(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(const cuDoubleComplex& a, const cuDoubleComplex& b) {
return cuCdiv(a, b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator%(const cuDoubleComplex& a, const cuDoubleComplex& b) {
double r = cuCreal(a) - (floorf(cuCreal(a) / cuCreal(b)) * cuCreal(b));
double i = cuCimag(a) - (floorf(cuCimag(a) / cuCimag(b)) * cuCimag(b));
return make_cuDoubleComplex(r, i);
}
__forceinline__ __host__ __device__ bool operator==(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return cuCreal(a) == cuCreal(b) && cuCimag(a) == cuCimag(b);
}
__forceinline__ __host__ __device__ bool operator!=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return !(a == b);
}
__forceinline__ __host__ __device__ bool operator>(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
double mag_a = sqrt(cuCreal(a) * cuCreal(a) + cuCimag(a) * cuCimag(a));
double mag_b = sqrt(cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b));
return mag_a > mag_b;
}
__forceinline__ __host__ __device__ bool operator>=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return a > b || a == b;
}
__forceinline__ __host__ __device__ bool operator<(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return b > a;
}
__forceinline__ __host__ __device__ bool operator<=(
const cuDoubleComplex& a,
const cuDoubleComplex& b) {
return b > a || a == b;
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) + b, cuCimag(a));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator+(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a + cuCreal(b), cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) - b, cuCimag(a));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator-(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a - cuCreal(b), -cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) * b, cuCimag(a) * b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator*(double a, const cuDoubleComplex& b) {
return make_cuDoubleComplex(a * cuCreal(b), a * cuCimag(b));
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(const cuDoubleComplex& a, double b) {
return make_cuDoubleComplex(cuCreal(a) / b, cuCimag(a) / b);
}
__forceinline__ __host__ __device__ cuDoubleComplex
operator/(double a, const cuDoubleComplex& b) {
double denom = cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b);
return make_cuDoubleComplex(
(a * cuCreal(b)) / denom, (-a * cuCimag(b)) / denom);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCaddf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCsubf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCmulf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(const cuFloatComplex& a, const cuFloatComplex& b) {
return cuCdivf(a, b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator%(const cuFloatComplex& a, const cuFloatComplex& b) {
float r = cuCrealf(a) - (floorf(cuCrealf(a) / cuCrealf(b)) * cuCrealf(b));
float i = cuCimagf(a) - (floorf(cuCimagf(a) / cuCimagf(b)) * cuCimagf(b));
return make_cuFloatComplex(r, i);
}
__forceinline__ __host__ __device__ bool operator==(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return cuCrealf(a) == cuCrealf(b) && cuCimagf(a) == cuCimagf(b);
}
__forceinline__ __host__ __device__ bool operator!=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return !(a == b);
}
__forceinline__ __host__ __device__ bool operator>(
const cuFloatComplex& a,
const cuFloatComplex& b) {
float mag_a = sqrt(cuCrealf(a) * cuCrealf(a) + cuCimagf(a) * cuCimagf(a));
float mag_b = sqrt(cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b));
return mag_a > mag_b;
}
__forceinline__ __host__ __device__ bool operator>=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return a > b || a == b;
}
__forceinline__ __host__ __device__ bool operator<(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return b > a;
}
__forceinline__ __host__ __device__ bool operator<=(
const cuFloatComplex& a,
const cuFloatComplex& b) {
return b > a || a == b;
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) + b, cuCimagf(a));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator+(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a + cuCrealf(b), cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) - b, cuCimagf(a));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator-(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a - cuCrealf(b), -cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) * b, cuCimagf(a) * b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator*(float a, const cuFloatComplex& b) {
return make_cuFloatComplex(a * cuCrealf(b), a * cuCimagf(b));
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(const cuFloatComplex& a, float b) {
return make_cuFloatComplex(cuCrealf(a) / b, cuCimagf(a) / b);
}
__forceinline__ __host__ __device__ cuFloatComplex
operator/(float a, const cuFloatComplex& b) {
float denom = cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b);
return make_cuFloatComplex(
(a * cuCrealf(b)) / denom, (-a * cuCimagf(b)) / denom);
}

View File

@@ -14,6 +14,8 @@ struct Abs {
__device__ T operator()(T x) {
if constexpr (cuda::std::is_unsigned_v<T>) {
return x;
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {sqrt(cuCrealf(x) * cuCrealf(x) + cuCimagf(x) * cuCimagf(x)), 0};
} else {
return abs(x);
}
@@ -74,8 +76,6 @@ struct Ceil {
__device__ T operator()(T x) {
if constexpr (cuda::std::is_integral_v<T>) {
return x;
} else if constexpr (is_complex_v<T>) {
return T{ceil(x.real()), ceil(x.imag())};
} else {
return ceil(x);
}
@@ -83,24 +83,35 @@ struct Ceil {
};
struct Conjugate {
template <typename T>
__device__ complex_t<T> operator()(complex_t<T> x) {
return conj(x);
__device__ cuComplex operator()(cuComplex x) {
return {cuCrealf(x), -cuCimagf(x)};
}
};
struct Cos {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {
cos(cuCrealf(x)) * cosh(cuCimagf(x)),
-sin(cuCrealf(x)) * sinh(cuCimagf(x))};
} else {
return cos(x);
}
}
};
struct Cosh {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {
cosh(cuCrealf(x)) * cos(cuCimagf(x)),
sinh(cuCrealf(x)) * sin(cuCimagf(x))};
} else {
return cosh(x);
}
}
};
struct Erf {
@@ -132,8 +143,13 @@ struct ErfInv {
struct Exp {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
auto m = exp(cuCrealf(x));
return {m * cos(cuCimagf(x)), m * sinh(cuCimagf(x))};
} else {
return exp(x);
}
}
};
struct Expm1 {
@@ -154,8 +170,6 @@ struct Floor {
__device__ T operator()(T x) {
if constexpr (cuda::std::is_integral_v<T>) {
return x;
} else if constexpr (is_complex_v<T>) {
return T{floor(x.real()), floor(x.imag())};
} else {
return floor(x);
}
@@ -163,25 +177,30 @@ struct Floor {
};
struct Imag {
template <typename T>
__device__ auto operator()(complex_t<T> x) {
return x.imag();
__device__ float operator()(cuComplex x) {
return cuCimagf(x);
}
};
struct Log {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
auto r = log(cuCrealf(Abs{}(x)));
auto i = atan2f(cuCimagf(x), cuCrealf(x));
return {r, i};
} else {
return log(x);
}
}
};
struct Log2 {
template <typename T>
__device__ T operator()(T x) {
if constexpr (is_complex_v<T>) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
auto y = Log{}(x);
return {y.real() / CUDART_LN2_F, y.imag() / CUDART_LN2_F};
return {cuCrealf(y) / CUDART_LN2_F, cuCimagf(y) / CUDART_LN2_F};
} else {
return log2(x);
}
@@ -191,31 +210,20 @@ struct Log2 {
struct Log10 {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
auto y = Log{}(x);
return {cuCrealf(y) / CUDART_LNT_F, cuCimagf(y) / CUDART_LNT_F};
return y;
} else {
return log10(x);
}
}
};
struct Log1p {
template <typename T>
__device__ T operator()(T z) {
if constexpr (is_complex_v<T>) {
float x = z.real();
float y = z.imag();
float zabs = Abs{}(z).real();
float theta = atan2f(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1pf(r), theta};
} else {
float z0 = hypotf(x + 1, y);
return {logf(z0), theta};
}
} else {
return log1p(z);
}
__device__ T operator()(T x) {
return log1p(x);
}
};
@@ -228,8 +236,8 @@ struct LogicalNot {
struct Negative {
template <typename T>
__device__ T operator()(T x) {
if constexpr (is_complex_v<T>) {
return T{0, 0} - x;
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return 0 - x;
} else {
return -x;
}
@@ -237,23 +245,29 @@ struct Negative {
};
struct Real {
template <typename T>
__device__ auto operator()(complex_t<T> x) {
return x.real();
__device__ float operator()(cuComplex x) {
return cuCrealf(x);
}
};
struct Round {
template <typename T>
__device__ T operator()(T x) {
if constexpr (is_complex_v<T>) {
return {rint(x.real()), rint(x.imag())};
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {rint(cuCrealf(x)), rint(cuCimagf(x))};
} else {
return rint(x);
}
}
};
struct Rsqrt {
template <typename T>
__device__ T operator()(T x) {
return rsqrt(x);
}
};
struct Sigmoid {
template <typename T>
__device__ T operator()(T x) {
@@ -267,8 +281,8 @@ struct Sign {
__device__ T operator()(T x) {
if constexpr (cuda::std::is_unsigned_v<T>) {
return x != 0;
} else if constexpr (is_complex_v<T>) {
if (x.real() == 0 && x.imag() == 0) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (cuCrealf(x) == 0 && cuCimagf(x) == 0) {
return x;
} else {
return x / Abs()(x);
@@ -284,15 +298,27 @@ struct Sign {
struct Sin {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {
sin(cuCrealf(x)) * cosh(cuCimagf(x)),
cos(cuCrealf(x)) * sinh(cuCimagf(x))};
} else {
return sin(x);
}
}
};
struct Sinh {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return {
sinh(cuCrealf(x)) * cos(cuCimagf(x)),
cosh(cuCrealf(x)) * sin(cuCimagf(x))};
} else {
return sinh(x);
}
}
};
struct Square {
@@ -309,29 +335,34 @@ struct Sqrt {
}
};
struct Rsqrt {
template <typename T>
__device__ T operator()(T x) {
if constexpr (is_complex_v<T>) {
return 1.0f / Sqrt{}(x);
} else {
return rsqrt(x);
}
}
};
struct Tan {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
float tan_a = tan(cuCrealf(x));
float tanh_b = tanh(cuCimagf(x));
float t1 = tan_a * tanh_b;
float denom = 1. + t1 * t1;
return {(tan_a - tanh_b * t1) / denom, (tanh_b + tan_a * t1) / denom};
} else {
return tan(x);
}
}
};
struct Tanh {
template <typename T>
__device__ T operator()(T x) {
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
float tanh_a = tanh(cuCrealf(x));
float tan_b = tan(cuCimagf(x));
float t1 = tanh_a * tan_b;
float denom = 1. + t1 * t1;
return {(tanh_a + tan_b * t1) / denom, (tan_b - tanh_a * t1) / denom};
} else {
return tanh(x);
}
}
};
} // namespace mlx::core::cu

