mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
85 Commits
v0.29.0
...
b901a9f311
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b901a9f311 | ||
|
|
68c5fa1c95 | ||
|
|
793a31eeb6 | ||
|
|
74c1ed25bb | ||
|
|
ec72b44417 | ||
|
|
460691a0e8 | ||
|
|
969924cc69 | ||
|
|
d1e06117e8 | ||
|
|
539d8322d1 | ||
|
|
c4767d110f | ||
|
|
895217f25b | ||
|
|
0cfeeb60ca | ||
|
|
8f8af61a37 | ||
|
|
233384161e | ||
|
|
5bcf3a6794 | ||
|
|
7707196297 | ||
|
|
7e3471c987 | ||
|
|
9f0ba3ddf1 | ||
|
|
4bce5f9b2d | ||
|
|
e9eab527eb | ||
|
|
36ca62dba8 | ||
|
|
9cbb1b0148 | ||
|
|
9bfc476d72 | ||
|
|
25e2356316 | ||
|
|
226a1d24e0 | ||
|
|
630350ad3e | ||
|
|
380aeb58ae | ||
|
|
f37389d100 | ||
|
|
e89e8b4272 | ||
|
|
85a8824a8c | ||
|
|
f5d4397e5c | ||
|
|
343e33b6d5 | ||
|
|
0073096dd1 | ||
|
|
e3d004fed9 | ||
|
|
a393435d28 | ||
|
|
a7a94b29d7 | ||
|
|
22a5da76c8 | ||
|
|
287c63a093 | ||
|
|
1c9ae1eaa1 | ||
|
|
c2c3e0b0a2 | ||
|
|
b0cc71ae71 | ||
|
|
e88f2d4a8e | ||
|
|
9cee557423 | ||
|
|
bbf1423953 | ||
|
|
eb24267b56 | ||
|
|
dc371ae7a5 | ||
|
|
e76a8dd5c5 | ||
|
|
b466dea982 | ||
|
|
7a6adda1e6 | ||
|
|
1a9f820af6 | ||
|
|
d4f4ff3c5e | ||
|
|
7c7e48dbd1 | ||
|
|
fbbf3b9b3e | ||
|
|
bf01ad9367 | ||
|
|
ae438d05fa | ||
|
|
711a645807 | ||
|
|
aa9d44b3d4 | ||
|
|
ec2ab42888 | ||
|
|
787c0d90cd | ||
|
|
e8b604a6a3 | ||
|
|
50cc09887f | ||
|
|
3f730e77aa | ||
|
|
caecbe876a | ||
|
|
8afb6d62f2 | ||
|
|
6ccfa603cd | ||
|
|
36cad99a11 | ||
|
|
ee18e1cbf0 | ||
|
|
af120c2bc0 | ||
|
|
6a3acf2301 | ||
|
|
d6977f2a57 | ||
|
|
db5443e831 | ||
|
|
52b8384d10 | ||
|
|
44cc5da4bc | ||
|
|
dde3682b69 | ||
|
|
17310d91a6 | ||
|
|
b194d65a6a | ||
|
|
a44b27f5f8 | ||
|
|
e5a33f2223 | ||
|
|
c1e3340b23 | ||
|
|
8f163a367d | ||
|
|
89a3df9014 | ||
|
|
c5d2937aa5 | ||
|
|
b61a65e313 | ||
|
|
04cbb4191c | ||
|
|
c5460762e7 |
@@ -26,9 +26,9 @@ jobs:
|
||||
name: Install
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
brew install python@3.9
|
||||
brew install python@3.10
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
python3.10 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
@@ -140,7 +140,7 @@ jobs:
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv --python 3.9
|
||||
uv venv --python 3.10
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
@@ -230,6 +230,9 @@ jobs:
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Set CCache size
|
||||
command: ccache --max-size 1G
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
@@ -260,7 +263,6 @@ jobs:
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
@@ -271,7 +273,7 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "26.0.0"
|
||||
@@ -326,7 +328,7 @@ jobs:
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
@@ -349,7 +351,7 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -385,7 +387,7 @@ jobs:
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
@@ -482,7 +484,7 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
xcode_version: ["26.0.0"]
|
||||
@@ -501,7 +503,7 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
@@ -544,13 +546,13 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
@@ -562,14 +564,14 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
|
||||
24
.github/actions/build-cuda-release/action.yml
vendored
Normal file
24
.github/actions/build-cuda-release/action.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: 'Build CUDA wheel'
|
||||
description: 'Build CUDA wheel'
|
||||
|
||||
inputs:
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build package
|
||||
shell: bash
|
||||
env:
|
||||
MLX_BUILD_STAGE: 2
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: |
|
||||
pip install auditwheel build patchelf setuptools
|
||||
python setup.py clean --all
|
||||
python -m build -w
|
||||
|
||||
if [ -f "python/scripts/repair_cuda.sh" ]; then
|
||||
bash python/scripts/repair_cuda.sh
|
||||
fi
|
||||
68
.github/actions/build-cuda/action.yml
vendored
Normal file
68
.github/actions/build-cuda/action.yml
vendored
Normal file
@@ -0,0 +1,68 @@
|
||||
name: 'Build and Test with CUDA'
|
||||
description: 'Build and test MLX with CUDA'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type (debug, release)'
|
||||
required: false
|
||||
default: 'debug'
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
default: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
# this value is dependent on the CUDA tools installed in the setup-linux workflow
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Python package
|
||||
shell: bash
|
||||
env:
|
||||
DEBUG: 1
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Check if build actually worked
|
||||
shell: bash
|
||||
run: python -c "import mlx.core"
|
||||
|
||||
- name: Run Python tests - CPU
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: cpu
|
||||
run: python -m unittest discover python/tests -v
|
||||
|
||||
- name: Run Python tests - GPU
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
run: python -m tests discover python/tests -v
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.build-type == 'debug'
|
||||
shell: bash
|
||||
run: |
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }} \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
|
||||
shell: bash
|
||||
run: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
|
||||
- name: Build Python package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: ${{ inputs.nvcc-location }}
|
||||
38
.github/actions/build-docs/action.yml
vendored
Normal file
38
.github/actions/build-docs/action.yml
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
name: 'Build Documentation'
|
||||
description: 'Build documentation on a mac'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Setup machine
|
||||
uses: ./.github/actions/setup-macos
|
||||
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
run: |
|
||||
brew install doxygen
|
||||
uv pip install --upgrade pip cmake
|
||||
uv pip install -r docs/requirements.txt
|
||||
uv pip install . -v
|
||||
|
||||
- name: Build documentation
|
||||
shell: bash
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
cd docs
|
||||
doxygen
|
||||
make html O=-W
|
||||
|
||||
- name: Create artifact tar
|
||||
shell: sh
|
||||
run: tar -cf artifact.tar --cd docs/build/html -L .
|
||||
|
||||
# Do it manually because upload-pages-artifact requires gtar
|
||||
- name: Upload artifact
|
||||
id: upload-artifact
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: github-pages
|
||||
path: artifact.tar
|
||||
retention-days: 1
|
||||
if-no-files-found: error
|
||||
78
.github/actions/build-linux/action.yml
vendored
Normal file
78
.github/actions/build-linux/action.yml
vendored
Normal file
@@ -0,0 +1,78 @@
|
||||
name: 'Build and Test on Linux'
|
||||
description: 'Build and test MLX on Linux'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type'
|
||||
required: false
|
||||
default: 'debug'
|
||||
type: choice
|
||||
options:
|
||||
- debug
|
||||
- release
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
type: boolean
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Set DEBUG
|
||||
shell: sh
|
||||
if: inputs.build-type == 'debug'
|
||||
run: echo "DEBUG=1" >> $GITHUB_ENV
|
||||
|
||||
- name: Install Python package
|
||||
shell: sh
|
||||
env:
|
||||
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: sh
|
||||
run: |
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
|
||||
- name: Run Python tests
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
python -m unittest discover python/tests -v
|
||||
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if grep -Fq '[WARN]' stderr.log ; then
|
||||
grep -F '[WARN]' stderr.log
|
||||
echo "Distributed ring test failed";
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.build-type == 'debug'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
|
||||
shell: sh
|
||||
run: ./build/tests/tests
|
||||
|
||||
- name: Build Python package
|
||||
if: inputs.build-type == 'release'
|
||||
shell: bash
|
||||
run: |
|
||||
pip install auditwheel patchelf build
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 python -m build -w
|
||||
if [ -f "python/scripts/repair_linux.sh" ]; then
|
||||
bash python/scripts/repair_linux.sh
|
||||
fi
|
||||
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 python -m build -w
|
||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
|
||||
22
.github/actions/build-macos-release/action.yml
vendored
Normal file
22
.github/actions/build-macos-release/action.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: 'Build macOS release'
|
||||
description: 'Build MLX releases macOS'
|
||||
|
||||
inputs:
|
||||
macos-target:
|
||||
description: 'macOS build target'
|
||||
required: false
|
||||
default: '15.0'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build Python package(s)
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
uv pip install build
|
||||
uv run --no-project setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 uv run -m build -w
|
||||
uv run --no-project setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 uv run -m build -w
|
||||
124
.github/actions/build-macos/action.yml
vendored
Normal file
124
.github/actions/build-macos/action.yml
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
name: 'Build and Test on macOS'
|
||||
description: 'Build and test MLX on macOS'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type (debug, release)'
|
||||
required: false
|
||||
default: 'debug'
|
||||
type: choice
|
||||
options:
|
||||
- debug
|
||||
- release
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
build-jit:
|
||||
description: 'Whether to build with JIT'
|
||||
required: false
|
||||
default: 'true'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
env:
|
||||
DEBUG: 1
|
||||
DEV_RELEASE: 1
|
||||
run: |
|
||||
uv pip install --upgrade pip cmake setuptools
|
||||
uv pip install nanobind==2.4.0 \
|
||||
numpy torch tensorflow unittest-xml-reporting
|
||||
uv pip install -e . -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: bash
|
||||
run: |
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
|
||||
- name: Run Python tests
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
run: |
|
||||
DEVICE=cpu uv run -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 uv run -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
|
||||
- name: Build example extension
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
cd examples/extensions
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project test.py
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.build-type == 'debug'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake ..
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
|
||||
shell: bash
|
||||
env:
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
run: ./build/tests/tests
|
||||
|
||||
- name: Build small binary with JIT
|
||||
if: inputs.build-jit == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run Python tests with JIT
|
||||
if: ${{ inputs.build-jit == 'true' && inputs.run-tests == 'true' }}
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
run: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e . -v
|
||||
uv run -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
|
||||
- name: Build macOS 13 package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 13.0
|
||||
- name: Build macOS 14 package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 14.0
|
||||
- name: Build macOS 15 package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 15.0
|
||||
83
.github/actions/setup-linux/action.yml
vendored
Normal file
83
.github/actions/setup-linux/action.yml
vendored
Normal file
@@ -0,0 +1,83 @@
|
||||
name: 'Setup Linux Environment'
|
||||
description: 'Install dependencies for Linux builds'
|
||||
|
||||
inputs:
|
||||
runner-type:
|
||||
description: 'Whether to set this up as a linux or CUDA runner'
|
||||
required: false
|
||||
default: 'linux'
|
||||
type: choice
|
||||
options:
|
||||
- linux
|
||||
- cuda
|
||||
python-version:
|
||||
description: 'Version of python to set up'
|
||||
required: false
|
||||
default: '3.10'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Free disk space
|
||||
shell: sh
|
||||
if: inputs.runner-type == 'linux'
|
||||
run: sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
|
||||
- name: Install common dependencies
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev tzdata zip
|
||||
sudo apt autoremove -y
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache: 'pip'
|
||||
|
||||
- name: setup python venv
|
||||
shell: bash
|
||||
run: |
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
echo PATH=$PATH >> $GITHUB_ENV
|
||||
pip install --upgrade pip cmake
|
||||
|
||||
- name: Install MPI
|
||||
if: inputs.runner-type == 'linux'
|
||||
shell: bash
|
||||
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
|
||||
|
||||
- name: Network CUDA installation from packages
|
||||
id: install-cuda
|
||||
if: inputs.runner-type == 'cuda'
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash ## Specific to Ubuntu 22.04 & Architecture x86_64
|
||||
run: |
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libcudnn9-dev-cuda-12 libnccl2 libnccl-dev cuda-toolkit-12-9
|
||||
# Note: This installs CUDA 12.9, which is the latest supported by cuDNN 9.x and works with the NVidia 570 drivers
|
||||
# cuda-toolkit by itself installs version 13 (+) and requires updated drives (580+), which require a reboot to function properly.
|
||||
# Compatibility matrix: https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
|
||||
# This also drops `nvcc` into `/usr/local/cuda-12.9/bin/nvcc` - but it's *not* on the default PATH
|
||||
|
||||
- name: Package and Driver Report
|
||||
if: inputs.runner-type == 'cuda'
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get install -y ubuntu-drivers-common dkms
|
||||
echo "NVIDIA Driver Packages Available:"
|
||||
sudo ubuntu-drivers list --gpgpu
|
||||
echo "NVIDIA Driver Version:"
|
||||
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
|
||||
echo "Installed NVIDIA and CUDA packages:"
|
||||
dpkg -l | egrep "cuda|nvidia" -i
|
||||
echo "DKMS Status:"
|
||||
dkms status || echo "dkms not found"
|
||||
echo "NVIDIA-SMI Status:"
|
||||
nvidia-smi || echo "nvidia-smi not found"
|
||||
31
.github/actions/setup-macos/action.yml
vendored
Normal file
31
.github/actions/setup-macos/action.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: 'Setup macOS Environment'
|
||||
description: 'Install dependencies for macOS builds'
|
||||
|
||||
inputs:
|
||||
install-mpi:
|
||||
description: 'Whether to install MPI'
|
||||
required: false
|
||||
default: 'true'
|
||||
type: boolean
|
||||
python-version:
|
||||
description: 'Python version to use'
|
||||
required: false
|
||||
default: '3.10'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Homebrew packages
|
||||
shell: sh
|
||||
if: inputs.install-mpi == 'true'
|
||||
run: /opt/homebrew/bin/brew install openmpi
|
||||
|
||||
- name: Verify MetalToolchain installed
|
||||
shell: bash
|
||||
run: xcodebuild -showComponent MetalToolchain
|
||||
|
||||
- name: Setup uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
activate-environment: true
|
||||
6
.github/dependabot.yml
vendored
Normal file
6
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "github-actions"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
28
.github/workflows/documentation.yml
vendored
Normal file
28
.github/workflows/documentation.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
name: Documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy:
|
||||
needs: build
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
93
.github/workflows/nightly.yml
vendored
Normal file
93
.github/workflows/nightly.yml
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
name: Nightly Build
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 33 6 * * 1-5
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build_linux_release:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux
|
||||
with:
|
||||
build-type: release
|
||||
run-tests: false
|
||||
- name: Upload mlx artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
retention-days: 7
|
||||
- name: Upload mlx-cpu artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
retention-days: 7
|
||||
|
||||
build_linux_with_tests:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
build_mac_release:
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.13"]
|
||||
# TODO: 3.14 had issues finding a compatible tensorflow
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: "15.0"
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: ./.github/actions/build-macos
|
||||
|
||||
build_cuda_with_tests:
|
||||
runs-on: gpu-t4-4-core
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_cuda_release:
|
||||
runs-on: ubuntu-22-large
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
retention-days: 7
|
||||
|
||||
56
.github/workflows/pull_request.yml
vendored
56
.github/workflows/pull_request.yml
vendored
@@ -1,20 +1,46 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
name: Build and Test
|
||||
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
check_lint:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v4
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
|
||||
linux_build_and_test:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
mac_build_and_test:
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
- uses: ./.github/actions/build-macos
|
||||
|
||||
cuda_build_and_test:
|
||||
runs-on: gpu-t4-4-core
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: 3.8
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pre-commit black isort clang-format
|
||||
- name: Run lint
|
||||
run: |
|
||||
pre-commit run --all-files
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_documentation:
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
188
.github/workflows/release.yml
vendored
Normal file
188
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,188 @@
|
||||
name: PyPI Release
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy_documentation:
|
||||
needs: build_documentation
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
|
||||
build_linux_release:
|
||||
strategy:
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux
|
||||
with:
|
||||
build-type: release
|
||||
run-tests: false
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
- name: Upload CPU artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
|
||||
build_mac_release:
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.11", "3.12", "3.13"]
|
||||
# TODO: 3.14 had issues finding a compatible tensorflow
|
||||
runs-on: [self-hosted, macos]
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: ./.github/actions/build-macos
|
||||
with:
|
||||
build-type: release
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mac-wheels-${{ matrix.python-version }}
|
||||
path: dist/mlx-*.whl
|
||||
- name: Upload Metal artifacts
|
||||
if: matrix.python-version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: dist/mlx_metal-*.whl
|
||||
|
||||
build_cuda_release:
|
||||
runs-on: ubuntu-22-large
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
|
||||
pypi-publish:
|
||||
name: Upload release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build_linux_release, build_mac_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: linux-wheels-*
|
||||
merge-multiples: true
|
||||
path: artifacts
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: mac-wheels-*
|
||||
merge-multiples: true
|
||||
path: artifacts
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R artifacts
|
||||
# - name: Publish package distributions to PyPI
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1
|
||||
|
||||
pypi-publish-cuda:
|
||||
name: Upload CUDA release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: build_cuda_release
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-cuda
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: artifacts
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R artifacts
|
||||
# - name: Publish package distributions to PyPI
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1
|
||||
|
||||
pypi-publish-cpu:
|
||||
name: Upload CPU release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: build_linux_release
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-cpu
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: artifacts
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R artifacts
|
||||
# - name: Publish package distributions to PyPI
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1
|
||||
|
||||
pypi-publish-metal:
|
||||
name: Upload Metal release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: build_mac_release
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-metal
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: artifacts
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R artifacts
|
||||
# - name: Publish package distributions to PyPI
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1
|
||||
@@ -1,4 +1,10 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v6.0.0
|
||||
hooks:
|
||||
- id: check-yaml
|
||||
# - id: end-of-file-fixer
|
||||
# - id: trailing-whitespace
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.7
|
||||
hooks:
|
||||
|
||||
@@ -19,7 +19,7 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
|
||||
@@ -26,6 +26,7 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# ----------------------------- Configuration -----------------------------
|
||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||
@@ -87,22 +88,26 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
endif()
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
if(MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
if(METAL_LIB)
|
||||
message(STATUS "Metal found ${METAL_LIB}")
|
||||
else()
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
||||
endif()
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
@@ -111,7 +116,8 @@ elseif(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
@@ -173,7 +179,7 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
message(STATUS "Accelerate not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
|
||||
38
README.md
38
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
|
||||
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
|
||||
[**Examples**](#examples)
|
||||
[**Examples**](#examples)
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
|
||||
MLX is designed by machine learning researchers for machine learning
|
||||
researchers. The framework is intended to be user-friendly, but still efficient
|
||||
to train and deploy models. The design of the framework itself is also
|
||||
conceptually simple. We intend to make it easy for researchers to extend and
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
|
||||
The design of MLX is inspired by frameworks like
|
||||
[NumPy](https://numpy.org/doc/stable/index.html),
|
||||
@@ -91,7 +91,7 @@ Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
||||
MLX useful in your research and wish to cite it, please use the following
|
||||
BibTex entry:
|
||||
|
||||
```
|
||||
```text
|
||||
@software{mlx2023,
|
||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||
|
||||
@@ -142,9 +142,7 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||
|
||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||
np.float32
|
||||
)
|
||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
@@ -163,7 +161,7 @@ def get_gflop_count(B, M, N, K):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
dtypes = ("float32", "float16")
|
||||
dtypes = ("float32", "float16", "complex64")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
@@ -187,7 +185,7 @@ if __name__ == "__main__":
|
||||
diff = gflops_mx / gflops_pt - 1.0
|
||||
|
||||
print(
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
||||
)
|
||||
if gflops_pt >= 2.0 * gflops_mx:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
||||
@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
|
||||
|
||||
for transpose in (False, True):
|
||||
for dtype in ("float32", "float16"):
|
||||
for dtype in ("float32", "float16", "complex64"):
|
||||
fig, axs = plt.subplots(
|
||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||
)
|
||||
@@ -215,7 +215,7 @@ for transpose in (False, True):
|
||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||
fig.savefig(
|
||||
os.path.join(
|
||||
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
||||
)
|
||||
)
|
||||
plt.close(fig)
|
||||
|
||||
@@ -16,7 +16,7 @@ silicon computer is
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
- Using a native Python >= 3.10
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
@@ -39,7 +39,7 @@ requirements:
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
@@ -55,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
Troubleshooting
|
||||
|
||||
@@ -27,6 +27,7 @@ simple functions.
