mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-05 15:51:11 +08:00
Compare commits
174 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
490c0c4fdc | ||
![]() |
c4a471c99d | ||
![]() |
86f495985b | ||
![]() |
67d1894759 | ||
![]() |
5bfe89bdb1 | ||
![]() |
82463e9938 | ||
![]() |
771575d27b | ||
![]() |
20a01bbd9f | ||
![]() |
ec8578d41a | ||
![]() |
d0dbfe0b97 | ||
![]() |
3d405fb3b1 | ||
![]() |
b0012cdd0f | ||
![]() |
84d61d27aa | ||
![]() |
ed83908931 | ||
![]() |
ef5f7d1aea | ||
![]() |
090ff659dc | ||
![]() |
85c8a91a27 | ||
![]() |
581b699ac9 | ||
![]() |
8a0677d56d | ||
![]() |
b18468bf81 | ||
![]() |
107ba2891a | ||
![]() |
cd9e184529 | ||
![]() |
2e7c02d5cd | ||
![]() |
ae18326533 | ||
![]() |
91eba8e485 | ||
![]() |
d07e295c62 | ||
![]() |
dce4bd74a4 | ||
![]() |
ffff671273 | ||
![]() |
12d4507ee3 | ||
![]() |
8580d997ff | ||
![]() |
061cf9a4ce | ||
![]() |
99abb9eff4 | ||
![]() |
fffe072028 | ||
![]() |
a1a31eed27 | ||
![]() |
ae812350f9 | ||
![]() |
b63ef10a7f | ||
![]() |
42afe27e12 | ||
![]() |
76e63212ff | ||
![]() |
aac2f9fb61 | ||
![]() |
bddf23f175 | ||
![]() |
039da779d1 | ||
![]() |
d88d2124b5 | ||
![]() |
e142aaf8a1 | ||
![]() |
0caf35f4b8 | ||
![]() |
3fc993f82d | ||
![]() |
741eb28443 | ||
![]() |
1a87dc5ea8 | ||
![]() |
2427fa171e | ||
![]() |
639e06e1f3 | ||
![]() |
02fedbf1da | ||
![]() |
110d9b149d | ||
![]() |
9cbff5ec1d | ||
![]() |
433c0206b0 | ||
![]() |
8915901966 | ||
![]() |
f48bc496c7 | ||
![]() |
913b19329c | ||
![]() |
d8cb3128f6 | ||
![]() |
5f9ba3019f | ||
![]() |
46caf0bef0 | ||
![]() |
45f636e759 | ||
![]() |
a7b404ff53 | ||
![]() |
c4fd0e5ede | ||
![]() |
bab5386306 | ||
![]() |
aca7584635 | ||
![]() |
d611251502 | ||
![]() |
f30b659291 | ||
![]() |
90dfa43ff1 | ||
![]() |
dc175f08d3 | ||
![]() |
29221fa238 | ||
![]() |
a789685c63 | ||
![]() |
240d10699c | ||
![]() |
925014b661 | ||
![]() |
5611e1a95e | ||
![]() |
570f2bf29e | ||
![]() |
9948eddf11 | ||
![]() |
a3ee03da01 | ||
![]() |
28fcd2b519 | ||
![]() |
8e686764ac | ||
![]() |
479051ce1c | ||
![]() |
bfb5bad4f0 | ||
![]() |
1e16331d9c | ||
![]() |
be98f4ab6b | ||
![]() |
6ee1112f30 | ||
![]() |
8e5a5a1ccd | ||
![]() |
fcda3a0e66 | ||
![]() |
9663c22fe9 | ||
![]() |
f0ae00da12 | ||
![]() |
44390bd3d0 | ||
![]() |
2225374060 | ||
![]() |
105d236889 | ||
![]() |
53e6a9367c | ||
![]() |
f5a1582fe8 | ||
![]() |
a54f06b16f | ||
![]() |
4650d94d98 | ||
![]() |
a5681ebc52 | ||
![]() |
e849b3424a | ||
![]() |
b219d12a6b | ||
![]() |
cec8661113 | ||
![]() |
73a8c090e0 | ||
![]() |
db6796ac61 | ||
![]() |
9a8ee00246 | ||
![]() |
d39ed54f8e | ||
![]() |
16546c70d8 | ||
![]() |
eaba55c9bf | ||
![]() |
19ec023256 | ||
![]() |
63ab0ab580 | ||
![]() |
8dfc376c00 | ||
![]() |
1efee9db09 | ||
![]() |
43abc402d8 | ||
![]() |
3f8b1668c4 | ||
![]() |
76c919b4ec | ||
![]() |
29d0c10ee5 | ||
![]() |
5ad133f8bb | ||
![]() |
d0c544a868 | ||
![]() |
ffb19df3c0 | ||
![]() |
8b7532b9ab | ||
![]() |
366478c560 | ||
![]() |
8e5600022a | ||
![]() |
0e95b64942 | ||
![]() |
0ae22b915b | ||
![]() |
7c441600fe | ||
![]() |
a4d290adb9 | ||
![]() |
28301807c2 | ||
![]() |
74ed0974b3 | ||
![]() |
ec8a4864fa | ||
![]() |
b7588fd5d7 | ||
![]() |
f512b905c7 | ||
![]() |
afd5274049 | ||
![]() |
1074674e32 | ||
![]() |
7762e07fde | ||
![]() |
cbefd9129e | ||
![]() |
e39bebe13e | ||
![]() |
14b4e51a7c | ||
![]() |
cbcf44a4ca | ||
![]() |
859ae15a54 | ||
![]() |
0787724c44 | ||
![]() |
7b463ffb07 | ||
![]() |
6686e61ca4 | ||
![]() |
c096a77b9b | ||
![]() |
5121f028d9 | ||
![]() |
6a665ea6ed | ||
![]() |
bc06cb9ff6 | ||
![]() |
8e281c76c3 | ||
![]() |
d5964a2710 | ||
![]() |
cf3eb87e52 | ||
![]() |
ab3a466711 | ||
![]() |
4494970f47 | ||
![]() |
776c3d226d | ||
![]() |
f5f18b704f | ||
![]() |
420ff2f331 | ||
![]() |
56ba3ec40e | ||
![]() |
de3d2467a3 | ||
![]() |
fe1dabf272 | ||
![]() |
08226ab491 | ||
![]() |
3b661b7394 | ||
![]() |
e6418781ab | ||
![]() |
ac02cf33bd | ||
![]() |
22364c40b7 | ||
![]() |
d729a1991b | ||
![]() |
126c9869c8 | ||
![]() |
ad4a45e615 | ||
![]() |
04fc896016 | ||
![]() |
884b4ed43b | ||
![]() |
972d9a3aea | ||
![]() |
7dcdd88e27 | ||
![]() |
8120a3b65c | ||
![]() |
5798256fcf | ||
![]() |
d0fda82595 | ||
![]() |
f883fcede0 | ||
![]() |
e1bdf6a8d9 | ||
![]() |
1a4f4c5ea6 | ||
![]() |
0925af43b0 | ||
![]() |
dc937b8ed3 | ||
![]() |
c3965fc5ee |
@@ -31,8 +31,7 @@ jobs:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install pybind11-stubgen
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
@@ -44,7 +43,8 @@ jobs:
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
python3 setup.py generate_stubs
|
||||
echo "stubs"
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
@@ -63,21 +63,24 @@ jobs:
|
||||
command: ./build/tests/tests
|
||||
|
||||
mac_build_and_test:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "15.2.0"
|
||||
macos:
|
||||
xcode: "15.2.0"
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.large.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.9
|
||||
python3.9 -m venv env
|
||||
brew install python@3.8
|
||||
python3.8 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install pybind11-stubgen
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
@@ -91,13 +94,13 @@ jobs:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu python3.9 -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
# TODO: Reenable when extension api becomes stable
|
||||
# - run:
|
||||
# name: Build example extension
|
||||
@@ -140,9 +143,8 @@ jobs:
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install pybind11-stubgen
|
||||
pip install numpy
|
||||
pip install twine
|
||||
pip install build
|
||||
@@ -157,7 +159,7 @@ jobs:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
@@ -205,9 +207,8 @@ jobs:
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install pybind11-stubgen
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
@@ -215,7 +216,7 @@ jobs:
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
pip install . -v
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python -m build --wheel
|
||||
@@ -235,8 +236,19 @@ workflows:
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
filters:
|
||||
tags:
|
||||
@@ -246,7 +258,7 @@ workflows:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["14.3.1", "15.2.0"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
prb:
|
||||
when:
|
||||
@@ -260,6 +272,9 @@ workflows:
|
||||
context: pr-approval
|
||||
- mac_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
nightly_build:
|
||||
@@ -272,7 +287,7 @@ workflows:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["14.3.1", "15.2.0"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
weekly_build:
|
||||
when:
|
||||
and:
|
||||
@@ -283,7 +298,7 @@ workflows:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
xcode_version: ["14.3.1", "15.2.0"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
linux_test_release:
|
||||
when:
|
||||
|
@@ -1,11 +1,11 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v17.0.6
|
||||
rev: v18.1.3
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.2.0
|
||||
rev: 24.3.0
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/pycqa/isort
|
||||
|
@@ -10,8 +10,12 @@ MLX was developed with contributions from the following individuals:
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented ``MaxPool1d``, ``MaxPool2d``, ``AvgPool1d``, ``AvgPool2d``.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
|
||||
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
|
||||
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
|
||||
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
|
||||
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
@@ -252,4 +256,4 @@ Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
limitations under the License.
|
||||
|
@@ -15,32 +15,33 @@ option(MLX_BUILD_EXAMPLES "Build examples for mlx" ON)
|
||||
option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
|
||||
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.3.0)
|
||||
set(MLX_VERSION 0.12.0)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
|
||||
message(STATUS "Building MLX for ${CMAKE_HOST_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
|
||||
set(MLX_BUILD_ARM OFF)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
|
||||
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64" AND ${CMAKE_HOST_APPLE})
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
elseif (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
message(WARNING
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, "
|
||||
" make sure you are building for arm64.")
|
||||
elseif(${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
if(NOT MLX_ENABLE_X64_MAC)
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
else()
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
set(MLX_BUILD_ARM ON)
|
||||
endif()
|
||||
|
||||
@@ -65,9 +66,13 @@ endif()
|
||||
if (MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif (MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
add_compile_definitions(_METAL_)
|
||||
|
||||
if (MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
endif()
|
||||
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
@@ -77,18 +82,19 @@ elseif (MLX_BUILD_METAL)
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.2.diff)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
|
||||
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.0.diff)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14_iOS17-beta.zip)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 13.3)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS13.3_iOS16.4.zip)
|
||||
else()
|
||||
message(FATAL_ERROR "MLX requires macOS >= 13.4 to be built with MLX_BUILD_METAL=ON" )
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
|
||||
FetchContent_Declare(
|
||||
metal_cpp
|
||||
URL ${METAL_CPP_URL}
|
||||
PATCH_COMMAND patch -N -i ${METAL_CPP_PATCH} || true
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
@@ -113,7 +119,27 @@ if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
#set(BLA_VENDOR Generic)
|
||||
if(${CMAKE_HOST_APPLE})
|
||||
# The blas shipped in macOS SDK is not supported, search homebrew for
|
||||
# openblas instead.
|
||||
set(BLA_VENDOR OpenBLAS)
|
||||
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
|
||||
endif()
|
||||
# Search and link with lapack.
|
||||
find_package(LAPACK REQUIRED)
|
||||
if (NOT LAPACK_FOUND)
|
||||
message(FATAL_ERROR "Must have LAPACK installed")
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/local/opt/openblas/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${LAPACK_LIBRARIES})
|
||||
# List blas after lapack otherwise we may accidentally incldue an old version
|
||||
# of lapack.h from the include dirs of blas.
|
||||
find_package(BLAS REQUIRED)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
@@ -127,17 +153,6 @@ else()
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${BLAS_LIBRARIES})
|
||||
find_package(LAPACK REQUIRED)
|
||||
if (NOT LAPACK_FOUND)
|
||||
message(FATAL_ERROR "Must have LAPACK installed")
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${LAPACK_LIBRARIES})
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||
@@ -151,8 +166,12 @@ target_include_directories(
|
||||
|
||||
if (MLX_BUILD_PYTHON_BINDINGS)
|
||||
message(STATUS "Building Python bindings.")
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
|
||||
endif()
|
||||
|
||||
|
10
README.md
10
README.md
@@ -11,10 +11,12 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy.
|
||||
MLX also has a fully featured C++ API, which closely mirrors the Python API.
|
||||
MLX has higher-level packages like `mlx.nn` and `mlx.optimizers` with APIs
|
||||
that closely follow PyTorch to simplify building more complex models.
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
|
@@ -73,6 +73,7 @@ void time_unary_ops() {
|
||||
|
||||
void time_binary_ops() {
|
||||
int M = 1000, N = 100, K = 10;
|
||||
auto condition = random::randint(0, 2, {M, N, K});
|
||||
auto a = random::uniform({M, N, K});
|
||||
auto b = random::uniform({M, N, K});
|
||||
auto device = default_device();
|
||||
@@ -84,7 +85,9 @@ void time_binary_ops() {
|
||||
TIME(divide, a, b, device);
|
||||
TIME(maximum, a, b, device);
|
||||
TIME(minimum, a, b, device);
|
||||
TIME(where, condition, a, b, device);
|
||||
|
||||
condition = array({true});
|
||||
b = random::uniform({1});
|
||||
eval(b);
|
||||
TIMEM("scalar", add, a, b, device);
|
||||
@@ -93,7 +96,9 @@ void time_binary_ops() {
|
||||
TIMEM("scalar", multiply, a, b, device);
|
||||
TIMEM("vector-scalar", divide, a, b, device);
|
||||
TIMEM("scalar-vector", divide, b, a, device);
|
||||
TIMEM("scalar-vector", where, condition, a, b, device);
|
||||
|
||||
condition = broadcast_to(array({true}), {1000, 100});
|
||||
a = broadcast_to(random::uniform({1}), {1000, 100});
|
||||
b = broadcast_to(random::uniform({1}), {1000, 100});
|
||||
eval(a, b);
|
||||
@@ -101,6 +106,7 @@ void time_binary_ops() {
|
||||
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", divide, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
|
||||
}
|
||||
|
||||
void time_strided_ops() {
|
||||
|
@@ -17,14 +17,13 @@
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " \
|
||||
<< "(" << MSG << ") " << #FUNC << " ... " << std::flush \
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " << "(" << MSG << ") " << #FUNC << " ... " \
|
||||
<< std::flush << std::setprecision(5) \
|
||||
<< time_fn(FUNC, ##__VA_ARGS__) << " msec" << std::endl;
|
||||
|
||||
template <typename F, typename... Args>
|
||||
double time_fn(F fn, Args... args) {
|
||||
double time_fn(F fn, Args&&... args) {
|
||||
// warmup
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
eval(fn(std::forward<Args>(args)...));
|
||||
|
@@ -380,10 +380,6 @@ if __name__ == "__main__":
|
||||
if len(args.axis) > 1:
|
||||
args.axis.pop(0)
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.cpu:
|
||||
mx.set_default_device(mx.cpu)
|
||||
else:
|
||||
@@ -406,6 +402,10 @@ if __name__ == "__main__":
|
||||
x = xs[0]
|
||||
axis = args.axis[0]
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.benchmark == "matmul_square":
|
||||
print(bench(matmul_square, x))
|
||||
|
||||
|
@@ -331,10 +331,6 @@ if __name__ == "__main__":
|
||||
if len(args.axis) > 1:
|
||||
args.axis.pop(0)
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
torch.set_num_threads(1)
|
||||
device = "cpu" if args.cpu else "mps"
|
||||
|
||||
@@ -354,6 +350,10 @@ if __name__ == "__main__":
|
||||
x = xs[0]
|
||||
axis = args.axis[0]
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.benchmark == "matmul_square":
|
||||
print(bench(matmul_square, x))
|
||||
|
||||
|
109
benchmarks/python/compile_bench.py
Normal file
109
benchmarks/python/compile_bench.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import random
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def bench_gelu():
|
||||
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
x = mx.random.uniform(shape=(1000, 1024))
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
time_fn(gen_fun(gelu), x, msg="fixed gelu")
|
||||
time_fn(gen_fun(mx.compile(gelu)), x, msg="compiled fixed gelu")
|
||||
|
||||
def randint():
|
||||
return random.randint(1, x.shape[0])
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x, y):
|
||||
x = x[: randint()]
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
y = fun(y)
|
||||
return x, y
|
||||
|
||||
return bench_fun
|
||||
|
||||
y = mx.random.uniform(shape=(1000, 1024))
|
||||
time_fn(gen_fun(gelu), x, y, msg="variable gelu")
|
||||
time_fn(gen_fun(mx.compile(gelu)), x, y, msg="compiled variable gelu")
|
||||
time_fn(
|
||||
gen_fun(mx.compile(gelu, shapeless=True)),
|
||||
x,
|
||||
y,
|
||||
msg="shapeless variable gelu",
|
||||
)
|
||||
|
||||
|
||||
def bench_layernorm():
|
||||
|
||||
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
mx.eval(weight, bias)
|
||||
|
||||
def layernorm(x):
|
||||
x = x.astype(mx.float32)
|
||||
means = mx.mean(x, axis=-1, keepdims=True)
|
||||
var = mx.var(x, axis=-1, keepdims=True)
|
||||
x = (x - means) * mx.rsqrt(var + 1e-4)
|
||||
x = x.astype(mx.float16)
|
||||
return weight * x + bias
|
||||
|
||||
x = mx.random.uniform(shape=(1000, 4096)).astype(mx.float16)
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
time_fn(gen_fun(layernorm), x, msg="fixed layernorm")
|
||||
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled fixed layernorm")
|
||||
|
||||
def randint():
|
||||
return random.randint(1, x.shape[0])
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
x = x[: randint()]
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
random.seed(0)
|
||||
time_fn(gen_fun(layernorm), x, msg="variable layernorm")
|
||||
random.seed(0)
|
||||
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled variable layernorm")
|
||||
random.seed(0)
|
||||
time_fn(
|
||||
gen_fun(mx.compile(layernorm, shapeless=True)),
|
||||
x,
|
||||
msg="shapeless variable layernorm",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Compile benchmarks.")