View File

@@ -8,9 +8,9 @@
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/config.h"
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda/std/array>
@@ -28,124 +28,6 @@ namespace mlx::core::cu {
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
// Vectorized load/store.
template <typename T, int N>
struct alignas(sizeof(T) * N) AlignedVector {
T val[N];
__device__ T& operator[](int i) {
return val[i];
}
__device__ T operator[](int i) const {
return val[i];
}
};
template <int N, typename T>
inline __host__ __device__ bool is_aligned(T* x) {
return (reinterpret_cast<uintptr_t>(x) % (N * sizeof(T))) == 0;
}
template <int N, typename T>
inline __device__ AlignedVector<T, N> unsafe_load_vector(
const T* ptr,
uint32_t offset) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
}
template <int N, typename T>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset) {
if (is_aligned<N>(ptr)) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = ptr[offset * N + i];
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N>
load_vector(const T* ptr, uint32_t offset, SizeT size, T fallback) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = (N * offset + i) < size ? ptr[offset * N + i] : fallback;
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset,
SizeT size,
int64_t stride,
T fallback) {
if (is_aligned<N>(ptr) && stride == 1 && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] =
(N * offset + i) < size ? ptr[stride * (offset * N + i)] : fallback;
}
return v;
}
}
template <int N, typename T>
inline __device__ void
unsafe_store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
}
template <int N, typename T>
inline __device__ void
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
if (is_aligned<N>(ptr)) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
#pragma unroll
for (int i = 0; i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
template <int N, typename T, typename SizeT>
inline __device__ void store_vector(
T* ptr,
uint32_t offset,
const AlignedVector<T, N>& vec,
SizeT size) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Type limits utils
///////////////////////////////////////////////////////////////////////////////
@@ -196,20 +78,20 @@ struct Limits<
return cuda::std::numeric_limits<T>::infinity();
}
static constexpr __host__ __device__ T min() {
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
return -cuda::std::numeric_limits<float>::infinity();
#else
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
return -cuda::std::numeric_limits<T>::infinity();
#else
return -cuda::std::numeric_limits<float>::infinity();
#endif
}
static constexpr __host__ __device__ T finite_max() {
return cuda::std::numeric_limits<T>::max();
}
static constexpr __host__ __device__ T finite_min() {
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
return cuda::std::numeric_limits<float>::lowest();
#else
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
return cuda::std::numeric_limits<T>::lowest();
#else
return cuda::std::numeric_limits<float>::lowest();
#endif
}
};
@@ -224,13 +106,13 @@ struct Limits<bool> {
}
};
template <typename T>
struct Limits<complex_t<T>> {
static constexpr __host__ __device__ complex_t<T> max() {
return {Limits<T>::max(), Limits<T>::max()};
template <>
struct Limits<cuComplex> {
static constexpr __host__ __device__ cuComplex max() {
return {Limits<float>::max(), Limits<float>::max()};
}
static constexpr __host__ __device__ complex_t<T> min() {
return {Limits<T>::min(), Limits<T>::min()};
static constexpr __host__ __device__ cuComplex min() {
return {Limits<float>::min(), Limits<float>::min()};
}
};
@@ -273,8 +155,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_nd(
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc);
@@ -293,16 +175,28 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
c_loc += dim_idx * IdxT(c_strides[i]);
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
c_loc += dim_idx * c_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
// Optimized version when ndim is larger than 4.
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
inline __host__ __device__ IdxT
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
IdxT loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
loc += (elem % shape[i]) * IdxT(strides[i]);
elem /= shape[i];
}
return loc;
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
IdxT elem,
const int* shape,
const int64_t* a_strides,
@@ -312,15 +206,15 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
IdxT b_loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc);
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
IdxT elem,
const int* shape,
const int64_t* a_strides,
@@ -332,9 +226,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
IdxT c_loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
c_loc += dim_idx * IdxT(c_strides[i]);
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
c_loc += dim_idx * c_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
@@ -444,4 +338,21 @@ struct LoopedElemToLoc<1, false, OffsetT> {
}
};
inline __device__ cuComplex log1p(cuComplex in) {
float x = cuCrealf(in);
float y = cuCimagf(in);
float zabs = sqrt(x * x + y * y);
float theta = atan2f(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1pf(r), theta};
} else {
auto z0 = sqrt((x + 1) * (x + 1) + y * y);
return {log(z0), theta};
}
}
} // namespace mlx::core::cu

View File

@@ -19,6 +19,8 @@ void new_stream(Stream s) {
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {
@@ -35,17 +37,22 @@ void eval(array& arr) {
}
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
if (encoder.has_gpu_work()) {
// Keep used buffers alive until kernel finishes running.
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
// Except for the donated one.
if (in.data_shared_ptr() != arr.data_shared_ptr()) {
encoder.add_temporary(in);
}
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
encoder.add_temporary(s);
buffers.insert(s.data_shared_ptr());
}
encoder.maybe_commit();
// Remove the output if it was donated to by an input.
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
}
encoder.end_encoding();
}
void finalize(Stream s) {
@@ -55,7 +62,7 @@ void finalize(Stream s) {
void synchronize(Stream s) {
nvtx3::scoped_range r("gpu::synchronize");
cu::get_command_encoder(s).synchronize();
cu::get_stream(s).synchronize();
}
} // namespace mlx::core::gpu

View File

@@ -61,9 +61,7 @@ void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
wait(enc.stream());
wait(cu::get_stream(s).last_cuda_stream());
}
}
@@ -76,9 +74,7 @@ void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
record(enc.stream());
record(cu::get_stream(s).last_cuda_stream());
}
}
@@ -90,6 +86,8 @@ bool CudaEvent::completed() const {
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
@@ -110,26 +108,26 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
} // namespace
SharedEvent::SharedEvent() {
buf_ = std::shared_ptr<Buffer>(
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
allocator().free(*ptr);
delete ptr;
// Allocate cuda::atomic on managed memory.
Atomic* ac;
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
ptr->~Atomic();
allocator().cuda_free(ptr);
});
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(to_atomic(buf_), value);
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
@@ -138,19 +136,21 @@ void SharedEvent::wait(Stream s, uint64_t value) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.commit();
wait(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { wait(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(to_atomic(buf_), value);
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
@@ -162,20 +162,22 @@ void SharedEvent::signal(Stream s, uint64_t value) {
scheduler::enqueue(s, [*this, value]() mutable { signal(stream, value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.commit();
signal(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { signal(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return to_atomic(buf_)->load() >= value;
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return to_atomic(buf_)->load();
return ac_->load();
}
} // namespace cu

View File

@@ -2,7 +2,6 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/stream.h"
#include <cuda_runtime.h>
@@ -56,8 +55,12 @@ class SharedEvent {
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

View File

@@ -1,73 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
namespace mlx::core::cu {
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
nullptr);
a_it.step();
b_it.step();
}
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
c.data<int8_t>() + c.itemsize() * c_it.loc,
alpha,
beta);
a_it.step();
b_it.step();
c_it.step();
}
}
} // namespace mlx::core::cu

View File

@@ -1,208 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
__global__ void set_mm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
const __grid_constant__ Strides c_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
&batch_mode,
sizeof(batch_mode)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
{static_cast<int>(batch_count * 3)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_mm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
nullptr);
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{static_cast<int>(batch_count * 4)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_addmm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
reinterpret_cast<void*>(c_pointers),
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@@ -1,284 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/dtype_utils.h"
#include "mlx/utils.h"
#include <fmt/format.h>
namespace mlx::core::cu {
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUBLAS_COMPUTE_32F;
case bfloat16:
return CUBLAS_COMPUTE_32F;
case float32:
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
: CUBLAS_COMPUTE_32F;
case float64:
case complex64:
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUDA_R_16F;
case bfloat16:
return CUDA_R_16BF;
case float32:
return CUDA_R_32F;
case float64:
return CUDA_R_64F;
case complex64:
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cublasLtMatrixLayout_t create_matrix_layout(
cudaDataType_t type,
uint64_t rows,
uint64_t cols,
bool transposed,
int64_t ld,
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
&batch_count,
sizeof(int32_t)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
&batch_stride,
sizeof(int64_t)));
}
return desc;
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride)
: handle_(device.lt_handle()),
pref_(cublas_preference(device)),
M_(a_rows),
N_(b_cols) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cublas_type(dtype);
if (dtype == bfloat16 || dtype == float16) {
scale_type = CUDA_R_32F;
}
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
sizeof(cublasOperation_t)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cublas_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: Matmul(
device,
dtype,
a_transposed,
a_rows,
a_cols,
lda,
b_transposed,
b_rows,
b_cols,
ldb,
batch_count,
a_batch_stride,
b_batch_stride) {
auto type = dtype_to_cublas_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
Matmul::~Matmul() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void Matmul::run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha /* = 1 */,
float beta /* = 0 */) {
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
int ret = 0;
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
handle_,
matmul_desc_,
a_desc_,
b_desc_,
c ? c_desc_ : out_desc_,
out_desc_,
pref_,
1,
&heuristic_,
&ret));
if (ret == 0) {
throw std::runtime_error("Can not find algorithm for matmul.");
}
}
void* workspace_ptr = nullptr;
if (heuristic_.workspaceSize > 0) {
// Ensure workspace is 256-byte aligned
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
array workspace(
allocator::malloc(nbytes),
{static_cast<int>(heuristic_.workspaceSize)},
int8);
encoder.add_temporary(workspace);
workspace_ptr = workspace.data<void>();
}
auto capture = encoder.capture_context();
CHECK_CUBLAS_ERROR(cublasLtMatmul(
handle_,
matmul_desc_,
&alpha,
a,
a_desc_,
b,
b_desc_,
&beta,
c ? c : out,
c ? c_desc_ : out_desc_,
out,
out_desc_,
&heuristic_.algo,
workspace_ptr,
heuristic_.workspaceSize,
encoder.stream()));
}
void Matmul::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c /* = std::nullopt */,
float alpha /* = 1 */,
float beta /* = 0 */) {
encoder.set_input_array(a);
encoder.set_input_array(b);
if (c) {
encoder.set_input_array(*c);
}
encoder.set_output_array(out);
run_impl(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c ? c->data<void>() : nullptr,
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@@ -1,100 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/device.h"
#include <cublasLt.h>
#include <optional>
namespace mlx::core::cu {
class Matmul {
public:
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride);
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride);
~Matmul();
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c = std::nullopt,
float alpha = 1,
float beta = 0);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha = 1,
float beta = 0);
uint64_t M_;
uint64_t N_;
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
cublasLtMatrixLayout_t out_desc_{nullptr};
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace mlx::core::cu