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu2
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
|
||||
@@ -50,6 +50,7 @@ Layers
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU2
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
|
||||
@@ -112,6 +112,7 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
median
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
|
||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
timeit(gelu, x)
|
||||
timeit(mx.compile(gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
|
||||
@@ -184,7 +184,7 @@ almost identical to the example above:
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = mlx.nn.average_gradients(grads) # <---- This line was added
|
||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
|
||||
@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
out, = imported_abs(mx.array([-1.0]))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
@@ -107,8 +107,20 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
|
||||
@@ -241,8 +241,8 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
status(Status::unscheduled),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
|
||||
@@ -11,6 +11,8 @@ namespace mlx::core {
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
VectorVectorVector,
|
||||
VectorVectorScalar,
|
||||
VectorScalarVector,
|
||||
General,
|
||||
};
|
||||
|
||||
@@ -25,6 +27,14 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
||||
c.flags().col_contiguous)) {
|
||||
topt = TernaryOpType::VectorVectorVector;
|
||||
} else if (
|
||||
b.data_size() == 1 && a.flags().row_contiguous &&
|
||||
c.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorScalarVector;
|
||||
} else if (
|
||||
c.data_size() == 1 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorVectorScalar;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
@@ -59,6 +69,8 @@ inline void set_ternary_op_output_data(
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case TernaryOpType::VectorVectorScalar:
|
||||
case TernaryOpType::VectorScalarVector:
|
||||
case TernaryOpType::General:
|
||||
// Try to donate an input which is row_contiguous
|
||||
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
||||
|
||||
@@ -996,131 +996,6 @@ void explicit_gemm_conv_1D_cpu(
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_2D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iW = in.shape(2); // Input spatial dim
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(3); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
const int wW = wt.shape(2); // Weight spatial dim
|
||||
|
||||
auto conv_dtype = out.dtype();
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
// Pad input
|
||||
Shape padded_shape = {
|
||||
N,
|
||||
iH + padding_lo[0] + padding_hi[0],
|
||||
iW + padding_lo[1] + padding_hi[1],
|
||||
C};
|
||||
array in_padded(padded_shape, conv_dtype, nullptr, {});
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
padding_lo[1] * in_padded.strides()[2];
|
||||
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
|
||||
in_padded_slice.copy_shared_buffer(
|
||||
in_padded,
|
||||
in_padded.strides(),
|
||||
in_padded.flags(),
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[2] * wt_strides[1],
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2],
|
||||
in_padded.strides()[3]};
|
||||
auto flags = in_padded.flags();
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
|
||||
temps.push_back(gemm_out);
|
||||
}
|
||||
|
||||
encoder.set_input_array(in_strided);
|
||||
encoder.set_input_array(gemm_wt);
|
||||
encoder.set_output_array(gemm_out);
|
||||
|
||||
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
|
||||
gemm_wt_ptr = gemm_wt.data<float>(),
|
||||
gemm_out_ptr = gemm_out.data<float>(),
|
||||
strided_reshape = std::move(strided_reshape),
|
||||
O]() {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided_ptr,
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt_ptr,
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out_ptr,
|
||||
O // ldc
|
||||
);
|
||||
});
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_ND_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
|
||||
@@ -46,7 +46,6 @@ void eig_impl(
|
||||
int info;
|
||||
{
|
||||
T work;
|
||||
int iwork;
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -49,9 +48,15 @@ void matmul_bnns(
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
if (beta != 1.0 && beta != 0.0) {
|
||||
// scale the output
|
||||
for (auto i = 0; i < batch_size * M * N; ++i) {
|
||||
out[i] *= beta;
|
||||
}
|
||||
beta = 1.0;
|
||||
}
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
|
||||
@@ -88,4 +88,47 @@ void matmul<double>(
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void matmul<complex64_t>(
|
||||
const complex64_t* a,
|
||||
const complex64_t* b,
|
||||
complex64_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
auto calpha = static_cast<complex64_t>(alpha);
|
||||
auto cbeta = static_cast<complex64_t>(beta);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_cgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
&calpha,
|
||||
a + elem_to_loc(M * K * i, a_shape, a_strides),
|
||||
lda,
|
||||
b + elem_to_loc(K * N * i, b_shape, b_strides),
|
||||
ldb,
|
||||
&cbeta,
|
||||
out + M * N * i,
|
||||
ldc);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
const void* a_mask_ptr;
|
||||
const void* b_mask_ptr;
|
||||
const void* out_mask_ptr;
|
||||
const void* a_mask_ptr = nullptr;
|
||||
const void* b_mask_ptr = nullptr;
|
||||
const void* out_mask_ptr = nullptr;
|
||||
Shape a_mask_shape;
|
||||
Shape b_mask_shape;
|
||||
Shape out_mask_shape;
|
||||
Strides a_mask_strides;
|
||||
Strides b_mask_strides;
|
||||
Strides out_mask_strides;
|
||||
bool a_mask_bool;
|
||||
bool b_mask_bool;
|
||||
bool out_mask_bool;
|
||||
bool a_mask_bool = false;
|
||||
bool b_mask_bool = false;
|
||||
bool out_mask_bool = false;
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[inputs.size() - 2];
|
||||
auto& b_mask = inputs[inputs.size() - 1];
|
||||
@@ -423,7 +423,6 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
auto batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
auto batch_shape_A = get_batch_dims(a.shape());
|
||||
auto batch_strides_A = get_batch_dims(a.strides());
|
||||
|
||||
@@ -91,7 +91,6 @@ void matmul_general(
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -108,6 +107,9 @@ void matmul_general(
|
||||
} else if (out.dtype() == float64) {
|
||||
matmul_dispatch<double>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else if (out.dtype() == complex64) {
|
||||
matmul_dispatch<complex64_t>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else {
|
||||
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
|
||||
}
|
||||
@@ -128,10 +130,6 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Currently only supports float32.");
|
||||
}
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
#include "mlx/backend/cpu/unary.h"
|
||||
#include "mlx/backend/cpu/unary_ops.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
@@ -445,7 +448,6 @@ void mxfp4_qmm(
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack(4);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
@@ -487,7 +489,6 @@ void mxfp4_qmm_t(
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack(4);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
@@ -1104,4 +1105,44 @@ void fast::Quantize::eval_cpu(
|
||||
});
|
||||
}
|
||||
|
||||
void fast::ConvertFP8::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& in = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
set_unary_output_data(in, out);
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([in = array::unsafe_weak_copy(in),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
to_fp8 = to_fp8_]() mutable {
|
||||
if (to_fp8) {
|
||||
switch (in.dtype()) {
|
||||
case float16:
|
||||
unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<float, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<uint8_t, float>(in, out, detail::FromFP8());
|
||||
break;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
@@ -9,7 +10,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/simd/base_simd.h"
|
||||
|
||||
// There seems to be a bug in sims/base.h
|
||||
// There seems to be a bug in simd/base_simd.h
|
||||
// __XROS_2_0 is not defined, the expression evaluates
|
||||
// to true instead of false setting the SIMD library
|
||||
// higher than it should be even on macOS < 15
|
||||
@@ -200,6 +201,15 @@ SIMD_DEFAULT_COMPARISONS(<=)
|
||||
SIMD_DEFAULT_COMPARISONS(==)
|
||||
SIMD_DEFAULT_COMPARISONS(!=)
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> clz(Simd<T, N> x) {
|
||||
auto a = *(uint32x4_t*)(&x);
|
||||
auto b = *((uint32x4_t*)(&x) + 1);
|
||||
a = vclzq_u32(a);
|
||||
b = vclzq_u32(b);
|
||||
return asd::make_uint8(a, b);
|
||||
}
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
|
||||
return asd::atan2(a.value, b.value);
|
||||
|
||||
@@ -171,6 +171,11 @@ DEFAULT_BINARY(&)
|
||||
DEFAULT_BINARY(&&)
|
||||
DEFAULT_BINARY(||)
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> clz(Simd<T, 1> x_) {
|
||||
return __builtin_clz(x_.value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> remainder(Simd<T, 1> a_, Simd<T, 1> b_) {
|
||||
T a = a_.value;
|
||||
|
||||
@@ -15,6 +15,18 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// NaN-aware comparator that places NaNs at the end
|
||||
template <typename T>
|
||||
bool nan_aware_less(T a, T b) {
|
||||
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
|
||||
if (std::isnan(a))
|
||||
return false;
|
||||
if (std::isnan(b))
|
||||
return true;
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -27,7 +39,7 @@ struct StridedIterator {
|
||||
StridedIterator() = default;
|
||||
|
||||
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
|
||||
: ptr_(ptr + offset * stride), stride_(stride) {}
|
||||
: stride_(stride), ptr_(ptr + offset * stride) {}
|
||||
|
||||
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
|
||||
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
|
||||
@@ -130,7 +142,7 @@ void sort(array& out, int axis) {
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed);
|
||||
std::stable_sort(st, ed, nan_aware_less<T>);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
@@ -184,6 +196,15 @@ void argsort(const array& in, array& out, int axis) {
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -219,7 +240,7 @@ void partition(array& out, int axis, int kth) {
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed);
|
||||
std::nth_element(st, md, ed, nan_aware_less<T>);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -276,6 +297,15 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -83,8 +83,6 @@ void svd_impl(
|
||||
|
||||
auto jobz = (u_ptr) ? "A" : "N";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
T workspace_dimension = 0;
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not
|
||||
|
||||
@@ -24,9 +24,9 @@ void unary_op(const array& a, array& out, Op) {
|
||||
auto ndim = a.ndim();
|
||||
if (a.flags().contiguous) {
|
||||
auto size = a.data_size();
|
||||
constexpr int N = simd::max_size<T>;
|
||||
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
|
||||
while (size >= N) {
|
||||
simd::store(dst, Op{}(simd::load<T, N>(src)));
|
||||
simd::store(dst, simd::Simd<U, N>(Op{}(simd::load<T, N>(src))));
|
||||
size -= N;
|
||||
src += N;
|
||||
dst += N;
|
||||
|
||||
@@ -77,7 +77,8 @@ struct Real {
|
||||
struct Sigmoid {
|
||||
template <int N, typename T>
|
||||
Simd<T, N> operator()(Simd<T, N> x) {
|
||||
return 1.0f / (1.0f + simd::exp(-x));
|
||||
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
|
||||
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
|
||||
}
|
||||
SINGLE()
|
||||
};
|
||||
@@ -107,4 +108,73 @@ struct Square {
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
template <int N>
|
||||
Simd<float, N> fp32_from_bits(Simd<uint32_t, N> x) {
|
||||
return *(Simd<float, N>*)(&x);
|
||||
}
|
||||
template <int N>
|
||||
Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
|
||||
return *(Simd<uint32_t, N>*)(&x);
|
||||
}
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T, int N>
|
||||
Simd<uint8_t, N> operator()(Simd<T, N> f) {
|
||||
uint32_t fp8_max = 543 << 21;
|
||||
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
|
||||
Simd<uint32_t, N> f_bits;
|
||||
Simd<float, N> f32 = f;
|
||||
f_bits = fp32_to_bits(f32);
|
||||
Simd<uint8_t, N> result = 0u;
|
||||
auto sign = f_bits & 0x80000000;
|
||||
f_bits = f_bits ^ sign;
|
||||
|
||||
auto f_bits_low =
|
||||
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
|
||||
auto result_low = Simd<uint8_t, N>(f_bits_low - denorm_mask);
|
||||
|
||||
auto mant_odd = Simd<uint8_t, N>((f_bits >> 20) & 1);
|
||||
auto f_bits_high = f_bits + (((uint32_t)(7 - 127) << 23) + 0x7FFFF);
|
||||
f_bits_high = f_bits_high + Simd<uint32_t, N>(mant_odd);
|
||||
|
||||
auto result_high = Simd<uint8_t, N>(f_bits_high >> 20);
|
||||
result = select(f_bits < (121 << 23), result_low, result_high);
|
||||
|
||||
auto result_sat = Simd<uint8_t, N>(0x7E);
|
||||
result = select(f_bits >= fp8_max, result_sat, result);
|
||||
return result | Simd<uint8_t, N>(sign >> 24);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
uint8_t operator()(T x) {
|
||||
return (*this)(Simd<T, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
template <int N>
|
||||
Simd<float, N> operator()(Simd<uint8_t, N> x) {
|
||||
auto w = Simd<uint32_t, N>(x) << 24;
|
||||
auto sign = w & 0x80000000;
|
||||
auto nonsign = w & 0x7FFFFFFF;
|
||||
|
||||
auto renorm_shift = clz(nonsign);
|
||||
renorm_shift = simd::select(
|
||||
renorm_shift > Simd<uint32_t, N>{4},
|
||||
renorm_shift - Simd<uint32_t, N>{4},
|
||||
Simd<uint32_t, N>{0});
|
||||
|
||||
Simd<int32_t, N> inf_nan_mask =
|
||||
(Simd<int32_t, N>(nonsign + 0x01000000) >> 8) & 0x7F800000;
|
||||
auto zero_mask = Simd<int32_t, N>(nonsign - 1) >> 31;
|
||||
auto result = sign |
|
||||
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
|
||||
inf_nan_mask) &
|
||||
~zero_mask);
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
float operator()(uint8_t x) {
|
||||
return (*this)(Simd<uint8_t, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
} // namespace mlx::core::detail
|
||||
|
||||
@@ -51,12 +51,19 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
# fp4 is not available on < 12.8
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
|
||||
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
|
||||
endif()
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
@@ -170,7 +177,6 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
@@ -30,15 +30,20 @@ SmallSizePool::SmallSizePool() {
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
|
||||
int device_count = 0;
|
||||
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
|
||||
for (int i = 0; i < device_count; ++i) {
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = 0;
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = i;
|
||||
#else
|
||||
int loc = 0;
|
||||
int loc = i;
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, loc));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
|
||||
}
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
@@ -86,13 +91,12 @@ CudaAllocator::CudaAllocator()
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.8;
|
||||
memory_limit_ = total * 0.95;
|
||||
max_pool_size_ = memory_limit_;
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size <= small_block_size) {
|
||||
size = 8;
|
||||
@@ -126,7 +130,7 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
active_memory_ += size;
|
||||
active_memory_ += buf->size;
|
||||
peak_memory_ = std::max(active_memory_, peak_memory_);
|
||||
|
||||
// Maintain the cache below the requested limit.