|
||||
args = parser.parse_args()
|
||||
|
||||
bench_gelu()
|
||||
bench_layernorm()
|
123
benchmarks/python/conv1d_bench.py
Normal file
123
benchmarks/python/conv1d_bench.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_1D(strides=1, padding=0, groups=1):
|
||||
def mx_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = mx.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_1D
|
||||
|
||||
|
||||
def make_pt_conv_1D(strides=1, padding=0, groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = torch.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_1D
|
||||
|
||||
|
||||
def bench_shape(N, iH, C, wH, O, strides, padding, np_dtype, groups):
|
||||
scale = 1.0 / math.sqrt(wH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, iH, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, wH, int(C / groups))).astype(np_dtype)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 2, 1))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 2, 1))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_1D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_1D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv1d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv1d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, iH, C)}, {(O, wH, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 5, 32, 1, 2, 1),
|
||||
(4, 32, 32, 5, 32, 1, 2, 2),
|
||||
(4, 32, 32, 5, 32, 1, 2, 4),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 16),
|
||||
(4, 32, 32, 5, 32, 1, 2, 32),
|
||||
(4, 32, 256, 5, 512, 1, 2, 2),
|
||||
(4, 32, 256, 5, 512, 1, 2, 128),
|
||||
(4, 32, 256, 5, 512, 1, 2, 256),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print("(N, iH, C), (O, wH, C), dtype, stride, pads, groups, diff%")
|
||||
for N, iH, C, wH, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, iH, C, wH, O, strides, padding, np_dtype, groups
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {iH:3d}, {C:3d}), ({O:3d}, {wH:2d}, {C:3d}), {dtype}, {strides:5d}, {padding:4d}, {groups:6d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
129
benchmarks/python/conv_bench.py
Normal file
129
benchmarks/python/conv_bench.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
def mx_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_2D
|
||||
|
||||
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
@torch.no_grad()
|
||||
def pt_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
|
||||
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, C)).astype(np_dtype)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_2D(strides, padding)
|
||||
f_pt = make_pt_conv_2D(strides, padding)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding)
|
||||
out_pt = torch.conv2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2)),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2)),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print("(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, diff%")
|
||||
for N, H, W, C, kH, kW, O, strides, padding in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
57
benchmarks/python/fft_bench.py
Normal file
57
benchmarks/python/fft_bench.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import matplotlib
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import measure_runtime
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def bandwidth_gb(runtime_ms, system_size):
|
||||
bytes_per_fft = np.dtype(np.complex64).itemsize * 2
|
||||
bytes_per_gb = 1e9
|
||||
ms_per_s = 1e3
|
||||
return system_size * bytes_per_fft / runtime_ms * ms_per_s / bytes_per_gb
|
||||
|
||||
|
||||
def run_bench(system_size):
|
||||
def fft(x):
|
||||
out = mx.fft.fft(x)
|
||||
mx.eval(out)
|
||||
return out
|
||||
|
||||
bandwidths = []
|
||||
for k in range(4, 12):
|
||||
n = 2**k
|
||||
x = mx.random.uniform(shape=(system_size // n, n)).astype(mx.float32)
|
||||
x = x.astype(mx.complex64)
|
||||
mx.eval(x)
|
||||
runtime_ms = measure_runtime(fft, x=x)
|
||||
bandwidths.append(bandwidth_gb(runtime_ms, system_size))
|
||||
|
||||
return bandwidths
|
||||
|
||||
|
||||
def time_fft():
|
||||
|
||||
with mx.stream(mx.cpu):
|
||||
cpu_bandwidths = run_bench(system_size=int(2**22))
|
||||
|
||||
with mx.stream(mx.gpu):
|
||||
gpu_bandwidths = run_bench(system_size=int(2**29))
|
||||
|
||||
# plot bandwidths
|
||||
x = [2**k for k in range(4, 12)]
|
||||
plt.scatter(x, gpu_bandwidths, color="green", label="GPU")
|
||||
plt.scatter(x, cpu_bandwidths, color="red", label="CPU")
|
||||
plt.title("MLX FFT Benchmark")
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("Bandwidth (GB/s)")
|
||||
plt.legend()
|
||||
plt.savefig("fft_plot.png")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_fft()
|
41
benchmarks/python/layer_norm_bench.py
Normal file
41
benchmarks/python/layer_norm_bench.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def layer_norm(x, w, b, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
mu = mx.mean(x, -1, keepdims=True)
|
||||
v = mx.var(x, -1, keepdims=True)
|
||||
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||||
|
||||
|
||||
def time_layer_norm():
|
||||
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||||
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, b, y)
|
||||
|
||||
def layer_norm_loop(g, x, w, b):
|
||||
gx, gw, gb = x, w, b
|
||||
for _ in range(32):
|
||||
gx, gw, gb = g(gx, gw, gb, y)
|
||||
return gx, gw, gb
|
||||
|
||||
time_fn(layer_norm_loop, g1, x, w, b)
|
||||
time_fn(layer_norm_loop, g2, x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_layer_norm()
|
39
benchmarks/python/rms_norm_bench.py
Normal file
39
benchmarks/python/rms_norm_bench.py
Normal file
@@ -0,0 +1,39 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def rms_norm(x, w, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
||||
return (x * n).astype(ot) * w
|
||||
|
||||
|
||||
def time_rms_norm():
|
||||
f1 = lambda x, w, y: (rms_norm(x, w, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, y: (mx.fast.rms_norm(x, w, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1))
|
||||
g2 = mx.grad(f2, argnums=(0, 1))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, y)
|
||||
|
||||
def rms_norm_loop(g, x, w):
|
||||
gx, gw = x, w
|
||||
for _ in range(32):
|
||||
gx, gw = g(gx, gw, y)
|
||||
return gx, gw
|
||||
|
||||
time_fn(rms_norm_loop, g1, x, w)
|
||||
time_fn(rms_norm_loop, g2, x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_rms_norm()
|
@@ -6,21 +6,21 @@ from time_utils import time_fn
|
||||
|
||||
|
||||
def time_rope():
|
||||
rope = nn.RoPE(4096)
|
||||
rope = nn.RoPE(64)
|
||||
|
||||
# vec
|
||||
x = mx.random.uniform(shape=(1, 4096)).astype(mx.float16)
|
||||
x = mx.random.uniform(shape=(1, 32, 1, 128)).astype(mx.float16)
|
||||
mx.eval(x)
|
||||
|
||||
def rope_vec(x):
|
||||
for _ in range(32):
|
||||
x = rope(x)
|
||||
x = rope(x, offset=100)
|
||||
return x
|
||||
|
||||
time_fn(rope_vec, x)
|
||||
|
||||
# matrix
|
||||
x = mx.random.uniform(shape=(1024, 4096)).astype(mx.float16)
|
||||
x = mx.random.uniform(shape=(1, 32, 1024, 128)).astype(mx.float16)
|
||||
mx.eval(x)
|
||||
|
||||
def rope_mat(x):
|
||||
|
@@ -7,12 +7,14 @@ import torch
|
||||
from time_utils import measure_runtime
|
||||
|
||||
|
||||
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shape):
|
||||
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
|
||||
def scatter(dst, x, idx):
|
||||
dst[idx] = x
|
||||
dst[*idx] = x
|
||||
mx.eval(dst)
|
||||
|
||||
idx = mx.random.randint(0, dst_shape[0] - 1, idx_shape)
|
||||
idx = []
|
||||
for idx_shape in idx_shapes:
|
||||
idx.append(mx.random.randint(0, dst_shape[0] - 1, idx_shape))
|
||||
x = mx.random.normal(x_shape).astype(mx.float32)
|
||||
dst = mx.random.normal(dst_shape).astype(mx.float32)
|
||||
|
||||
@@ -20,13 +22,15 @@ def benchmark_scatter_mlx(dst_shape, x_shape, idx_shape):
|
||||
print(f"MLX: {runtime:.3f}ms")
|
||||
|
||||
|
||||
def benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device):
|
||||
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
|
||||
def gather(dst, x, idx, device):
|
||||
dst[idx] = x
|
||||
dst[*idx] = x
|
||||
if device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
|
||||
idx = torch.randint(0, dst_shape[0] - 1, idx_shape).to(device)
|
||||
idx = []
|
||||
for idx_shape in idx_shapes:
|
||||
idx.append(torch.randint(0, dst_shape[0] - 1, idx_shape).to(device))
|
||||
x = torch.randn(x_shape, dtype=torch.float32).to(device)
|
||||
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
|
||||
|
||||
@@ -45,9 +49,45 @@ if __name__ == "__main__":
|
||||
else:
|
||||
device = torch.device("mps")
|
||||
|
||||
dst_shapes = [(10, 64), (100_000, 64), (1_000_000, 64)]
|
||||
idx_shapes = [(1_000_000,), (1_000_000,), (100_000,)]
|
||||
x_shapes = [(1_000_000, 64), (1_000_000, 64), (100_000, 64)]
|
||||
dst_shapes = [
|
||||
(10, 64),
|
||||
(100_000, 64),
|
||||
(1_000_000, 64),
|
||||
(100_000,),
|
||||
(2_000_00,),
|
||||
(20_000_000,),
|
||||
(10000, 64),
|
||||
(100, 64),
|
||||
(100, 10_000, 64),
|
||||
(10, 100, 100, 21),
|
||||
(1_000, 1_000, 10),
|
||||
]
|
||||
idx_shapes = [
|
||||
[(1_000_000,)],
|
||||
[(1_000_000,)],
|
||||
[(100_000,)],
|
||||
[(1_000_000,)],
|
||||
[(20_000_000,)],
|
||||
[(20_000_000,)],
|
||||
[(1000000,)],
|
||||
[(10000000,)],
|
||||
[(1_000,)],
|
||||
[(10_000,)],
|
||||
[(1_000,), (1_000,)],
|
||||
]
|
||||
x_shapes = [
|
||||
(1_000_000, 64),
|
||||
(1_000_000, 64),
|
||||
(100_000, 64),
|
||||
(1_000_000,),
|
||||
(20_000_000,),
|
||||
(20_000_000,),
|
||||
(1000000, 64),
|
||||
(10000000, 64),
|
||||
(1_000, 10_000, 64),
|
||||
(10_000, 100, 100, 21),
|
||||
(1_000, 10),
|
||||
]
|
||||
|
||||
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
|
||||
print("=" * 20)
|
||||
|
@@ -6,7 +6,11 @@ import mlx.core as mx
|
||||
|
||||
|
||||
def time_fn(fn, *args, **kwargs):
|
||||
print(f"Timing {fn.__name__} ...", end=" ")
|
||||
msg = kwargs.pop("msg", None)
|
||||
if msg:
|
||||
print(f"Timing {msg} ...", end=" ")
|
||||
else:
|
||||
print(f"Timing {fn.__name__} ...", end=" ")
|
||||
|
||||
# warmup
|
||||
for _ in range(5):
|
||||
|
36
cmake/metal.14.0.diff
Normal file
36
cmake/metal.14.0.diff
Normal file
@@ -0,0 +1,36 @@
|
||||
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
|
||||
--- Metal/MTLEvent.hpp 2023-06-01 12:18:26
|
||||
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:36:59
|
||||
@@ -62,6 +62,7 @@
|
||||
|
||||
uint64_t signaledValue() const;
|
||||
void setSignaledValue(uint64_t signaledValue);
|
||||
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
|
||||
};
|
||||
|
||||
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
|
||||
@@ -138,6 +139,11 @@
|
||||
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
|
||||
{
|
||||
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
|
||||
+}
|
||||
+
|
||||
+// method: waitUntilSignaledValue
|
||||
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
|
||||
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
|
||||
}
|
||||
|
||||
// static method: alloc
|
||||
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
|
||||
--- Metal/MTLHeaderBridge.hpp 2023-06-01 12:18:26
|
||||
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:37:29
|
||||
@@ -1906,6 +1906,9 @@
|
||||
"setShouldMaximizeConcurrentCompilation:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
|
||||
"setSignaledValue:");
|
||||
+_MTL_PRIVATE_DEF_SEL(
|
||||
+ waitUntilSignaledValue_timeoutMS_,
|
||||
+ "waitUntilSignaledValue:timeoutMS:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSize_,
|
||||
"setSize:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSlice_,
|
36
cmake/metal.14.2.diff
Normal file
36
cmake/metal.14.2.diff
Normal file
@@ -0,0 +1,36 @@
|
||||
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
|
||||
--- Metal/MTLEvent.hpp 2024-04-15 07:12:10
|
||||
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:15:50
|
||||
@@ -62,6 +62,7 @@
|
||||
|
||||
uint64_t signaledValue() const;
|
||||
void setSignaledValue(uint64_t signaledValue);
|
||||
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
|
||||
};
|
||||
|
||||
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
|
||||
@@ -138,6 +139,11 @@
|
||||
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
|
||||
{
|
||||
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
|
||||
+}
|
||||
+
|
||||
+// method: waitUntilSignaledValue
|
||||
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
|
||||
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
|
||||
}
|
||||
|
||||
// static method: alloc
|
||||
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
|
||||
--- Metal/MTLHeaderBridge.hpp 2024-04-15 07:12:10
|
||||
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:16:15
|
||||
@@ -1918,6 +1918,9 @@
|
||||
"setShouldMaximizeConcurrentCompilation:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
|
||||
"setSignaledValue:");
|
||||
+_MTL_PRIVATE_DEF_SEL(
|
||||
+ waitUntilSignaledValue_timeoutMS_,
|
||||
+ "waitUntilSignaledValue:timeoutMS:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSize_,
|
||||
"setSize:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSlice_,
|
50
docs/Doxyfile
Normal file
50
docs/Doxyfile
Normal file
@@ -0,0 +1,50 @@
|
||||
################################################################################
|
||||
# Primary project setup. #
|
||||
################################################################################
|
||||
|
||||
PROJECT_NAME = "MLX"
|
||||
OUTPUT_DIRECTORY = build
|
||||
XML_OUTPUT = xml
|
||||
HTML_OUTPUT = html
|
||||
STRIP_FROM_PATH = ../
|
||||
INPUT = ../mlx
|
||||
FILE_PATTERNS = *.h
|
||||
EXCLUDE_PATTERNS = */private/*
|
||||
CREATE_SUBDIRS = NO
|
||||
FULL_PATH_NAMES = YES
|
||||
RECURSIVE = YES
|
||||
GENERATE_HTML = YES
|
||||
GENERATE_LATEX = NO
|
||||
GENERATE_XML = YES
|
||||
XML_PROGRAMLISTING = YES
|
||||
|
||||
################################################################################
|
||||
# Doxygen preprocessor / parser control. #
|
||||
################################################################################
|
||||
|
||||
ENABLE_PREPROCESSING = YES
|
||||
MACRO_EXPANSION = YES
|
||||
EXPAND_ONLY_PREDEF = NO
|
||||
SKIP_FUNCTION_MACROS = NO
|
||||
|
||||
################################################################################
|
||||
# Compound extraction control. #
|
||||
################################################################################
|
||||
|
||||
EXTRACT_ALL = YES
|
||||
EXTRACT_PACKAGE = YES
|
||||
EXTRACT_STATIC = YES
|
||||
CASE_SENSE_NAMES = NO
|
||||
|
||||
################################################################################
|
||||
# Docstring control / customization. #
|
||||
################################################################################
|
||||
|
||||
JAVADOC_AUTOBRIEF = YES
|
||||
|
||||
################################################################################
|
||||
# Warning suppression. #
|
||||
################################################################################
|
||||
|
||||
QUIET = YES
|
||||
WARN_IF_UNDOCUMENTED = NO
|
@@ -2,12 +2,16 @@
|
||||
|
||||
### Setup (do once)
|
||||
|
||||
Install [sphinx](https://www.sphinx-doc.org/en/master/usage/installation.html)
|
||||
for example with `conda`:
|
||||
Install Doxygen:
|
||||
|
||||
```
|
||||
conda install sphinx
|
||||
pip install sphinx-book-theme
|
||||
brew install doxygen
|
||||
```
|
||||
|
||||
Install Python packages:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Build
|
||||
@@ -15,7 +19,7 @@ pip install sphinx-book-theme
|
||||
Build the docs from `mlx/docs/`
|
||||
|
||||
```
|
||||
make html
|
||||
doxygen && make html
|
||||
```
|
||||
|
||||
View the docs by running a server in `mlx/docs/build/html/`:
|
||||
|
3
docs/requirements.txt
Normal file
3
docs/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 746 KiB |
Binary file not shown.