View File

@@ -1,173 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
static constexpr int rows_per_block = 8;
template <typename T, int rows_per_block, int n_per_thread>
__device__ void
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
auto g_idx = block.group_index();
auto t_idx = block.thread_index();
int row = g_idx.x * rows_per_block + t_idx.y;
if (row < rows) {
float sum = 0.0f;
for (int col = n_per_thread * warp.thread_rank(); col < cols;
col += (WARP_SIZE * n_per_thread)) {
auto local_mat =
unsafe_load_vector<n_per_thread>(mat + row * cols + col, 0);
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
#pragma unroll
for (int j = 0; j < n_per_thread; ++j) {
sum +=
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
}
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
if (warp.thread_rank() == 0) {
out[row] = static_cast<T>(sum);
}
}
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void gemv_batched(
const T* mat,
const T* vec,
T* out,
int rows,
int cols,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides mat_batch_strides,
const __grid_constant__ Strides vec_batch_strides,
int batch_ndim) {
auto block = cg::this_thread_block();
auto batch_idx = block.group_index().y;
auto [vec_offset, mat_offset] = elem_to_loc(
batch_idx,
batch_shape.data(),
vec_batch_strides.data(),
mat_batch_strides.data(),
batch_ndim);
gemv_impl<T, rows_per_block, n_per_thread>(
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
}
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
return K % 32 == 0 && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
}
template <typename F>
void dispatch_n_per_thread(int n_per_thread, F&& f) {
switch (n_per_thread) {
case 1:
f(std::integral_constant<int, 1>{});
break;
case 2:
f(std::integral_constant<int, 2>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
}
}
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
dim3 block_dims{WARP_SIZE, rows_per_block};
const DataType* mat;
const DataType* vec;
int rows;
int cols = K;
auto mat_strides = const_param(a_batch_strides);
auto vec_strides = const_param(b_batch_strides);
if (M == 1) {
mat = b.data<DataType>();
vec = a.data<DataType>();
rows = N;
std::swap(mat_strides, vec_strides);
} else {
mat = a.data<DataType>();
vec = b.data<DataType>();
rows = M;
}
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
int n_per_t;
if (K % 128 == 0 && is_aligned<4>(mat) && is_aligned<4>(vec)) {
n_per_t = 4;
} else if (K % 64 == 0 && is_aligned<2>(mat) && is_aligned<2>(vec)) {
n_per_t = 2;
} else {
n_per_t = 1;
}
dispatch_n_per_thread(n_per_t, [&](auto n_per_thread) {
if (batch_count == 1) {
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread()>;
encoder.add_kernel_node(
kernel,
num_blocks_x,
block_dims,
0,
mat,
vec,
out.data<DataType>(),
rows,
cols);
} else {
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread()>;
encoder.add_kernel_node(
kernel,
dim3{num_blocks_x, batch_count},
block_dims,
0,
mat,
vec,
out.data<DataType>(),
rows,
cols,
const_param(batch_shape),
mat_strides,
vec_strides,
batch_shape.size());
}
});
});
}
} // namespace mlx::core::cu

View File

@@ -1,24 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder);
} // namespace mlx::core::cu

View File

@@ -3,16 +3,13 @@
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include "cuda_jit_sources.h"
#include <cuda.h>
#include <fmt/format.h>
#include <nvrtc.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
@@ -25,31 +22,31 @@ namespace {
constexpr const char* g_scatter_ops[] = {"Max", "Min", "Sum", "Prod", "Assign"};
void append_indices_arg(
cu::KernelArgs& args,
cu::JitModule& mod,
const std::vector<array>& inputs,
int nidx,
int idx_ndim) {
SmallVector<const void*> indices(nidx);
std::vector<const void*> indices(nidx);
for (int i = 0; i < nidx; ++i) {
indices[i] = inputs[i + 1].data<void>();
}
args.append(std::move(indices));
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
mod.append_arg(std::move(indices));
std::vector<int32_t> indices_shape(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].shape().begin(),
idx_ndim,
indices_shape.data() + i * idx_ndim);
}
args.append(std::move(indices_shape));
SmallVector<int64_t> indices_strides(nidx * idx_ndim);
mod.append_arg(std::move(indices_shape));
std::vector<int64_t> indices_strides(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].strides().begin(),
idx_ndim,
indices_strides.data() + i * idx_ndim);
}
args.append(std::move(indices_strides));
mod.append_arg(std::move(indices_strides));
}
} // namespace
@@ -97,21 +94,20 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
return std::make_pair(jit_source_gather, std::move(kernel_names));
});
cu::KernelArgs args;
args.append(src);
args.append(out);
mod.append_arg(src);
mod.append_arg(out);
if (large) {
args.append<int64_t>(out.size());
mod.append_arg<int64_t>(out.size());
} else {
args.append<int32_t>(out.size());
mod.append_arg<int32_t>(out.size());
}
args.append_ndim(src.shape());
args.append_ndim(src.strides());
args.append<int32_t>(src.ndim());
args.append_ndim(slice_sizes_);
args.append(slice_size);
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
mod.append_ndim_arg(src.shape());
mod.append_ndim_arg(src.strides());
mod.append_arg<int32_t>(src.ndim());
mod.append_ndim_arg(slice_sizes_);
mod.append_arg(slice_size);
mod.append_arg(axes_);
append_indices_arg(mod, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(
"mlx::core::cu::gather<{}, {}, {}, {}, {}>",
@@ -126,10 +122,9 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(out, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
encoder.launch_kernel([&](cudaStream_t stream) {
mod.launch_kernel(stream, kernel_name, out, large);
});
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -192,27 +187,26 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
return std::make_pair(jit_source_scatter, std::move(kernel_names));
});
cu::KernelArgs args;
args.append(upd);
args.append(out);
mod.append_arg(upd);
mod.append_arg(out);
if (large) {
args.append<int64_t>(upd.size());
mod.append_arg<int64_t>(upd.size());
} else {
args.append<int32_t>(upd.size());
mod.append_arg<int32_t>(upd.size());
}
args.append_ndim(upd.shape());
args.append_ndim(upd.strides());
args.append<int32_t>(upd.ndim());
mod.append_ndim_arg(upd.shape());
mod.append_ndim_arg(upd.strides());
mod.append_arg<int32_t>(upd.ndim());
if (large) {
args.append<int64_t>(upd_post_idx_size);
mod.append_arg<int64_t>(upd_post_idx_size);
} else {
args.append<int32_t>(upd_post_idx_size);
mod.append_arg<int32_t>(upd_post_idx_size);
}
args.append_ndim(out.shape());
args.append_ndim(out.strides());
args.append<int32_t>(out.ndim());
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
mod.append_ndim_arg(out.shape());
mod.append_ndim_arg(out.strides());
mod.append_arg<int32_t>(out.ndim());
mod.append_arg(axes_);
append_indices_arg(mod, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(
"mlx::core::cu::scatter<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}>",
@@ -228,9 +222,9 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(upd, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
encoder.launch_kernel([&](cudaStream_t stream) {
mod.launch_kernel(stream, kernel_name, upd, large);
});
}
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -281,26 +275,25 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
}
size_t idx_size_axis = idx.shape(axis_);
cu::KernelArgs args;
args.append(src);
args.append(idx);
args.append(out);
mod.append_arg(src);
mod.append_arg(idx);
mod.append_arg(out);
if (large) {
args.append<int64_t>(idx_size_pre);
args.append<int64_t>(idx_size_axis);
args.append<int64_t>(idx_size_post);
mod.append_arg<int64_t>(idx_size_pre);
mod.append_arg<int64_t>(idx_size_axis);
mod.append_arg<int64_t>(idx_size_post);
} else {
args.append<int32_t>(idx_size_pre);
args.append<int32_t>(idx_size_axis);
args.append<int32_t>(idx_size_post);
mod.append_arg<int32_t>(idx_size_pre);
mod.append_arg<int32_t>(idx_size_axis);
mod.append_arg<int32_t>(idx_size_post);
}
args.append(remove_index(idx.shape(), axis_));
args.append(remove_index(src.strides(), axis_));
args.append(remove_index(idx.strides(), axis_));
args.append<int32_t>(axis_);
args.append(src.shape(axis_));
args.append(src.strides(axis_));
args.append(idx.strides(axis_));
mod.append_arg(remove_index(idx.shape(), axis_));
mod.append_arg(remove_index(src.strides(), axis_));
mod.append_arg(remove_index(idx.strides(), axis_));
mod.append_arg<int32_t>(axis_);
mod.append_arg(src.shape(axis_));
mod.append_arg(src.strides(axis_));
mod.append_arg(idx.strides(axis_));
std::string kernel_name = fmt::format(
"mlx::core::cu::gather_axis<{}, {}, {}, {}, {}, {}>",
@@ -316,9 +309,9 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
encoder.launch_kernel([&](cudaStream_t stream) {
mod.launch_kernel(stream, kernel_name, idx, large);
});
}
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -384,26 +377,25 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
}
size_t idx_size_axis = idx.shape(axis_);
cu::KernelArgs args;
args.append(upd);
args.append(idx);
args.append(out);
mod.append_arg(upd);
mod.append_arg(idx);
mod.append_arg(out);
if (large) {
args.append<int64_t>(idx_size_pre);
args.append<int64_t>(idx_size_axis);
args.append<int64_t>(idx_size_post);
mod.append_arg<int64_t>(idx_size_pre);
mod.append_arg<int64_t>(idx_size_axis);
mod.append_arg<int64_t>(idx_size_post);
} else {
args.append<int32_t>(idx_size_pre);
args.append<int32_t>(idx_size_axis);
args.append<int32_t>(idx_size_post);
mod.append_arg<int32_t>(idx_size_pre);
mod.append_arg<int32_t>(idx_size_axis);
mod.append_arg<int32_t>(idx_size_post);
}
args.append(remove_index(idx.shape(), axis_));
args.append(remove_index(upd.strides(), axis_));
args.append(remove_index(idx.strides(), axis_));
args.append<int32_t>(axis_);
args.append(out.shape(axis_));
args.append(upd.strides(axis_));
args.append(idx.strides(axis_));
mod.append_arg(remove_index(idx.shape(), axis_));
mod.append_arg(remove_index(upd.strides(), axis_));
mod.append_arg(remove_index(idx.strides(), axis_));
mod.append_arg<int32_t>(axis_);
mod.append_arg(out.shape(axis_));
mod.append_arg(upd.strides(axis_));
mod.append_arg(idx.strides(axis_));
std::string kernel_name = fmt::format(
"mlx::core::cu::scatter_axis<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}, {}>",
@@ -420,9 +412,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
encoder.launch_kernel([&](cudaStream_t stream) {
mod.launch_kernel(stream, kernel_name, idx, large);
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,121 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <cuda/std/utility>
#include "mlx/backend/cuda/kernel_utils.cuh"
namespace mlx::core::cu {
// Iterating non-contiguous array.
template <typename Iterator, typename IdxT = int64_t>
class general_iterator
: public thrust::
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides)
: super_t(it),
index_(index),
ndim_(ndim),
shape_(cuda::std::move(shape)),
strides_(cuda::std::move(strides)) {}
__host__ __device__ IdxT index() const {
return index_;
}
__host__ __device__ const Shape& shape() const {
return shape_;
}
__host__ __device__ const Strides& strides() const {
return strides_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const general_iterator& other) const {
return this->base() == other.base() && this->index() == other.index();
}
__host__ __device__ void advance(difference_type n) {
this->index_ += n;
}
__host__ __device__ void increment() {
this->index_ += 1;
}
__host__ __device__ void decrement() {
this->index_ -= 1;
}
__host__ __device__ difference_type
distance_to(const general_iterator& other) const {
_CCCL_ASSERT(
this->base() == other.base(),
"Underlying iterator must point to same base iterator");
return other.index() - this->index();
}
// The dereference is device-only to avoid accidental running in host.
__device__ typename super_t::reference dereference() const {
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
return *(this->base() + offset);
}
IdxT index_;
int ndim_;
Shape shape_;
Strides strides_;
};
template <typename IdxT, typename Iterator>
__host__ __device__ auto make_general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides) {
return general_iterator<Iterator, IdxT>(
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterator(
Iterator it,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
return make_general_iterator<IdxT>(
it, 0, shape.size(), const_param(shape), const_param(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterators(
Iterator it,
IdxT size,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
auto ndim = shape.size();
auto shape_arg = const_param(shape);
auto strides_arg = const_param(strides);
return std::make_pair(
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,60 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_facade.h>
namespace mlx::core::cu {
// RandomAccessIterator for strided access to array entries.
template <typename Iterator, typename Stride = int64_t>
class strided_iterator
: public thrust::
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ strided_iterator(Iterator it, Stride stride)
: super_t(it), stride_(stride) {}
__host__ __device__ Stride stride() const {
return stride_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const strided_iterator& other) const {
return this->base() == other.base();
}
__host__ __device__ void advance(difference_type n) {
this->base_reference() += n * stride_;
}
__host__ __device__ void increment() {
this->base_reference() += stride_;
}
__host__ __device__ void decrement() {
this->base_reference() -= stride_;
}
__host__ __device__ difference_type
distance_to(const strided_iterator& other) const {
const difference_type dist = other.base() - this->base();
_CCCL_ASSERT(
dist % stride() == 0,
"Underlying iterator difference must be divisible by the stride");
return dist / stride();
}
Stride stride_;
};
} // namespace mlx::core::cu