|
||||
|
||||
@@ -332,9 +332,9 @@ void Compiled::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ auto& conv_cache() {
|
||||
std::pair<
|
||||
cudnnBackendDescriptorType_t,
|
||||
std::optional<cudnn_frontend::ExecutionPlan>>>
|
||||
cache(/* capacity */ 128);
|
||||
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
@@ -382,20 +382,19 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
}
|
||||
|
||||
if (op_graph) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Find a plan for the graph and execute it.
|
||||
auto plan = find_cudnn_plan_from_op_graph(
|
||||
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
|
||||
if (!plan) {
|
||||
throw std::runtime_error("[conv] Unable to find an execution plan.");
|
||||
}
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
if (plan) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -210,6 +210,9 @@ std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
|
||||
if (engine_configs.empty()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
|
||||
}
|
||||
|
||||
|
||||
@@ -14,10 +14,6 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
@@ -27,13 +23,6 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 400);
|
||||
}();
|
||||
return cache_size;
|
||||
}
|
||||
|
||||
bool use_cuda_graphs() {
|
||||
static bool use_graphs = []() {
|
||||
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
|
||||
@@ -75,8 +64,8 @@ Device::~Device() {
|
||||
|
||||
void Device::make_current() {
|
||||
// We need to set/get current CUDA device very frequently, cache it to reduce
|
||||
// actual calls of CUDA APIs. This function assumes single-thread in host.
|
||||
static int current = 0;
|
||||
// actual calls of CUDA APIs.
|
||||
static thread_local int current = 0;
|
||||
if (current != device_) {
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(device_));
|
||||
current = device_;
|
||||
@@ -102,6 +91,7 @@ CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
if (!use_cuda_graphs()) {
|
||||
enc.node_count_++;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -203,7 +193,8 @@ CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d),
|
||||
stream_(d),
|
||||
graph_(d),
|
||||
graph_cache_(cuda_graph_cache_size()) {}
|
||||
worker_(d),
|
||||
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
@@ -227,12 +218,6 @@ void CommandEncoder::set_output_array(const array& arr) {
|
||||
active_outputs_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::maybe_commit() {
|
||||
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
commit();
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
@@ -240,6 +225,7 @@ void CommandEncoder::add_kernel_node(
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cudaLaunchKernel(
|
||||
func, grid_dim, block_dim, params, smem_bytes, stream()));
|
||||
return;
|
||||
@@ -260,6 +246,7 @@ void CommandEncoder::add_kernel_node(
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cuLaunchKernel(
|
||||
func,
|
||||
grid_dim.x,
|
||||
@@ -302,22 +289,28 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CudaGraphExec graph_exec;
|
||||
graph_exec.instantiate(child);
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
|
||||
return;
|
||||
}
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
int CommandEncoder::get_num_ops() {
|
||||
return node_count_;
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
if (node_count_ > 0) {
|
||||
if (use_cuda_graphs() && node_count_ > 0) {
|
||||
if (!from_nodes_.empty()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
|
||||
graph_,
|
||||
@@ -360,7 +353,6 @@ void CommandEncoder::commit() {
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
@@ -372,6 +364,7 @@ void CommandEncoder::commit() {
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.commit(stream_);
|
||||
node_count_ = 0;
|
||||
}
|
||||
|
||||
void CommandEncoder::synchronize() {
|
||||
|
||||
@@ -83,7 +83,7 @@ class CommandEncoder {
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void maybe_commit();
|
||||
int get_num_ops();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
@@ -140,7 +140,7 @@ class Device {
|
||||
Device(const Device&) = delete;
|
||||
Device& operator=(const Device&) = delete;
|
||||
|
||||
// Make this device the current cuda device, required by some cuda calls.
|
||||
// Make this device the current cuda device, this method is thread-safe.
|
||||
void make_current();
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda_fp8.h>
|
||||
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -257,8 +259,8 @@ struct Round {
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
T y = 1 / (1 + exp(-abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
T y = 1 / (1 + exp(abs(x)));
|
||||
return (x < 0) ? y : 1 - y;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -334,4 +336,17 @@ struct Tanh {
|
||||
}
|
||||
};
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T>
|
||||
__device__ uint8_t operator()(T x) {
|
||||
return __nv_fp8_e4m3(x).__x;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
__device__ float operator()(uint8_t x) {
|
||||
return float(*(__nv_fp8_e4m3*)(&x));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file must not include any host-only code, utilies that work under both
|
||||
// This file must not include any host-only code, utilities that work under both
|
||||
// host and device can be put here.
|
||||
//
|
||||
// See more about the requirements at:
|
||||
@@ -202,7 +202,7 @@ struct Limits<
|
||||
}
|
||||
};
|
||||
|
||||
// CUDA 11 does not have host side arithmatic operators for half types.
|
||||
// CUDA 11 does not have host side arithmetic operators for half types.
|
||||
template <typename T>
|
||||
struct Limits<
|
||||
T,
|
||||
|
||||
@@ -5,18 +5,24 @@
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/available.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core::gpu {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
bool is_available() {
|
||||
return true;
|
||||
}
|
||||
|
||||
void new_stream(Stream s) {
|
||||
// Force initalization of cuda, so cuda runtime get destroyed at last.
|
||||
// Force initalization of CUDA, so CUDA runtime get destroyed at last.
|
||||
cudaFree(nullptr);
|
||||
// Make sure CUDA event pool get destroyed after device and stream.
|
||||
cu::CudaEvent::init_pool();
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
}
|
||||
@@ -34,7 +40,8 @@ void eval(array& arr) {
|
||||
arr.primitive().eval_gpu(arr.inputs(), outputs);
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
auto& stream = arr.primitive().stream();
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
for (auto& in : arr.inputs()) {
|
||||
// Except for the donated one.
|
||||
@@ -45,7 +52,14 @@ void eval(array& arr) {
|
||||
for (auto& s : arr.siblings()) {
|
||||
encoder.add_temporary(s);
|
||||
}
|
||||
encoder.maybe_commit();
|
||||
|
||||
if (encoder.get_num_ops() >=
|
||||
env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
scheduler::notify_new_task(stream);
|
||||
encoder.add_completed_handler(
|
||||
[stream]() { scheduler::notify_task_completion(stream); });
|
||||
encoder.commit();
|
||||
}
|
||||
}
|
||||
|
||||
void finalize(Stream s) {
|
||||
|
||||
@@ -3,10 +3,12 @@
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -17,104 +19,180 @@ namespace cu {
|
||||
// CudaEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Cuda event managed with RAII.
|
||||
class CudaEventHandle {
|
||||
namespace {
|
||||
|
||||
// Manage cached cudaEvent_t objects.
|
||||
class CudaEventPool {
|
||||
public:
|
||||
CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
|
||||
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
|
||||
CudaEventHandle create(Device& d, int flags) {
|
||||
if (!on_creation_thread()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
}
|
||||
auto& cache = cache_for(d, flags);
|
||||
if (cache.empty()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
} else {
|
||||
CudaEventHandle ret = std::move(cache.back());
|
||||
cache.pop_back();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
~CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
|
||||
}
|
||||
|
||||
CudaEventHandle(const CudaEventHandle&) = delete;
|
||||
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
|
||||
|
||||
operator cudaEvent_t() const {
|
||||
return event_;
|
||||
void release(CudaEventHandle event) {
|
||||
if (!on_creation_thread()) {
|
||||
// Event will be destroyed directly instead of getting moved to cache.
|
||||
return;
|
||||
}
|
||||
cache_for(event.device, event.flags).push_back(std::move(event));
|
||||
}
|
||||
|
||||
private:
|
||||
cudaEvent_t event_;
|
||||
std::vector<CudaEventHandle>& cache_for(Device& d, int flags) {
|
||||
return cache_[d.cuda_device()][flags];
|
||||
}
|
||||
|
||||
bool on_creation_thread() {
|
||||
return std::this_thread::get_id() == thread_id_;
|
||||
}
|
||||
|
||||
// The CudaEvent may be created and destroyed on different threads (for
|
||||
// example when waiting on GPU work in CPU stream), we don't want to make
|
||||
// the cache thread-safe as it adds overhead, so we just skip cache when
|
||||
// using events in worker threads.
|
||||
std::thread::id thread_id_{std::this_thread::get_id()};
|
||||
|
||||
// {device: {flags: [events]}}
|
||||
std::map<int, std::map<int, std::vector<CudaEventHandle>>> cache_;
|
||||
};
|
||||
|
||||
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
|
||||
CudaEventPool& cuda_event_pool() {
|
||||
static CudaEventPool pool;
|
||||
return pool;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CudaEventHandle::CudaEventHandle(Device& d, int flags)
|
||||
: device(d), flags(flags) {
|
||||
device.make_current();
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(&handle_, flags));
|
||||
assert(handle_ != nullptr);
|
||||
}
|
||||
|
||||
CudaEvent::CudaEvent(Device& d, int flags)
|
||||
: event_(cuda_event_pool().create(d, flags)) {}
|
||||
|
||||
CudaEvent::~CudaEvent() {
|
||||
cuda_event_pool().release(std::move(event_));
|
||||
}
|
||||
|
||||
void CudaEvent::wait() {
|
||||
nvtx3::scoped_range r("cu::CudaEvent::wait");
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaEventSynchronize(*event_);
|
||||
event_.device.make_current();
|
||||
cudaEventSynchronize(event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(cudaStream_t stream) {
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaStreamWaitEvent(stream, *event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable { wait(); });
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
wait(enc.stream());
|
||||
}
|
||||
event_.device.make_current();
|
||||
cudaStreamWaitEvent(stream, event_);
|
||||
}
|
||||
|
||||
void CudaEvent::record(cudaStream_t stream) {
|
||||
cudaEventRecord(*event_, stream);
|
||||
recorded_ = true;
|
||||
}
|
||||
|
||||
void CudaEvent::record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
record(enc.stream());
|
||||
}
|
||||
event_.device.make_current();
|
||||
cudaEventRecord(event_, stream);
|
||||
}
|
||||
|
||||
bool CudaEvent::completed() const {
|
||||
return cudaEventQuery(*event_) == cudaSuccess;
|
||||
// Note: cudaEventQuery can be safely called from any device.
|
||||
return cudaEventQuery(event_) == cudaSuccess;
|
||||
}
|
||||
|
||||
// static
|
||||
void CudaEvent::init_pool() {
|
||||
cuda_event_pool();
|
||||
}
|
||||
|
||||
// Wraps CudaEvent with a few features:
|
||||
// 1. The class can be copied.
|
||||
// 2. Make wait/record work with CPU streams.
|
||||
// 3. Add checks for waiting on un-recorded event.
|
||||
class CopyableCudaEvent {
|
||||
public:
|
||||
explicit CopyableCudaEvent(Device& d)
|
||||
: event_(std::make_shared<CudaEvent>(
|
||||
d,
|
||||
cudaEventDisableTiming | cudaEventBlockingSync)) {}
|
||||
|
||||
void wait() {
|
||||
event_->wait();
|
||||
}
|
||||
|
||||
void wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable {
|
||||
check_recorded();
|
||||
event_->wait();
|
||||
});
|
||||
} else {
|
||||
check_recorded();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->wait(encoder.stream());
|
||||
}
|
||||
}
|
||||
|
||||
void record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on CPU stream.");
|
||||
} else {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->record(encoder.stream());
|
||||
recorded_ = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool is_signaled() const {
|
||||
return recorded_ && event_->completed();
|
||||
}
|
||||
|
||||
private:
|
||||
void check_recorded() const {
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error(
|
||||
"Should not wait on a CudaEvent before recording.");
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<CudaEvent> event_;
|
||||
bool recorded_{false};
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// SharedEvent implementations
|
||||
// AtomicEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_wait(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
uint64_t current;
|
||||
while ((current = ac->load()) < value) {
|
||||
ac->wait(current);
|
||||
}
|
||||
}
|
||||
|
||||
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_signal(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
ac->store(value);
|
||||
ac->notify_all();
|
||||
}
|
||||
|
||||
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_wait_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
event_wait(ac, value);
|
||||
}
|
||||
|
||||
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_signal_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
AtomicEvent::AtomicEvent() {
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
@@ -123,17 +201,17 @@ SharedEvent::SharedEvent() {
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
}
|
||||
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(to_atomic(buf_), value);
|
||||
void AtomicEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait");
|
||||
event_wait(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
void AtomicEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
|
||||
void AtomicEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
|
||||
} else {
|
||||
@@ -144,17 +222,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(to_atomic(buf_), value);
|
||||
void AtomicEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal");
|
||||
event_signal(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
void AtomicEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
|
||||
void AtomicEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
// Signal through a GPU stream so the atomic is updated in GPU - updating
|
||||
// the atomic in CPU sometimes does not get GPU notified.
|
||||
@@ -168,14 +246,14 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
bool AtomicEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::is_signaled");
|
||||
return atomic()->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return to_atomic(buf_)->load();
|
||||
uint64_t AtomicEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::value");
|
||||
return atomic()->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -188,14 +266,14 @@ namespace {
|
||||
|
||||
struct EventImpl {
|
||||
// CudaEvent is preferred when possible because it is fast, however we have
|
||||
// to fallback to SharedEvent in following cases:
|
||||
// to fallback to AtomicEvent in following cases:
|
||||
// 1. the event is used to wait/signal a cpu stream;
|
||||
// 2. signal value other than 1 has been specified.
|
||||
std::unique_ptr<cu::CudaEvent> cuda;
|
||||
std::unique_ptr<cu::SharedEvent> shared;
|
||||
std::unique_ptr<cu::CopyableCudaEvent> cuda;
|
||||
std::unique_ptr<cu::AtomicEvent> atomic;
|
||||
|
||||
bool is_created() const {
|
||||
return cuda || shared;
|
||||
return cuda || atomic;
|
||||
}
|
||||
|
||||
void ensure_created(Stream s, uint64_t signal_value) {
|
||||
@@ -203,10 +281,10 @@ struct EventImpl {
|
||||
return;
|
||||
}
|
||||
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
|
||||
nvtx3::mark("Using slow SharedEvent");
|
||||
shared = std::make_unique<cu::SharedEvent>();
|
||||
nvtx3::mark("Using slow AtomicEvent");
|
||||
atomic = std::make_unique<cu::AtomicEvent>();
|
||||
} else {
|
||||
cuda = std::make_unique<cu::CudaEvent>();
|
||||
cuda = std::make_unique<cu::CopyableCudaEvent>(cu::device(s.device));
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -225,7 +303,7 @@ void Event::wait() {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait();
|
||||
} else {
|
||||
event->shared->wait(value());
|
||||
event->atomic->wait(value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -236,7 +314,7 @@ void Event::wait(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait(s);
|
||||
} else {
|
||||
event->shared->wait(s, value());
|
||||
event->atomic->wait(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -247,7 +325,7 @@ void Event::signal(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->record(s);
|
||||
} else {
|
||||
event->shared->signal(s, value());
|
||||
event->atomic->signal(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -258,9 +336,9 @@ bool Event::is_signaled() const {
|
||||
}
|
||||
if (event->cuda) {
|
||||
assert(value() == 1);
|
||||
return event->cuda->recorded() && event->cuda->completed();
|
||||
return event->cuda->is_signaled();
|
||||
} else {
|
||||
return event->shared->is_signaled(value());
|
||||
return event->atomic->is_signaled(value());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,49 +3,60 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda/atomic>
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class CudaEventHandle;
|
||||
class Device;
|
||||
|
||||
// RAII-managed move-only wrapper of cudaEvent_t.
|
||||
struct CudaEventHandle : public CudaHandle<cudaEvent_t, cudaEventDestroy> {
|
||||
CudaEventHandle(Device& d, int flags);
|
||||
Device& device;
|
||||
int flags;
|
||||
};
|
||||
|
||||
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
|
||||
// on GPU stream in CPU stream, but can not wait on CPU stream.
|
||||
class CudaEvent {
|
||||
public:
|
||||
CudaEvent();
|
||||
CudaEvent(Device& d, int flags);
|
||||
~CudaEvent();
|
||||
|
||||
CudaEvent(CudaEvent&&) = default;
|
||||
CudaEvent& operator=(CudaEvent&&) = default;
|
||||
|
||||
CudaEvent(const CudaEvent&) = delete;
|
||||
CudaEvent& operator=(const CudaEvent&) = delete;
|
||||
|
||||
void wait();
|
||||
void wait(cudaStream_t stream);
|
||||
void wait(Stream s);
|
||||
void record(cudaStream_t stream);
|
||||
void record(Stream s);
|
||||
|
||||
// Return whether the recorded kernels have completed. Note that this method
|
||||
// returns true if record() has not been called.
|
||||
bool completed() const;
|
||||
|
||||
bool recorded() const {
|
||||
return recorded_;
|
||||
}
|
||||
// Internal: make sure event pool is initialized.
|
||||
static void init_pool();
|
||||
|
||||
private:
|
||||
bool recorded_{false};
|
||||
std::shared_ptr<CudaEventHandle> event_;
|
||||
CudaEventHandle event_;
|
||||
};
|
||||
|
||||
// Event that can synchronize between CPU and GPU. It is much slower than
|
||||
// CudaEvent so the latter should always be preferred when possible.