Before Width: | Height: | Size: 7.2 KiB After Width: | Height: | Size: 76 KiB |
BIN
docs/src/_static/mlx_logo_dark.png
Normal file
BIN
docs/src/_static/mlx_logo_dark.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
20
docs/src/_templates/nn-module-template.rst
Normal file
20
docs/src/_templates/nn-module-template.rst
Normal file
@@ -0,0 +1,20 @@
|
||||
{{ fullname | escape | underline}}
|
||||
|
||||
.. currentmodule:: {{ module }}
|
||||
|
||||
.. autoclass:: {{ objname }}
|
||||
|
||||
{% block methods %}
|
||||
|
||||
{% if methods %}
|
||||
.. rubric:: {{ _('Methods') }}
|
||||
|
||||
.. autosummary::
|
||||
{% for item in methods %}
|
||||
{%- if item not in inherited_members and item != "__init__" %}
|
||||
~{{ name }}.{{ item }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
||||
|
@@ -22,6 +22,7 @@ extensions = [
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.napoleon",
|
||||
"breathe",
|
||||
]
|
||||
|
||||
python_use_unqualified_type_names = True
|
||||
@@ -29,16 +30,20 @@ autosummary_generate = True
|
||||
autosummary_filename_map = {"mlx.core.Stream": "stream_class"}
|
||||
|
||||
intersphinx_mapping = {
|
||||
"https://docs.python.org/3": None,
|
||||
"https://numpy.org/doc/stable/": None,
|
||||
"python": ("https://docs.python.org/3", None),
|
||||
"numpy": ("https://numpy.org/doc/stable/", None),
|
||||
}
|
||||
|
||||
breathe_projects = {"mlx": "../build/xml"}
|
||||
breathe_default_project = "mlx"
|
||||
|
||||
templates_path = ["_templates"]
|
||||
html_static_path = ["_static"]
|
||||
source_suffix = ".rst"
|
||||
master_doc = "index"
|
||||
main_doc = "index"
|
||||
highlight_language = "python"
|
||||
pygments_style = "sphinx"
|
||||
add_module_names = False
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
@@ -49,11 +54,32 @@ html_theme_options = {
|
||||
"repository_url": "https://github.com/ml-explore/mlx",
|
||||
"use_repository_button": True,
|
||||
"navigation_with_keys": False,
|
||||
"logo": {
|
||||
"image_light": "_static/mlx_logo.png",
|
||||
"image_dark": "_static/mlx_logo_dark.png",
|
||||
},
|
||||
}
|
||||
|
||||
html_logo = "_static/mlx_logo.png"
|
||||
|
||||
|
||||
# -- Options for HTMLHelp output ---------------------------------------------
|
||||
|
||||
htmlhelp_basename = "mlx_doc"
|
||||
|
||||
|
||||
def setup(app):
|
||||
from sphinx.util import inspect
|
||||
|
||||
wrapped_isfunc = inspect.isfunction
|
||||
|
||||
def isfunc(obj):
|
||||
type_name = str(type(obj))
|
||||
if "nanobind.nb_method" in type_name or "nanobind.nb_func" in type_name:
|
||||
return True
|
||||
return wrapped_isfunc(obj)
|
||||
|
||||
inspect.isfunction = isfunc
|
||||
|
||||
|
||||
# -- Options for LaTeX output ------------------------------------------------
|
||||
|
||||
latex_documents = [(main_doc, "MLX.tex", "MLX Documentation", author, "manual")]
|
||||
|
@@ -3,4 +3,5 @@
|
||||
Operations
|
||||
==========
|
||||
|
||||
|
||||
.. doxygengroup:: ops
|
||||
:content-only:
|
||||
|
@@ -1,24 +1,16 @@
|
||||
Developer Documentation
|
||||
=======================
|
||||
|
||||
MLX provides a open and flexible backend to which users may add operations
|
||||
and specialized implementations without much hassle. While the library supplies
|
||||
efficient operations that can be used and composed for any number of
|
||||
applications, there may arise cases where new functionalities or highly
|
||||
optimized implementations are needed. For such cases, you may design and
|
||||
implement your own operations that link to and build on top of :mod:`mlx.core`.
|
||||
We will introduce the inner-workings of MLX and go over a simple example to
|
||||
learn the steps involved in adding new operations to MLX with your own CPU
|
||||
and GPU implementations.
|
||||
You can extend MLX with custom operations on the CPU or GPU. This guide
|
||||
explains how to do that with a simple example.
|
||||
|
||||
Introducing the Example
|
||||
-----------------------
|
||||
|
||||
Let's say that you would like an operation that takes in two arrays,
|
||||
``x`` and ``y``, scales them both by some coefficients ``alpha`` and ``beta``
|
||||
respectively, and then adds them together to get the result
|
||||
``z = alpha * x + beta * y``. Well, you can very easily do that by just
|
||||
writing out a function as follows:
|
||||
Let's say you would like an operation that takes in two arrays, ``x`` and
|
||||
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
||||
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
||||
You can do that in MLX directly:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -27,44 +19,35 @@ writing out a function as follows:
|
||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||
return alpha * x + beta * y
|
||||
|
||||
This function performs that operation while leaving the implementations and
|
||||
differentiation to MLX.
|
||||
This function performs that operation while leaving the implementation and
|
||||
function transformations to MLX.
|
||||
|
||||
However, you work with vector math libraries often and realize that the
|
||||
``axpby`` routine defines the same operation ``Y = (alpha * X) + (beta * Y)``.
|
||||
You would really like the part of your applications that does this operation
|
||||
on the CPU to be very fast - so you decide that you want it to rely on the
|
||||
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
|
||||
our assumptions on to you, let's also assume that you want to learn how to add
|
||||
your own implementation for the gradients of your new operation while going
|
||||
over the ins-and-outs of the MLX framework.
|
||||
However you may need to customize the underlying implementation, perhaps to
|
||||
make it faster or for custom differentiation. In this tutorial we will go
|
||||
through adding custom extensions. It will cover:
|
||||
|
||||
Well, what a coincidence! You are in the right place. Over the course of this
|
||||
example, we will learn:
|
||||
|
||||
* The structure of the MLX library from the frontend API to the backend implementations.
|
||||
* How to implement your own CPU backend that redirects to Accelerate_ when appropriate (and a fallback if needed).
|
||||
* How to implement your own GPU implementation using metal.
|
||||
* How to add your own ``vjp`` and ``jvp``.
|
||||
* How to build your implementations, link them to MLX, and bind them to python.
|
||||
* The structure of the MLX library.
|
||||
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||
* Implementing a GPU operation using metal.
|
||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||
* Building a custom extension and binding it to python.
|
||||
|
||||
Operations and Primitives
|
||||
-------------------------
|
||||
|
||||
In one sentence, operations in MLX build the computation graph, and primitives
|
||||
provide the rules for evaluation and transformations of said graph. Let's start
|
||||
by discussing operations in more detail.
|
||||
Operations in MLX build the computation graph. Primitives provide the rules for
|
||||
evaluating and transforming the graph. Let's start by discussing operations in
|
||||
more detail.
|
||||
|
||||
Operations
|
||||
^^^^^^^^^^^
|
||||
|
||||
Operations are the frontend functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`) and then we provide bindings to these
|
||||
operations in the Python API (:ref:`ops`).
|
||||
Operations are the front-end functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and ``y``,
|
||||
and two scalars, ``alpha`` and ``beta``. This is how we would define it in the
|
||||
C++ API:
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||
C++:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -83,10 +66,7 @@ C++ API:
|
||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||
);
|
||||
|
||||
|
||||
This operation itself can call other operations within it if needed. So, the
|
||||
simplest way to go about implementing this operation would be do so in terms
|
||||
of existing operations.
|
||||
The simplest way to this operation is in terms of existing operations:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -100,25 +80,23 @@ of existing operations.
|
||||
// Scale x and y on the provided stream
|
||||
auto ax = multiply(array(alpha), x, s);
|
||||
auto by = multiply(array(beta), y, s);
|
||||
|
||||
|
||||
// Add and return
|
||||
return add(ax, by, s);
|
||||
}
|
||||
|
||||
However, as we discussed earlier, this is not our goal. The operations themselves
|
||||
do not contain the implementations that act on the data, nor do they contain the
|
||||
rules of transformations. Rather, they are an easy to use interface that build
|
||||
on top of the building blocks we call :class:`Primitive`.
|
||||
The operations themselves do not contain the implementations that act on the
|
||||
data, nor do they contain the rules of transformations. Rather, they are an
|
||||
easy to use interface that use :class:`Primitive` building blocks.
|
||||
|
||||
Primitives
|
||||
^^^^^^^^^^^
|
||||
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create an output given a set of input :class:`array` . Further,
|
||||
a :class:`Primitive` is a class that contains rules on how it is evaluated
|
||||
on the CPU or GPU, and how it acts under transformations such as ``vjp`` and
|
||||
``jvp``. These words on their own can be a bit abstract, so lets take a step
|
||||
back and go to our example to give ourselves a more concrete image.
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create outputs arrays given a input arrays. Further, a
|
||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||
more concrete:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -134,11 +112,15 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_gpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
void eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array jvp(
|
||||
std::vector<array> jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) override;
|
||||
@@ -147,7 +129,8 @@ back and go to our example to give ourselves a more concrete image.
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) override;
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
/**
|
||||
* The primitive must know how to vectorize itself across
|
||||
@@ -155,7 +138,7 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<array, int> vmap(
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
@@ -175,22 +158,22 @@ back and go to our example to give ourselves a more concrete image.
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
};
|
||||
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class and
|
||||
follows the above demonstrated interface. :class:`Axpby` treats ``alpha`` and
|
||||
``beta`` as parameters. It then provides implementations of how the array ``out``
|
||||
is produced given ``inputs`` through :meth:`Axpby::eval_cpu` and
|
||||
:meth:`Axpby::eval_gpu`. Further, it provides rules of transformations in
|
||||
:meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and :meth:`Axpby::vmap`.
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
||||
implementations of how the output array is produced given the inputs through
|
||||
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
||||
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
||||
:meth:`Axpby::vmap`.
|
||||
|
||||
Using the Primitives
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
Using the Primitive
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to
|
||||
the computation graph. An :class:`array` can be constructed by providing its
|
||||
data type, shape, the :class:`Primitive` that computes it, and the
|
||||
:class:`array` inputs that are passed to the primitive.
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
||||
computation graph. An :class:`array` can be constructed by providing its data
|
||||
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
||||
inputs that are passed to the primitive.
|
||||
|
||||
Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -223,7 +206,7 @@ Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
@@ -238,27 +221,26 @@ This operation now handles the following:
|
||||
Implementing the Primitive
|
||||
--------------------------
|
||||
|
||||
No computation happens when we call the operation alone. In effect, the
|
||||
operation only builds the computation graph. When we evaluate the output
|
||||
array, MLX schedules the execution of the computation graph, and calls
|
||||
:meth:`Axpby::eval_cpu` or :meth:`Axpby::eval_gpu` depending on the
|
||||
stream/device specified by the user.
|
||||
No computation happens when we call the operation alone. The operation only
|
||||
builds the computation graph. When we evaluate the output array, MLX schedules
|
||||
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
||||
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
||||
|
||||
.. warning::
|
||||
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
||||
no memory has been allocated for the output array. It falls on the implementation
|
||||
of these functions to allocate memory as needed
|
||||
of these functions to allocate memory as needed.
|
||||
|
||||
Implementing the CPU Backend
|
||||
Implementing the CPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Let's start by trying to implement a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
Let's start by implementing a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -296,19 +278,19 @@ pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
}
|
||||
}
|
||||
|
||||
Now, we would like our implementation to be able to do this pointwise operation
|
||||
for all incoming floating point arrays. Accordingly, we add dispatches for
|
||||
``float32``, ``float16``, ``bfloat16`` and ``complex64``. We throw an error
|
||||
if we encounter an unexpected type.
|
||||
Our implementation should work for all incoming floating point arrays.
|
||||
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
``complex64``. We throw an error if we encounter an unexpected type.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(const std::vector<array>& inputs, array& out) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -321,28 +303,26 @@ if we encounter an unexpected type.
|
||||
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
"[Axpby] Only supports floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
We have a fallback implementation! Now, to do what we are really here to do.
|
||||
Remember we wanted to use the ``axpby`` routine provided by the Accelerate_
|
||||
framework? Well, there are 3 complications to keep in mind:
|
||||
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||
provided by the Accelerate_ framework for a faster implementation in certain
|
||||
cases:
|
||||
|
||||
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||
floats. We can only direct to it for ``float32`` types
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all elements
|
||||
have fixed strides between them. Possibly due to broadcasts and transposes,
|
||||
we aren't guaranteed that the inputs fit this requirement. We can
|
||||
only direct to Accelerate if both ``x`` and ``y`` are row contiguous or
|
||||
column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` inplace.
|
||||
MLX expects to write out the answer to a new array. We must copy the elements
|
||||
of ``y`` into the output array and use that as an input to ``axpby``
|
||||
floats. We can only use it for ``float32`` types.
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||
elements have fixed strides between them. We only direct to Accelerate
|
||||
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||
MLX expects to write the output to a new array. We must copy the elements
|
||||
of ``y`` into the output and use that as an input to ``axpby``.
|
||||
|
||||
Let's write out an implementation that uses Accelerate in the right conditions.
|
||||
It must simply allocate data for the output, copy elements of ``y`` into it,
|
||||
and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
Let's write an implementation that uses Accelerate in the right conditions.
|
||||
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||
:func:`catlas_saxpby` from accelerate.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -356,17 +336,7 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
|
||||
// This specialization requires both x and y be contiguous in the same mode
|
||||
// i.e: corresponding linear indices in both point to corresponding elements
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -389,18 +359,20 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
Great! But what about the inputs that do not fit the criteria for accelerate?
|
||||
Luckily, we can always just direct back to :meth:`Axpby::eval`.
|
||||
|
||||
With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||
:meth:`Axpby::eval_cpu`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -410,35 +382,33 @@ With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, out);
|
||||
// Fall back to common back-end if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
We have now hit a milestone! Just this much is enough to run the operation
|
||||
:meth:`axpby` on a CPU stream!
|
||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||
you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
If you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
Implementing the GPU Backend
|
||||
Implementing the GPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
all GPU kernels in MLX are written using metal.
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
GPU kernels in MLX are written using Metal.
|
||||
|
||||
.. note::
|
||||
|
||||
Here are some helpful resources if you are new to metal!
|
||||
Here are some helpful resources if you are new to Metal:
|
||||
|
||||
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
||||
* Documentation for metal shading language: `Metal Specification`_
|
||||
* Using metal from C++: `Metal-cpp`_
|
||||
|
||||
Let's keep the GPU algorithm simple. We will launch exactly as many threads
|
||||
as there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the pointwise operation, and then update its assigned
|
||||
element in the output.
|
||||
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
||||
there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
||||
element in the output.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -457,15 +427,14 @@ element in the output.
|
||||
// Convert linear indices to offsets in array
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
||||
|
||||
|
||||
// Do the operation and update the output
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
||||
}
|
||||
|
||||
We then need to instantiate this template for all floating point types and give
|
||||
each instantiation a unique host name so we can identify the right kernel for
|
||||
each data type.
|
||||
each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -488,29 +457,21 @@ each data type.
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
|
||||
This kernel will be compiled into a metal library ``mlx_ext.metallib`` as we
|
||||
will see later in :ref:`Building with CMake`. In the following example, we
|
||||
assume that the library ``mlx_ext.metallib`` will always be co-located with
|
||||
the executable/ shared-library calling the :meth:`register_library` function.
|
||||
The :meth:`register_library` function takes the library's name and potential
|
||||
path (or in this case, a function that can produce the path of the metal
|
||||
library) and tries to load that library if it hasn't already been registered
|
||||
by the relevant static :class:`mlx::core::metal::Device` object. This is why,
|
||||
it is important to package your C++ library with the metal library. We will
|
||||
go over this process in more detail later.
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions
|
||||
and dispatch it to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
below.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -518,10 +479,10 @@ below.
|
||||
// We get the needed metal device using the stream
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
// Allocate output memory
|
||||
// Allocate output memory
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
@@ -552,7 +513,7 @@ below.
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
|
||||
// Encode shape, strides and ndim
|
||||
// Encode shape, strides and ndim
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
@@ -575,28 +536,25 @@ below.
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
||||
A few things to note about MLX and metal before moving on. MLX keeps track
|
||||
of the active ``compute_encoder``. We rely on :meth:`d.get_command_encoder`
|
||||
to give us the active metal compute command encoder instead of building a
|
||||
new one and calling :meth:`compute_encoder->end_encoding` at the end.
|
||||
MLX keeps adding kernels (compute pipelines) to the active command encoder
|
||||
until some specified limit is hit or the compute encoder needs to be flushed
|
||||
for synchronization. MLX also handles enqueuing and committing the associated
|
||||
command buffers as needed. We suggest taking a deeper dive into
|
||||
:class:`metal::Device` if you would like to study this routine further.
|
||||
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
||||
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
||||
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
||||
metal compute command encoder instead of building a new one and calling
|
||||
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
||||
pipelines) to the active command buffer until some specified limit is hit or
|
||||
the command buffer needs to be flushed for synchronization.
|
||||
|
||||
Primitive Transforms
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Now that we have come this far, let's also learn how to add implementations to
|
||||
transformations in a :class:`Primitive`. These transformations can be built on
|
||||
top of our operations, including the one we just defined now. Which then gives
|
||||
us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
Next, let's add implementations for transformations in a :class:`Primitive`.
|
||||
These transformations can be built on top of other operations, including the
|
||||
one we just defined:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array Axpby::jvp(
|
||||
std::vector<array> Axpby::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
@@ -611,12 +569,12 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
if (argnums.size() > 1) {
|
||||
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return multiply(scale_arr, tangents[0], stream());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -625,34 +583,35 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> Axpby::vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) {
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<int>& /* unused */) {
|
||||
// Reverse mode diff
|
||||
std::vector<array> vjps;
|
||||
for (auto arg : argnums) {
|
||||
auto scale = arg == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, cotan.dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotan, stream()));
|
||||
auto scale_arr = array(scale, cotangents[0].dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
||||
}
|
||||
return vjps;
|
||||
}
|
||||
|
||||
Finally, you need not have a transformation fully defined to start using your
|
||||
own :class:`Primitive`.
|
||||
Note, a transformation does not need to be fully defined to start using
|
||||
the :class:`Primitive`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Vectorize primitive along given axis */
|
||||
std::pair<array, int> Axpby::vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
throw std::runtime_error("Axpby has no vmap implementation.");
|
||||
throw std::runtime_error("[Axpby] vmap not implemented.");
|
||||
}
|
||||
|
||||
Building and Binding
|
||||
--------------------
|
||||
|
||||
Let's look at the overall directory structure first.
|
||||
Let's look at the overall directory structure first.
|
||||
|
||||
| extensions
|
||||
| ├── axpby
|
||||
@@ -666,40 +625,39 @@ Let's look at the overall directory structure first.
|
||||
| └── setup.py
|
||||
|
||||
* ``extensions/axpby/`` defines the C++ extension library
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated python package
|
||||
* ``extensions/bindings.cpp`` provides python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
python bindings
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated Python package
|
||||
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
Python bindings
|
||||
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
||||
the python package
|
||||
the Python package
|
||||
|
||||
Binding to Python
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We use PyBind11_ to build a Python API for the C++ library. Since bindings for
|
||||
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
||||
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
||||
already provided, adding our :meth:`axpby` is simple!
|
||||
already provided, adding our :meth:`axpby` is simple.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -711,17 +669,17 @@ already provided, adding our :meth:`axpby` is simple!