View File

@@ -2,17 +2,16 @@
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/version.h"
#include "cuda_jit_sources.h"
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <unordered_map>
#include <fmt/format.h>
#include <nvrtc.h>
#include <unistd.h>
namespace mlx::core::cu {
@@ -27,9 +26,18 @@ void check_nvrtc_error(const char* name, nvrtcResult err) {
}
}
#define CHECK_CU_ERROR(cmd) check_cu_error(#cmd, (cmd))
void check_cu_error(const char* name, CUresult err) {
if (err != CUDA_SUCCESS) {
const char* err_str = "Unknown error";
cuGetErrorString(err, &err_str);
throw std::runtime_error(fmt::format("{} failed: {}", name, err_str));
}
}
// Return the location of the CUDA toolkit.
const std::string& cuda_home() {
static std::string home = []() -> std::string {
const char* cuda_home() {
const char* home = std::getenv("CUDA_HOME");
if (home) {
return home;
@@ -46,55 +54,19 @@ const std::string& cuda_home() {
#endif
throw std::runtime_error(
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
}();
return home;
}
// Return the location of CCCL headers shipped with the distribution.
const std::string& cccl_dir() {
static std::string dir = []() {
std::filesystem::path path;
#if defined(MLX_CCCL_DIR)
// First search the install dir if defined.
path = MLX_CCCL_DIR;
if (std::filesystem::exists(path)) {
return path.string();
}
#endif
// Then search dynamically from the dir of libmlx.so file.
path = current_binary_dir().parent_path() / "include" / "cccl";
if (std::filesystem::exists(path)) {
return path.string();
}
// Finally check the environment variable.
path = std::getenv("MLX_CCCL_DIR");
if (!path.empty() && std::filesystem::exists(path)) {
return path.string();
}
return std::string();
}();
return dir;
}
// Get the cache directory for storing compiled results.
const std::filesystem::path& ptx_cache_dir() {
static std::filesystem::path cache = []() -> std::filesystem::path {
std::filesystem::path cache;
if (auto c = std::getenv("MLX_PTX_CACHE_DIR"); c) {
cache = c;
} else {
cache =
std::filesystem::temp_directory_path() / "mlx" / version() / "ptx";
}
if (!std::filesystem::exists(cache)) {
bool get_ptx_cache_dir(std::filesystem::path* result) {
auto path = std::filesystem::temp_directory_path() / "mlx" / "ptx";
if (!std::filesystem::is_directory(path)) {
std::error_code error;
if (!std::filesystem::create_directories(cache, error)) {
return std::filesystem::path();
if (!std::filesystem::create_directories(path, error)) {
return false;
}
}
return cache;
}();
return cache;
*result = path;
return true;
}
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
@@ -103,10 +75,6 @@ bool read_cached_ptx(
const std::string& module_name,
std::vector<char>* ptx,
std::vector<std::pair<std::string, std::string>>* ptx_kernels) {
if (cache_dir.empty()) {
return false;
}
auto ptx_path = cache_dir / (module_name + ".ptx");
std::error_code error;
auto ptx_size = std::filesystem::file_size(ptx_path, error);
@@ -136,12 +104,7 @@ void write_cached_ptx(
const std::filesystem::path& cache_dir,
const std::string& module_name,
const std::vector<char>& ptx,
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
const std::string& source_code) {
if (cache_dir.empty()) {
return;
}
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
if (!ptx.empty()) {
ptx_file.write(&ptx.front(), ptx.size());
@@ -150,9 +113,6 @@ void write_cached_ptx(
for (const auto& [name, mangled] : ptx_kernels) {
txt_file << name << "\t" << mangled << std::endl;
}
std::ofstream source_file(cache_dir / (module_name + ".cu"));
source_file << source_code;
}
// Return if |device|'s version is not newer than |major|.|minor| version.
@@ -192,7 +152,7 @@ constexpr const char* g_include_names[] = {
INCLUDE_PREFIX "binary_ops.cuh",
INCLUDE_PREFIX "cast_op.cuh",
INCLUDE_PREFIX "config.h",
INCLUDE_PREFIX "complex.cuh",
INCLUDE_PREFIX "cucomplex_math.cuh",
INCLUDE_PREFIX "fp16_math.cuh",
INCLUDE_PREFIX "indexing.cuh",
INCLUDE_PREFIX "scatter_ops.cuh",
@@ -208,7 +168,7 @@ constexpr const char* g_headers[] = {
jit_source_binary_ops,
jit_source_cast_op,
jit_source_config,
jit_source_complex,
jit_source_cucomplex_math,
jit_source_fp16_math,
jit_source_indexing,
jit_source_scatter_ops,
@@ -224,9 +184,11 @@ JitModule::JitModule(
const std::string& module_name,
const KernelBuilder& builder) {
// Check cache.
std::filesystem::path cache_dir;
std::vector<char> ptx;
std::vector<std::pair<std::string, std::string>> ptx_kernels;
if (!read_cached_ptx(ptx_cache_dir(), module_name, &ptx, &ptx_kernels)) {
if (!get_ptx_cache_dir(&cache_dir) ||
!read_cached_ptx(cache_dir, module_name, &ptx, &ptx_kernels)) {
// Create program.
auto [source_code, kernel_names] = builder();
nvrtcProgram prog;
@@ -245,24 +207,16 @@ JitModule::JitModule(
}
// Compile program.
std::vector<const char*> args;
bool use_sass = compiler_supports_device_sass(device);
std::string compute = fmt::format(
"--gpu-architecture={}_{}{}",
use_sass ? "sm" : "compute",
device.compute_capability_major(),
device.compute_capability_minor());
args.push_back(compute.c_str());
std::string cccl_include = cccl_dir();
if (!cccl_include.empty()) {
cccl_include = fmt::format("--include-path={}", cccl_include);
args.push_back(cccl_include.c_str());
}
std::string cuda_include =
fmt::format("--include-path={}/include", cuda_home());
args.push_back(cuda_include.c_str());
std::string include = fmt::format("--include-path={}/include", cuda_home());
const char* args[] = {compute.c_str(), include.c_str()};
nvrtcResult compile_result =
nvrtcCompileProgram(prog, args.size(), args.data());
nvrtcCompileProgram(prog, std::size(args), args);
if (compile_result != NVRTC_SUCCESS) {
size_t log_size;
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
@@ -292,8 +246,7 @@ JitModule::JitModule(
} else {
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
}
write_cached_ptx(
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
write_cached_ptx(cache_dir, module_name, ptx, ptx_kernels);
}
// Load module.
@@ -311,13 +264,60 @@ JitModule::JitModule(
// Load kernels.
for (const auto& [name, mangled] : ptx_kernels) {
CUfunction kernel;
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
CHECK_CU_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
kernels_[name] = kernel;
}
}
JitModule::~JitModule() {
CHECK_CUDA_ERROR(cuModuleUnload(module_));
CHECK_CU_ERROR(cuModuleUnload(module_));
}
void JitModule::launch_kernel(
CUstream stream,
const std::string& kernel_name,
const array& arr,
bool large,
int work_per_thread) {
CUfunction kernel = get_kernel(kernel_name);
size_t nthreads = cuda::ceil_div(arr.size(), work_per_thread);
int _, block_dim;
CHECK_CU_ERROR(
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
if (block_dim > nthreads) {
block_dim = nthreads;
}
Dims num_blocks{1, 1, 1};
if (large) {
num_blocks =
get_2d_grid_dims_common(arr.shape(), arr.strides(), work_per_thread);
std::get<0>(num_blocks) =
(std::get<0>(num_blocks) + block_dim - 1) / block_dim;
} else {
std::get<0>(num_blocks) = (nthreads + block_dim - 1) / block_dim;
}
launch_kernel(stream, kernel, num_blocks, Dims{block_dim, 1, 1});
}
void JitModule::launch_kernel(
CUstream stream,
CUfunction kernel,
Dims num_blocks,
Dims block_dims) {
CHECK_CU_ERROR(cuLaunchKernel(
kernel,
std::get<0>(num_blocks),
std::get<1>(num_blocks),
std::get<2>(num_blocks),
std::get<0>(block_dims),
std::get<1>(block_dims),
std::get<2>(block_dims),
0,
stream,
args_.data(),
nullptr));
args_.clear();
storage_.clear();
}
CUfunction JitModule::get_kernel(const std::string& kernel_name) {
@@ -329,16 +329,15 @@ CUfunction JitModule::get_kernel(const std::string& kernel_name) {
return it->second;
}
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
static std::unordered_map<std::string, JitModule> map;
return map;
void JitModule::append_ptr_arg(const void* v) {
args_.push_back(const_cast<void*>(v));
}
JitModule& get_jit_module(
const mlx::core::Device& device,
const std::string& name,
const KernelBuilder& builder) {
auto& map = get_jit_module_cache();
static std::unordered_map<std::string, JitModule> map;
auto it = map.find(name);
if (it == map.end()) {
it = map.try_emplace(name, cu::device(device), name, builder).first;