|
||||
class SharedEvent {
|
||||
class AtomicEvent {
|
||||
public:
|
||||
using Atomic = cuda::atomic<uint64_t>;
|
||||
|
||||
SharedEvent();
|
||||
AtomicEvent();
|
||||
|
||||
void wait(uint64_t value);
|
||||
void wait(cudaStream_t stream, uint64_t value);
|
||||
@@ -57,7 +68,11 @@ class SharedEvent {
|
||||
uint64_t value() const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
Atomic* atomic() const {
|
||||
return static_cast<AtomicEvent::Atomic*>(buf_->raw_ptr());
|
||||
}
|
||||
|
||||
std::shared_ptr<allocator::Buffer> buf_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -7,7 +7,7 @@ namespace mlx::core {
|
||||
|
||||
struct FenceImpl {
|
||||
uint32_t count;
|
||||
cu::SharedEvent event;
|
||||
cu::AtomicEvent event;
|
||||
};
|
||||
|
||||
Fence::Fence(Stream s) {
|
||||
|
||||
@@ -50,8 +50,10 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
case complex64:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
@@ -85,10 +87,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
if (transposed) {
|
||||
std::swap(rows, cols);
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
@@ -126,37 +128,47 @@ CublasGemm::CublasGemm(
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
scale_type_ = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
scale_type_ = CUDA_R_32F;
|
||||
}
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type_));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
|
||||
// In cublasLt matrices use column-major layout, while it is possible to use
|
||||
// the CUBLASLT_ORDER_ROW option to switch to row-major layout, the bias
|
||||
// epilogue does not work with the option. So instead we swap A and B to make
|
||||
// cublasLt return the row-major result, which works because:
|
||||
// - the data of a matrix in row-major layout is identical to its transpose in
|
||||
// column-major layout
|
||||
// - C^T = (A @ B)^T = B^T @ A^T
|
||||
cublasOperation_t a_op = b_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
&a_op,
|
||||
sizeof(cublasOperation_t)));
|
||||
cublasOperation_t b_op = a_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
&b_op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
type, b_cols, b_rows, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
type, a_cols, a_rows, a_transposed, lda, batch_count, a_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
type, b_cols, a_rows, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
@@ -191,7 +203,7 @@ CublasGemm::CublasGemm(
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
type, b_cols, a_rows, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
CublasGemm::~CublasGemm() {
|
||||
@@ -213,14 +225,30 @@ void CublasGemm::set_out(
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
out_desc_ = create_matrix_layout(
|
||||
dtype_to_cublas_type(dtype),
|
||||
rows,
|
||||
cols,
|
||||
rows,
|
||||
transposed,
|
||||
ld,
|
||||
batch_count,
|
||||
batch_stride);
|
||||
}
|
||||
|
||||
void CublasGemm::set_bias(cu::CommandEncoder& encoder, const array& bias) {
|
||||
encoder.set_input_array(bias);
|
||||
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_BIAS;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_EPILOGUE,
|
||||
&epilogue,
|
||||
sizeof(epilogue)));
|
||||
auto* bias_ptr = bias.data<void>();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_BIAS_POINTER,
|
||||
&bias_ptr,
|
||||
sizeof(bias_ptr)));
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -228,11 +256,19 @@ void CublasGemm::run(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
alpha);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -240,7 +276,13 @@ void CublasGemm::run(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
nullptr,
|
||||
alpha);
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
@@ -313,6 +355,16 @@ void CublasGemm::execute(
|
||||
}
|
||||
}
|
||||
|
||||
const void* alpha_ptr = α
|
||||
const void* beta_ptr = β
|
||||
complex64_t alpha_c, beta_c;
|
||||
if (scale_type_ == CUDA_C_32F) {
|
||||
alpha_c = complex64_t{alpha, 0.0f};
|
||||
beta_c = complex64_t{beta, 0.0f};
|
||||
alpha_ptr = &alpha_c;
|
||||
beta_ptr = &beta_c;
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
// Ensure workspace is 256-byte aligned
|
||||
@@ -329,12 +381,12 @@ void CublasGemm::execute(
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
alpha_ptr,
|
||||
b, // a and b are swapped
|
||||
a_desc_,
|
||||
b,
|
||||
a,
|
||||
b_desc_,
|
||||
&beta,
|
||||
beta_ptr,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
|
||||
@@ -55,6 +55,8 @@ class CublasGemm {
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride);
|
||||
|
||||
void set_bias(cu::CommandEncoder& encoder, const array& bias);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -62,7 +64,8 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
const Strides& b_batch_strides,
|
||||
float alpha = 1.0f);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -85,7 +88,8 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
const Strides& b_batch_strides,
|
||||
float alpha);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -111,6 +115,7 @@ class CublasGemm {
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cudaDataType_t scale_type_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
|
||||
@@ -13,7 +13,8 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
@@ -27,7 +28,8 @@ void CublasGemm::run_batched(
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr);
|
||||
nullptr,
|
||||
alpha);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
|
||||
@@ -154,7 +154,8 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
@@ -226,7 +227,8 @@ void CublasGemm::run_batched(
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
nullptr,
|
||||
alpha);
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
|
||||
@@ -13,6 +13,37 @@ namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
// Accumulator type selection per input element type T.
|
||||
template <typename T>
|
||||
struct GemvAccType {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__half> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__nv_bfloat16> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<float> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<double> {
|
||||
using type = double;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<cu::complex64_t> {
|
||||
using type = cu::complex64_t;
|
||||
};
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
@@ -24,7 +55,8 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
float sum = 0.0f;
|
||||
using Acc = typename GemvAccType<T>::type;
|
||||
Acc sum = Acc(0);
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat =
|
||||
@@ -32,12 +64,11 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum +=
|
||||
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
|
||||
sum += static_cast<Acc>(local_mat[j]) * static_cast<Acc>(local_vec[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
sum = cg::reduce(warp, sum, cg::plus<Acc>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
@@ -107,7 +138,7 @@ void gemv(
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
dispatch_inexact_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
|
||||
@@ -99,6 +99,30 @@ const std::filesystem::path& ptx_cache_dir() {
|
||||
return cache;
|
||||
}
|
||||
|
||||
std::filesystem::path get_ptx_path(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name) {
|
||||
#ifdef _WIN32
|
||||
constexpr int max_file_name_length = 140;
|
||||
#else
|
||||
constexpr int max_file_name_length = 245;
|
||||
#endif
|
||||
|
||||
if (module_name.size() <= max_file_name_length) {
|
||||
return cache_dir / (module_name + ".ptx");
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir;
|
||||
int offset = 0;
|
||||
while (module_name.size() - offset > max_file_name_length) {
|
||||
ptx_path /= module_name.substr(offset, max_file_name_length);
|
||||
offset += max_file_name_length;
|
||||
}
|
||||
ptx_path /= module_name.substr(offset) + ".ptx";
|
||||
|
||||
return ptx_path;
|
||||
}
|
||||
|
||||
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
|
||||
bool read_cached_ptx(
|
||||
const std::filesystem::path& cache_dir,
|
||||
@@ -109,7 +133,7 @@ bool read_cached_ptx(
|
||||
return false;
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir / (module_name + ".ptx");
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
std::error_code error;
|
||||
auto ptx_size = std::filesystem::file_size(ptx_path, error);
|
||||
if (error) {
|
||||
@@ -122,7 +146,7 @@ bool read_cached_ptx(
|
||||
ptx.resize(ptx_size);
|
||||
ptx_file.read(ptx.data(), ptx_size);
|
||||
|
||||
std::ifstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
std::ifstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
std::string line;
|
||||
while (std::getline(txt_file, line)) {
|
||||
auto tab = line.find('\t');
|
||||
@@ -144,16 +168,26 @@ void write_cached_ptx(
|
||||
return;
|
||||
}
|
||||
|
||||
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
|
||||
// Ensure that the directory exists
|
||||
auto parent = ptx_path.parent_path();
|
||||
if (parent != cache_dir) {
|
||||
std::filesystem::create_directories(parent);
|
||||
}
|
||||
|
||||
// Write the compiled code and mangled names
|
||||
std::ofstream ptx_file(ptx_path, std::ios::binary);
|
||||
if (!ptx.empty()) {
|
||||
ptx_file.write(&ptx.front(), ptx.size());
|
||||
}
|
||||
std::ofstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
std::ofstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
txt_file << name << "\t" << mangled << std::endl;
|
||||
}
|
||||
|
||||
std::ofstream source_file(cache_dir / (module_name + ".cu"));
|
||||
// Write the generated code
|
||||
std::ofstream source_file(ptx_path.replace_extension(".cu"));
|
||||
source_file << source_code;
|
||||
}
|
||||
|
||||
@@ -297,7 +331,8 @@ void load_module(
|
||||
const std::string& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
||||
CUmodule& module_,
|
||||
std::unordered_map<std::string, std::pair<CUfunction, bool>>& kernels) {
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>>&
|
||||
kernels) {
|
||||
// Load module.
|
||||
char jit_log[4089] = {};
|
||||
CUjit_option options[] = {
|
||||
@@ -314,7 +349,7 @@ void load_module(
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
CUfunction kernel;
|
||||
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
|
||||
kernels[name] = std::make_pair(kernel, false);
|
||||
kernels[name] = std::make_tuple(kernel, false, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -358,7 +393,7 @@ JitModule::~JitModule() {
|
||||
CHECK_CUDA_ERROR(cuModuleUnload(module_));
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(
|
||||
std::pair<CUfunction, uint> JitModule::get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
auto it = kernels_.find(kernel_name);
|
||||
@@ -369,14 +404,22 @@ CUfunction JitModule::get_kernel(
|
||||
|
||||
// If it is the first time we run this kernel then configure it. Do it only
|
||||
// once!
|
||||
if (!it->second.second) {
|
||||
auto kernel = std::get<0>(it->second);
|
||||
if (!std::get<1>(it->second)) {
|
||||
if (configure_kernel) {
|
||||
configure_kernel(it->second.first);
|
||||
configure_kernel(kernel);
|
||||
}
|
||||
it->second.second = true;
|
||||
std::get<1>(it->second) = true;
|
||||
std::get<2>(it->second) = max_occupancy_block_dim(kernel);
|
||||
}
|
||||
|
||||
return it->second.first;
|
||||
return {kernel, std::get<2>(it->second)};
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
return get_kernel_and_dims(kernel_name, std::move(configure_kernel)).first;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
|
||||
@@ -99,10 +99,13 @@ class JitModule {
|
||||
CUfunction get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
std::pair<CUfunction, uint> get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
|
||||
private:
|
||||
CUmodule module_{nullptr};
|
||||
std::unordered_map<std::string, std::pair<CUfunction, bool>> kernels_;
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>> kernels_;
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
|
||||
@@ -35,12 +35,10 @@ std::tuple<dim3, uint> get_launch_args(
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread) {
|
||||
int work_per_thread /* = 1 */,
|
||||
uint max_block_dim /* = 1024 */) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = 1024;
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
uint block_dim = max_block_dim < nthreads ? max_block_dim : nthreads;
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file includes host-only utilies for writing CUDA kernels, the difference
|
||||
// from backend/cuda/device/utils.cuh is that the latter file only include
|
||||
// device-only code.
|
||||
// This file includes host-only utilities for writing CUDA kernels, the
|
||||
// difference from backend/cuda/device/utils.cuh is that the latter file only
|
||||
// include device-only code.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -120,19 +120,28 @@ dim3 get_2d_grid_dims(
|
||||
size_t divisor);
|
||||
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
|
||||
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
|
||||
// assuming each thread handles |work_per_thread| elements of |arr|.
|
||||
// Get the num_blocks and block_dims assuming each thread handles
|
||||
// |work_per_thread| elements of |arr|.
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1);
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024);
|
||||
|
||||
inline std::tuple<dim3, uint>
|
||||
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024) {
|
||||
return get_launch_args(
|
||||
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
arr.size(),
|
||||
arr.shape(),
|
||||
arr.strides(),
|
||||
large,
|
||||
work_per_thread,
|
||||
max_block_dim);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,11 +2,15 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
@@ -27,6 +31,14 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize with capacity read from |env_name|.
|
||||
LRUCache(const char* env_name, int default_capacity)
|
||||
: LRUCache(env::get_var(env_name, default_capacity)) {
|
||||
if (env::get_var("MLX_ENABLE_CACHE_THRASHING_CHECK", 1)) {
|
||||
env_name_ = env_name;
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
@@ -76,6 +88,14 @@ class LRUCache {
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
if (env_name_ && ++cache_misses_ > 2 * capacity_) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Cache thrashing is happening, please set the environment variable "
|
||||
"{} to a larger value than {} to fix degraded performance.",
|
||||
env_name_,
|
||||
capacity_));
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
@@ -106,6 +126,9 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
const char* env_name_{nullptr};
|
||||
size_t cache_misses_{0};
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
@@ -28,6 +29,80 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
}
|
||||
}
|
||||
|
||||
void gemm_and_bias(
|
||||
cu::CommandEncoder& encoder,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool a_transposed,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
int64_t ldb,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& bias = std::nullopt,
|
||||
float alpha = 1.0f) {
|
||||
// Check and collapse batch dimensions
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
// Use gemmv when possible
|
||||
if (!bias && cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
if (bias) {
|
||||
if (a.dtype() == complex64) {
|
||||
throw std::runtime_error(
|
||||
"[gemm_and_bias] complex64 bias epilogue isn’t supported in cublasLtMatmul.");
|
||||
}
|
||||
gemm.set_bias(encoder, *bias);
|
||||
}
|
||||
gemm.run(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides, alpha);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -48,9 +123,6 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Init checks and prep
|
||||
|
||||
int M = a_pre.shape(-2);
|
||||
int N = b_pre.shape(-1);
|
||||
int K = a_pre.shape(-1);
|
||||
@@ -60,58 +132,8 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
gemm_and_bias(
|
||||
encoder, M, N, K, a_transposed, lda, b_transposed, ldb, out, a, b);
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -136,6 +158,29 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Dispatch to GEMM with epilogue or AddMM
|
||||
|
||||
if (beta_ == 1 && a.dtype() != complex64 && c.strides(-1) == 1 &&
|
||||
c.data_size() == out.shape(-1)) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
gemm_and_bias(
|
||||
encoder,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
a_transposed,
|
||||
lda,
|
||||
b_transposed,
|
||||
ldb,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
alpha_);
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t ldc;
|
||||
{
|
||||
auto stx = c.strides()[c.ndim() - 2];
|
||||
@@ -177,7 +222,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
// Invoke cublasLt with AddMM settings
|
||||
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
|
||||
@@ -306,7 +306,7 @@ void affine_dequantize(
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(w);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_float_types(w.dtype(), "affine_dequantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
19
mlx/backend/cuda/quantized/convert_fp8.cu
Normal file
19
mlx/backend/cuda/quantized/convert_fp8.cu
Normal file
@@ -0,0 +1,19 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#include "mlx/backend/cuda/unary/unary.cuh"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
void fast::ConvertFP8::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("ConvertFP8::eval_gpu");
|
||||
auto& in = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
auto& s = out.primitive().stream();
|
||||
if (to_fp8_) {
|
||||
unary_op_gpu<cu::ToFP8>(inputs, out, name(), s);
|
||||
} else {
|
||||
unary_op_gpu<cu::FromFP8>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
83
mlx/backend/cuda/quantized/cuda_fp4.h
Normal file
83
mlx/backend/cuda/quantized/cuda_fp4.h
Normal file
@@ -0,0 +1,83 @@
|
||||
#pragma once
|
||||
|
||||
struct __nv_fp8_e8m0 {
|
||||
__device__ __nv_fp8_e8m0(float x) {
|
||||
if (!std::isfinite(x)) {
|
||||
__x = 0xFF;
|
||||
return;
|
||||
}
|
||||
if (x < 0.0f) {
|
||||
__x = 0x00;
|
||||
return;
|
||||
}
|
||||
float le = std::log2f(x);
|
||||
int n = static_cast<int>(std::nearbyintf(le));
|
||||
|
||||
n = n < -127 ? -127 : n;
|
||||
n = n > 127 ? 127 : n;
|
||||
__x = static_cast<uint8_t>(n + 127);
|
||||
}
|
||||
|
||||
__device__ operator float() {
|
||||
if (__x == 0xFF) {
|
||||
return std::numeric_limits<float>::quiet_NaN();
|
||||
}
|
||||
return std::ldexp(1.0f, static_cast<int>(__x) - 127);
|
||||
}
|
||||
|
||||
uint8_t __x{0};
|
||||
};
|
||||
|
||||
struct __nv_fp4_e2m1 {
|
||||
__device__ __nv_fp4_e2m1(float x) {
|
||||
if (std::isnan(x)) {
|
||||
__x = 0x7;
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t sign_bit = (std::signbit(x)) ? 0x8 : 0x0;
|
||||
x = std::abs(x);
|
||||
|
||||
if (x > 5.0f) {
|
||||
__x = 0x7;
|
||||
} else if (x >= 3.5f) {
|
||||
__x = 0x6;
|
||||
} else if (x > 2.5f) {
|
||||
__x = 0x5;
|
||||
} else if (x >= 1.75f) {
|
||||
__x = 0x4;
|
||||
} else if (x > 1.25f) {
|
||||
__x = 0x3;
|
||||
} else if (x >= 0.75f) {
|
||||
__x = 0x2;
|
||||
} else if (x > 0.25f) {
|
||||
__x = 0x1;
|
||||
} else {
|
||||
__x = 0x0;
|
||||
}
|
||||
__x |= sign_bit;
|
||||
}
|
||||
|
||||
__device__ operator float() {
|
||||
static const float LUT[16] = {
|
||||
0.0f,
|
||||
0.5f,
|
||||
1.0f,
|
||||
1.5f,
|
||||
2.0f,
|
||||
3.0f,
|
||||
4.0f,
|
||||
6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
return LUT[__x];
|
||||
}
|
||||
uint8_t __x{0};
|
||||
};
|
||||
216
mlx/backend/cuda/quantized/fp_quantize.cu
Normal file
216
mlx/backend/cuda/quantized/fp_quantize.cu
Normal file
@@ -0,0 +1,216 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/quantized/quantized.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <cuda_fp4.h>
|
||||
#include <cuda_fp8.h>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace cu {
|
||||
|
||||
template <int bits>
|
||||
struct Quantize {
|
||||
__device__ uint8_t operator()(float x) {
|
||||
if constexpr (bits == 8) {
|
||||
return __nv_fp8_e4m3(x).__x;
|
||||
} else {
|
||||
return __nv_fp4_e2m1(x).__x;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int bits>
|
||||
struct Dequantize {
|
||||
__device__ float operator()(uint8_t x) {
|
||||
if constexpr (bits == 8) {
|
||||
return float(*(__nv_fp8_e4m3*)(&x));