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
)");
|
||||
}
|
||||
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
whistles such as the literal names and doc-strings.
|
||||
|
||||
.. warning::
|
||||
|
||||
:mod:`mlx.core` needs to be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the pybind11 module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:mod:`mlx.core` must be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:class:`mlx.core.array` are available.
|
||||
|
||||
.. _Building with CMake:
|
||||
@@ -729,8 +687,8 @@ whistles such as the literal names and doc-strings.
|
||||
Building with CMake
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Building the C++ extension library itself is simple, it only requires that you
|
||||
``find_package(MLX CONFIG)`` and then link it to your library.
|
||||
Building the C++ extension library only requires that you ``find_package(MLX
|
||||
CONFIG)`` and then link it to your library.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -752,12 +710,12 @@ Building the C++ extension library itself is simple, it only requires that you
|
||||
# Link to mlx
|
||||
target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
We also need to build the attached metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
We also need to build the attached Metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
|
||||
Here is what that looks like in practice!
|
||||
Here is what that looks like in practice:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -779,27 +737,29 @@ Here is what that looks like in practice!
|
||||
|
||||
endif()
|
||||
|
||||
Finally, we build the Pybind11_ bindings
|
||||
Finally, we build the nanobind_ bindings
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
||||
Building with ``setuptools``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Once we have set out the CMake build rules as described above, we can use the
|
||||
build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
build utilities defined in :mod:`mlx.extension`:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
from mlx import extension
|
||||
from setuptools import setup
|
||||
@@ -809,48 +769,50 @@ build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages = ["mlx_sample_extensions"],
|
||||
package_dir = {"": "mlx_sample_extensions"},
|
||||
package_data = {"mlx_sample_extensions" : ["*.so", "*.dylib", "*.metallib"]},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev":[]},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.7",
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
||||
.. note::
|
||||
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
||||
even though it only contains a ``__init__.py`` to ensure the following:
|
||||
|
||||
* :mod:`mlx.core` is always imported before importing :mod:`mlx_sample_extensions`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
You can build inplace for development using
|
||||
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
To build the package, first install the build dependencies with ``pip install
|
||||
-r requirements.txt``. You can then build inplace for development using
|
||||
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
||||
|
||||
This will result in a directory structure as follows:
|
||||
This results in the directory structure:
|
||||
|
||||
| extensions
|
||||
| ├── mlx_sample_extensions
|
||||
| │ ├── __init__.py
|
||||
| │ ├── libmlx_ext.dylib # C++ extension library
|
||||
| │ ├── mlx_ext.metallib # Metal library
|
||||
| │ └── mlx_sample_extensions.cpython-3x-darwin.so # Python Binding
|
||||
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
||||
| ...
|
||||
|
||||
When you try to install using the command ``python -m pip install .``
|
||||
(in ``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and metal library will be
|
||||
copied along with the python binding since they are specified as ``package_data``.
|
||||
When you try to install using the command ``python -m pip install .`` (in
|
||||
``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
||||
copied along with the Python binding since they are specified as
|
||||
``package_data``.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the python package and play with it as you would any other MLX operation!
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the Python package and play with it as you would any other MLX operation.
|
||||
|
||||
Let's looks at a simple script and it's results!
|
||||
Let's look at a simple script and its results:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -874,12 +836,12 @@ Output:
|
||||
c correctness: True
|
||||
|
||||
Results
|
||||
^^^^^^^^^^^^^^^^
|
||||
^^^^^^^
|
||||
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_sample_extensions import axpby
|
||||
@@ -898,7 +860,7 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
alpha = 4.0
|
||||
beta = 2.0
|
||||
|
||||
mx.eval((x, y))
|
||||
mx.eval(x, y)
|
||||
|
||||
def bench(f):
|
||||
# Warm up
|
||||
@@ -919,30 +881,23 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
|
||||
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||
|
||||
Results:
|
||||
|
||||
.. code-block::
|
||||
|
||||
Simple axpby: 0.114 s | Custom axpby: 0.109 s
|
||||
|
||||
We see some modest improvements right away!
|
||||
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||
modest improvements right away!
|
||||
|
||||
This operation is now good to be used to build other operations, in
|
||||
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
||||
:meth:`grad`!
|
||||
:meth:`grad`.
|
||||
|
||||
Scripts
|
||||
-------
|
||||
|
||||
.. admonition:: Download the code
|
||||
|
||||
The full example code is available in `mlx <code>`_.
|
||||
|
||||
.. code: `https://github.com/ml-explore/mlx/tree/main/examples/extensions/`_
|
||||
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
||||
|
||||
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
||||
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
||||
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
||||
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
||||
.. _PyBind11: https://pybind11.readthedocs.io/en/stable/
|
||||
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|
||||
|
68
docs/src/dev/metal_debugger.rst
Normal file
68
docs/src/dev/metal_debugger.rst
Normal file
@@ -0,0 +1,68 @@
|
||||
Metal Debugger
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Profiling is a key step for performance optimization. You can build MLX with
|
||||
the ``MLX_METAL_DEBUG`` option to improve the Metal debugging and
|
||||
optimization workflow. The ``MLX_METAL_DEBUG`` debug option:
|
||||
|
||||
* Records source during Metal compilation, for later inspection while
|
||||
debugging.
|
||||
* Labels Metal objects such as command queues, improving capture readability.
|
||||
|
||||
To build with debugging enabled in Python prepend
|
||||
``CMAKE_ARGS="-DMLX_METAL_DEBUG=ON"`` to the build call.
|
||||
|
||||
The :func:`metal.start_capture` function initiates a capture of all MLX GPU
|
||||
work.
|
||||
|
||||
.. note::
|
||||
|
||||
To capture a GPU trace you must run the application with
|
||||
``MTL_CAPTURE_ENABLED=1``.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
a = mx.random.uniform(shape=(512, 512))
|
||||
b = mx.random.uniform(shape=(512, 512))
|
||||
mx.eval(a, b)
|
||||
|
||||
trace_file = "mlx_trace.gputrace"
|
||||
|
||||
# Make sure to run with MTL_CAPTURE_ENABLED=1 and
|
||||
# that the path trace_file does not already exist.
|
||||
mx.metal.start_capture(trace_file)
|
||||
|
||||
for _ in range(10):
|
||||
mx.eval(mx.add(a, b))
|
||||
|
||||
mx.metal.stop_capture()
|
||||
|
||||
You can open and replay the GPU trace in Xcode. The ``Dependencies`` view
|
||||
has a great overview of all operations. Checkout the `Metal debugger
|
||||
documentation`_ for more information.
|
||||
|
||||
.. image:: ../_static/metal_debugger/capture.png
|
||||
:class: dark-light
|
||||
|
||||
Xcode Workflow
|
||||
--------------
|
||||
|
||||
You can skip saving to a path by running within Xcode. First, generate an
|
||||
Xcode project using CMake.
|
||||
|
||||
.. code-block::
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -DMLX_METAL_DEBUG=ON -G Xcode
|
||||
open mlx.xcodeproj
|
||||
|
||||
Select the ``metal_capture`` example schema and run.
|
||||
|
||||
.. image:: ../_static/metal_debugger/schema.png
|
||||
:class: dark-light
|
||||
|
||||
.. _`Metal debugger documentation`: https://developer.apple.com/documentation/xcode/metal-debugger
|
@@ -58,12 +58,15 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
python/array
|
||||
python/data_types
|
||||
python/devices_and_streams
|
||||
python/ops
|
||||
python/random
|
||||
python/transforms
|
||||
python/fast
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/nn
|
||||
python/optimizers
|
||||
python/tree_utils
|
||||
@@ -79,3 +82,4 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
dev/extensions
|
||||
dev/metal_debugger
|
||||
|
@@ -15,10 +15,10 @@ To install from PyPI you must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.8
|
||||
- macOS >= 13.3
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
MLX is only available on devices running macOS >= 13.3
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ Build Requirements
|
||||
|
||||
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
|
||||
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
|
||||
- Xcode >= 14.3 (Xcode >= 15.0 for macOS 14 and above)
|
||||
- Xcode >= 15.0 and macOS SDK >= 14.0
|
||||
|
||||
.. note::
|
||||
Ensure your shell environment is native ``arm``, not ``x86`` via Rosetta. If
|
||||
@@ -70,16 +70,13 @@ To build and install the MLX python library from source, first, clone MLX from
|
||||
|
||||
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
|
||||
|
||||
Make sure that you have `pybind11 <https://pybind11.readthedocs.io/en/stable/index.html>`_
|
||||
installed. You can install ``pybind11`` with ``pip``, ``brew`` or ``conda`` as follows:
|
||||
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install "pybind11[global]"
|
||||
conda install pybind11
|
||||
brew install pybind11
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
||||
Then simply build and install it using pip:
|
||||
Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
@@ -123,7 +120,7 @@ Create a build directory and run CMake and make:
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. && make -j
|
||||
cmake .. && make -j
|
||||
|
||||
Run tests with:
|
||||
|
||||
@@ -142,7 +139,7 @@ directory as the executable statically linked to ``libmlx.a`` or the
|
||||
preprocessor constant ``METAL_PATH`` should be defined at build time and it
|
||||
should point to the path to the built metal library.
|
||||
|
||||
.. list-table:: Build Options
|
||||
.. list-table:: Build Options
|
||||
:widths: 25 8
|
||||
:header-rows: 1
|
||||
|
||||
@@ -158,19 +155,21 @@ should point to the path to the built metal library.
|
||||
- ON
|
||||
* - MLX_BUILD_PYTHON_BINDINGS
|
||||
- OFF
|
||||
* - MLX_METAL_DEBUG
|
||||
- OFF
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export DEVELOPER_DIR="/path/to/Xcode.app/Contents/Developer/"
|
||||
|
||||
Further, you can use the following command to find out which
|
||||
Further, you can use the following command to find out which
|
||||
macOS SDK will be used
|
||||
|
||||
.. code-block:: shell
|
||||
@@ -202,7 +201,7 @@ Then set the active developer directory:
|
||||
|
||||
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
|
||||
|
||||
x86 Shell
|
||||
x86 Shell
|
||||
~~~~~~~~~
|
||||
|
||||
.. _build shell:
|
||||
|
@@ -10,27 +10,38 @@ Array
|
||||
|
||||
array
|
||||
array.astype
|
||||
array.at
|
||||
array.item
|
||||
array.tolist
|
||||
array.dtype
|
||||
array.itemsize
|
||||
array.nbytes
|
||||
array.ndim
|
||||
array.shape
|
||||
array.size
|
||||
Dtype
|
||||
array.abs
|
||||
array.all
|
||||
array.any
|
||||
array.argmax
|
||||
array.argmin
|
||||
array.cos
|
||||
array.dtype
|
||||
array.cummax
|
||||
array.cummin
|
||||
array.cumprod
|
||||
array.cumsum
|
||||
array.diag
|
||||
array.diagonal
|
||||
array.exp
|
||||
array.flatten
|
||||
array.log
|
||||
array.log10
|
||||
array.log1p
|
||||
array.log2
|
||||
array.logsumexp
|
||||
array.max
|
||||
array.mean
|
||||
array.min
|
||||
array.moveaxis
|
||||
array.prod
|
||||
array.reciprocal
|
||||
array.reshape
|
||||
@@ -40,6 +51,8 @@ Array
|
||||
array.split
|
||||
array.sqrt
|
||||
array.square
|
||||
array.squeeze
|
||||
array.swapaxes
|
||||
array.sum
|
||||
array.transpose
|
||||
array.T
|
||||
|
@@ -1,7 +1,5 @@
|
||||
.. _data_types:
|
||||
|
||||
:orphan:
|
||||
|
||||
Data Types
|
||||
==========
|
||||
|
||||
@@ -44,9 +42,27 @@ The default floating point type is ``float32`` and the default integer type is
|
||||
* - ``int64``
|
||||
- 8
|
||||
- 64-bit signed integer
|
||||
* - ``bfloat16``
|
||||
- 2
|
||||
- 16-bit brain float (e8, m7)
|
||||
* - ``float16``
|
||||
- 2
|
||||
- 16-bit float, only available with `ARM C language extensions <https://developer.arm.com/documentation/101028/0012/3--C-language-extensions?lang=en>`_
|
||||
- 16-bit IEEE float (e5, m10)
|
||||
* - ``float32``
|
||||
- 4
|
||||
- 32-bit float
|
||||
* - ``complex64``
|
||||
- 8
|
||||
- 64-bit complex float
|
||||
|
||||
|
||||
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
||||
documentation for more information. Use :func:`issubdtype` to determine if one
|
||||
``dtype`` (or category) is a subtype of another category.
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Dtype
|
||||
DtypeCategory
|
||||
issubdtype
|
||||
|
@@ -16,3 +16,4 @@ Devices and Streams
|
||||
new_stream
|
||||
set_default_stream
|
||||
stream
|
||||
synchronize
|
||||
|
14
docs/src/python/fast.rst
Normal file
14
docs/src/python/fast.rst
Normal file
@@ -0,0 +1,14 @@
|
||||
.. _fast:
|
||||
|
||||
Fast
|
||||
====
|
||||
|
||||
.. currentmodule:: mlx.core.fast
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
rms_norm
|
||||
layer_norm
|
||||
rope
|
||||
scaled_dot_product_attention
|
17
docs/src/python/metal.rst
Normal file
17
docs/src/python/metal.rst
Normal file
@@ -0,0 +1,17 @@
|
||||
Metal
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.metal
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
get_active_memory
|
||||
get_peak_memory
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
@@ -173,6 +173,7 @@ In detail:
|
||||
:toctree: _autosummary
|
||||
|
||||
value_and_grad
|
||||
quantize
|
||||
|
||||
.. toctree::
|
||||
|
||||
|
@@ -12,13 +12,24 @@ simple functions.
|
||||
:toctree: _autosummary_functions
|
||||
:template: nn-module-template.rst
|
||||
|
||||
elu
|
||||
gelu
|
||||
gelu_approx
|
||||
gelu_fast_approx
|
||||
glu
|
||||
hardswish
|
||||
leaky_relu
|
||||
log_sigmoid
|
||||
log_softmax
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu6
|
||||
selu
|
||||
softshrink
|
||||
sigmoid
|
||||
silu
|
||||
softmax
|
||||
softplus
|
||||
softshrink
|
||||
step
|
||||
tanh
|
||||
|
@@ -21,17 +21,21 @@ Layers
|
||||
Embedding
|
||||
GELU
|
||||
GroupNorm
|
||||
GRU
|
||||
InstanceNorm
|
||||
LayerNorm
|
||||
Linear
|
||||
LSTM
|
||||
MaxPool1d
|
||||
MaxPool2d
|
||||
Mish
|
||||
MultiHeadAttention
|
||||
PReLU
|
||||
QuantizedEmbedding
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
RNN
|
||||
RoPE
|
||||
SELU
|
||||
Sequential
|
||||
@@ -40,3 +44,4 @@ Layers
|
||||
Softshrink
|
||||
Step
|
||||
Transformer
|
||||
Upsample
|
||||
|
@@ -30,6 +30,7 @@ Module
|
||||
Module.named_modules
|
||||
Module.parameters
|
||||
Module.save_weights
|
||||
Module.set_dtype
|
||||
Module.train
|
||||
Module.trainable_parameters
|
||||
Module.unfreeze
|
||||
|
@@ -5,13 +5,13 @@ Operations
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autosummary::
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
abs
|
||||
add
|
||||
all
|
||||
allclose
|
||||
allclose
|
||||
any
|
||||
arange
|
||||
arccos
|
||||
@@ -25,6 +25,13 @@ Operations
|
||||
argpartition
|
||||
argsort
|
||||
array_equal
|
||||
atleast_1d
|
||||
atleast_2d
|
||||
atleast_3d
|
||||
bitwise_and
|
||||
bitwise_or
|
||||
bitwise_xor
|
||||
block_masked_mm
|
||||
broadcast_to
|
||||
ceil
|
||||
clip
|
||||
@@ -32,8 +39,14 @@ Operations
|
||||
convolve
|
||||
conv1d
|
||||
conv2d
|
||||
conv_general
|
||||
cos
|
||||
cosh
|
||||
cummax
|
||||
cummin
|
||||
cumprod
|
||||
cumsum
|
||||
degrees
|
||||
dequantize
|
||||
diag
|
||||
diagonal
|
||||
@@ -43,6 +56,7 @@ Operations
|
||||
erf
|
||||
erfinv
|
||||
exp
|
||||
expm1
|
||||
expand_dims
|
||||
eye
|
||||
flatten
|
||||
@@ -53,10 +67,12 @@ Operations
|
||||
greater_equal
|
||||
identity
|
||||
inner
|
||||
isnan
|
||||
isposinf
|
||||
isneginf
|
||||
isclose
|
||||
isinf
|
||||
isnan
|
||||
isneginf
|
||||
isposinf
|
||||
left_shift
|
||||
less
|
||||
less_equal
|
||||
linspace
|
||||
@@ -74,11 +90,13 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
moveaxis
|
||||
multiply
|
||||
negative
|
||||
not_equal
|
||||
ones
|
||||
ones_like
|
||||
outer
|
||||
@@ -87,9 +105,11 @@ Operations
|
||||
prod
|
||||
quantize
|
||||
quantized_matmul
|
||||
radians
|
||||
reciprocal
|
||||
repeat
|
||||
reshape
|
||||
right_shift
|
||||
round
|
||||
rsqrt
|
||||
save
|
||||
@@ -108,6 +128,7 @@ Operations
|
||||
square
|
||||
squeeze
|
||||
stack
|
||||
std
|
||||
stop_gradient
|
||||
subtract
|
||||
sum
|
||||
@@ -117,6 +138,8 @@ Operations
|
||||
tan
|
||||
tanh
|
||||
tensordot
|
||||
tile
|
||||
topk
|
||||
transpose
|
||||
tri
|
||||
tril
|
||||
|
@@ -8,6 +8,8 @@ Schedulers
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
step_decay
|
||||
exponential_decay
|
||||
cosine_decay
|
||||
exponential_decay
|
||||
join_schedules
|
||||
linear_schedule
|
||||
step_decay
|
||||
|
@@ -38,6 +38,7 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
gumbel
|
||||
key
|
||||
normal
|
||||
multivariate_normal
|
||||
randint
|
||||
seed
|
||||
split
|
||||
|
@@ -19,3 +19,4 @@ return python trees will be using the default python ``dict``, ``list`` and
|
||||
tree_flatten
|
||||
tree_unflatten
|
||||
tree_map
|
||||
tree_map_with_path
|
||||
|
@@ -40,7 +40,7 @@ getting higher order derivatives.