View File

@@ -4,7 +4,6 @@
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include <deque>
@@ -24,59 +23,6 @@ using KernelBuilderResult = std::pair<
/* kernel names */ std::vector<std::string>>;
using KernelBuilder = std::function<KernelBuilderResult()>;
struct KernelArgs {
void** args() {
return args_.data();
}
void append(const array& a) {
append(reinterpret_cast<CUdeviceptr>(a.data<void>()));
}
template <typename T>
void append(T val) {
storage_.emplace_back(val);
append_ptr(&storage_.back());
}
template <typename T>
void append(SmallVector<T> vec) {
storage_.emplace_back(std::move(vec));
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
}
// Make sure the arg is copied to an array with size of NDIM.
template <size_t NDIM = MAX_NDIM, typename T>
void append_ndim(SmallVector<T> vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
}
vec.resize(NDIM);
append(std::move(vec));
}
void append_ptr(const void* v) {
args_.push_back(const_cast<void*>(v));
}
private:
std::vector<void*> args_;
// The cuLaunchKernel API requires passing pointers to arguments so store
// temporary values untill kernel is launched.
using Arg = std::variant<
std::monostate,
CUdeviceptr,
int32_t,
uint32_t,
int64_t,
SmallVector<const void*>,
SmallVector<int32_t>,
SmallVector<int64_t>>;
std::deque<Arg> storage_;
};
class JitModule {
public:
JitModule(
@@ -87,14 +33,77 @@ class JitModule {
JitModule(const JitModule&) = delete;
JitModule& operator=(const JitModule&) = delete;
void append_arg(const array& a) {
append_arg(reinterpret_cast<CUdeviceptr>(a.data<void>()));
}
template <typename T>
void append_arg(T val) {
storage_.emplace_back(val);
append_ptr_arg(&storage_.back());
}
template <typename T>
void append_arg(std::vector<T> vec) {
if (vec.empty()) {
// The nullptr can not be used as arg, pass something not null.
append_arg(std::monostate{});
} else {
append_ptr_arg(vec.data());
storage_.emplace_back(std::move(vec));
}
}
// Make sure the arg is copied to an array with size of NDIM.
template <size_t NDIM = MAX_NDIM, typename T>
void append_ndim_arg(const std::vector<T>& vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
}
std::vector<T> copied(NDIM);
std::copy(vec.begin(), vec.end(), copied.data());
append_arg(std::move(copied));
}
// Launch kernel with |kernel_name| that each thread works on
// |work_per_thread| elements of |arr|.
void launch_kernel(
CUstream stream,
const std::string& kernel_name,
const array& arr,
bool large,
int work_per_thread = 1);
void launch_kernel(
CUstream stream,
CUfunction kernel,
Dims num_blocks,
Dims block_dims);
CUfunction get_kernel(const std::string& kernel_name);
private:
void append_ptr_arg(const void* v);
CUmodule module_{nullptr};
std::unordered_map<std::string, CUfunction> kernels_;
};
std::vector<void*> args_;
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
// The cuLaunchKernel API requires passing pointers to arguments so store
// temporary values untill kernel is launched.
using Arg = std::variant<
std::monostate,
CUdeviceptr,
int32_t,
uint32_t,
int64_t,
std::vector<const void*>,
std::vector<int32_t>,
std::vector<int64_t>>;
std::deque<Arg> storage_;
};
JitModule& get_jit_module(
const mlx::core::Device& device,

View File

@@ -30,25 +30,4 @@ std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2) {
return std::make_pair(dim3(gx, gy, gz), dim3(bx, by, bz));
}
std::tuple<dim3, uint> get_launch_args(
size_t size,
const Shape& shape,
const Strides& strides,
bool large,
int work_per_thread) {
size_t nthreads = cuda::ceil_div(size, work_per_thread);
uint block_dim = 1024;
if (block_dim > nthreads) {
block_dim = nthreads;
}
dim3 num_blocks;
if (large) {
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
} else {
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
}
return std::make_tuple(num_blocks, block_dim);
}
} // namespace mlx::core

View File

@@ -6,12 +6,10 @@
#pragma once
#include <type_traits>
#include "mlx/array.h"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cuda.h>
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <fmt/format.h>
@@ -19,46 +17,60 @@
namespace mlx::core {
template <typename F>
void dispatch_1_2_3(int n, F&& f) {
switch (n) {
case 1:
f(std::integral_constant<int, 1>{});
break;
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
// Convert a number between 1~3 to constexpr.
#define MLX_SWITCH_1_2_3(N, NDIM, ...) \
switch (N) { \
case 1: { \
constexpr int NDIM = 1; \
__VA_ARGS__; \
break; \
} \
case 2: { \
constexpr int NDIM = 2; \
__VA_ARGS__; \
break; \
} \
case 3: { \
constexpr int NDIM = 3; \
__VA_ARGS__; \
break; \
} \
}
}
template <typename F>
void dispatch_bool(bool v, F&& f) {
if (v) {
f(std::true_type{});
} else {
f(std::false_type{});
// Like MLX_SWITCH_ALL_TYPES but for booleans.
#define MLX_SWITCH_BOOL(BOOL, BOOL_ALIAS, ...) \
if (BOOL) { \
constexpr bool BOOL_ALIAS = true; \
__VA_ARGS__; \
} else { \
constexpr bool BOOL_ALIAS = false; \
__VA_ARGS__; \
}
}
template <typename F>
void dispatch_block_dim(int threads, F&& f) {
if (threads <= WARP_SIZE) {
f(std::integral_constant<int, WARP_SIZE>{});
} else if (threads <= WARP_SIZE * 2) {
f(std::integral_constant<int, WARP_SIZE * 2>{});
} else if (threads <= WARP_SIZE * 4) {
f(std::integral_constant<int, WARP_SIZE * 4>{});
} else if (threads <= WARP_SIZE * 8) {
f(std::integral_constant<int, WARP_SIZE * 8>{});
} else if (threads <= WARP_SIZE * 16) {
f(std::integral_constant<int, WARP_SIZE * 16>{});
} else {
f(std::integral_constant<int, WARP_SIZE * 32>{});
// Convert a block_dim to constexpr between WARP_SIZE and WARP_SIZE ^ 2.
#define MLX_SWITCH_BLOCK_DIM(NUM_THREADS, BLOCK_DIM, ...) \
{ \
uint32_t _num_threads = NUM_THREADS; \
if (_num_threads <= WARP_SIZE) { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE; \
__VA_ARGS__; \
} else if (_num_threads <= WARP_SIZE * 2) { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 2; \
__VA_ARGS__; \
} else if (_num_threads <= WARP_SIZE * 4) { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 4; \
__VA_ARGS__; \
} else if (_num_threads <= WARP_SIZE * 8) { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 8; \
__VA_ARGS__; \
} else if (_num_threads <= WARP_SIZE * 16) { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 16; \
__VA_ARGS__; \
} else { \
constexpr uint32_t BLOCK_DIM = WARP_SIZE * WARP_SIZE; \
__VA_ARGS__; \
} \
}
}
// Maps CPU types to CUDA types.
template <typename T>
@@ -78,7 +90,7 @@ struct CTypeToCudaType<bfloat16_t> {
template <>
struct CTypeToCudaType<complex64_t> {
using type = cu::complex64_t;
using type = cuComplex;
};
template <typename T>
@@ -90,18 +102,14 @@ inline constexpr bool is_floating_v =
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
// Type traits for detecting complex numbers.
template <typename T>
inline constexpr bool is_complex_v = cuda::std::is_same_v<T, complex64_t> ||
cuda::std::is_same_v<T, complex128_t>;
// Type traits for detecting complex or real floating point numbers.
template <typename T>
inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
inline constexpr bool is_inexact_v =
is_floating_v<T> || cuda::std::is_same_v<T, complex64_t>;
// Utility to copy data from vector to array in host.
template <int NDIM = MAX_NDIM, typename T = int32_t>
inline cuda::std::array<T, NDIM> const_param(const SmallVector<T>& vec) {
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
@@ -120,19 +128,47 @@ dim3 get_2d_grid_dims(
size_t divisor);
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
// Return a block size that achieves maximum potential occupancy for kernel.
template <typename T>
inline uint max_occupancy_block_dim(T kernel) {
int _, block_dim;
CHECK_CUDA_ERROR(cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
return block_dim;
}
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
// assuming each thread handles |work_per_thread| elements of |arr|.
std::tuple<dim3, uint> get_launch_args(
template <typename T>
inline std::tuple<dim3, uint> get_launch_args(
T kernel,
size_t size,
const Shape& shape,
const Strides& strides,
bool large,
int work_per_thread = 1);
int work_per_thread = 1) {
size_t nthreads = cuda::ceil_div(size, work_per_thread);
uint block_dim = max_occupancy_block_dim(kernel);
if (block_dim > nthreads) {
block_dim = nthreads;
}
dim3 num_blocks;
if (large) {
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
} else {
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
}
return std::make_tuple(num_blocks, block_dim);
}
inline std::tuple<dim3, uint>
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
template <typename T>
inline std::tuple<dim3, uint> get_launch_args(
T kernel,
const array& arr,
bool large,
int work_per_thread = 1) {
return get_launch_args(
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
kernel, arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
}
} // namespace mlx::core