|
||||
} else {
|
||||
return float(*(__nv_fp4_e2m1*)(&x));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int group_size, int bits, bool use_mx_scale>
|
||||
__global__ void
|
||||
fp_quantize(const T* w, uint8_t* out, uint8_t* scales, size_t size) {
|
||||
auto block_size = cg::this_thread_block().dim_threads();
|
||||
auto block_idx = cg::this_thread_block().group_index();
|
||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
||||
|
||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
||||
|
||||
auto grid_dim_x =
|
||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
||||
size_t index = tidx + grid_dim_x * size_t(tidy);
|
||||
if (index >= size) {
|
||||
return;
|
||||
}
|
||||
|
||||
float w_thread = w[index];
|
||||
|
||||
cg::greater<float> max_op;
|
||||
auto warp = cg::tiled_partition<group_size>(cg::this_thread_block());
|
||||
|
||||
float scale = cg::reduce(warp, abs(w_thread), max_op);
|
||||
scale /= bits == 4 ? 6.0f : 448.0f;
|
||||
// Convert to mx scale or nv scale
|
||||
using ScaleType =
|
||||
std::conditional_t<use_mx_scale, __nv_fp8_e8m0, __nv_fp8_e4m3>;
|
||||
auto s = ScaleType(scale);
|
||||
uint8_t q_scale = s.__x;
|
||||
scale = float(s);
|
||||
|
||||
// Write out the scales
|
||||
size_t gindex = index / group_size;
|
||||
if (index % group_size == 0) {
|
||||
scales[gindex] = q_scale;
|
||||
}
|
||||
|
||||
uint8_t output = Quantize<bits>{}(scale == 0 ? 0.0f : w_thread / scale);
|
||||
if (bits == 4) {
|
||||
uint8_t sval = warp.shfl_down(output, 1);
|
||||
output |= sval << bits;
|
||||
}
|
||||
constexpr int pack_factor = bits == 8 ? 1 : 2;
|
||||
if (index % pack_factor == 0) {
|
||||
out[index / pack_factor] = output;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int group_size, int bits, bool use_mx_scale>
|
||||
__global__ void
|
||||
fp_dequantize(const uint8_t* w, const uint8_t* scales, T* out, size_t size) {
|
||||
auto block_size = cg::this_thread_block().dim_threads();
|
||||
auto block_idx = cg::this_thread_block().group_index();
|
||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
||||
|
||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
||||
|
||||
auto grid_dim_x =
|
||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
||||
|
||||
constexpr int pack_factor = bits == 8 ? 1 : 2;
|
||||
size_t offset = tidx + grid_dim_x * size_t(tidy);
|
||||
size_t oindex = offset * pack_factor;
|
||||
|
||||
if (oindex >= size) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t gindex = oindex / group_size;
|
||||
using ScaleType =
|
||||
std::conditional_t<use_mx_scale, __nv_fp8_e8m0, __nv_fp8_e4m3>;
|
||||
auto scale = float(((ScaleType*)(scales))[gindex]);
|
||||
|
||||
out += oindex;
|
||||
|
||||
uint val = w[offset];
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < pack_factor; i++) {
|
||||
uint8_t d;
|
||||
if (bits == 4) {
|
||||
d = (val >> (bits * i)) & 0x0f;
|
||||
} else if (bits == 8) {
|
||||
d = val;
|
||||
}
|
||||
out[i] = static_cast<T>(scale * Dequantize<bits>{}(d));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void fp_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
int group_size,
|
||||
int bits,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
enc.set_input_array(w);
|
||||
enc.set_output_array(wq);
|
||||
enc.set_output_array(scales);
|
||||
dispatch_float_types(w.dtype(), "fp_quantize", [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if constexpr (!std::is_same_v<T, double>) {
|
||||
auto kernel = cu::fp_quantize<T, 32, 4, true>;
|
||||
if (bits == 8) {
|
||||
kernel = cu::fp_quantize<T, 32, 8, true>;
|
||||
} else if (group_size == 16) {
|
||||
kernel = cu::fp_quantize<T, 16, 4, false>;
|
||||
}
|
||||
bool large = w.size() > UINT_MAX;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(w.size(), w.shape(), w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
w.data<T>(),
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<uint8_t>(),
|
||||
w.size());
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[Quantize::eval_gpu] Can not quantize input with type float64.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void fp_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
array& w,
|
||||
int group_size,
|
||||
int bits,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
constexpr int uint8_per_uint32 = 4;
|
||||
int packs_per_int = 8 / bits;
|
||||
|
||||
size_t size = w.size() / packs_per_int;
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
|
||||
enc.set_input_array(wq);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_output_array(w);
|
||||
dispatch_float_types(w.dtype(), "fp_dequantize", [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if constexpr (!std::is_same_v<T, double>) {
|
||||
auto kernel = cu::fp_dequantize<T, 32, 4, true>;
|
||||
if (bits == 8) {
|
||||
kernel = cu::fp_dequantize<T, 32, 8, true>;
|
||||
} else if (group_size == 16) {
|
||||
kernel = cu::fp_dequantize<T, 16, 4, false>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
w.data<T>(),
|
||||
w.size());
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[Quantize::eval_gpu] Can not dequantize to output with type float64.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -57,23 +57,30 @@ void fast::Quantize::eval_gpu(
|
||||
if (dequantize_) {
|
||||
auto wq = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
auto& w = outputs[0];
|
||||
|
||||
w.set_data(allocator::malloc(w.nbytes()));
|
||||
|
||||
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
fp_dequantize(wq, scales, w, group_size_, bits_, enc, s);
|
||||
}
|
||||
} else {
|
||||
auto w = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto& wq = outputs[0];
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
|
||||
wq.set_data(allocator::malloc(wq.nbytes()));
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto& biases = outputs[2];
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
fp_quantize(w, wq, scales, group_size_, bits_, enc, s);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -24,4 +24,22 @@ void affine_dequantize(
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void fp_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
int group_size,
|
||||
int bits,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void fp_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
array& w,
|
||||
int group_size,
|
||||
int bits,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -181,6 +181,47 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int N_READS = 4>
|
||||
__global__ void col_reduce_small(
|
||||
const T* in,
|
||||
U* out,
|
||||
const __grid_constant__ ColReduceArgs args,
|
||||
size_t total) {
|
||||
Op op;
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
|
||||
const auto idx = grid.thread_rank() * N_READS;
|
||||
const auto before_axis = idx / args.reduction_stride;
|
||||
const auto after_axis = idx % args.reduction_stride;
|
||||
const auto offset =
|
||||
before_axis * args.reduction_stride * args.reduction_size + after_axis;
|
||||
|
||||
if (idx >= total) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += offset;
|
||||
out += idx;
|
||||
|
||||
AlignedVector<U, N_READS> accumulator;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
accumulator[i] = ReduceInit<Op, T>::value();
|
||||
}
|
||||
|
||||
for (int i = 0; i < args.reduction_size; i++) {
|
||||
auto values = load_vector<N_READS>(in, 0);
|
||||
|
||||
for (int j = 0; j < N_READS; j++) {
|
||||
accumulator[j] = op(accumulator[j], cast_to<U>(values[j]));
|
||||
}
|
||||
|
||||
in += args.reduction_stride;
|
||||
}
|
||||
|
||||
store_vector(out, 0, accumulator);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
inline auto output_grid_for_col_reduce(
|
||||
@@ -206,7 +247,7 @@ void col_reduce_looped(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::ColReduceArgs args) {
|
||||
const cu::ColReduceArgs& args) {
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -230,12 +271,55 @@ void col_reduce_looped(
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, 0, indata, out.data<U>(), args);
|
||||
kernel,
|
||||
grid,
|
||||
blocks,
|
||||
0,
|
||||
indata,
|
||||
out.data<U>(),
|
||||
static_cast<cu::ColReduceArgs>(args));
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void col_reduce_small(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
const cu::ColReduceArgs& args) {
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
auto tmp_grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
auto [grid, block] = get_grid_and_block(tmp_grid.x, tmp_grid.y, 1);
|
||||
auto kernel = cu::col_reduce_small<T, U, OP, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
static_cast<cu::ColReduceArgs>(args),
|
||||
out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void col_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
@@ -258,6 +342,13 @@ void col_reduce(
|
||||
// Make the args struct to help route to the best kernel
|
||||
cu::ColReduceArgs args(in, plan, axes);
|
||||
|
||||
// Small col reduce with a single or contiguous reduction axis
|
||||
if (args.non_col_reductions == 1 && args.reduction_size <= 32 &&
|
||||
args.reduction_stride % (16 / in.itemsize()) == 0) {
|
||||
col_reduce_small(encoder, in, out, reduce_type, axes, plan, args);
|
||||
return;
|
||||
}
|
||||
|
||||
// Fallback col reduce
|
||||
col_reduce_looped(encoder, in, out, reduce_type, axes, plan, args);
|
||||
}
|
||||
|
||||
@@ -7,8 +7,6 @@
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -83,7 +81,8 @@ struct RowReduceArgs {
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename ReduceOp, int N = 4, int M = 1>
|
||||
__global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
__global__ void
|
||||
row_reduce_simple(const T* in, U* out, size_t n_rows, int size) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
@@ -91,8 +90,8 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
const U init = cu::ReduceInit<ReduceOp, T>::value();
|
||||
ReduceOp op;
|
||||
|
||||
T vals[M][N];
|
||||
U accs[M];
|
||||
AlignedVector<T, N> vals[M];
|
||||
AlignedVector<U, M> accs;
|
||||
for (int i = 0; i < M; i++) {
|
||||
accs[i] = init;
|
||||
}
|
||||
@@ -101,43 +100,31 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
min(n_rows - M, static_cast<size_t>(grid.block_rank() * M));
|
||||
const size_t full_blocks = size / (block.size() * N);
|
||||
const size_t final_offset = full_blocks * (block.size() * N);
|
||||
in += start_row * size;
|
||||
in += start_row * size + block.thread_rank() * N;
|
||||
out += start_row;
|
||||
|
||||
if (size % N == 0) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlockedVectorized<T, N>(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
vals[k] = load_vector<N>(in + k * size, 0);
|
||||
}
|
||||
for (int k = 0; k < M; k++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
|
||||
in += block.size() * N;
|
||||
}
|
||||
|
||||
if (final_offset < size) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + final_offset,
|
||||
vals[k],
|
||||
size,
|
||||
cast_to<T>(init));
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[k][i] = ((final_offset + block.thread_rank() * N + i) < size)
|
||||
? in[k * size + i]
|
||||
: cast_to<T>(init);
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < M; k++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
@@ -145,13 +132,11 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32 * M];
|
||||
block_reduce(block, warp, accs, shared_accumulators, op, init);
|
||||
block_reduce(block, warp, accs.val, shared_accumulators, op, init);
|
||||
|
||||
if (block.thread_rank() == 0) {
|
||||
if (grid.block_rank() * M + M <= n_rows) {
|
||||
for (int i = 0; i < M; i++) {
|
||||
out[i] = accs[i];
|
||||
}
|
||||
store_vector(out, 0, accs);
|
||||
} else {
|
||||
short offset = grid.block_rank() * M + M - n_rows;
|
||||
for (int i = offset; i < M; i++) {
|
||||
@@ -161,17 +146,10 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int NDIM,
|
||||
int BLOCK_DIM,
|
||||
int N_READS = 4>
|
||||
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
||||
__global__ void row_reduce_looped(
|
||||
T* in,
|
||||
const T* in,
|
||||
U* out,
|
||||
size_t out_size,
|
||||
const __grid_constant__ RowReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
@@ -185,36 +163,60 @@ __global__ void row_reduce_looped(
|
||||
U init = ReduceInit<Op, T>::value();
|
||||
total[0] = init;
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
size_t full_blocks = args.row_size / (BLOCK_DIM * N_READS);
|
||||
size_t final_offset = full_blocks * BLOCK_DIM * N_READS;
|
||||
const size_t full_blocks = args.row_size / (block.size() * N_READS);
|
||||
const size_t final_offset = full_blocks * (block.size() * N_READS);
|
||||
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
in += block.thread_rank() * N_READS;
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlockedVectorized<T, N_READS>(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + r * BLOCK_DIM * N_READS,
|
||||
vals);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
// Unaligned reduce
|
||||
if (final_offset < args.row_size) {
|
||||
bool mask[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
mask[i] =
|
||||
(final_offset + block.thread_rank() * N_READS + i) < args.row_size;
|
||||
}
|
||||
if (final_offset < args.row_size) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + final_offset,
|
||||
vals,
|
||||
args.row_size - final_offset,
|
||||
cast_to<T>(init));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
const T* inlocal = in + loop.location();
|
||||
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
auto vals = load_vector<N_READS>(inlocal, 0);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
inlocal += block.size() * N_READS;
|
||||
}
|
||||
|
||||
{
|
||||
T vals[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = mask[i] ? inlocal[i] : cast_to<T>(init);
|
||||
}
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
}
|
||||
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
}
|
||||
|
||||
// Aligned case
|
||||
else {
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
const T* inlocal = in + loop.location();
|
||||
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
auto vals = load_vector<N_READS>(inlocal, 0);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
inlocal += block.size() * N_READS;
|
||||
}
|
||||
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
// TODO: Maybe block.sync() here?
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32];
|
||||
@@ -234,8 +236,6 @@ void row_reduce_simple(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to avoid elem_to_loc in the
|
||||
// kernel.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -250,14 +250,15 @@ void row_reduce_simple(
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
|
||||
// Calculate the grid and block dims
|
||||
size_t reductions = (plan.shape.back() + N_READS - 1) / N_READS;
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
||||
warps /= 4;
|
||||
warps = std::max(std::min(warps, 32), 1);
|
||||
int threads = warps * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
@@ -267,6 +268,7 @@ void row_reduce_simple(
|
||||
kernel = cu::row_reduce_simple<T, U, OP, N_READS, 2>;
|
||||
}
|
||||
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
|
||||
@@ -282,8 +284,6 @@ void row_reduce_looped(
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::RowReduceArgs args) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -295,34 +295,27 @@ void row_reduce_looped(
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
|
||||
// Calculate the grid and block dims
|
||||
args.sort_access_pattern(in, axes);
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
size_t reductions = (args.row_size + N_READS - 1) / N_READS;
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
||||
warps /= 4;
|
||||
warps = std::max(std::min(warps, 32), 1);
|
||||
int threads = warps * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, 32, N_READS>;
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, N_READS>;
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
dispatch_block_dim(threads, [&](auto threads_constant) {
|
||||
kernel = cu::row_reduce_looped<
|
||||
T,
|
||||
U,
|
||||
OP,
|
||||
reduce_ndim.value,
|
||||
threads_constant.value,
|
||||
N_READS>;
|
||||
block.x = threads_constant.value;
|
||||
});
|
||||
kernel = cu::row_reduce_looped<T, U, OP, reduce_ndim.value, N_READS>;
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
|
||||
kernel, grid, block, 0, in.data<T>(), out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -103,15 +103,21 @@ template <typename T, bool traditional, bool forward, int N = 4>
|
||||
__device__ void rope_impl(
|
||||
const T* in,
|
||||
T* out,
|
||||
int offset,
|
||||
const int* offset,
|
||||
float inv_freq,
|
||||
float scale,
|
||||
const cuda::std::array<int64_t, 3> strides,
|
||||
const cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 pos,
|
||||
uint3 dims) {
|
||||
float L = scale * static_cast<float>(pos.y + offset);
|
||||
auto n_head_up = N * ((n_head + N - 1) / N);
|
||||
auto head_idx = static_cast<int>((pos.z * N) % n_head_up);
|
||||
auto batch_idx = (pos.z * N) / n_head_up;
|
||||
auto batch_offset = offset[batch_idx * offset_stride];
|
||||
float L = scale * static_cast<float>(pos.y + batch_offset);
|
||||
auto mat_idx = batch_idx * n_head + head_idx;
|
||||
|
||||
// Compute costheta, sintheta
|
||||
float theta = L * inv_freq;
|
||||
@@ -123,20 +129,19 @@ __device__ void rope_impl(
|
||||
size_t out_index_1, out_index_2;
|
||||
if (traditional) {
|
||||
out_index_1 = 2 * pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
mat_idx * out_strides[0];
|
||||
out_index_2 = out_index_1 + 1;
|
||||
in_index_1 =
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + mat_idx * strides[0];
|
||||
in_index_2 = in_index_1 + strides[2];
|
||||
} else {
|
||||
out_index_1 = pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
mat_idx * out_strides[0];
|
||||
out_index_2 = out_index_1 + dims.x * out_strides[2];
|
||||
in_index_1 =
|
||||
pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
in_index_1 = pos.x * strides[2] + pos.y * strides[1] + mat_idx * strides[0];
|
||||
in_index_2 = in_index_1 + dims.x * strides[2];
|
||||
}
|
||||
for (int i = 0; i < N && pos.z * N + i < n_batch; ++i) {
|
||||
for (int i = 0; i < N && head_idx + i < n_head; ++i) {
|
||||
// Read and write the output
|
||||
float x1 = static_cast<float>(in[in_index_1]);
|
||||
float x2 = static_cast<float>(in[in_index_2]);
|
||||
@@ -167,7 +172,8 @@ __global__ void rope(
|
||||
float base,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 dims) {
|
||||
uint3 pos = make_uint3(
|
||||
blockIdx.x * blockDim.x + threadIdx.x,
|
||||
@@ -182,12 +188,13 @@ __global__ void rope(
|
||||
rope_impl<T, traditional, forward>(
|
||||
in,
|
||||
out,
|
||||
*offset,
|
||||
offset,
|
||||
inv_freq,
|
||||
scale,
|
||||
strides,
|
||||
out_strides,
|
||||
n_batch,
|
||||
offset_stride,
|
||||
n_head,
|
||||
pos,
|
||||
dims);
|
||||
}
|
||||
@@ -202,7 +209,8 @@ __global__ void rope_freqs(
|
||||
float base,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 dims,
|
||||
int64_t freq_stride) {
|
||||
uint3 pos = make_uint3(
|
||||
@@ -217,12 +225,13 @@ __global__ void rope_freqs(
|
||||
rope_impl<T, traditional, forward>(
|
||||
in,
|
||||
out,
|
||||
*offset,
|
||||
offset,
|
||||
inv_freq,
|
||||
scale,
|
||||
strides,
|
||||
out_strides,
|
||||
n_batch,
|
||||
offset_stride,
|
||||
n_head,
|
||||
pos,
|
||||
dims);
|
||||
}
|
||||
@@ -245,23 +254,28 @@ void RoPE::eval_gpu(
|
||||
auto& offset = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
if (in.ndim() < 3) {
|
||||
throw std::runtime_error("[RoPE] Input must have at least 3 dimensions");
|
||||
}
|
||||
|
||||
cuda::std::array<int64_t, 3> strides;
|
||||
cuda::std::array<int64_t, 3> out_strides;
|
||||
bool donated = false;
|
||||
int ndim = in.ndim();
|
||||
int dispatch_ndim = in.ndim();
|
||||
|
||||
int B = in.shape(0);
|
||||
int T = in.shape(-2);
|
||||
int D = in.shape(-1);
|
||||
size_t mat_size = T * D;
|
||||
int dispatch_ndim = ndim;
|
||||
while (in.shape(-dispatch_ndim) == 1 && dispatch_ndim > 3) {
|
||||
dispatch_ndim--;
|
||||
}
|
||||
size_t mat_size = in.shape(-2) * in.shape(-1);
|
||||
|
||||
int N = 1;
|
||||
for (int i = 1; i < (ndim - 2); ++i) {
|
||||
N *= in.shape(i);
|
||||
}
|
||||
|
||||
// We apply rope to less that the whole vector so copy to output and then
|
||||
// apply in-place.