|
||||
|
||||
Any of the MLX function transformations can be composed in any order to any
|
||||
depth. See the following sections for more information on :ref:`automatic
|
||||
differentiaion <auto diff>` and :ref:`automatic vectorization <vmap>`.
|
||||
differentiation <auto diff>` and :ref:`automatic vectorization <vmap>`.
|
||||
For more information on :func:`compile` see the :ref:`compile documentation <compile>`.
|
||||
|
||||
|
||||
|
@@ -18,7 +18,7 @@ describe below.
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Lazy evaluation let's us record a compute graph without actually doing any
|
||||
Lazy evaluation lets us record a compute graph without actually doing any
|
||||
computations. This is useful for function transformations like :func:`grad` and
|
||||
:func:`vmap` and graph optimizations.
|
||||
|
||||
|
@@ -49,7 +49,7 @@ it will be added. You can load the array with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("array.npy", a)
|
||||
>>> mx.load("array.npy")
|
||||
array([1], dtype=float32)
|
||||
|
||||
Here's an example of saving several arrays to a single file:
|
||||
|
@@ -8,3 +8,4 @@ endfunction(build_example)
|
||||
build_example(tutorial.cpp)
|
||||
build_example(linear_regression.cpp)
|
||||
build_example(logistic_regression.cpp)
|
||||
build_example(metal_capture.cpp)
|
||||
|
31
examples/cpp/metal_capture.cpp
Normal file
31
examples/cpp/metal_capture.cpp
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
int main() {
|
||||
// To use Metal debugging and profiling:
|
||||
// 1. Build with the MLX_METAL_DEBUG CMake option (i.e. -DMLX_METAL_DEBUG=ON).
|
||||
// 2. Run with MTL_CAPTURE_ENABLED=1.
|
||||
metal::start_capture("mlx_trace.gputrace");
|
||||
|
||||
// Start at index two because the default GPU and CPU streams have indices
|
||||
// zero and one, respectively. This naming matches the label assigned to each
|
||||
// stream's command queue.
|
||||
auto s2 = new_stream(Device::gpu);
|
||||
auto s3 = new_stream(Device::gpu);
|
||||
|
||||
auto a = arange(1.f, 10.f, 1.f, float32, s2);
|
||||
auto b = arange(1.f, 10.f, 1.f, float32, s3);
|
||||
auto x = add(a, a, s2);
|
||||
auto y = add(b, b, s3);
|
||||
|
||||
// The multiply will happen on the default stream.
|
||||
std::cout << multiply(x, y) << std::endl;
|
||||
|
||||
metal::stop_capture();
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
|
||||
project(mlx_sample_extensions LANGUAGES CXX)
|
||||
project(_ext LANGUAGES CXX)
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
@@ -11,8 +11,12 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
# ----------------------------- Extensions -----------------------------
|
||||
|
||||
@@ -38,7 +42,6 @@ target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
# Build metallib
|
||||
if(MLX_BUILD_METAL)
|
||||
|
||||
mlx_build_metallib(
|
||||
TARGET mlx_ext_metallib
|
||||
TITLE mlx_ext
|
||||
@@ -54,13 +57,15 @@ if(MLX_BUILD_METAL)
|
||||
|
||||
endif()
|
||||
|
||||
# ----------------------------- Pybind -----------------------------
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
# ----------------------------- Python Bindings -----------------------------
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
18
examples/extensions/README.md
Normal file
18
examples/extensions/README.md
Normal file
@@ -0,0 +1,18 @@
|
||||
|
||||
## Build the extensions
|
||||
|
||||
```
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
For faster builds during development, you can also pre-install the requirements:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
And then run:
|
||||
|
||||
```
|
||||
python setup.py build_ext -j8 --inplace
|
||||
```
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
@@ -43,7 +43,7 @@ array axpby(
|
||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||
|
||||
// Upcast to float32 for non-floating point inputs x and y
|
||||
auto out_dtype = is_floating_point(promoted_dtype)
|
||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
||||
? promoted_dtype
|
||||
: promote_types(promoted_dtype, float32);
|
||||
|
||||
@@ -61,7 +61,7 @@ array axpby(
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
@@ -106,12 +106,12 @@ void axpby_impl(
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out_arr) {
|
||||
auto out = out_arr[0];
|
||||
std::vector<array>& outputs) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -150,11 +150,7 @@ void axpby_impl_accelerate(
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -180,11 +176,11 @@ void axpby_impl_accelerate(
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
auto out = outarr[0];
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -195,7 +191,7 @@ void Axpby::eval_cpu(
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, outarr);
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#else // Accelerate not available
|
||||
@@ -203,8 +199,8 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on CPU falling back to common backend */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out) {
|
||||
eval(inputs, out);
|
||||
const std::vector<array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -218,12 +214,12 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
auto out = outarr[0];
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -372,4 +368,4 @@ bool Axpby::is_equivalent(const Primitive& other) const {
|
||||
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -42,9 +42,9 @@ class Axpby : public Primitive {
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
@@ -83,7 +83,7 @@ class Axpby : public Primitive {
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& out);
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,31 +1,31 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <nanobind/nanobind.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
|
||||
#include "axpby/axpby.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
namespace nb = nanobind;
|
||||
using namespace nb::literals;
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -37,5 +37,5 @@ PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
}
|
||||
)");
|
||||
}
|
||||
|
@@ -1,3 +1,8 @@
|
||||
[build-system]
|
||||
requires = ["setuptools>=42", "pybind11>=2.10", "cmake>=3.24", "mlx @ git+https://github.com/mlx-explore/mlx@main"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"cmake>=3.24",
|
||||
"mlx>=0.9.0",
|
||||
"nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
4
examples/extensions/requirements.txt
Normal file
4
examples/extensions/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git#egg=4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
@@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from setuptools import setup
|
||||
|
||||
@@ -9,11 +9,11 @@ if __name__ == "__main__":
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_dir={"": "."},
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev": []},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
138
mlx/array.cpp
138
mlx/array.cpp
@@ -12,16 +12,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
std::pair<size_t, std::vector<size_t>> cum_prod(const std::vector<int>& shape) {
|
||||
std::vector<size_t> strides(shape.size());
|
||||
size_t cum_prod = 1;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
strides[i] = cum_prod;
|
||||
cum_prod *= shape[i];
|
||||
}
|
||||
return {cum_prod, strides};
|
||||
}
|
||||
|
||||
/** Return true if we are currently performing a function transformation in
|
||||
* order to keep the graph when evaluating tracer arrays. */
|
||||
bool in_tracing() {
|
||||
@@ -36,22 +26,11 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
init(&cval);
|
||||
}
|
||||
|
||||
array::array(
|
||||
const std::vector<int>& shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
shape,
|
||||
dtype,
|
||||
std::move(primitive),
|
||||
inputs)) {}
|
||||
|
||||
array::array(
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array>&& inputs)
|
||||
std::vector<array> inputs)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
std::move(shape),
|
||||
dtype,
|
||||
@@ -59,15 +38,16 @@ array::array(
|
||||
std::move(inputs))) {}
|
||||
|
||||
std::vector<array> array::make_arrays(
|
||||
const std::vector<std::vector<int>>& shapes,
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
std::vector<array> outputs;
|
||||
for (int i = 0; i < shapes.size(); ++i) {
|
||||
outputs.push_back(array(shapes[i], dtypes[i], primitive, inputs));
|
||||
for (size_t i = 0; i < shapes.size(); ++i) {
|
||||
outputs.emplace_back(std::move(shapes[i]), dtypes[i], primitive, inputs);
|
||||
}
|
||||
for (int i = 0; i < outputs.size(); ++i) {
|
||||
// For each node in |outputs|, its siblings are the other nodes.
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
auto siblings = outputs;
|
||||
siblings.erase(siblings.begin() + i);
|
||||
outputs[i].set_siblings(std::move(siblings), i);
|
||||
@@ -92,10 +72,10 @@ array::array(std::initializer_list<int> data, Dtype dtype)
|
||||
/* Build an array from a shared buffer */
|
||||
array::array(
|
||||
allocator::Buffer data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
set_data(data, deleter);
|
||||
}
|
||||
|
||||
@@ -104,18 +84,22 @@ void array::detach() {
|
||||
s.array_desc_->inputs.clear();
|
||||
s.array_desc_->siblings.clear();
|
||||
s.array_desc_->position = 0;
|
||||
s.array_desc_->depth = 0;
|
||||
s.array_desc_->primitive = nullptr;
|
||||
}
|
||||
array_desc_->inputs.clear();
|
||||
array_desc_->siblings.clear();
|
||||
array_desc_->position = 0;
|
||||
array_desc_->depth = 0;
|
||||
array_desc_->primitive = nullptr;
|
||||
}
|
||||
|
||||
void array::eval() {
|
||||
mlx::core::eval({*this});
|
||||
// Ensure the array is ready to be read
|
||||
if (status() == Status::scheduled) {
|
||||
event().wait();
|
||||
set_status(Status::available);
|
||||
} else if (status() == Status::unscheduled) {
|
||||
mlx::core::eval({*this});
|
||||
}
|
||||
}
|
||||
|
||||
bool array::is_tracer() const {
|
||||
@@ -164,51 +148,83 @@ void array::copy_shared_buffer(const array& other) {
|
||||
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
void array::move_shared_buffer(array other) {
|
||||
void array::move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
array_desc_->data = std::move(other.array_desc_->data);
|
||||
array_desc_->strides = other.strides();
|
||||
array_desc_->flags = other.flags();
|
||||
array_desc_->data_size = other.data_size();
|
||||
array_desc_->data_ptr = other.array_desc_->data_ptr;
|
||||
array_desc_->strides = strides;
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
array_desc_->data_ptr = static_cast<void*>(
|
||||
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(const std::vector<int>& shape, Dtype dtype)
|
||||
: shape(shape), dtype(dtype) {
|
||||
std::tie(size, strides) = cum_prod(shape);
|
||||
void array::move_shared_buffer(array other) {
|
||||
move_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
const std::vector<int>& shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs)
|
||||
: shape(shape),
|
||||
dtype(dtype),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(inputs) {
|
||||
std::tie(size, strides) = cum_prod(this->shape);
|
||||
for (auto& in : this->inputs) {
|
||||
is_tracer |= in.is_tracer();
|
||||
depth = std::max(in.graph_depth(), depth);
|
||||
void array::ArrayDesc::init() {
|
||||
strides.resize(shape.size());
|
||||
size = 1;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
strides[i] = size;
|
||||
size *= shape[i];
|
||||
}
|
||||
depth++;
|
||||
for (auto& in : inputs) {
|
||||
is_tracer |= in.is_tracer();
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
|
||||
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
std::vector<int>&& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array>&& inputs)
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(std::move(inputs)) {
|
||||
std::tie(size, strides) = cum_prod(this->shape);
|
||||
for (auto& in : this->inputs) {
|
||||
is_tracer |= in.is_tracer();
|
||||
depth = std::max(in.graph_depth(), depth);
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::~ArrayDesc() {
|
||||
// When an array description is destroyed it will delete a bunch of arrays
|
||||
// that may also destory their corresponding descriptions and so on and so
|
||||
// forth.
|
||||
//
|
||||
// This calls recursively the destructor and can result in stack overflow, we
|
||||
// instead put them in a vector and destroy them one at a time resulting in a
|
||||
// max stack depth of 2.
|
||||
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
|
||||
|
||||
for (array& a : inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
|
||||
while (!for_deletion.empty()) {
|
||||
// top is going to be deleted at the end of the block *after* the arrays
|
||||
// with inputs have been moved into the vector
|
||||
auto top = std::move(for_deletion.back());
|
||||
for_deletion.pop_back();
|
||||
|
||||
for (array& a : top->inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
}
|
||||
depth++;
|
||||
}
|
||||
|
||||
array::ArrayIterator::ArrayIterator(const array& arr, int idx)
|
||||
|
128
mlx/array.h
128
mlx/array.h
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
@@ -8,6 +9,7 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -31,7 +33,7 @@ class array {
|
||||
template <typename It>
|
||||
array(
|
||||
It data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype =
|
||||
TypeToDtype<typename std::iterator_traits<It>::value_type>());
|
||||
|
||||
@@ -47,13 +49,13 @@ class array {
|
||||
template <typename T>
|
||||
array(
|
||||
std::initializer_list<T> data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype = TypeToDtype<T>());
|
||||
|
||||
/* Build an array from a buffer */
|
||||
array(
|
||||
allocator::Buffer data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter = allocator::free);
|
||||
|
||||
@@ -112,6 +114,15 @@ class array {
|
||||
return array_desc_->strides;
|
||||
};
|
||||
|
||||
/**
|
||||
* Get the stride of the corresponding dimension.