View File

@@ -1,6 +1,7 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h"
@@ -10,6 +11,8 @@
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
namespace mlx::core {
@@ -72,11 +75,9 @@ __global__ void layer_norm(
float sum = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
sum += static_cast<float>(xn[i]);
}
T xn[N_READS] = {};
cub::LoadDirectBlocked(index, x, xn, axis_size);
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
}
sum = BlockReduceT{block, temp}.Sum(sum);
@@ -87,19 +88,12 @@ __global__ void layer_norm(
float normalizer = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
if ((index + 1) * N_READS <= axis_size) {
auto xn = load_vector<N_READS>(x, index);
#pragma unroll
T xn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]) - mean;
normalizer += t * t;
}
} else {
for (int i = index * N_READS; i < axis_size; ++i) {
float t = static_cast<float>(x[i]) - mean;
normalizer += t * t;
}
}
}
normalizer = BlockReduceT{block, temp}.Sum(normalizer);
normalizer = rsqrt(normalizer / axis_size + eps);
@@ -107,15 +101,17 @@ __global__ void layer_norm(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
auto bn = load_vector<N_READS>(b, index, axis_size, b_stride, T(0));
#pragma unroll
T xn[N_READS];
T wn[N_READS];
T bn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size);
for (int i = 0; i < N_READS; ++i) {
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
}
store_vector<N_READS>(out, index, xn, axis_size);
cub::StoreDirectBlocked(index, out, xn, axis_size);
}
}
@@ -148,11 +144,9 @@ __global__ void layer_norm_vjp(
float sum = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
sum += static_cast<float>(xn[i]);
}
T xn[N_READS] = {};
cub::LoadDirectBlocked(index, x, xn, axis_size);
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
}
sum = BlockReduceF{block, temp.f}.Sum(sum);
@@ -162,29 +156,20 @@ __global__ void layer_norm_vjp(
// Normalizer.
float3 factors = {};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
T xn[N_READS];
T wn[N_READS] = {};
T gn[N_READS] = {};
auto index = r * BLOCK_DIM + block.thread_rank();
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
if ((index + 1) * N_READS <= axis_size) {
auto xn = load_vector<N_READS>(x, index);
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]) - mean;
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f3(factors, {wg, wg * t, t * t});
}
} else {
for (int i = index * N_READS; i < axis_size; ++i) {
float t = static_cast<float>(x[i]) - mean;
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f3(factors, {wg, wg * t, t * t});
}
}
}
factors = BlockReduceF3{block, temp.f3}.Reduce(factors, plus_f3, {});
float meanwg = factors.x / axis_size;
@@ -195,10 +180,12 @@ __global__ void layer_norm_vjp(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
T xn[N_READS];
T wn[N_READS];
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
float wi = wn[i];
@@ -208,9 +195,9 @@ __global__ void layer_norm_vjp(
wn[i] = gi * xi;
}
}
store_vector<N_READS>(gx, index, xn, axis_size);
cub::StoreDirectBlocked(index, gx, xn, axis_size);
if constexpr (HAS_W) {
store_vector<N_READS>(gw, index, wn, axis_size);
cub::StoreDirectBlocked(index, gw, wn, axis_size);
}
}
}
@@ -250,7 +237,8 @@ void LayerNorm::eval_gpu(
}
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -270,16 +258,13 @@ void LayerNorm::eval_gpu(
encoder.set_input_array(w);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
encoder.add_kernel_node(
kernel,
n_rows,
block_dim(),
0,
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "layernorm", CTYPE, {
using DataType = cuda_type_t<CTYPE>;
constexpr uint32_t N_READS = 4;
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
auto kernel = cu::layer_norm<DataType, BLOCK_DIM, N_READS>;
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
x.data<DataType>(),
w.data<DataType>(),
b.data<DataType>(),
@@ -290,6 +275,7 @@ void LayerNorm::eval_gpu(
b_stride);
});
});
});
}
void LayerNormVJP::eval_gpu(
@@ -302,23 +288,21 @@ void LayerNormVJP::eval_gpu(
// Ensure row contiguity. We could relax this step by checking that the array
// is contiguous (no broadcasts or holes) and that the input strides are the
// same as the cotangent strides but for now this is simpler.
auto check_input = [&s](const array& x, bool& copied) {
auto check_input = [&s](const array& x) -> std::pair<array, bool> {
if (x.flags().row_contiguous) {
copied = false;
return x;
return {x, false};
}
copied = true;
return contiguous_copy_gpu(x, s);
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[3].is_donatable();
bool copied;
auto x = check_input(inputs[0], copied);
auto [x, copied] = check_input(inputs[0]);
donate_x |= copied;
const array& w = inputs[1];
const array& b = inputs[2];
bool g_copied;
auto g = check_input(inputs[3], g_copied);
auto [g, g_copied] = check_input(inputs[3]);
donate_g |= g_copied;
array& gx = outputs[0];
array& gw = outputs[1];
@@ -349,50 +333,37 @@ void LayerNormVJP::eval_gpu(
// gradient accumulators.
array gw_temp =
(has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
bool g_in_gw = false;
if (has_w) {
if (!g_in_gx && donate_g) {
g_in_gw = true;
gw_temp.copy_shared_buffer(g);
} else {
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
encoder.add_temporary(gw_temp);
}
}
gw.set_data(allocator::malloc(gw.nbytes()));
gb.set_data(allocator::malloc(gb.nbytes()));
// The gradient for b in case we had a b.
bool has_gb = (gb.ndim() == 1 && gb.size() == axis_size);
if (has_gb) {
// Finish with the gradient for b in case we had a b.
if (gb.ndim() == 1 && gb.size() == axis_size) {
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
col_reduce(encoder, g, gb, Reduce::ReduceType::Sum, {0}, plan);
}
// Insert dependency if `g` was donated
if ((g_in_gx || g_in_gw) && has_gb) {
encoder.set_input_array(gb);
}
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(g);
encoder.set_output_array(gx);
encoder.set_output_array(gw_temp);
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
dispatch_bool(has_w, [&](auto has_w_constant) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
auto kernel = cu::layer_norm_vjp<
DataType,
has_w_constant.value,
block_dim(),
N_READS>;
encoder.add_kernel_node(
kernel,
n_rows,
block_dim(),
0,
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
MLX_SWITCH_FLOAT_TYPES_CHECKED(gx.dtype(), "layernorm_vjp", CTYPE, {
using DataType = cuda_type_t<CTYPE>;
constexpr int N_READS = 4;
MLX_SWITCH_BOOL(has_w, HAS_W, {
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
auto kernel = cu::layer_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),
@@ -404,6 +375,7 @@ void LayerNormVJP::eval_gpu(
});
});
});
});
if (has_w) {
ReductionPlan plan(

View File

@@ -43,19 +43,20 @@ __global__ void logsumexp(const T* in, T* out, int axis_size) {
AccT maxval = Limits<AccT>::finite_min();
AccT normalizer = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
auto index = r * BLOCK_DIM + block.thread_rank();
auto vals = load_vector<N_READS>(in, index, axis_size, Limits<T>::min());
AccT vals[N_READS];
cub::LoadDirectBlocked(
r * BLOCK_DIM + block.thread_rank(),
make_cast_iterator<AccT>(in),
vals,
axis_size,
Limits<AccT>::min());
prevmax = maxval;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
maxval = max_op(maxval, static_cast<AccT>(vals[i]));
}
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
// Online normalizer calculation for softmax:
// https://github.com/NVIDIA/online-softmax
normalizer = normalizer * softmax_exp(prevmax - maxval);
for (int i = 0; i < N_READS; i++) {
normalizer =
normalizer + softmax_exp(static_cast<AccT>(vals[i]) - maxval);
normalizer = normalizer + softmax_exp(vals[i] - maxval);
}
}
@@ -107,7 +108,8 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}
@@ -141,19 +143,15 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "logsumexp", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
auto kernel = cu::logsumexp<DataType, float, block_dim(), N_READS>;
encoder.add_kernel_node(
kernel,
n_rows,
block_dim(),
0,
in.data<DataType>(),
out.data<DataType>(),
axis_size);
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "logsumexp", CTYPE, {
using DataType = cuda_type_t<CTYPE>;
constexpr int N_READS = 4;
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
auto kernel = cu::logsumexp<DataType, float, BLOCK_DIM, N_READS>;
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
in.data<DataType>(), out.data<DataType>(), axis_size);
});
});
});
}