|
||||
if (dims_ < in.shape(-1)) {
|
||||
if (dims_ < D) {
|
||||
donated = true;
|
||||
auto ctype =
|
||||
(in.flags().row_contiguous) ? CopyType::Vector : CopyType::General;
|
||||
@@ -302,7 +316,7 @@ void RoPE::eval_gpu(
|
||||
out_strides[2] = out.strides()[ndim - 1];
|
||||
|
||||
// Some flags to help us dispatch below
|
||||
bool single = in.flags().row_contiguous && (mat_size == in.shape(-1));
|
||||
bool single = in.flags().row_contiguous && B == 1 && T == 1;
|
||||
bool with_freqs = inputs.size() == 3;
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
@@ -319,7 +333,7 @@ void RoPE::eval_gpu(
|
||||
if (single && !with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_single<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
uint2 dims = make_uint2(dims_ / 2, N);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
@@ -336,7 +350,7 @@ void RoPE::eval_gpu(
|
||||
} else if (single) {
|
||||
auto kernel =
|
||||
cu::rope_single_freqs<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
uint2 dims = make_uint2(dims_ / 2, N);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
@@ -354,10 +368,14 @@ void RoPE::eval_gpu(
|
||||
} else if (with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_freqs<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
int n_per_thread = 4;
|
||||
uint32_t dimz = B * ((N + n_per_thread - 1) / n_per_thread);
|
||||
uint3 dims = make_uint3(dims_ / 2, T, dimz);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
int64_t offset_stride = 0;
|
||||
if (inputs[1].ndim() > 0) {
|
||||
offset_stride = inputs[1].strides()[0];
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
@@ -371,15 +389,20 @@ void RoPE::eval_gpu(
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
offset_stride,
|
||||
N,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else {
|
||||
auto kernel = cu::rope<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
int n_per_thread = 4;
|
||||
uint32_t dimz = B * ((N + n_per_thread - 1) / n_per_thread);
|
||||
uint3 dims = make_uint3(dims_ / 2, T, dimz);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
int64_t offset_stride = 0;
|
||||
if (inputs[1].ndim() > 0) {
|
||||
offset_stride = inputs[1].strides()[0];
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
@@ -392,7 +415,8 @@ void RoPE::eval_gpu(
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
offset_stride,
|
||||
N,
|
||||
dims);
|
||||
}
|
||||
});
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
@@ -46,6 +45,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
const T* K,
|
||||
const T* V,
|
||||
T* O,
|
||||
const T* sinks,
|
||||
__grid_constant__ const AttnParams params) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
@@ -65,7 +65,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
__shared__ U max_scores[BN];
|
||||
__shared__ U sum_exp_scores[BN];
|
||||
|
||||
const U scale_log2 = params.scale * 1.44269504089f;
|
||||
const U scale_log2 = params.scale * M_LOG2E;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
@@ -108,8 +108,12 @@ __global__ void kernel_sdpav_1pass(
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -INFINITY;
|
||||
U max_score = Limits<U>::finite_min();
|
||||
U sum_exp_score = 0.f;
|
||||
if (sinks && warp_idx == 0) {
|
||||
max_score = M_LOG2E * static_cast<U>(sinks[head_idx]);
|
||||
sum_exp_score = 1.f;
|
||||
}
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += BN) {
|
||||
@@ -167,7 +171,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
U factor = exp2f(max_score - new_max);
|
||||
sum_exp_score =
|
||||
cg::reduce(warp, sum_exp_scores[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
sum_exp_score = sum_exp_score == 0 ? 0 : __frcp_rn(sum_exp_score);
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
PRAGMA_LOOP_UNROLL
|
||||
@@ -193,6 +197,7 @@ __global__ void kernel_sdpav_2pass_1(
|
||||
const T* Q,
|
||||
const T* K,
|
||||
const T* V,
|
||||
const T* sinks,
|
||||
float* partials,
|
||||
float* sums,
|
||||
float* maxs,
|
||||
@@ -268,8 +273,12 @@ __global__ void kernel_sdpav_2pass_1(
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -1e9;
|
||||
U max_score = Limits<U>::finite_min();
|
||||
U sum_exp_score = 0.f;
|
||||
if (sinks && warp_idx == 0 && block_idx == 0) {
|
||||
max_score = M_LOG2E * static_cast<U>(sinks[head_idx]);
|
||||
sum_exp_score = 1.f;
|
||||
}
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += blocks * BN) {
|
||||
@@ -410,7 +419,7 @@ __global__ void kernel_sdpav_2pass_2(
|
||||
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
|
||||
U factor = exp2f(max_score - new_max);
|
||||
U sum_exp_score = cg::reduce(warp, sums[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
sum_exp_score = sum_exp_score == 0 ? 0 : __frcp_rn(sum_exp_score);
|
||||
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
@@ -463,10 +472,14 @@ void sdpa_vector_1pass_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
if (sinks) {
|
||||
encoder.set_input_array(*sinks);
|
||||
}
|
||||
encoder.set_output_array(o);
|
||||
|
||||
cu::AttnParams params{
|
||||
@@ -489,7 +502,7 @@ void sdpa_vector_1pass_fallback(
|
||||
dim3 block_dim(1024, 1, 1);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_1pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_bool(do_causal, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
@@ -504,6 +517,7 @@ void sdpa_vector_1pass_fallback(
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
o.data<DataType>(),
|
||||
sinks ? (*sinks).data<DataType>() : nullptr,
|
||||
params);
|
||||
});
|
||||
});
|
||||
@@ -518,7 +532,8 @@ void sdpa_vector_2pass_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
cu::AttnParams params{
|
||||
/* int B = */ q.shape(0),
|
||||
/* int H = */ q.shape(1),
|
||||
@@ -559,7 +574,7 @@ void sdpa_vector_2pass_fallback(
|
||||
encoder.add_temporary(maxs);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_2pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_bool(do_causal, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
@@ -570,6 +585,10 @@ void sdpa_vector_2pass_fallback(
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
if (sinks) {
|
||||
encoder.set_input_array(*sinks);
|
||||
}
|
||||
|
||||
encoder.set_output_array(intermediate);
|
||||
encoder.set_output_array(sums);
|
||||
encoder.set_output_array(maxs);
|
||||
@@ -585,6 +604,7 @@ void sdpa_vector_2pass_fallback(
|
||||
q.data<DataType>(),
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
sinks ? (*sinks).data<DataType>() : nullptr,
|
||||
intermediate.data<float>(),
|
||||
sums.data<float>(),
|
||||
maxs.data<float>(),
|
||||
@@ -627,15 +647,16 @@ void sdpa_vector_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
int kL = k.shape(2);
|
||||
|
||||
if (kL > 1024) {
|
||||
return sdpa_vector_2pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
s, encoder, q, k, v, scale, o, do_causal, sinks);
|
||||
} else {
|
||||
return sdpa_vector_1pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
s, encoder, q, k, v, scale, o, do_causal, sinks);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -691,7 +712,7 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
|
||||
// Define some copy functions to ensure the layout of the inputs is as
|
||||
// expected.
|
||||
copies.reserve(3);
|
||||
copies.reserve(inputs.size());
|
||||
auto copy_unless = [&copies, &s](
|
||||
auto predicate, const array& arr) -> const array& {
|
||||
if (!predicate(arr)) {
|
||||
@@ -703,6 +724,16 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
}
|
||||
};
|
||||
|
||||
// Checks that the headdim dimension has stride 1.
|
||||
auto is_matrix_contiguous = [](const array& arr) {
|
||||
return arr.strides(-1) == 1;
|
||||
};
|
||||
|
||||
std::optional<array> sinks = std::nullopt;
|
||||
if (has_sinks_) {
|
||||
sinks = copy_unless(is_matrix_contiguous, inputs.back());
|
||||
}
|
||||
|
||||
// We are in vector mode ie single query
|
||||
if (q_pre.shape(2) < 4) {
|
||||
auto q_copy_unless = [](const array& arr) {
|
||||
@@ -740,10 +771,6 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
const auto& k = copy_unless(kv_copy_unless, k_pre);
|
||||
const auto& v = copy_unless(kv_copy_unless, v_pre);
|
||||
|
||||
for (const auto& cp : copies) {
|
||||
encoder.add_temporary(cp);
|
||||
}
|
||||
|
||||
// Donate the query if possible
|
||||
if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) {
|
||||
o.copy_shared_buffer(q);
|
||||
@@ -752,22 +779,26 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
int64_t str_oH = o.shape(3);
|
||||
int64_t str_oL = o.shape(1) * str_oH;
|
||||
int64_t str_oB = o.shape(2) * str_oL;
|
||||
size_t data_size = o.shape(0) * str_oB;
|
||||
|
||||
array::Flags flags{
|
||||
/* bool contiguous = */ 1,
|
||||
/* bool row_contiguous = */ o.shape(2) == 1,
|
||||
/* bool col_contiguous = */ 0,
|
||||
/* bool col_contiguous = */ o.size() == o.shape(3),
|
||||
};
|
||||
|
||||
o.set_data(
|
||||
allocator::malloc(o.nbytes()),
|
||||
data_size,
|
||||
o.size(),
|
||||
{str_oB, str_oH, str_oL, str_oD},
|
||||
flags);
|
||||
}
|
||||
|
||||
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
|
||||
for (const auto& cp : copies) {
|
||||
encoder.add_temporary(cp);
|
||||
}
|
||||
|
||||
return sdpa_vector_fallback(
|
||||
s, encoder, q, k, v, scale_, o, do_causal_, sinks);
|
||||
}
|
||||
|
||||
// Full attention mode should never reach here
|
||||
|
||||
@@ -156,7 +156,25 @@ void ternary_op_gpu_inplace(
|
||||
using DType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
auto topt = get_ternary_op_type(a, b, c);
|
||||
if (topt == TernaryOpType::General) {
|
||||
if (topt == TernaryOpType::VectorVectorVector ||
|
||||
topt == TernaryOpType::ScalarScalarScalar) {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(DType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
cu::ternary_v<Op, DType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size());
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
@@ -225,23 +243,6 @@ void ternary_op_gpu_inplace(
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(DType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
cu::ternary_v<Op, DType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,284 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_unary_op() {
|
||||
if (std::is_same_v<Op, Abs> || std::is_same_v<Op, Negative> ||
|
||||
std::is_same_v<Op, Sign> || std::is_same_v<Op, Square>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCosh> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTanh> || std::is_same_v<Op, Erf> ||
|
||||
std::is_same_v<Op, ErfInv> || std::is_same_v<Op, Expm1> ||
|
||||
std::is_same_v<Op, Sigmoid>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseInvert>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
||||
return std::is_same_v<In, Out> && !mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Conjugate>) {
|
||||
return std::is_same_v<In, Out> && mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
||||
std::is_same_v<Op, Cosh> || std::is_same_v<Op, Exp> ||
|
||||
std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p> ||
|
||||
std::is_same_v<Op, Round> || std::is_same_v<Op, Rsqrt> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Sin> ||
|
||||
std::is_same_v<Op, Sinh> || std::is_same_v<Op, Tan> ||
|
||||
std::is_same_v<Op, Tanh>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
||||
return mlx::core::is_complex_v<In> && std::is_same_v<Out, float>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalNot>) {
|
||||
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& in = inputs[0];
|
||||
if (in.size() == 0) {
|
||||
return;
|
||||
}
|
||||
bool contig = in.flags().contiguous;
|
||||
bool large;
|
||||
if (!contig) {
|
||||
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
||||
} else {
|
||||
large = in.data_size() > UINT32_MAX;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
dispatch_bool(large, [&](auto large) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
if (contig) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(OutType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large, N_READS);
|
||||
encoder.add_kernel_node(
|
||||
cu::unary_v<Op, InType, OutType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT, 1>;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
kernel = cu::unary_g<Op, InType, OutType, IdxT, 4>;
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do unary op {} on input of {} with output of {}.",
|
||||
op,
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
set_unary_output_data(inputs[0], out);
|
||||
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
#define UNARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
unary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
UNARY_GPU(Abs)
|
||||
UNARY_GPU(ArcCos)
|
||||
UNARY_GPU(ArcCosh)
|
||||
UNARY_GPU(ArcSin)
|
||||
UNARY_GPU(ArcSinh)
|
||||
UNARY_GPU(ArcTan)
|
||||
UNARY_GPU(ArcTanh)
|
||||
UNARY_GPU(BitwiseInvert)
|
||||
UNARY_GPU(Ceil)
|
||||
UNARY_GPU(Conjugate)
|
||||
UNARY_GPU(Cos)
|
||||
UNARY_GPU(Cosh)
|
||||
UNARY_GPU(Erf)
|
||||
UNARY_GPU(ErfInv)
|
||||
UNARY_GPU(Exp)
|
||||
UNARY_GPU(Expm1)
|
||||
UNARY_GPU(Floor)
|
||||
UNARY_GPU(Imag)
|
||||
UNARY_GPU(Log1p)
|
||||
UNARY_GPU(LogicalNot)
|
||||
UNARY_GPU(Negative)
|
||||
UNARY_GPU(Real)
|
||||
UNARY_GPU(Sigmoid)
|
||||
UNARY_GPU(Sign)
|
||||
UNARY_GPU(Sin)
|
||||
UNARY_GPU(Sinh)
|
||||
UNARY_GPU(Square)
|
||||
UNARY_GPU(Tan)
|
||||
UNARY_GPU(Tanh)
|
||||
|
||||
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Log::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
unary_op_gpu<cu::Log>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::two:
|
||||
unary_op_gpu<cu::Log2>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::ten:
|
||||
unary_op_gpu<cu::Log10>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Round::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
auto& s = out.primitive().stream();
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_op_gpu<cu::Round>(inputs, out, name(), s);
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
|
||||
void Sqrt::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Sort::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (recip_) {
|
||||
unary_op_gpu<cu::Rsqrt>(inputs, out, "Rsqrt", s);
|
||||
} else {
|
||||
unary_op_gpu<cu::Sqrt>(inputs, out, "Sqrt", s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -108,6 +108,12 @@ constexpr bool supports_unary_op() {
|
||||
if (std::is_same_v<Op, LogicalNot>) {
|
||||
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, ToFP8>) {
|
||||
return std::is_same_v<Out, uint8_t> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, FromFP8>) {
|
||||
return std::is_same_v<In, uint8_t> && is_floating_v<Out>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file include utilies that are used by C++ code (i.e. .cpp files).
|
||||
// This file include utilities that are used by C++ code (i.e. .cpp files).