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
size_t strides(int dim) const {
|
||||
return strides().at(dim < 0 ? dim + ndim() : dim);
|
||||
};
|
||||
|
||||
/** Get the arrays data type. */
|
||||
Dtype dtype() const {
|
||||
return array_desc_->dtype;
|
||||
@@ -172,22 +183,16 @@ class array {
|
||||
* API may change.
|
||||
*/
|
||||
|
||||
array(
|
||||
const std::vector<int>& shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs);
|
||||
|
||||
array(
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array>&& inputs);
|
||||
std::vector<array> inputs);
|
||||
|
||||
static std::vector<array> make_arrays(
|
||||
const std::vector<std::vector<int>>& shapes,
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs);
|
||||
|
||||
/** A unique identifier for an array. */
|
||||
@@ -261,6 +266,17 @@ class array {
|
||||
array_desc_->position = position;
|
||||
}
|
||||
|
||||
/** The i-th output of the array's primitive. */
|
||||
const array& output(int i) const {
|
||||
if (i == array_desc_->position) {
|
||||
return *this;
|
||||
} else if (i < array_desc_->position) {
|
||||
return siblings()[i];
|
||||
} else {
|
||||
return siblings()[i + 1];
|
||||
}
|
||||
};
|
||||
|
||||
/** The outputs of the array's primitive (i.e. this array and
|
||||
* its siblings) in the order the primitive expects. */
|
||||
std::vector<array> outputs() const {
|
||||
@@ -273,11 +289,6 @@ class array {
|
||||
return outputs;
|
||||
};
|
||||
|
||||
/** The depth of the array in the graph. Evaluated arrays have depth 0. */
|
||||
uint16_t graph_depth() const {
|
||||
return array_desc_->depth;
|
||||
}
|
||||
|
||||
/** Detach the array from the graph. */
|
||||
void detach();
|
||||
|
||||
@@ -314,9 +325,27 @@ class array {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
};
|
||||
|
||||
// Check if the array has been evaluated
|
||||
bool is_evaled() const {
|
||||
return array_desc_->data != nullptr;
|
||||
enum Status { unscheduled, scheduled, available };
|
||||
|
||||
bool is_available() const {
|
||||
return status() == Status::available;
|
||||
}
|
||||
const Status status() const {
|
||||
return array_desc_->status;
|
||||
}
|
||||
|
||||
void set_status(Status s) const {
|
||||
array_desc_->status = s;
|
||||
}
|
||||
|
||||
// Get the array's shared event
|
||||
Event& event() const {
|
||||
return array_desc_->event;
|
||||
}
|
||||
|
||||
// Attach an event to a not yet evaluated array
|
||||
void attach_event(Event e) const {
|
||||
array_desc_->event = std::move(e);
|
||||
}
|
||||
|
||||
// Mark the array as a tracer array (true) or not.
|
||||
@@ -344,6 +373,13 @@ class array {
|
||||
|
||||
void copy_shared_buffer(const array& other);
|
||||
|
||||
void move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
|
||||
void move_shared_buffer(array other);
|
||||
|
||||
void overwrite_descriptor(const array& other) {
|
||||
@@ -360,7 +396,12 @@ class array {
|
||||
std::vector<size_t> strides;
|
||||
size_t size;
|
||||
Dtype dtype;
|
||||
std::shared_ptr<Primitive> primitive{nullptr};
|
||||
std::shared_ptr<Primitive> primitive;
|
||||
|
||||
Status status;
|
||||
|
||||
// An event on the array used for synchronization
|
||||
Event event;
|
||||
|
||||
// Indicates an array is being used in a graph transform
|
||||
// and should not be detached from the graph
|
||||
@@ -368,7 +409,7 @@ class array {
|
||||
|
||||
// This is a shared pointer so that *different* arrays
|
||||
// can share the underlying data buffer.
|
||||
std::shared_ptr<Data> data{nullptr};
|
||||
std::shared_ptr<Data> data;
|
||||
|
||||
// Properly offset data pointer
|
||||
void* data_ptr{nullptr};
|
||||
@@ -388,29 +429,26 @@ class array {
|
||||
// The arrays position in the output list
|
||||
uint32_t position{0};
|
||||
|
||||
// The depth of the array in the graph.
|
||||
uint16_t depth{0};
|
||||
|
||||
explicit ArrayDesc(const std::vector<int>& shape, Dtype dtype);
|
||||
explicit ArrayDesc(std::vector<int> shape, Dtype dtype);
|
||||
|
||||
explicit ArrayDesc(
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs);
|
||||
std::vector<array> inputs);
|
||||
|
||||
explicit ArrayDesc(
|
||||
std::vector<int>&& shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array>&& inputs);
|
||||
~ArrayDesc();
|
||||
|
||||
private:
|
||||
// Initialize size, strides, and other metadata
|
||||
void init();
|
||||
};
|
||||
|
||||
// The ArrayDesc contains the details of the materialized array including the
|
||||
// shape, strides, the data type. It also includes
|
||||
// the primitive which knows how to compute the array's data from its inputs
|
||||
// and the list of array's inputs for the primitive.
|
||||
std::shared_ptr<ArrayDesc> array_desc_{nullptr};
|
||||
std::shared_ptr<ArrayDesc> array_desc_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@@ -422,9 +460,9 @@ array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
|
||||
template <typename It>
|
||||
array::array(
|
||||
It data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<typename std::iterator_traits<It>::value_type>() */) :
|
||||
array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
init(data);
|
||||
}
|
||||
|
||||
@@ -441,9 +479,9 @@ array::array(
|
||||
template <typename T>
|
||||
array::array(
|
||||
std::initializer_list<T> data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
throw std::invalid_argument(
|
||||
"Data size and provided shape mismatch in array construction.");
|
||||
@@ -465,10 +503,11 @@ T array::item() const {
|
||||
if (size() != 1) {
|
||||
throw std::invalid_argument("item can only be called on arrays of size 1.");
|
||||
}
|
||||
if (!is_evaled()) {
|
||||
if (status() == Status::unscheduled) {
|
||||
throw std::invalid_argument(
|
||||
"item() const can only be called on evaled arrays");
|
||||
}
|
||||
const_cast<array*>(this)->eval();
|
||||
return *data<T>();
|
||||
}
|
||||
|
||||
@@ -518,4 +557,15 @@ void array::init(It src) {
|
||||
}
|
||||
}
|
||||
|
||||
/* Utilities for determining whether a template parameter is array. */
|
||||
template <typename T>
|
||||
inline constexpr bool is_array_v =
|
||||
std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, array>;
|
||||
|
||||
template <typename... T>
|
||||
inline constexpr bool is_arrays_v = (is_array_v<T> && ...);
|
||||
|
||||
template <typename... T>
|
||||
using enable_for_arrays_t = typename std::enable_if_t<is_arrays_v<T...>>;
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -196,6 +196,40 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
return matmul_bnns_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const bool* mask,
|
||||
int tile_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str) {
|
||||
int tX = (X + tile_size - 1) / tile_size;
|
||||
int tY = (Y + tile_size - 1) / tile_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||
if (!do_mask) {
|
||||
int loc_x = i * tile_size;
|
||||
int loc_y = j * tile_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(tile_size, X - loc_x);
|
||||
int size_y = std::min(tile_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
@@ -31,14 +31,15 @@ DEFAULT(ArgPartition)
|
||||
DEFAULT(ArgReduce)
|
||||
DEFAULT(ArgSort)
|
||||
DEFAULT(AsStrided)
|
||||
DEFAULT(BlockMaskedMM)
|
||||
DEFAULT(Broadcast)
|
||||
DEFAULT(Ceil)
|
||||
DEFAULT_MULTI(Compiled)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(NumberOfElements)
|
||||
DEFAULT(Equal)
|
||||
DEFAULT(Erf)
|
||||
DEFAULT(ErfInv)
|
||||
@@ -65,13 +66,17 @@ DEFAULT(Reshape)
|
||||
DEFAULT(Remainder)
|
||||
DEFAULT(Round)
|
||||
DEFAULT(Scatter)
|
||||
DEFAULT(Select)
|
||||
DEFAULT(Sigmoid)
|
||||
DEFAULT(Sign)
|
||||
DEFAULT(Slice)
|
||||
DEFAULT(SliceUpdate)
|
||||
DEFAULT_MULTI(Split)
|
||||
DEFAULT(Sort)
|
||||
DEFAULT(StopGradient)
|
||||
DEFAULT_MULTI(SVD)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
|
||||
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
@@ -82,11 +87,8 @@ void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
} else if (in.dtype() == int32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
|
||||
} else if (is_unsigned(in.dtype())) {
|
||||
// No-op for unsigned types
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
unary(in, out, AbsOp());
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -300,7 +302,7 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (is_floating_point(out.dtype())) {
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::exp(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -309,6 +311,19 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Expm1::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpm1f(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
@@ -354,7 +369,7 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vvlog1pf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (is_floating_point(out.dtype())) {
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::log1p(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
|
@@ -24,8 +24,6 @@ void _qmm_t_4_64(
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Kg = K / group_size;
|
||||
const int Kw = K / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
|
@@ -10,78 +10,65 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T, typename VT, int N>
|
||||
void _vectorized_strided_sum(const T* x, T* accum, int size, size_t stride) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
size_t s = stride;
|
||||
T* a = accum;
|
||||
while (s >= N) {
|
||||
VT val = (*(VT*)x);
|
||||
*(VT*)a += val;
|
||||
x += N;
|
||||
a += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*a++ += *x++;
|
||||
}
|
||||
}
|
||||
}
|
||||
namespace {
|
||||
|
||||
// TODO: Add proper templates for the strided reduce algorithm so we don't have
|
||||
// to write max/min/sum etc.
|
||||
template <typename T, typename VT, int N>
|
||||
void _vectorized_strided_max(const T* x, T* accum, int size, size_t stride) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
size_t s = stride;
|
||||
T* a = accum;
|
||||
while (s >= N) {
|
||||
*(VT*)a = simd_max((*(VT*)x), (*(VT*)a));
|
||||
x += N;
|
||||
a += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*a = std::max(*a, *x);
|
||||
a++;
|
||||
x++;
|
||||
}
|
||||
template <typename T, typename VT>
|
||||
struct MinReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return std::min(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename VT, int N>
|
||||
void _vectorized_strided_min(const T* x, T* accum, int size, size_t stride) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
size_t s = stride;
|
||||
T* a = accum;
|
||||
while (s >= N) {
|
||||
*(VT*)a = simd_min((*(VT*)x), (*(VT*)a));
|
||||
x += N;
|
||||
a += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*a = std::min(*a, *x);
|
||||
a++;
|
||||
x++;
|
||||
}
|
||||
VT operator()(VT a, VT b) {
|
||||
return simd_min(a, b);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT, int N>
|
||||
void _vectorized_sum(const T* x, T* accum, int size) {
|
||||
VT _sum = {0};
|
||||
while (size >= N) {
|
||||
_sum += (*(VT*)x);
|
||||
x += N;
|
||||
size -= N;
|
||||
template <typename T, typename VT>
|
||||
struct MaxReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return std::max(a, b);
|
||||
}
|
||||
T sum = _sum[0];
|
||||
for (int i = 1; i < N; i++) {
|
||||
sum += _sum[i];
|
||||
|
||||
VT operator()(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
}
|
||||
*accum += sum;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct SumReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
VT operator()(VT a, VT b) {
|
||||
return a + b;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT, int N, typename Reduction>
|
||||
struct StridedReduce {
|
||||
void operator()(const T* x, T* accum, int size, size_t stride) {
|
||||
Reduction op;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
size_t s = stride;
|
||||
T* a = accum;
|
||||
while (s >= N) {
|
||||
*(VT*)a = op((*(VT*)x), (*(VT*)a));
|
||||
x += N;
|
||||
a += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*a = op(*a, *x);
|
||||
a++;
|
||||
x++;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
@@ -94,10 +81,11 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out,
|
||||
axes_,
|
||||
0,
|
||||
[](const auto* x, auto* accum, int size, size_t stride) {
|
||||
_vectorized_strided_sum<float, simd_float16, 16>(
|
||||
(const float*)x, (float*)accum, size, stride);
|
||||
},
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
SumReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float acc;
|
||||
vDSP_sve((const float*)x, 1, &acc, size);
|
||||
@@ -111,10 +99,11 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out,
|
||||
axes_,
|
||||
-std::numeric_limits<float>::infinity(),
|
||||
[](const auto* x, auto* accum, int size, size_t stride) {
|
||||
_vectorized_strided_max<float, simd_float16, 16>(
|
||||
(const float*)x, (float*)accum, size, stride);
|
||||
},
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
MaxReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float max;
|
||||
vDSP_maxv((const float*)x, 1, &max, size);
|
||||
@@ -128,10 +117,11 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out,
|
||||
axes_,
|
||||
std::numeric_limits<float>::infinity(),
|
||||
[](const auto* x, auto* accum, int size, size_t stride) {
|
||||
_vectorized_strided_min<float, simd_float16, 16>(
|
||||
(const float*)x, (float*)accum, size, stride);
|
||||
},
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
MinReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float min;
|
||||
vDSP_minv((const float*)x, 1, &min, size);
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
@@ -201,7 +201,7 @@ struct NeonFp16SimdOps {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT, typename Ops, int N>
|
||||
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||
void softmax(const array& in, array& out) {
|
||||
Ops ops;
|
||||
|
||||
@@ -218,13 +218,21 @@ void softmax(const array& in, array& out) {
|
||||
VT vmaximum = ops.init(-std::numeric_limits<float>::infinity());
|
||||
size_t s = M;
|
||||
while (s >= N) {
|
||||
vmaximum = ops.max(ops.load(current_in_ptr), vmaximum);
|
||||
VT vals;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vals = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vals[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vmaximum = ops.max(vals, vmaximum);
|
||||
current_in_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
T maximum = ops.reduce_max(vmaximum);
|
||||
AccT maximum = ops.reduce_max(vmaximum);
|
||||
while (s-- > 0) {
|
||||
maximum = std::max(maximum, *current_in_ptr);
|
||||
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
|
||||
current_in_ptr++;
|
||||
}
|
||||
|
||||
@@ -234,18 +242,29 @@ void softmax(const array& in, array& out) {
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
VT vexp = ops.exp(ops.sub(*(VT*)current_in_ptr, maximum));
|
||||
ops.store(current_out_ptr, vexp);
|
||||
*(VT*)current_out_ptr = vexp;
|
||||
VT vexp;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vexp = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vexp = ops.exp(ops.sub(vexp, maximum));
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, vexp);
|
||||
}
|
||||
vnormalizer = ops.add(vnormalizer, vexp);
|
||||
current_in_ptr += N;
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
T normalizer = ops.reduce_add(vnormalizer);
|
||||
AccT normalizer = ops.reduce_add(vnormalizer);
|
||||
while (s-- > 0) {
|
||||
T _exp = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = _exp;
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
if (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr = _exp;
|
||||
}
|
||||
normalizer += _exp;
|
||||
current_in_ptr++;
|
||||
current_out_ptr++;
|
||||
@@ -254,14 +273,33 @@ void softmax(const array& in, array& out) {
|
||||
|
||||
// Normalize
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||
} else {
|
||||
VT vexp;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
vexp = ops.mul(ops.exp(ops.sub(vexp, maximum)), normalizer);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
current_out_ptr[i] = vexp[i];
|
||||
}
|
||||
current_in_ptr += N;
|
||||
}
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*current_out_ptr *= normalizer;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr *= normalizer;
|
||||
} else {
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = static_cast<T>(_exp * normalizer);
|
||||
current_in_ptr++;
|
||||
}
|
||||
current_out_ptr++;
|
||||
}
|
||||
}
|
||||
@@ -308,15 +346,29 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
"Softmax is defined only for floating point types");
|
||||
break;
|
||||
case float32:
|
||||
softmax<float, simd_float16, AccelerateSimdOps<float, simd_float16>, 16>(
|
||||
in, out);
|
||||
softmax<
|
||||
float,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
break;
|
||||
case float16:
|
||||
softmax<
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
if (precise_) {
|
||||
softmax<
|
||||
float16_t,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
} else {
|
||||
softmax<
|
||||
float16_t,
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
eval(inputs, out);
|
||||
|
@@ -1,3 +1,36 @@
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(COMPILER ${CMAKE_C_COMPILER})
|
||||
set(CLANG TRUE)
|
||||
else()
|
||||
set(COMPILER ${CMAKE_CXX_COMPILER})
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT compiled_preamble.cpp
|
||||
COMMAND /bin/bash
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
${COMPILER}
|
||||
${PROJECT_SOURCE_DIR}
|
||||
${CLANG}
|
||||
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
compiled_preamble.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
|
||||
ops.h
|
||||
)
|
||||
|
||||
add_custom_target(
|
||||
cpu_compiled_preamble
|
||||
DEPENDS compiled_preamble.cpp
|
||||
)
|
||||
|
||||
add_dependencies(mlx cpu_compiled_preamble)
|
||||
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
@@ -8,15 +41,33 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
)
|
||||
|
||||
if (IOS)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp
|
||||
)
|
||||
else()
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
|
||||
)
|
||||
endif()
|
||||
|
@@ -7,6 +7,7 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/binary_two.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
@@ -73,7 +74,7 @@ void Add::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, [](auto x, auto y) { return x + y; });
|
||||
binary(a, b, out, detail::Add());
|
||||
}
|
||||
|
||||
void DivMod::eval(
|
||||
@@ -135,111 +136,59 @@ void Divide::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, [](auto x, auto y) { return x / y; });
|
||||
binary(a, b, out, detail::Divide());
|
||||
}
|
||||
|
||||
struct RemainderFn {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T> & !std::is_signed_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
return numerator % denominator;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T> & std::is_signed_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
auto r = numerator % denominator;
|
||||
if (r != 0 && (r < 0 != denominator < 0))
|
||||
r += denominator;
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
auto r = std::fmod(numerator, denominator);
|
||||
if (r != 0 && (r < 0 != denominator < 0)) {
|
||||
r += denominator;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t numerator, complex64_t denominator) {
|
||||
return numerator % denominator;
|
||||
}
|
||||
};
|
||||
|
||||
void Remainder::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, RemainderFn{});
|
||||
binary(a, b, out, detail::Remainder());
|
||||
}
|
||||
|
||||
void Equal::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (equal_nan_) {
|
||||
comparison_op(inputs[0], inputs[1], out, [](auto x, auto y) {
|
||||
return x == y || (std::isnan(x) && std::isnan(y));
|
||||
});
|
||||
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
|
||||
} else {
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x == y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Equal());
|
||||
}
|
||||
}
|
||||
|
||||
void Greater::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x > y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Greater());
|
||||
}
|
||||
|
||||
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x >= y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