View File

@@ -1,159 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cstring>
#include <list>
#include <unordered_map>
#include <utility>
namespace mlx::core {
template <
typename K,
typename V,
template <typename...> typename M = std::unordered_map>
class LRUCache {
public:
using value_type = std::pair<K, V>;
using list_type = std::list<value_type>;
using iterator = typename list_type::iterator;
using const_iterator = typename list_type::const_iterator;
using map_type = M<K, iterator>;
explicit LRUCache(size_t capacity) : capacity_(capacity) {
if (capacity == 0) {
throw std::runtime_error("LRUCache requires capacity > 0.");
}
}
size_t size() const {
return map_.size();
}
size_t capacity() const {
return capacity_;
}
bool empty() const {
return vlist_.empty();
}
void resize(size_t new_capacity) {
capacity_ = new_capacity;
trim();
}
iterator begin() {
return vlist_.begin();
}
const_iterator begin() const {
return vlist_.begin();
}
iterator end() {
return vlist_.end();
}
const_iterator end() const {
return vlist_.end();
}
void clear() {
map_.clear();
vlist_.clear();
}
iterator find(const K& key) {
auto it = map_.find(key);
if (it == map_.end())
return end();
vlist_.splice(vlist_.begin(), vlist_, it->second);
return it->second;
}
template <typename U>
std::pair<iterator, bool> emplace(const K& key, U&& value) {
auto it = map_.find(key);
if (it != map_.end()) {
vlist_.splice(vlist_.begin(), vlist_, it->second);
return {it->second, false};
}
vlist_.emplace_front(key, std::forward<U>(value));
map_[key] = vlist_.begin();
trim();
return {vlist_.begin(), true};
}
iterator erase(iterator pos) {
map_.erase(pos->first);
return vlist_.erase(pos);
}
V& operator[](const K& key) {
auto it = find(key);
if (it == end()) {
it = emplace(key, V{}).first;
}
return it->second;
}
private:
void trim() {
while (map_.size() > capacity_) {
auto last = std::prev(vlist_.end());
map_.erase(last->first);
vlist_.pop_back();
}
}
list_type vlist_;
map_type map_;
size_t capacity_;
};
// Turn a POD struct into a container key by doing bytes compare.
template <typename T>
struct BytesKey {
T pod;
static_assert(std::is_standard_layout_v<T>, "T is not POD");
BytesKey(T pod) : pod(std::move(pod)) {}
BytesKey(const BytesKey& other) {
memcpy(&pod, &other.pod, sizeof(T));
}
BytesKey(BytesKey&& other) {
memcpy(&pod, &other.pod, sizeof(T));
}
bool operator==(const BytesKey& other) const {
auto* ptr1 = reinterpret_cast<const uint8_t*>(&pod);
auto* ptr2 = reinterpret_cast<const uint8_t*>(&other.pod);
return memcmp(ptr1, ptr2, sizeof(T)) == 0;
}
};
// Compute hash according to the bytes value of T.
template <typename T>
struct BytesHash {
static_assert(std::is_standard_layout_v<T>, "T is not POD");
size_t operator()(const T& pod) const {
auto* ptr = reinterpret_cast<const uint8_t*>(&pod);
uint32_t value = 0x811C9DC5;
for (int i = 0; i < sizeof(T); ++i) {
value ^= ptr[i];
value *= 0x01000193;
}
return value;
}
};
template <typename K, typename V>
using BytesKeyHashMap = std::unordered_map<K, V, BytesHash<K>>;
template <typename K, typename V>
using LRUBytesKeyCache = LRUCache<BytesKey<K>, V, BytesKeyHashMap>;
} // namespace mlx::core

View File

@@ -2,19 +2,274 @@
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
#include <cublasLt.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <numeric>
namespace mlx::core {
namespace cu {
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
void check_cublas_error(const char* name, cublasStatus_t err) {
if (err != CUBLAS_STATUS_SUCCESS) {
// TODO: Use cublasGetStatusString when it is widely available.
throw std::runtime_error(
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
}
}
class MatMul {
public:
MatMul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cuda_type(dtype);
if (dtype == bfloat16 || dtype == float16) {
scale_type = CUDA_R_32F;
}
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
sizeof(cublasOperation_t)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cuda_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
MatMul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
bool c_transposed,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: MatMul(
device,
dtype,
a_transposed,
a_rows,
a_cols,
lda,
b_transposed,
b_rows,
b_cols,
ldb,
batch_count,
a_batch_stride,
b_batch_stride) {
auto type = dtype_to_cuda_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, c_transposed, ldc, batch_count, c_batch_stride);
}
~MatMul() {
cublasLtMatrixLayoutDestroy(a_desc_);
cublasLtMatrixLayoutDestroy(b_desc_);
cublasLtMatrixLayoutDestroy(c_desc_);
cublasLtMatrixLayoutDestroy(out_desc_);
cublasLtMatmulDescDestroy(matmul_desc_);
}
void run(
cu::CommandEncoder& encoder,
void* out,
void* a,
void* b,
void* c = nullptr,
float alpha = 1,
float beta = 0) {
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
int ret = 0;
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
encoder.device().lt_handle(),
matmul_desc_,
a_desc_,
b_desc_,
out_desc_,
out_desc_,
pref_,
1,
&heuristic_,
&ret));
if (ret == 0) {
throw std::runtime_error("Can not find algorithm for matmul.");
}
}
array workspace(
allocator::malloc(heuristic_.workspaceSize),
{static_cast<int>(heuristic_.workspaceSize)},
int8);
encoder.add_temporary(workspace);
encoder.launch_kernel([&](cudaStream_t stream) {
CHECK_CUBLAS_ERROR(cublasLtMatmul(
encoder.device().lt_handle(),
matmul_desc_,
&alpha,
a,
a_desc_,
b,
b_desc_,
&beta,
c ? c : out,
c ? c_desc_ : out_desc_,
out,
out_desc_,
&heuristic_.algo,
workspace.data<void>(),
workspace.nbytes(),
stream));
});
}
private:
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUBLAS_COMPUTE_32F;
case bfloat16:
return CUBLAS_COMPUTE_32F;
case float32:
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
: CUBLAS_COMPUTE_32F;
case float64:
case complex64:
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
}
}
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUDA_R_16F;
case bfloat16:
return CUDA_R_16BF;
case float32:
return CUDA_R_32F;
case float64:
return CUDA_R_64F;
case complex64:
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
}
}
cublasLtMatrixLayout_t create_matrix_layout(
cudaDataType_t type,
uint64_t rows,
uint64_t cols,
bool transposed,
int64_t ld,
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order =
transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
&batch_count,
sizeof(int32_t)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
&batch_stride,
sizeof(int64_t)));
}
return desc;
}
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
cublasLtMatrixLayout_t out_desc_{nullptr};
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace cu
namespace {
std::tuple<bool, int64_t, array>
check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
check_transpose(std::vector<array>& copies, const Stream& s, const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (sty == 1 && stx == arr.shape(-1)) {
@@ -22,8 +277,9 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy = contiguous_copy_gpu(arr, s);
enc.add_temporary(arr_copy);
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return std::make_tuple(false, arr.shape(-1), arr_copy);
}
}
@@ -57,8 +313,13 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
// Keep a vector with copies to be cleared in the completed buffer to release
// the arrays
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
std::vector<array> copies;
auto [a_transposed, lda, a] = check_transpose(copies, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(copies, s, b_pre);
for (auto& temp : copies) {
encoder.add_temporary(temp);
}
/////////////////////////////////////////////////////////////////////////////
// Check and collapse batch dimensions
@@ -79,26 +340,11 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
batch_shape = {1};
}
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
cu::gemv(
a,
b,
out,
M,
N,
K,
batch_count,
batch_shape,
a_batch_strides,
b_batch_strides,
encoder);
return;
}
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
cu::device(s.device),
cu::MatMul matmul(
encoder.device(),
a.dtype(),
a_transposed,
M,
@@ -112,13 +358,17 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
a_batch_strides.back(),
b_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b);
return;
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
matmul.run(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc);
a_it.step();
b_it.step();
}
matmul.run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
}
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -129,7 +379,9 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
auto c = inputs[2];
auto& c_pre = inputs[2];
out.set_data(allocator::malloc(out.nbytes()));
/////////////////////////////////////////////////////////////////////////////
// Init checks and prep
@@ -140,25 +392,13 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
// Keep a vector with copies to be cleared in the completed buffer to release
// the arrays
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
std::vector<array> copies;
auto [a_transposed, lda, a] = check_transpose(copies, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(copies, s, b_pre);
auto [c_transposed, ldc, c] = check_transpose(copies, s, c_pre);
int64_t ldc;
{
auto stx = c.strides()[c.ndim() - 2];
auto sty = c.strides()[c.ndim() - 1];
if (sty == 1 && stx == c.shape(-1)) {
ldc = stx;
out.set_data(allocator::malloc(out.nbytes()));
} else if (sty == 1 && stx == 0) {
ldc = 0;
out.set_data(allocator::malloc(out.nbytes()));
} else {
// Copy C into out and set C to out
ldc = c.shape(-1);
copy_gpu(c, out, CopyType::General, s);
c = out;
}
for (auto& temp : copies) {
encoder.add_temporary(temp);
}
/////////////////////////////////////////////////////////////////////////////
@@ -186,8 +426,8 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
cu::device(s.device),
cu::MatMul matmul(
encoder.device(),
a.dtype(),
a_transposed,
M,
@@ -197,28 +437,29 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
K,
N,
ldb,
c_transposed,
ldc,
batch_shape.back(),
a_batch_strides.back(),
b_batch_strides.back(),
c_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b, c, alpha_, beta_);
return;
}
matmul.run_batched(
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
matmul.run(
encoder,
out,
a,
b,
c,
batch_shape,
a_batch_strides,
b_batch_strides,
c_batch_strides,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
c.data<int8_t>() + c.itemsize() * c_it.loc,
alpha_,
beta_);
a_it.step();
b_it.step();
c_it.step();
}
}
} // namespace mlx::core