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -12,6 +12,7 @@ namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
class Device;
|
||||
|
||||
}
|
||||
|
||||
struct Dtype;
|
||||
@@ -86,4 +87,17 @@ class CudaStream : public CudaHandle<cudaStream_t, cudaStreamDestroy> {
|
||||
explicit CudaStream(cu::Device& device);
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
inline uint max_occupancy_block_dim(T kernel) {
|
||||
int _, block_dim;
|
||||
if constexpr (std::is_same_v<T, CUfunction>) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
|
||||
} else {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
|
||||
}
|
||||
return block_dim;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -5,8 +5,9 @@
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
Worker::Worker()
|
||||
: signal_stream_(device(mlx::core::Device::gpu)),
|
||||
Worker::Worker(Device& d)
|
||||
: signal_stream_(d),
|
||||
signal_event_(d, cudaEventDisableTiming | cudaEventBlockingSync),
|
||||
worker_(&Worker::thread_fn, this) {}
|
||||
|
||||
Worker::~Worker() {
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <functional>
|
||||
@@ -16,7 +15,7 @@ namespace mlx::core::cu {
|
||||
// Run tasks in worker thread, synchronized with cuda stream.
|
||||
class Worker {
|
||||
public:
|
||||
Worker();
|
||||
explicit Worker(Device& d);
|
||||
~Worker();
|
||||
|
||||
Worker(const Worker&) = delete;
|
||||
|
||||
@@ -29,7 +29,7 @@ make_jit_source(
|
||||
kernels/bf16_math.h
|
||||
kernels/complex.h
|
||||
kernels/defines.h)
|
||||
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
|
||||
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h kernels/fp8.h)
|
||||
make_jit_source(binary_ops)
|
||||
make_jit_source(ternary_ops)
|
||||
make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h)
|
||||
@@ -81,7 +81,8 @@ if(MLX_METAL_JIT)
|
||||
|
||||
make_jit_source(quantized_utils)
|
||||
make_jit_source(quantized kernels/quantized_utils.h)
|
||||
make_jit_source(fp4_quantized kernels/quantized_utils.h)
|
||||
make_jit_source(fp_quantized kernels/quantized_utils.h kernels/fp8.h
|
||||
kernels/fp4.h)
|
||||
make_jit_source(gemv_masked)
|
||||
else()
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/nojit_kernels.cpp)
|
||||
|
||||
@@ -32,7 +32,6 @@ namespace metal {
|
||||
|
||||
MetalAllocator::MetalAllocator()
|
||||
: device_(device(mlx::core::Device::gpu).mtl_device()),
|
||||
residency_set_(device_),
|
||||
buffer_cache_(
|
||||
vm_page_size,
|
||||
[](MTL::Buffer* buf) { return buf->length(); },
|
||||
@@ -41,7 +40,8 @@ MetalAllocator::MetalAllocator()
|
||||
residency_set_.erase(buf);
|
||||
}
|
||||
buf->release();
|
||||
}) {
|
||||
}),
|
||||
residency_set_(device_) {
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
auto memsize = std::get<size_t>(device_info().at("memory_size"));
|
||||
auto max_rec_size =
|
||||
|
||||
@@ -65,7 +65,6 @@ class MetalAllocator : public allocator::Allocator {
|
||||
size_t peak_memory_{0};
|
||||
size_t max_pool_size_;
|
||||
size_t wired_limit_{0};
|
||||
bool relaxed_{true};
|
||||
size_t num_resources_{0};
|
||||
size_t resource_limit_{0};
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
@@ -39,10 +38,11 @@ void explicit_gemm_conv_ND_gpu(
|
||||
in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
|
||||
|
||||
// Prepare unfolding kernel
|
||||
std::ostringstream kname;
|
||||
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
|
||||
std::string kname;
|
||||
kname.reserve(32);
|
||||
concatenate(kname, "naive_unfold_nd_", type_to_name(in_unfolded), "_", N);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
@@ -117,11 +117,12 @@ void explicit_gemm_conv_group_ND_gpu(
|
||||
in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
|
||||
|
||||
// Prepare unfolding kernel
|
||||
std::ostringstream kname;
|
||||
kname << "naive_unfold_transpose_nd_" << type_to_name(in_unfolded) << "_"
|
||||
<< N;
|
||||
std::string kname;
|
||||
kname.reserve(32);
|
||||
concatenate(
|
||||
kname, "naive_unfold_transpose_nd_", type_to_name(in_unfolded), "_", N);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
@@ -252,18 +253,32 @@ void implicit_gemm_conv_2D_gpu(
|
||||
/* const int swizzle_log = */ swizzle_log};
|
||||
|
||||
// Determine kernel
|
||||
std::ostringstream kname;
|
||||
kname << "implicit_gemm_conv_2d_" << type_to_name(out) << "_bm" << bm << "_bn"
|
||||
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_channel_"
|
||||
<< (n_channel_specialization ? std::to_string(n_channel_specialization)
|
||||
: "l")
|
||||
<< "_filter_" << (small_filter ? 's' : 'l');
|
||||
std::string kname;
|
||||
kname.reserve(64);
|
||||
concatenate(
|
||||
kname,
|
||||
"implicit_gemm_conv_2d_",
|
||||
type_to_name(out),
|
||||
"_bm",
|
||||
bm,
|
||||
"_bn",
|
||||
bn,
|
||||
"_bk",
|
||||
bk,
|
||||
"_wm",
|
||||
wm,
|
||||
"_wn",
|
||||
wn,
|
||||
"_channel_",
|
||||
n_channel_specialization ? std::to_string(n_channel_specialization) : "l",
|
||||
"_filter_",
|
||||
small_filter ? 's' : 'l');
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = get_steel_conv_kernel(
|
||||
d,
|
||||
kname.str(),
|
||||
kname,
|
||||
out,
|
||||
bm,
|
||||
bn,
|
||||
@@ -559,11 +574,16 @@ void winograd_conv_2D_gpu(
|
||||
{
|
||||
int bc = 32;
|
||||
int bo = 4;
|
||||
std::ostringstream kname;
|
||||
kname << "winograd_conv_2d_weight_transform_" << type_to_name(out) << "_bc"
|
||||
<< bc;
|
||||
std::string kname;
|
||||
kname.reserve(32);
|
||||
concatenate(
|
||||
kname,
|
||||
"winograd_conv_2d_weight_transform_",
|
||||
type_to_name(out),
|
||||
"_bc",
|
||||
bc);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(wt, 0);
|
||||
@@ -587,11 +607,16 @@ void winograd_conv_2D_gpu(
|
||||
int bc = 32;
|
||||
int wm = 2;
|
||||
int wn = 2;
|
||||
std::ostringstream kname;
|
||||
kname << "winograd_conv_2d_input_transform_" << type_to_name(out) << "_bc"
|
||||
<< bc;
|
||||
std::string kname;
|
||||
kname.reserve(32);
|
||||
concatenate(
|
||||
kname,
|
||||
"winograd_conv_2d_input_transform_",
|
||||
type_to_name(out),
|
||||
"_bc",
|
||||
bc);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in_padded, 0);
|
||||
@@ -634,11 +659,16 @@ void winograd_conv_2D_gpu(
|
||||
int bc = 32;
|
||||
int wm = 2;
|
||||
int wn = 2;
|
||||
std::ostringstream kname;
|
||||
kname << "winograd_conv_2d_output_transform_" << type_to_name(out) << "_bo"
|
||||
<< bc;
|
||||
std::string kname;
|
||||
kname.reserve(32);
|
||||
concatenate(
|
||||
kname,
|
||||
"winograd_conv_2d_output_transform_",
|
||||
type_to_name(out),
|
||||
"_bo",
|
||||
bc);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(out_wg, 0);
|
||||
@@ -660,9 +690,9 @@ void depthwise_conv_2D_gpu(
|
||||
const array& wt,
|
||||
array out,
|
||||
const MLXConvParams<2>& conv_params) {
|
||||
std::ostringstream kname;
|
||||
kname << "depthwise_conv_2d_" << type_to_name(out);
|
||||
std::string base_name = kname.str();
|
||||
std::string base_name;
|
||||
base_name.reserve(32);
|
||||
concatenate(base_name, "depthwise_conv_2d_", type_to_name(out));
|
||||
|
||||
const int N = conv_params.N;
|
||||
const int ker_h = conv_params.wS[0];
|
||||
@@ -685,15 +715,18 @@ void depthwise_conv_2D_gpu(
|
||||
};
|
||||
|
||||
// clang-format off
|
||||
kname << "_ker_h_" << ker_h
|
||||
<< "_ker_w_" << ker_w
|
||||
<< "_str_h_" << str_h
|
||||
<< "_str_w_" << str_w
|
||||
<< "_tgp_h_" << th
|
||||
<< "_tgp_w_" << tw
|
||||
<< "_do_flip_" << (do_flip ? 't' : 'n'); // clang-format on
|
||||
|
||||
std::string hash_name = kname.str();
|
||||
std::string hash_name;
|
||||
hash_name.reserve(64);
|
||||
concatenate(
|
||||
hash_name,
|
||||
base_name,
|
||||
"_ker_h_", ker_h,
|
||||
"_ker_w_", ker_w,
|
||||
"_str_h_", str_h,
|
||||
"_str_w_", str_w,
|
||||
"_tgp_h_", th,
|
||||
"_tgp_w_", tw,
|
||||
"_do_flip_", do_flip ? 't' : 'n'); // clang-format on
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(base_name, hash_name, func_consts);
|
||||
@@ -774,6 +807,56 @@ void dispatch_conv_2D_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
void depthwise_conv_1D_gpu(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& in,
|
||||
array wt,
|
||||
array out) {
|
||||
bool large = in.size() > INT32_MAX || in.data_size() > INT32_MAX;
|
||||
std::string base_name;
|
||||
base_name.reserve(32);
|
||||
concatenate(
|
||||
base_name,
|
||||
"depthwise_conv_1d_",
|
||||
large ? "_large" : "",
|
||||
type_to_name(out));
|
||||
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
d.add_temporary(wt, s.index);
|
||||
}
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(base_name);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
auto B = in.shape(0);
|
||||
auto Tout = out.shape(1);
|
||||
auto D = in.shape(2);
|
||||
auto K = wt.shape(1);
|
||||
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_input_array(wt, 1);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
if (large) {
|
||||
int64_t strides[3] = {in.strides(0), in.strides(1), in.strides(2)};
|
||||
compute_encoder.set_bytes(strides, 3, 3);
|
||||
|
||||
} else {
|
||||
int strides[3] = {
|
||||
static_cast<int>(in.strides(0)),
|
||||
static_cast<int>(in.strides(1)),
|
||||
static_cast<int>(in.strides(2))};
|
||||
compute_encoder.set_bytes(strides, 3, 3);
|
||||
}
|
||||
|
||||
compute_encoder.set_bytes(K, 4);
|
||||
auto group_dims = get_block_dims(D, Tout, B);
|
||||
MTL::Size grid_dims = MTL::Size(D, Tout, B);
|
||||
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void conv_1D_gpu(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
@@ -790,8 +873,15 @@ void conv_1D_gpu(
|
||||
bool is_idil_one = in_dilation[0] == 1;
|
||||
int C = in.shape(2);
|
||||
int O = wt.shape(0);
|
||||
const int C_per_group = in.shape(2) / groups;
|
||||
const int O_per_group = wt.shape(0) / groups;
|
||||
// Fast path for fully separable 1D convolution
|
||||
if (is_idil_one && (groups == C) && groups == O && wt_strides[0] == 1 &&
|
||||
wt_dilation[0] == 1 && padding[0] == 0 && !flip) {
|
||||
depthwise_conv_1D_gpu(s, d, in, wt, out);
|
||||
return;
|
||||
}
|
||||
|
||||
const int C_per_group = C / groups;
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
// Direct to implicit gemm conv
|
||||
if (is_idil_one && (C_per_group <= 4 || C_per_group % 16 == 0) &&
|
||||
|
||||
@@ -327,6 +327,10 @@ CustomKernelFunction metal_kernel(
|
||||
void CustomKernel::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// silence some warnings
|
||||
(void)is_precompiled_;
|
||||
(void)shared_memory_;
|
||||
|
||||
auto& s = stream();
|
||||
|
||||
std::vector<array> copies;
|
||||
|
||||
@@ -72,6 +72,19 @@ MTL::Library* try_load_bundle(
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
MTL::Library* try_load_framework(
|
||||
MTL::Device* device,
|
||||
NS::URL* url,
|
||||
const std::string& lib_name) {
|
||||
std::string resource_path = std::string(url->fileSystemRepresentation()) +
|
||||
"/" + lib_name + ".metallib";
|
||||
auto [lib, error] = load_library_from_path(device, resource_path.c_str());
|
||||
if (lib) {
|
||||
return lib;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Firstly, search for the metallib in the same path as this binary
|
||||
@@ -103,12 +116,23 @@ std::pair<MTL::Library*, NS::Error*> load_swiftpm_library(
|
||||
return {library, nullptr};
|
||||
}
|
||||
}
|
||||
// if SWIFTPM_BUNDLE is a framework identifier, try loading from that
|
||||
auto frameworks = NS::Bundle::allFrameworks();
|
||||
for (int i = 0, c = (int)frameworks->count(); i < c; i++) {
|
||||
auto bundle = reinterpret_cast<NS::Bundle*>(frameworks->object(i));
|
||||
if (!strcmp(bundle->bundleIdentifier()->utf8String(), SWIFTPM_BUNDLE)) {
|
||||
library = try_load_framework(device, bundle->resourceURL(), lib_name);
|
||||
if (library != nullptr) {
|
||||
return {library, nullptr};
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return {nullptr, nullptr};
|
||||
}
|
||||
|
||||
MTL::Library* load_default_library(MTL::Device* device) {
|
||||
NS::Error* error[4];
|
||||
NS::Error* error[5];
|
||||
MTL::Library* lib;
|
||||
// First try the colocated mlx.metallib
|
||||
std::tie(lib, error[0]) = load_colocated_library(device, "mlx");
|
||||
@@ -127,12 +151,19 @@ MTL::Library* load_default_library(MTL::Device* device) {
|
||||
return lib;
|
||||
}
|
||||
|
||||
// Try lo load resources from Framework resources if SwiftPM wrapped as a
|
||||
// dynamic framework.
|
||||
std::tie(lib, error[3]) = load_colocated_library(device, "Resources/default");
|
||||
if (lib) {
|
||||
return lib;
|
||||
}
|
||||
|
||||
// Finally try default_mtllib_path
|
||||
std::tie(lib, error[3]) = load_library_from_path(device, default_mtllib_path);
|
||||
std::tie(lib, error[4]) = load_library_from_path(device, default_mtllib_path);
|
||||
if (!lib) {
|
||||
std::ostringstream msg;
|
||||
msg << "Failed to load the default metallib. ";
|
||||
for (int i = 0; i < 4; i++) {
|
||||
for (int i = 0; i < 5; i++) {
|
||||
if (error[i] != nullptr) {
|
||||
msg << error[i]->localizedDescription()->utf8String() << " ";
|
||||
}
|
||||
@@ -464,6 +495,10 @@ void Device::end_encoding(int index) {
|
||||
CommandEncoder& Device::get_command_encoder(int index) {
|
||||
auto& stream = get_stream_(index);
|
||||
if (stream.encoder == nullptr) {
|
||||
// Ensure there is an active command buffer
|
||||
if (stream.buffer == nullptr) {
|
||||
get_command_buffer(index);
|
||||
}
|
||||
stream.encoder = std::make_unique<CommandEncoder>(stream);
|
||||
stream.fence = std::make_shared<Fence>(device_->newFence());
|
||||
}
|
||||
@@ -717,7 +752,7 @@ MTL::ComputePipelineState* Device::get_kernel_(
|
||||
mtl_linked_funcs->release();
|
||||
|
||||
// Add kernel to cache
|
||||
auto inserted = kernel_map_.insert({hash_name, kernel});
|
||||
kernel_map_.insert({hash_name, kernel});
|
||||
|
||||
return kernel;
|
||||
}
|
||||
|
||||
@@ -71,7 +71,7 @@ void eval(array& arr) {
|
||||
d.get_command_buffer(s.index);
|
||||
} else {
|
||||
command_buffer->addCompletedHandler(
|
||||
[s, buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
|
||||
[buffers = std::move(buffers)](MTL::CommandBuffer* cbuf) {
|
||||
check_error(cbuf);
|
||||
});
|
||||
}
|
||||
@@ -82,7 +82,7 @@ void finalize(Stream s) {
|
||||
auto& d = metal::device(s.device);
|
||||
auto cb = d.get_command_buffer(s.index);
|
||||
d.end_encoding(s.index);
|
||||
cb->addCompletedHandler([s](MTL::CommandBuffer* cbuf) { check_error(cbuf); });
|
||||
cb->addCompletedHandler([](MTL::CommandBuffer* cbuf) { check_error(cbuf); });
|
||||
d.commit_command_buffer(s.index);
|
||||
d.get_command_buffer(s.index);
|
||||
}
|
||||
|
||||
@@ -150,7 +150,6 @@ FFTPlan plan_fft(int n) {
|
||||
}
|
||||
// See if we can use Rader's algorithm to Stockham decompose n - 1
|
||||
auto rader_factors = prime_factors(factor - 1);
|
||||
int last_factor = -1;
|
||||
for (int rf : rader_factors) {
|
||||
// We don't nest Rader's algorithm so if `factor - 1`
|
||||
// isn't Stockham decomposable we give up and do Bluestein's.