|
||||
}
|
||||
|
||||
void Less::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x < y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Less());
|
||||
}
|
||||
|
||||
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x <= y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
|
||||
}
|
||||
|
||||
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto op = [](auto x, auto y) {
|
||||
constexpr float inf = std::numeric_limits<float>::infinity();
|
||||
auto maxval = (x > y) ? x : y;
|
||||
auto minval = (x > y) ? y : x;
|
||||
return (minval == -inf || maxval == inf)
|
||||
? maxval
|
||||
: static_cast<decltype(x)>(
|
||||
maxval + std::log1p(std::exp(minval - maxval)));
|
||||
};
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, op);
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, op);
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, op);
|
||||
} else {
|
||||
std::ostringstream err;
|
||||
err << "[logaddexp] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
}
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
std::ostringstream err;
|
||||
err << "[logaddexp] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[logaddexp] Cannot compute logaddexp for arrays with"
|
||||
@@ -251,84 +200,97 @@ void Maximum::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (is_floating_point(out.dtype())) {
|
||||
binary(a, b, out, [](auto x, auto y) {
|
||||
if (std::isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
return (x > y) ? x : y;
|
||||
});
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return (x > y) ? x : y; });
|
||||
}
|
||||
binary(a, b, out, detail::Maximum());
|
||||
}
|
||||
|
||||
void Minimum::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
binary(a, b, out, [](auto x, auto y) {
|
||||
if (std::isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
return (x < y) ? x : y;
|
||||
});
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return (x < y) ? x : y; });
|
||||
}
|
||||
binary(a, b, out, detail::Minimum());
|
||||
}
|
||||
|
||||
void Multiply::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, [](auto x, auto y) { return x * y; });
|
||||
binary(a, b, out, detail::Multiply());
|
||||
}
|
||||
|
||||
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(
|
||||
inputs[0], inputs[1], out, [](auto x, auto y) { return x != y; });
|
||||
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
|
||||
}
|
||||
|
||||
struct PowerFn {
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
|
||||
return std::pow(base, exp);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
|
||||
if (exp < 0) {
|
||||
throw std::invalid_argument(
|
||||
"Integers cannot be raise to negative powers");
|
||||
}
|
||||
T res = 1;
|
||||
while (exp) {
|
||||
if (exp & 1) {
|
||||
res *= base;
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
void Power::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, PowerFn{});
|
||||
binary(a, b, out, detail::Power());
|
||||
}
|
||||
|
||||
void Subtract::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, [](auto x, auto y) { return x - y; });
|
||||
binary(a, b, out, detail::Subtract());
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto dispatch_type = [&a, &b, &out](auto op) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, out, op);
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, out, op);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, out, op);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, out, op);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, out, op);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, out, op);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[BitwiseBinary::eval_cpu] Type not supported");
|
||||
break;
|
||||
}
|
||||
};
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
dispatch_type(detail::BitwiseAnd());
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
dispatch_type(detail::BitwiseOr());
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
dispatch_type(detail::BitwiseXor());
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
dispatch_type(detail::LeftShift());
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
dispatch_type(detail::RightShift());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -9,7 +9,7 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
enum BinaryOpType {
|
||||
enum class BinaryOpType {
|
||||
ScalarScalar,
|
||||
ScalarVector,
|
||||
VectorScalar,
|
||||
@@ -20,17 +20,17 @@ enum BinaryOpType {
|
||||
BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
||||
BinaryOpType bopt;
|
||||
if (a.data_size() == 1 && b.data_size() == 1) {
|
||||
bopt = ScalarScalar;
|
||||
bopt = BinaryOpType::ScalarScalar;
|
||||
} else if (a.data_size() == 1 && b.flags().contiguous) {
|
||||
bopt = ScalarVector;
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
} else if (b.data_size() == 1 && a.flags().contiguous) {
|
||||
bopt = VectorScalar;
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
} else if (
|
||||
a.flags().row_contiguous && b.flags().row_contiguous ||
|
||||
a.flags().col_contiguous && b.flags().col_contiguous) {
|
||||
bopt = VectorVector;
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
} else {
|
||||
bopt = General;
|
||||
bopt = BinaryOpType::General;
|
||||
}
|
||||
return bopt;
|
||||
}
|
||||
@@ -42,11 +42,11 @@ void set_binary_op_output_data(
|
||||
BinaryOpType bopt,
|
||||
bool donate_with_move = false) {
|
||||
switch (bopt) {
|
||||
case ScalarScalar:
|
||||
case BinaryOpType::ScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
|
||||
break;
|
||||
case ScalarVector:
|
||||
case BinaryOpType::ScalarVector:
|
||||
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
@@ -61,7 +61,7 @@ void set_binary_op_output_data(
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case VectorScalar:
|
||||
case BinaryOpType::VectorScalar:
|
||||
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
@@ -76,7 +76,7 @@ void set_binary_op_output_data(
|
||||
a.flags());
|
||||
}
|
||||
break;
|
||||
case VectorVector:
|
||||
case BinaryOpType::VectorVector:
|
||||
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
@@ -97,7 +97,7 @@ void set_binary_op_output_data(
|
||||
a.flags());
|
||||
}
|
||||
break;
|
||||
case General:
|
||||
case BinaryOpType::General:
|
||||
if (a.is_donatable() && a.flags().row_contiguous &&
|
||||
a.itemsize() == out.itemsize() && a.size() == out.size()) {
|
||||
if (donate_with_move) {
|
||||
@@ -424,25 +424,25 @@ void binary_op(
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == ScalarScalar) {
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is scalar vector so delegate to the op
|
||||
if (bopt == ScalarVector) {
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector scalar so delegate to the op
|
||||
if (bopt == VectorScalar) {
|
||||
if (bopt == BinaryOpType::VectorScalar) {
|
||||
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector vector so delegate to the op
|
||||
if (bopt == VectorVector) {
|
||||
if (bopt == BinaryOpType::VectorVector) {
|
||||
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
|
||||
return;
|
||||
}
|
||||
@@ -475,17 +475,17 @@ void binary_op(
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||
bopt = VectorVector;
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
dim = d;
|
||||
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||
bopt = VectorScalar;
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
dim = d;
|
||||
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||
bopt = ScalarVector;
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
dim = d;
|
||||
}
|
||||
|
||||
@@ -495,20 +495,20 @@ void binary_op(
|
||||
size_t stride;
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
stride = 1;
|
||||
bopt = General;
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
} else {
|
||||
stride = strides[dim - 1];
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case VectorVector:
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
|
||||
break;
|
||||
case VectorScalar:
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
|
||||
break;
|
||||
case ScalarVector:
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
|
||||
break;
|
||||
default:
|
||||
|
@@ -260,14 +260,14 @@ void binary_op(
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == ScalarScalar) {
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
|
||||
op(*a.data<T>(), *b.data<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is scalar vector so delegate to the op
|
||||
if (bopt == ScalarVector) {
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
opsv(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
@@ -278,7 +278,7 @@ void binary_op(
|
||||
}
|
||||
|
||||
// The full computation is vector scalar so delegate to the op
|
||||
if (bopt == VectorScalar) {
|
||||
if (bopt == BinaryOpType::VectorScalar) {
|
||||
opvs(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
@@ -289,7 +289,7 @@ void binary_op(
|
||||
}
|
||||
|
||||
// The full computation is vector vector so delegate to the op
|
||||
if (bopt == VectorVector) {
|
||||
if (bopt == BinaryOpType::VectorVector) {
|
||||
opvv(
|
||||
a.data<T>(),
|
||||
b.data<T>(),
|
||||
@@ -327,17 +327,17 @@ void binary_op(
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||
bopt = VectorVector;
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
dim = d;
|
||||
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||
bopt = VectorScalar;
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
dim = d;
|
||||
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||
bopt = ScalarVector;
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
dim = d;
|
||||
}
|
||||
|
||||
@@ -347,20 +347,20 @@ void binary_op(
|
||||
size_t stride;
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
stride = 1;
|
||||
bopt = General;
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
} else {
|
||||
stride = strides[dim - 1];
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case VectorVector:
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
|
||||
break;
|
||||
case VectorScalar:
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
|
||||
break;
|
||||
case ScalarVector:
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
|
||||
break;
|
||||
default:
|
||||
|
@@ -1,58 +1,226 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <queue>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Build the real tape
|
||||
std::pair<std::queue<array>, std::vector<array>> trace_to_real(
|
||||
const std::vector<array>& trace_tape,
|
||||
const std::vector<array>& trace_inputs,
|
||||
const std::vector<array>& trace_outputs,
|
||||
const std::vector<array>& inputs) {
|
||||
std::unordered_map<uintptr_t, array> trace_to_real;
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
trace_to_real.insert({trace_inputs[i].id(), inputs[i]});
|
||||
void print_constant(std::ostream& os, const array& x) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
return print_float_constant<float>(os, x);
|
||||
case float16:
|
||||
return print_float_constant<float16_t>(os, x);
|
||||
case bfloat16:
|
||||
return print_float_constant<bfloat16_t>(os, x);
|
||||
case complex64:
|
||||
return print_complex_constant<complex64_t>(os, x);
|
||||
case int8:
|
||||
return print_int_constant<int8_t>(os, x);
|
||||
case int16:
|
||||
return print_int_constant<int16_t>(os, x);
|
||||
case int32:
|
||||
return print_int_constant<int32_t>(os, x);
|
||||
case int64:
|
||||
return print_int_constant<int64_t>(os, x);
|
||||
case uint8:
|
||||
return print_int_constant<uint8_t>(os, x);
|
||||
case uint16:
|
||||
return print_int_constant<uint16_t>(os, x);
|
||||
case uint32:
|
||||
return print_int_constant<uint32_t>(os, x);
|
||||
case uint64:
|
||||
return print_int_constant<uint64_t>(os, x);
|
||||
case bool_:
|
||||
os << std::boolalpha << x.item<bool>();
|
||||
return;
|
||||
default:
|
||||
throw std::runtime_error("Unsupported constant type");
|
||||
}
|
||||
std::queue<array> tape;
|
||||
for (auto& a : trace_tape) {
|
||||
// Find real inputs
|
||||
std::vector<array> real_inputs;
|
||||
for (auto& in : a.inputs()) {
|
||||
real_inputs.push_back(trace_to_real.at(in.id()));
|
||||
}
|
||||
tape.push(
|
||||
array(a.shape(), a.dtype(), a.primitive_ptr(), std::move(real_inputs)));
|
||||
trace_to_real.insert({a.id(), tape.back()});
|
||||
}
|
||||
|
||||
std::vector<array> outputs;
|
||||
for (auto& o : trace_outputs) {
|
||||
outputs.push_back(trace_to_real.at(o.id()));
|
||||
}
|
||||
return {tape, outputs};
|
||||
}
|
||||
|
||||
void Compiled::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Make the a real tape from the tracers
|
||||
auto [tape, real_outputs] = trace_to_real(tape_, inputs_, outputs_, inputs);
|
||||
std::string get_type_string(Dtype d) {
|
||||
switch (d) {
|
||||
case float32:
|
||||
return "float";
|
||||
case float16:
|
||||
return "float16_t";
|
||||
case bfloat16:
|
||||
return "bfloat16_t";
|
||||
case complex64:
|
||||
return "complex64_t";
|
||||
case bool_:
|
||||
return "bool";
|
||||
case int8:
|
||||
return "int8_t";
|
||||
case int16:
|
||||
return "int16_t";
|
||||
case int32:
|
||||
return "int32_t";
|
||||
case int64:
|
||||
return "int64_t";
|
||||
case uint8:
|
||||
return "uint8_t";
|
||||
case uint16:
|
||||
return "uint16_t";
|
||||
case uint32:
|
||||
return "uint32_t";
|
||||
case uint64:
|
||||
return "uint64_t";
|
||||
default: {
|
||||
std::ostringstream msg;
|
||||
msg << "Unsupported compilation type " << d;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Run the tape
|
||||
while (!tape.empty()) {
|
||||
auto a = std::move(tape.front());
|
||||
tape.pop();
|
||||
auto outputs = a.outputs();
|
||||
a.primitive().eval_cpu(a.inputs(), outputs);
|
||||
a.detach();
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids) {
|
||||
NodeNamer namer;
|
||||
std::ostringstream os;
|
||||
std::ostringstream constant_hasher;
|
||||
|
||||
// Fill the input names. This is not really necessary, I just like having A,
|
||||
// B, C, ... as the inputs.
|
||||
for (auto& x : inputs) {
|
||||
namer.get_name(x);
|
||||
}
|
||||
|
||||
// Copy results into outputs
|
||||
for (int o = 0; o < real_outputs.size(); ++o) {
|
||||
outputs[o].copy_shared_buffer(real_outputs[o]);
|
||||
// The primitives describing the tape. For unary and binary primitives this
|
||||
// must be enough to describe the full computation.
|
||||
for (auto& a : tape) {
|
||||
// name and type of output
|
||||
os << namer.get_name(a) << kindof(a.dtype()) << a.itemsize();
|
||||
// computation performed
|
||||
a.primitive().print(os);
|
||||
// name of inputs to the function
|
||||
for (auto& inp : a.inputs()) {
|
||||
os << namer.get_name(inp);
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
os << "C";
|
||||
print_constant(constant_hasher, x);
|
||||
} else {
|
||||
os << (is_scalar(x) ? "S" : "V");
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
continue;
|
||||
}
|
||||
os << kindof(x.dtype()) << x.itemsize();
|
||||
}
|
||||
os << "_" << std::hash<std::string>{}(constant_hasher.str());
|
||||
|
||||
return os.str();
|
||||
}
|
||||
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& shape) {
|
||||
bool contiguous = true;
|
||||
bool all_contig = true;
|
||||
bool all_row_contig = true;
|
||||
bool all_col_contig = true;
|
||||
int non_scalar_inputs = 0;
|
||||
for (const auto& x : inputs) {
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
non_scalar_inputs++;
|
||||
bool shape_eq = x.shape() == shape;
|
||||
all_contig &= (x.flags().contiguous && shape_eq);
|
||||
all_row_contig &= (x.flags().row_contiguous && shape_eq);
|
||||
all_col_contig &= (x.flags().col_contiguous && shape_eq);
|
||||
}
|
||||
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
|
||||
contiguous = false;
|
||||
} else if (non_scalar_inputs == 1 && !all_contig) {
|
||||
contiguous = false;
|
||||
} else if (non_scalar_inputs == 0 && !shape.empty()) {
|
||||
contiguous = false;
|
||||
}
|
||||
return contiguous;
|
||||
}
|
||||
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
bool contiguous,
|
||||
bool move_buffers /* = false */) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
std::vector<size_t> strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Correct size
|
||||
// - Not a scalar
|
||||
// - Donatable
|
||||
// - Not a constant
|
||||
if (in.itemsize() == outputs[o].itemsize() && !is_scalar(in) &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o++].move_shared_buffer(in);
|
||||
} else {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
// Get representative input flags to properly set non-donated outputs
|
||||
if (strides.empty() && in.size() == outputs[0].size()) {
|
||||
strides = in.strides();
|
||||
flags = in.flags();
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
strides,
|
||||
flags);
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o].move_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
} else {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
}
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
70
mlx/backend/common/compiled.h
Normal file
70
mlx/backend/common/compiled.h
Normal file
@@ -0,0 +1,70 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
inline bool is_static_cast(const Primitive& p) {
|
||||
return (
|
||||
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
|
||||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
|
||||
}
|
||||
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids);
|
||||
|
||||
std::string get_type_string(Dtype d);
|
||||
|
||||
template <typename T>
|
||||
void print_float_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< x.item<T>() << std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_int_constant(std::ostream& os, const array& x) {
|
||||
os << x.item<T>();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_complex_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
T constant = x.item<T>();
|
||||
|
||||
os << get_type_string(x.dtype()) << "("
|
||||
<< std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< constant.real() << ", " << constant.imag() << ")"
|
||||
<< std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
void print_constant(std::ostream& os, const array& x);
|
||||
|
||||
inline bool is_scalar(const array& x) {
|
||||
return x.ndim() == 0;
|
||||
}
|
||||
|
||||
// Check if we can use a contiguous operation given inputs and the output shape
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& shape);
|
||||
|
||||
// Allocate space for the outputs possibly with input donation
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
bool contiguous,
|
||||
bool move_buffers = false);
|
||||
|
||||
} // namespace mlx::core
|
356
mlx/backend/common/compiled_cpu.cpp
Normal file
356
mlx/backend/common/compiled_cpu.cpp
Normal file
@@ -0,0 +1,356 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <filesystem>
|
||||
#include <list>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/common/compiled_preamble.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
return true;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
std::string get_temp_file(const std::string& name) {
|
||||
return std::filesystem::temp_directory_path().append(name);
|
||||
}
|
||||
|
||||
// Return a pointer to a compiled function
|
||||
void* compile(
|
||||
const std::string& kernel_name,
|
||||
const std::string& source_code = "") {
|
||||
struct DLib {
|
||||
DLib(const std::string& libname) {
|
||||
lib = dlopen(libname.c_str(), RTLD_NOW);
|
||||
if (!lib) {
|
||||
std::ostringstream msg;
|
||||
msg << "Could not load C++ shared library " << dlerror();
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
}
|
||||
|
||||
~DLib() {
|
||||
dlclose(lib);
|
||||
}
|
||||
void* lib;
|
||||
};
|
||||
// Statics to cache compiled libraries and functions
|
||||
static std::list<DLib> libs;
|
||||
static std::unordered_map<std::string, void*> kernels;
|
||||
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
|
||||
return it->second;
|
||||
}
|
||||
if (source_code.empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string kernel_file_name;
|
||||
|
||||
// Deal with long kernel names. Maximum length for files on macOS is 255
|
||||
// characters. Clip file name with a little extra room and append a 16
|
||||
// character hash.