View File

@@ -1,55 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/distributed/primitives.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
namespace mlx::core {
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU_USE_FALLBACK(func) \
bool func::use_fallback(Stream s) { \
return true; \
} \
NO_GPU_MULTI(func)
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(BlockMaskedMM)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(FFT)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Hadamard)
NO_GPU(Load)
NO_GPU_MULTI(LUF)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(SegmentedMM)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core

View File

@@ -0,0 +1,97 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/arange.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/distributed/primitives.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cassert>
namespace mlx::core {
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_output_array(out);
encoder.launch_kernel([&, this](cudaStream_t stream) {
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
});
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU_USE_FALLBACK(func) \
bool func::use_fallback(Stream s) { \
return true; \
} \
NO_GPU_MULTI(func)
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(ArgPartition)
NO_GPU(BlockMaskedMM)
NO_GPU(Convolution)
NO_GPU_MULTI(DivMod)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(FFT)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Hadamard)
NO_GPU(Load)
NO_GPU_MULTI(LUF)
NO_GPU(Partition)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(Scan)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core

View File

@@ -1,331 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T, int group_size, int bits>
__global__ void
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
constexpr float eps = 1e-7;
constexpr int simd_size = WARP_SIZE;
constexpr float n_bins = (1 << bits) - 1;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
constexpr int values_per_reduce = group_size / simd_size;
constexpr int writes_per_reduce = pack_factor / values_per_reduce;
constexpr int writes_per_pack =
writes_per_reduce > 1 ? 1 : values_per_reduce / pack_factor;
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
size_t offset = tidx + grid_dim_x * size_t(tidy);
size_t in_index = offset * values_per_reduce;
if (in_index >= size) {
return;
}
size_t out_index = power_of_2_bits
? offset * writes_per_pack
: offset * bytes_per_pack / writes_per_reduce;
float w_thread[values_per_reduce];
float w_min = Limits<float>::max();
float w_max = 0;
#pragma clang loop unroll(full)
for (int i = 0; i < values_per_reduce; i++) {
float val = w[in_index + i];
w_thread[i] = val;
w_min = min(w_min, val);
w_max = max(w_max, val);
}
cg::greater<float> max_op;
cg::less<float> min_op;
auto warp = cg::tiled_partition<WARP_SIZE>(cg::this_thread_block());
w_min = cg::reduce(warp, w_min, min_op);
w_max = cg::reduce(warp, w_max, max_op);
float scale = max((w_max - w_min) / n_bins, eps);
bool side = abs(w_min) > abs(w_max);
scale = side ? scale : -scale;
float edge = side ? w_min : w_max;
float q0 = round(edge / scale);
bool at_zero = q0 == 0.0f;
scale = at_zero ? scale : edge / q0;
float bias = at_zero ? 0 : edge;
// Write out the scales and biases
size_t gindex = in_index / group_size;
if (in_index % group_size == 0) {
scales[gindex] = static_cast<T>(scale);
biases[gindex] = static_cast<T>(bias);
}
using OutType = std::conditional_t<bits == 5, uint64_t, uint32_t>;
OutType output = 0;
#pragma clang loop unroll(full)
for (int i = 0; i < values_per_reduce; i++) {
uint8_t val = min(round((w_thread[i] - bias) / scale), n_bins);
if (bits == 8) {
output = val;
} else {
output |= val << (bits * (i % pack_factor));
}
if (pack_factor < values_per_reduce && i % pack_factor == pack_factor - 1) {
out[out_index + i / pack_factor] = output;
output = 0;
} else {
#pragma clang loop unroll(full)
for (int j = 1; j < writes_per_reduce; j++) {
uint8_t sval = warp.shfl_down(val, j);
output |= static_cast<OutType>(sval)
<< (bits * (j * values_per_reduce + i));
}
}
}
if constexpr (bits == 3 || bits == 6) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
}
} else if constexpr (bits == 5) {
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
out[out_index] = output & 0xff;
out[out_index + 1] = (output & 0xff00) >> 8;
out[out_index + 2] = (output & 0xff0000) >> 16;
out[out_index + 3] = (output & 0xff000000) >> 24;
out[out_index + 4] = (output & 0xff00000000) >> 32;
}
} else {
if constexpr (writes_per_reduce > 0) {
if (out_index % writes_per_reduce == 0) {
out[out_index / writes_per_reduce] = output;
}
}
}
}
template <typename T, int group_size, int bits>
__global__ void affine_dequantize(
const uint8_t* w,
const T* scales,
const T* biases,
T* out,
size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
constexpr int pack_factor = get_pack_factor<bits, 8>();
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
size_t offset = tidx + grid_dim_x * size_t(tidy);
size_t oindex = offset * pack_factor;
if (oindex >= size) {
return;
}
size_t gindex = oindex / group_size;
T scale = scales[gindex];
T bias = biases[gindex];
out += oindex;
if constexpr (bits == 3) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x7) * scale + bias;
out[1] = static_cast<T>((w[0] & 0x38) >> 3) * scale + bias;
out[2] = (static_cast<T>((w[0] & 0xc0) >> 6) +
static_cast<T>((w[1] & 0x1) << 2)) *
scale +
bias;
out[3] = static_cast<T>((w[1] & 0xe) >> 1) * scale + bias;
out[4] = static_cast<T>((w[1] & 0x70) >> 4) * scale + bias;
out[5] = (static_cast<T>((w[1] & 0x80) >> 7) +
static_cast<T>((w[2] & 0x3) << 1)) *
scale +
bias;
out[6] = static_cast<T>((w[2] & 0x1c) >> 2) * scale + bias;
out[7] = static_cast<T>((w[2] & 0xe0) >> 5) * scale + bias;
} else if constexpr (bits == 5) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x1f) * scale + bias;
out[1] = (static_cast<T>((w[0] & 0xe0) >> 5) +
static_cast<T>((w[1] & 0x3) << 3)) *
scale +
bias;
out[2] = static_cast<T>((w[1] & 0x7c) >> 2) * scale + bias;
out[3] = (static_cast<T>((w[1] & 0x80) >> 7) +
static_cast<T>((w[2] & 0xf) << 1)) *
scale +
bias;
out[4] = (static_cast<T>((w[2] & 0xf0) >> 4) +
static_cast<T>((w[3] & 0x1) << 4)) *
scale +
bias;
out[5] = static_cast<T>((w[3] & 0x3e) >> 1) * scale + bias;
out[6] = (static_cast<T>((w[3] & 0xc0) >> 6) +
static_cast<T>((w[4] & 0x7) << 2)) *
scale +
bias;
out[7] = static_cast<T>((w[4] & 0xf8) >> 3) * scale + bias;
} else if constexpr (bits == 6) {
w += offset * bytes_per_pack;
out[0] = static_cast<T>(w[0] & 0x3f) * scale + bias;
out[1] = (static_cast<T>((w[0] >> 6) & 0x03) +
static_cast<T>((w[1] & 0x0f) << 2)) *
scale +
bias;
out[2] = (static_cast<T>((w[1] >> 4) & 0x0f) +
static_cast<T>((w[2] & 0x03) << 4)) *
scale +
bias;
out[3] = static_cast<T>((w[2] >> 2) & 0x3f) * scale + bias;
} else {
uint val = w[offset];
#pragma clang loop unroll(full)
for (int i = 0; i < pack_factor; i++) {
uint8_t d;
if (bits == 2) {
d = (val >> (bits * i)) & 0x03;
} else if (bits == 4) {
d = (val >> (bits * i)) & 0x0f;
} else if (bits == 8) {
d = val;
}
out[i] = scale * static_cast<T>(d) + bias;
}
}
}
} // namespace cu
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
// Calculate the number of elements per thread
int per_thread = group_size_ / WARP_SIZE;
size_t size = w.size() / per_thread;
// Calculate the thread grid that we need to launch
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() /= per_thread;
enc.set_input_array(w);
enc.set_output_array(wq);
enc.set_output_array(scales);
enc.set_output_array(biases);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
w.data<T>(),
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.size());
});
});
});
}
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
constexpr int uint8_per_uint32 = 4;
int packs_per_int;
switch (bits_) {
case 3:
case 5:
packs_per_int = 8;
break;
case 6:
packs_per_int = 4;
break;
default:
packs_per_int = 8 / bits_;
}
size_t size = w.size() / packs_per_int;
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() *= uint8_per_uint32;
enc.set_input_array(wq);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(w);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.data<T>(),
w.size());
});
});
});
}
} // namespace mlx::core

View File

@@ -1,80 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/quantized/quantized.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/fast_primitives.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
inline array ensure_row_contiguous(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
inline array ensure_row_contiguous_matrix(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
if (x.ndim() < 2) {
if (x.strides()[0] == 1) {
return x;
}
} else {
auto stride_0 = x.strides()[x.ndim() - 2];
auto stride_1 = x.strides()[x.ndim() - 1];
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
}
}
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
}
} // namespace
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("AffineQuantize::eval_gpu");
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
if (dequantize_) {
auto wq = ensure_row_contiguous(inputs[0], enc, s);
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
auto& w = outputs[0];
w.set_data(allocator::malloc(w.nbytes()));
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
} else {
auto w = ensure_row_contiguous(inputs[0], enc, s);
auto& wq = outputs[0];
auto& scales = outputs[1];
auto& biases = outputs[2];
wq.set_data(allocator::malloc(wq.nbytes()));
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
}
}
} // namespace mlx::core

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
namespace mlx::core {
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
} // namespace mlx::core

View File

@@ -1,59 +0,0 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core {
namespace cu {
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
} // namespace cu
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
} // namespace mlx::core

Some files were not shown because too many files have changed in this diff Show More