|
||||
@@ -313,8 +312,6 @@ std::pair<array, array> compute_bluestein_constants(int n, int bluestein_n) {
|
||||
// w_k = np.exp(-1j * np.pi / N * (np.arange(-N + 1, N) ** 2))
|
||||
// w_q = np.fft.fft(1/w_k)
|
||||
// return w_k, w_q
|
||||
int length = 2 * n - 1;
|
||||
|
||||
std::vector<std::complex<float>> w_k_vec(n);
|
||||
std::vector<std::complex<float>> w_q_vec(bluestein_n, 0);
|
||||
|
||||
@@ -484,8 +481,6 @@ void four_step_fft(
|
||||
std::vector<array>& copies,
|
||||
const Stream& s,
|
||||
bool in_place) {
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
if (plan.bluestein_n == -1) {
|
||||
// Fast no transpose implementation for powers of 2.
|
||||
FourStepParams four_step_params = {
|
||||
@@ -786,7 +781,6 @@ void nd_fft_op(
|
||||
// Mirror np.fft.(i)rfftn and perform a real transform
|
||||
// only on the final axis.
|
||||
bool step_real = (real && index == axes.size() - 1);
|
||||
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
|
||||
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
|
||||
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
|
||||
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
|
||||
|
||||
@@ -378,7 +378,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
if (upd_ndim == 0) {
|
||||
// Need placeholders so Metal doesn't compalain
|
||||
// Need placeholders so Metal doesn't complain
|
||||
int shape_ = 0;
|
||||
int64_t stride_ = 0;
|
||||
compute_encoder.set_bytes(shape_, 3);
|
||||
@@ -393,7 +393,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
// Set output info
|
||||
size_t out_ndim = out.ndim();
|
||||
if (out_ndim == 0) {
|
||||
// Need placeholders so Metal doesn't compalain
|
||||
// Need placeholders so Metal doesn't complain
|
||||
int shape_ = 0;
|
||||
int64_t stride_ = 0;
|
||||
compute_encoder.set_bytes(shape_, 7);
|
||||
|
||||
@@ -24,7 +24,7 @@ const char* hadamard();
|
||||
const char* logsumexp();
|
||||
const char* quantized_utils();
|
||||
const char* quantized();
|
||||
const char* fp4_quantized();
|
||||
const char* fp_quantized();
|
||||
const char* ternary();
|
||||
const char* scan();
|
||||
const char* scatter_axis();
|
||||
|
||||
@@ -144,8 +144,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
||||
auto t_str = get_type_string(type);
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::ternary_ops(), metal::ternary());
|
||||
const std::array<std::pair<std::string, std::string>, 4> kernel_types = {{
|
||||
{"v2", "ternary_v2"},
|
||||
const std::array<std::pair<std::string, std::string>, 3> kernel_types = {{
|
||||
{"g1large", "ternary_g_nd1"},
|
||||
{"g2large", "ternary_g_nd2"},
|
||||
{"g3large", "ternary_g_nd3"},
|
||||
@@ -154,13 +153,29 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
||||
kernel_source +=
|
||||
get_template_definition(name + "_" + lib_name, func, t_str, op);
|
||||
}
|
||||
|
||||
kernel_source += get_template_definition(
|
||||
"v2_" + lib_name, "ternary_v2", t_str, op, false, false);
|
||||
kernel_source += get_template_definition(
|
||||
"sv2_" + lib_name, "ternary_v2", t_str, op, true, false);
|
||||
kernel_source += get_template_definition(
|
||||
"vs2_" + lib_name, "ternary_v2", t_str, op, false, true);
|
||||
|
||||
if (get_work_per_thread(type) > 1) {
|
||||
kernel_source +=
|
||||
get_template_definition("vn_" + lib_name, "ternary_v", t_str, op);
|
||||
kernel_source += get_template_definition(
|
||||
"vn_" + lib_name, "ternary_v", t_str, op, false, false);
|
||||
kernel_source += get_template_definition(
|
||||
"svn_" + lib_name, "ternary_v", t_str, op, true, false);
|
||||
kernel_source += get_template_definition(
|
||||
"vsn_" + lib_name, "ternary_v", t_str, op, false, true);
|
||||
}
|
||||
|
||||
kernel_source +=
|
||||
get_template_definition("v_" + lib_name, "ternary_v", t_str, op, 1);
|
||||
kernel_source += get_template_definition(
|
||||
"v_" + lib_name, "ternary_v", t_str, op, false, false, 1);
|
||||
kernel_source += get_template_definition(
|
||||
"sv_" + lib_name, "ternary_v", t_str, op, true, false, 1);
|
||||
kernel_source += get_template_definition(
|
||||
"vs_" + lib_name, "ternary_v", t_str, op, false, true, 1);
|
||||
kernel_source += get_template_definition(
|
||||
"g1_" + lib_name, "ternary_g_nd1", t_str, op, "int");
|
||||
kernel_source += get_template_definition(
|
||||
@@ -814,7 +829,7 @@ MTL::ComputePipelineState* get_quantized_kernel(
|
||||
metal::utils(),
|
||||
metal::gemm(),
|
||||
metal::quantized_utils(),
|
||||
(mode == "affine") ? metal::quantized() : metal::fp4_quantized(),
|
||||
(mode == "affine") ? metal::quantized() : metal::fp_quantized(),
|
||||
template_def);
|
||||
return kernel_source;
|
||||
});
|
||||
@@ -841,39 +856,22 @@ MTL::ComputePipelineState* get_gather_qmm_kernel(
|
||||
std::string kernel_source;
|
||||
concatenate(
|
||||
kernel_source, metal::utils(), metal::quantized_utils(), metal::gemm());
|
||||
if (mode == "affine") {
|
||||
concatenate(
|
||||
kernel_source,
|
||||
metal::quantized(),
|
||||
get_template_definition(
|
||||
lib_name,
|
||||
mode + "_gather_qmm_rhs",
|
||||
get_type_string(x.dtype()),
|
||||
group_size,
|
||||
bits,
|
||||
bm,
|
||||
bn,
|
||||
bk,
|
||||
wm,
|
||||
wn,
|
||||
transpose));
|
||||
} else {
|
||||
concatenate(
|
||||
kernel_source,
|
||||
metal::fp4_quantized(),
|
||||
get_template_definition(
|
||||
lib_name,
|
||||
mode + "_gather_qmm_rhs",
|
||||
get_type_string(x.dtype()),
|
||||
group_size,
|
||||
"uint8_t",
|
||||
bm,
|
||||
bn,
|
||||
bk,
|
||||
wm,
|
||||
wn,
|
||||
transpose));
|
||||
}
|
||||
bool is_affine = mode == "affine";
|
||||
concatenate(
|
||||
kernel_source,
|
||||
is_affine ? metal::quantized() : metal::fp_quantized(),
|
||||
get_template_definition(
|
||||
lib_name,
|
||||
(is_affine ? "affine" : "fp") + std::string("_gather_qmm_rhs"),
|
||||
get_type_string(x.dtype()),
|
||||
group_size,
|
||||
bits,
|
||||
bm,
|
||||
bn,
|
||||
bk,
|
||||
wm,
|
||||
wn,
|
||||
transpose));
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
||||
|
||||
@@ -6,6 +6,7 @@ set(BASE_HEADERS
|
||||
defines.h
|
||||
erf.h
|
||||
expm1f.h
|
||||
fp8.h
|
||||
utils.h)
|
||||
|
||||
function(build_kernel_base TARGET SRCFILE DEPS)
|
||||
@@ -109,7 +110,8 @@ if(NOT MLX_METAL_JIT)
|
||||
reduction/reduce_col.h
|
||||
reduction/reduce_row.h)
|
||||
build_kernel(quantized quantized.h quantized_utils.h ${STEEL_HEADERS})
|
||||
build_kernel(fp4_quantized fp4_quantized.h quantized_utils.h ${STEEL_HEADERS})
|
||||
build_kernel(fp_quantized fp4.h fp_quantized.h quantized_utils.h
|
||||
${STEEL_HEADERS})
|
||||
build_kernel(scan scan.h)
|
||||
build_kernel(softmax softmax.h)
|
||||
build_kernel(logsumexp logsumexp.h)
|
||||
|
||||
@@ -104,6 +104,27 @@ constexpr bool operator==(complex64_t a, complex64_t b) {
|
||||
constexpr complex64_t operator+(complex64_t a, complex64_t b) {
|
||||
return {a.real + b.real, a.imag + b.imag};
|
||||
}
|
||||
|
||||
constexpr thread complex64_t& operator+=(thread complex64_t& a, complex64_t b) {
|
||||
a.real += b.real;
|
||||
a.imag += b.imag;
|
||||
return a;
|
||||
}
|
||||
|
||||
constexpr threadgroup complex64_t& operator+=(
|
||||
threadgroup complex64_t& a,
|
||||
complex64_t b) {
|
||||
a.real += b.real;
|
||||
a.imag += b.imag;
|
||||
return a;
|
||||
}
|
||||
|
||||
constexpr device complex64_t& operator+=(device complex64_t& a, complex64_t b) {
|
||||
a.real += b.real;
|
||||
a.imag += b.imag;
|
||||
return a;
|
||||
}
|
||||
|
||||
constexpr complex64_t operator+(float a, complex64_t b) {
|
||||
return {a + b.real, b.imag};
|
||||
}
|
||||
|
||||
@@ -288,6 +288,40 @@ instantiate_depthconv2d(float32, float);
|
||||
instantiate_depthconv2d(float16, half);
|
||||
instantiate_depthconv2d(bfloat16, bfloat16_t);
|
||||
|
||||
template <typename T, typename IdxT>
|
||||
[[kernel]] void depthwise_conv_1d(
|
||||
const device T* in [[buffer(0)]],
|
||||
const device T* w [[buffer(1)]],
|
||||
device T* out [[buffer(2)]],
|
||||
constant const IdxT strides[3],
|
||||
constant const int& kernel_size,
|
||||
uint3 tid [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
out += (tid.z * static_cast<IdxT>(grid_dim.y) + tid.y) * grid_dim.x + tid.x;
|
||||
in += tid.z * strides[0] + tid.y * strides[1] + tid.x * strides[2];
|
||||
w += tid.x * kernel_size;
|
||||
|
||||
float acc = 0.0;
|
||||
for (int i = 0; i < kernel_size; ++i) {
|
||||
acc += static_cast<float>(in[0]) * w[i];
|
||||
in += strides[1];
|
||||
}
|
||||
*out = static_cast<T>(acc);
|
||||
}
|
||||
|
||||
#define instantiate_depthconv1d(iname, itype) \
|
||||
instantiate_kernel( \
|
||||
"depthwise_conv_1d_" #iname, depthwise_conv_1d, itype, int32_t) \
|
||||
instantiate_kernel( \
|
||||
"depthwise_conv_1d_" #iname "_large", \
|
||||
depthwise_conv_1d, \
|
||||
itype, \
|
||||
int64_t)
|
||||
|
||||
instantiate_depthconv1d(float32, float);
|
||||
instantiate_depthconv1d(float16, half);
|
||||
instantiate_depthconv1d(bfloat16, bfloat16_t);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Winograd kernels
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
56
mlx/backend/metal/kernels/fp4.h
Normal file
56
mlx/backend/metal/kernels/fp4.h
Normal file
@@ -0,0 +1,56 @@
|
||||
#pragma once
|
||||
|
||||
constexpr constant static float FP4_LUT[16] = {
|
||||
+0.0f,
|
||||
+0.5f,
|
||||
+1.0f,
|
||||
+1.5f,
|
||||
+2.0f,
|
||||
+3.0f,
|
||||
+4.0f,
|
||||
+6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
struct fp4_e2m1 {
|
||||
fp4_e2m1(float x) {
|
||||
if (metal::isnan(x)) {
|
||||
bits = 0x7;
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t sign_bit = (metal::signbit(x)) ? 0x8 : 0x0;
|
||||
x = metal::abs(x);
|
||||
|
||||
if (x > 5.0f) {
|
||||
bits = 0x7;
|
||||
} else if (x >= 3.5f) {
|
||||
bits = 0x6;
|
||||
} else if (x > 2.5f) {
|
||||
bits = 0x5;
|
||||
} else if (x >= 1.75f) {
|
||||
bits = 0x4;
|
||||
} else if (x > 1.25f) {
|
||||
bits = 0x3;
|
||||
} else if (x >= 0.75f) {
|
||||
bits = 0x2;
|
||||
} else if (x > 0.25f) {
|
||||
bits = 0x1;
|
||||
} else {
|
||||
bits = 0x0;
|
||||
}
|
||||
bits |= sign_bit;
|
||||
}
|
||||
|
||||
operator float() {
|
||||
return FP4_LUT[bits];
|
||||
}
|
||||
|
||||
uint8_t bits;
|
||||
};
|
||||
@@ -1,127 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/gemm.h"
|
||||
#include "mlx/backend/metal/kernels/quantized_utils.h"
|
||||
#include "mlx/backend/metal/kernels/fp4_quantized.h"
|
||||
|
||||
#define instantiate_quantized(name, type) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4", \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t)
|
||||
|
||||
#define instantiate_quantized_batched(name, type, batched) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_batch_" #batched, \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
batched)
|
||||
|
||||
#define instantiate_quantized_aligned(name, type, aligned) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_alN_" #aligned, \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
aligned)
|
||||
|
||||
#define instantiate_quantized_aligned_batched(name, type, aligned, batched) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_alN_" #aligned "_batch_" #batched, \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
aligned, \
|
||||
batched)
|
||||
|
||||
#define instantiate_quantized_quad(name, type, D, batched) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_d_" #D "_batch_" #batched, \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
D, \
|
||||
batched)
|
||||
|
||||
#define instantiate_quantized_split_k(name, type, split_k) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_spk_" #split_k, \
|
||||
name, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
split_k)
|
||||
|
||||
#define instantiate_gather_qmm_rhs(func, name, type, bm, bn, bk, wm, wn, transpose) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_32_b_4_bm_" #bm "_bn_" #bn "_bk_" #bk "_wm_" #wm "_wn_" #wn, \
|
||||
func, \
|
||||
type, \
|
||||
32, \
|
||||
uint8_t, \
|
||||
bm, \
|
||||
bn, \
|
||||
bk, \
|
||||
wm, \
|
||||
wn, \
|
||||
transpose)
|
||||
|
||||
#define instantiate_quantized_batched_wrap(name, type) \
|
||||
instantiate_quantized_batched(name, type, 1) \
|
||||
instantiate_quantized_batched(name, type, 0)
|
||||
|
||||
#define instantiate_quantized_all_batched(type) \
|
||||
instantiate_quantized_batched_wrap(mxfp4_qmv_fast, type) \
|
||||
instantiate_quantized_batched_wrap(mxfp4_qmv, type) \
|
||||
instantiate_quantized_batched_wrap(mxfp4_qvm, type) \
|
||||
instantiate_quantized_batched_wrap(mxfp4_qmm_n, type)
|
||||
|
||||
#define instantiate_quantized_all_single(type) \
|
||||
instantiate_quantized(mxfp4_gather_qmv_fast, type) \
|
||||
instantiate_quantized(mxfp4_gather_qmv, type) \
|
||||
instantiate_quantized(mxfp4_gather_qvm, type) \
|
||||
instantiate_quantized(mxfp4_gather_qmm_n, type)
|
||||
|
||||
#define instantiate_quantized_all_aligned(type) \
|
||||
instantiate_quantized_aligned(mxfp4_gather_qmm_t, type, true) \
|
||||
instantiate_quantized_aligned(mxfp4_gather_qmm_t, type, false) \
|
||||
instantiate_quantized_aligned_batched(mxfp4_qmm_t, type, true, 1) \
|
||||
instantiate_quantized_aligned_batched(mxfp4_qmm_t, type, true, 0) \
|
||||
instantiate_quantized_aligned_batched(mxfp4_qmm_t, type, false, 1) \
|
||||
instantiate_quantized_aligned_batched(mxfp4_qmm_t, type, false, 0)
|
||||
|
||||
#define instantiate_quantized_all_quad(type) \
|
||||
instantiate_quantized_quad(mxfp4_qmv_quad, type, 64, 1) \
|
||||
instantiate_quantized_quad(mxfp4_qmv_quad, type, 64, 0) \
|
||||
instantiate_quantized_quad(mxfp4_qmv_quad, type, 128, 1) \
|
||||
instantiate_quantized_quad(mxfp4_qmv_quad, type, 128, 0)
|
||||
|
||||
#define instantiate_quantized_all_splitk(type) \
|
||||
instantiate_quantized_split_k(mxfp4_qvm_split_k, type, 8) \
|
||||
instantiate_quantized_split_k(mxfp4_qvm_split_k, type, 32)
|
||||
|
||||
#define instantiate_quantized_all_rhs(type) \
|
||||
instantiate_gather_qmm_rhs(mxfp4_gather_qmm_rhs, mxfp4_gather_qmm_rhs_nt, type, 16, 32, 32, 1, 2, true) \
|
||||
instantiate_gather_qmm_rhs(mxfp4_gather_qmm_rhs, mxfp4_gather_qmm_rhs_nn, type, 16, 32, 32, 1, 2, false)
|
||||
|
||||
#define instantiate_quantized_types(type) \
|
||||
instantiate_quantized_all_batched(type) \
|
||||
instantiate_quantized_all_quad(type) \
|
||||
instantiate_quantized_all_splitk(type) \
|
||||
instantiate_quantized_all_single(type) \
|
||||
instantiate_quantized_all_aligned(type) \
|
||||
instantiate_quantized_all_rhs(type)
|
||||
|
||||
instantiate_quantized_types(float)
|
||||
instantiate_quantized_types(bfloat16_t)
|
||||
instantiate_quantized_types(float16_t)
|
||||
// clang-format on
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user