|
||||
constexpr int max_file_name_length = 245;
|
||||
if (kernel_name.size() > max_file_name_length) {
|
||||
std::ostringstream file_name;
|
||||
file_name
|
||||
<< std::string_view(kernel_name).substr(0, max_file_name_length - 16);
|
||||
auto file_id = std::hash<std::string>{}(kernel_name);
|
||||
file_name << "_" << std::hex << std::setw(16) << file_id << std::dec;
|
||||
kernel_file_name = file_name.str();
|
||||
} else {
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
std::ostringstream shared_lib_name;
|
||||
shared_lib_name << "lib" << kernel_file_name << ".so";
|
||||
auto shared_lib_path = get_temp_file(shared_lib_name.str());
|
||||
bool lib_exists = false;
|
||||
{
|
||||
std::ifstream f(shared_lib_path.c_str());
|
||||
lib_exists = f.good();
|
||||
}
|
||||
|
||||
if (!lib_exists) {
|
||||
// Open source file and write source code to it
|
||||
std::ostringstream source_file_name;
|
||||
source_file_name << kernel_file_name << ".cpp";
|
||||
auto source_file_path = get_temp_file(source_file_name.str());
|
||||
|
||||
std::ofstream source_file(source_file_path);
|
||||
source_file << source_code;
|
||||
source_file.close();
|
||||
|
||||
std::ostringstream build_command;
|
||||
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
|
||||
<< source_file_path << " -o " << shared_lib_path;
|
||||
std::string build_command_str = build_command.str();
|
||||
auto return_code = system(build_command_str.c_str());
|
||||
if (return_code) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Compile::eval_cpu] Failed to compile function " << kernel_name
|
||||
<< " with error code " << return_code << "." << std::endl;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
}
|
||||
|
||||
// load library
|
||||
libs.emplace_back(shared_lib_path);
|
||||
|
||||
// Load function
|
||||
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
|
||||
if (!fun) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Compile::eval_cpu] Failed to load compiled function "
|
||||
<< kernel_name << std::endl
|
||||
<< dlerror();
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
kernels.insert({kernel_name, fun});
|
||||
return fun;
|
||||
}
|
||||
|
||||
inline void build_kernel(
|
||||
std::ostream& os,
|
||||
const std::string& kernel_name,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids,
|
||||
bool contiguous,
|
||||
int ndim) {
|
||||
// All outputs should have the exact same shape and will be row contiguous
|
||||
auto output_shape = outputs[0].shape();
|
||||
auto output_strides = outputs[0].strides();
|
||||
|
||||
// Constants are scalars that are captured by value and cannot change
|
||||
auto is_constant = [&constant_ids](const array& x) {
|
||||
return constant_ids.find(x.id()) != constant_ids.end();
|
||||
};
|
||||
|
||||
NodeNamer namer;
|
||||
|
||||
// Start the kernel
|
||||
os << "void " << kernel_name << "(void** args) {" << std::endl;
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
for (auto& x : inputs) {
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
// Skip constants from the input list
|
||||
if (is_constant(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto tstr = get_type_string(x.dtype());
|
||||
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Add the output arguments
|
||||
for (auto& x : outputs) {
|
||||
auto tstr = get_type_string(x.dtype());
|
||||
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
|
||||
<< "*)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
|
||||
} else {
|
||||
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
|
||||
if (contiguous) {
|
||||
os << " for (size_t i = 0; i < size; ++i) {" << std::endl;
|
||||
} else {
|
||||
for (int d = 0; d < ndim; ++d) {
|
||||
os << " for (int i" << d << " = 0; i" << d << " < shape[" << d
|
||||
<< "]; ++i" << d << ") {" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Read the inputs in tmps
|
||||
for (auto& x : inputs) {
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
if (is_constant(x)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
|
||||
print_constant(os, x);
|
||||
os << ";" << std::endl;
|
||||
} else if (is_scalar(x)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[0];" << std::endl;
|
||||
} else if (contiguous) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[i];" << std::endl;
|
||||
} else {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = *"
|
||||
<< xname << ";" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Actually write the computation
|
||||
for (auto& x : tape) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
|
||||
<< " = ";
|
||||
if (is_static_cast(x.primitive())) {
|
||||
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
||||
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
|
||||
} else {
|
||||
x.primitive().print(os);
|
||||
os << "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
}
|
||||
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Write the outputs from tmps
|
||||
for (auto& x : outputs) {
|
||||
if (contiguous) {
|
||||
os << " " << namer.get_name(x) << "[i] = tmp_" << namer.get_name(x)
|
||||
<< ";" << std::endl;
|
||||
} else {
|
||||
os << " *" << namer.get_name(x) << "++ = tmp_" << namer.get_name(x)
|
||||
<< ";" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Close loops
|
||||
if (contiguous) {
|
||||
os << " }" << std::endl;
|
||||
} else {
|
||||
for (int d = ndim - 1; d >= 0; --d) {
|
||||
// Update pointers
|
||||
for (auto& x : inputs) {
|
||||
if (is_constant(x) || is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
auto& xname = namer.get_name(x);
|
||||
os << " " << xname << " += " << xname << "_strides[" << d << "];"
|
||||
<< std::endl;
|
||||
if (d < ndim - 1) {
|
||||
os << " " << xname << " -= " << xname << "_strides[" << d + 1 << "]"
|
||||
<< " * shape[" << d + 1 << "];" << std::endl;
|
||||
}
|
||||
}
|
||||
os << " }" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Finish the kernel
|
||||
os << "}" << std::endl;
|
||||
}
|
||||
|
||||
void Compiled::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
if (kernel_lib_.empty()) {
|
||||
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
|
||||
}
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& shape = outputs[0].shape();
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
|
||||
// Handle all broadcasting and collect function input arguments
|
||||
std::vector<void*> args;
|
||||
std::vector<std::vector<size_t>> strides;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
// Skip constants.
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
args.push_back((void*)x.data<void>());
|
||||
|
||||
if (contiguous || is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Broadcast the input to the output shape.
|
||||
std::vector<size_t> xstrides;
|
||||
int j = 0;
|
||||
for (; j < shape.size() - x.ndim(); j++) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < x.ndim(); i++, j++) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
} else {
|
||||
xstrides.push_back(x.strides()[i]);
|
||||
}
|
||||
}
|
||||
strides.push_back(std::move(xstrides));
|
||||
args.push_back(strides.back().data());
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
int ndim = shape.size();
|
||||
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
|
||||
if (!contiguous) {
|
||||
kernel_name += std::to_string(shape.size());
|
||||
}
|
||||
|
||||
// Get the function
|
||||
auto fn_ptr = compile(kernel_name);
|
||||
|
||||
// If it doesn't exist, compile it
|
||||
if (fn_ptr == nullptr) {
|
||||
std::ostringstream kernel;
|
||||
kernel << get_kernel_preamble() << std::endl;
|
||||
kernel << "extern \"C\" {" << std::endl;
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_name,
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
contiguous,
|
||||
ndim);
|
||||
// Close extern "C"
|
||||
kernel << "}" << std::endl;
|
||||
|
||||
// Compile and get function pointer
|
||||
fn_ptr = compile(kernel_name, kernel.str());
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous, false);
|
||||
|
||||
for (auto& x : outputs) {
|
||||
args.push_back(x.data<void>());
|
||||
}
|
||||
if (!contiguous) {
|
||||
args.push_back((void*)outputs[0].shape().data());
|
||||
} else {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
fun(args.data());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
23
mlx/backend/common/compiled_nocpu.cpp
Normal file
23
mlx/backend/common/compiled_nocpu.cpp
Normal file
@@ -0,0 +1,23 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is not available so check if the device is a GPU
|
||||
// device.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
return device == Device::gpu;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
void Compiled::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
throw std::runtime_error(
|
||||
"[Compiled::eval_cpu] CPU compialtion not supported on the platform.");
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
11
mlx/backend/common/compiled_preamble.h
Normal file
11
mlx/backend/common/compiled_preamble.h
Normal file
@@ -0,0 +1,11 @@
|
||||
// Copyright © 2023-24 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/types/half_types.h"
|
||||
#include "mlx/types/complex.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
// clang-format on
|
||||
|
||||
const char* get_kernel_preamble();
|
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
@@ -27,19 +28,25 @@ void slow_conv_1D(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const T* start_wt_ptr = wt.data<T>();
|
||||
|
||||
const T* in_ptr = in.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
|
||||
const int C = in.shape(2); // Input channels
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(2); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
|
||||
const int groups = C / wt.shape(2);
|
||||
const int C_per_group = wt.shape(2);
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
const size_t in_stride_N = in.strides()[0];
|
||||
const size_t in_stride_H = in.strides()[1];
|
||||
const size_t in_stride_C = in.strides()[2];
|
||||
@@ -54,32 +61,36 @@ void slow_conv_1D(
|
||||
|
||||
for (int n = 0; n < N; ++n) {
|
||||
for (int oh = 0; oh < oH; ++oh) {
|
||||
for (int o = 0; o < O; ++o) {
|
||||
const T* filter_wt_ptr = start_wt_ptr + o * wt_stride_O;
|
||||
float r = 0.;
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
|
||||
const T* filter_wt_ptr = start_wt_ptr + o * wt_stride_O;
|
||||
float r = 0.;
|
||||
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
|
||||
|
||||
int ih = oh * wt_strides[0] - padding[0] + wh * wt_dilation[0];
|
||||
int wh_flip = flip ? (wH - wh - 1) : wh;
|
||||
int ih = oh * wt_strides[0] - padding[0] + wh_flip * wt_dilation[0];
|
||||
|
||||
if (ih >= 0 && ih < iH) {
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(
|
||||
in_ptr[ih * in_stride_H + c * in_stride_C]) *
|
||||
static_cast<float>(wt_ptr[c * wt_stride_C]);
|
||||
} // c
|
||||
auto ih_div = std::div(ih, in_dilation[0]);
|
||||
|
||||
} // ih check
|
||||
} // wh
|
||||
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
|
||||
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
|
||||
r += static_cast<float>(
|
||||
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
|
||||
static_cast<float>(wt_ptr[(c % C_per_group) * wt_stride_C]);
|
||||
} // c
|
||||
|
||||
out_ptr[oh * out_stride_H + o * out_stride_O] = static_cast<T>(r);
|
||||
} // o
|
||||
} // ih check
|
||||
} // wh
|
||||
|
||||
out_ptr[oh * out_stride_H + o * out_stride_O] = static_cast<T>(r);
|
||||
} // o
|
||||
} // g
|
||||
} // oh
|
||||
|
||||
in_ptr += in_stride_N;
|
||||
out_ptr += out_stride_N;
|
||||
|
||||
} // n
|
||||
}
|
||||
|
||||
@@ -90,14 +101,16 @@ void slow_conv_2D(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const T* st_wt_ptr = wt.data<T>();
|
||||
const T* st_in_ptr = in.data<T>();
|
||||
T* st_out_ptr = out.data<T>();
|
||||
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iW = in.shape(2); // Input spatial dim
|
||||
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
|
||||
const int iW = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
@@ -120,6 +133,8 @@ void slow_conv_2D(
|
||||
const size_t out_stride_W = out.strides()[2];
|
||||
const size_t out_stride_O = out.strides()[3];
|
||||
|
||||
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
|
||||
|
||||
auto pt_conv_no_checks =
|
||||
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
|
||||
out_ptr += oh * out_stride_H + ow * out_stride_W;
|
||||
@@ -131,8 +146,10 @@ void slow_conv_2D(
|
||||
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
for (int ww = 0; ww < wW; ++ww) {
|
||||
int ih = ih_base + wh * wt_dilation[0];
|
||||
int iw = iw_base + ww * wt_dilation[1];
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
|
||||
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
|
||||
@@ -153,25 +170,74 @@ void slow_conv_2D(
|
||||
} // o
|
||||
};
|
||||
|
||||
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
|
||||
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
|
||||
|
||||
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
|
||||
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
|
||||
|
||||
int f_wgt_jump_h = std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
|
||||
int f_wgt_jump_w = std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
|
||||
|
||||
int f_out_jump_h = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
|
||||
int f_out_jump_w = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
|
||||
|
||||
std::vector<int> base_h(f_out_jump_h);
|
||||
std::vector<int> base_w(f_out_jump_w);
|
||||
|
||||
for (int i = 0; i < f_out_jump_h; ++i) {
|
||||
int ih_loop = i * wt_strides[0] - padding[0] + init_h;
|
||||
|
||||
int wh_base = 0;
|
||||
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
|
||||
wh_base++;
|
||||
ih_loop += jump_h;
|
||||
}
|
||||
|
||||
base_h[i] = wh_base;
|
||||
}
|
||||
|
||||
for (int j = 0; j < f_out_jump_w; ++j) {
|
||||
int iw_loop = j * wt_strides[1] - padding[1] + init_w;
|
||||
|
||||
int ww_base = 0;
|
||||
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
|
||||
ww_base++;
|
||||
iw_loop += jump_w;
|
||||
}
|
||||
|
||||
base_w[j] = ww_base;
|
||||
}
|
||||
|
||||
auto pt_conv_all_checks =
|
||||
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
|
||||
out_ptr += oh * out_stride_H + ow * out_stride_W;
|
||||
|
||||
int ih_base = oh * wt_strides[0] - padding[0];
|
||||
int iw_base = ow * wt_strides[1] - padding[1];
|
||||
|
||||
int wh_base = base_h[oh % f_out_jump_h];
|
||||
int ww_base = base_w[ow % f_out_jump_w];
|
||||
|
||||
for (int o = 0; o < O; ++o) {
|
||||
float r = 0.;
|
||||
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
for (int ww = 0; ww < wW; ++ww) {
|
||||
int ih = ih_base + wh * wt_dilation[0];
|
||||
int iw = iw_base + ww * wt_dilation[1];
|
||||
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
|
||||
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
|
||||
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
|
||||
const T* wt_ptr_pt =
|
||||
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
|
||||
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
|
||||
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
|
||||
|
||||
const T* in_ptr_pt =
|
||||
in_ptr + ih * in_stride_H + iw * in_stride_W;
|
||||
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
|
||||
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[0]) *
|
||||
@@ -191,13 +257,17 @@ void slow_conv_2D(
|
||||
};
|
||||
|
||||
int oH_border_0 = 0;
|
||||
int oH_border_1 = (padding[0] + wt_strides[0] + 1) / wt_strides[0];
|
||||
int oH_border_2 = (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0];
|
||||
int oH_border_1 =
|
||||
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oH;
|
||||
int oH_border_2 = std::max(
|
||||
oH_border_1, (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0]);
|
||||
int oH_border_3 = oH;
|
||||
|
||||
int oW_border_0 = 0;
|
||||
int oW_border_1 = (padding[1] + wt_strides[0] + 1) / wt_strides[1];
|
||||
int oW_border_2 = (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1];
|
||||
int oW_border_1 =
|
||||
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oW;
|
||||
int oW_border_2 = std::max(
|
||||
oW_border_1, (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1]);
|
||||
int oW_border_3 = oW;
|
||||
|
||||
for (int n = 0; n < N; ++n) {
|
||||
@@ -246,15 +316,18 @@ void dispatch_slow_conv_1D(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
if (in.dtype() == float32) {
|
||||
return slow_conv_1D<float>(in, wt, out, padding, wt_strides, wt_dilation);
|
||||
return slow_conv_1D<float>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == float16) {
|
||||
return slow_conv_1D<float16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == bfloat16) {
|
||||
return slow_conv_1D<bfloat16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[Convolution::eval] got unsupported data type.");
|
||||
@@ -267,15 +340,18 @@ void dispatch_slow_conv_2D(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
if (in.dtype() == float32) {
|
||||
return slow_conv_2D<float>(in, wt, out, padding, wt_strides, wt_dilation);
|
||||
return slow_conv_2D<float>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == float16) {
|
||||
return slow_conv_2D<float16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == bfloat16) {
|
||||
return slow_conv_2D<bfloat16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[Convolution::eval] got unsupported data type.");
|
||||
@@ -295,11 +371,15 @@ void explicit_gemm_conv_1D_cpu(
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int C = in.shape(2); // Input channels
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(2); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
|
||||
const int groups = C / wt.shape(2);
|
||||
const int C_per_group = wt.shape(2);
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
auto conv_dtype = float32;
|
||||
|
||||
// Pad input
|
||||
@@ -331,6 +411,11 @@ void explicit_gemm_conv_1D_cpu(
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2]};
|
||||
auto flags = in_padded.flags();
|
||||
if (groups > 1) {
|
||||
// Transpose the last two dimensions for grouped convolutions
|
||||
std::swap(strided_shape[2], strided_shape[3]);
|
||||
std::swap(strided_strides[2], strided_strides[3]);
|
||||
}
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
@@ -345,7 +430,19 @@ void explicit_gemm_conv_1D_cpu(
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
if (groups > 1) {
|
||||
// Transpose the last two dimensions for grouped convolutions
|
||||
array wt_transpose(
|
||||
{wt.shape(0), wt.shape(2), wt.shape(1)}, wt.dtype(), nullptr, {});
|
||||
wt_transpose.copy_shared_buffer(
|
||||
wt,
|
||||
{wt.strides(0), wt.strides(2), wt.strides(1)},
|
||||
wt.flags(),
|
||||
wt.size(),
|
||||
0);
|
||||
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
||||
copy(wt_transpose, gemm_wt, CopyType::General);
|
||||
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
@@ -357,27 +454,29 @@ void explicit_gemm_conv_1D_cpu(
|
||||
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
|
||||
}
|
||||
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided.data<float>(),
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt.data<float>(),
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out.data<float>(),
|
||||
O // ldc
|
||||
);
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O_per_group, // N
|
||||
C_per_group * wH, // K
|
||||
1.0f, // alpha
|
||||
in_strided.data<float>() + g * C_per_group * wH, // A
|
||||
wH * C, // lda
|
||||
gemm_wt.data<float>() + g * O_per_group * C_per_group * wH, // B
|
||||
wH * C_per_group, // ldb
|
||||
0.0f, // beta
|
||||
gemm_out.data<float>() + g * O_per_group, // C
|
||||
O // ldc
|
||||
);
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy(gemm_out, out, CopyType::Vector);
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy(gemm_out, out, CopyType::Vector);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -493,13 +592,16 @@ void conv_1D_cpu(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
if (wt_dilation[0] == 1) {
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
|
||||
return explicit_gemm_conv_1D_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation);
|
||||
}
|
||||
|
||||
return dispatch_slow_conv_1D(in, wt, out, padding, wt_strides, wt_dilation);
|
||||
return dispatch_slow_conv_1D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
|
||||
void conv_2D_cpu(
|
||||
@@ -508,8 +610,11 @@ void conv_2D_cpu(
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
return dispatch_slow_conv_2D(in, wt, out, padding, wt_strides, wt_dilation);
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
return dispatch_slow_conv_2D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -523,12 +628,26 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
|
||||
// 2D convolution
|
||||
if (in.ndim() == (2 + 2)) {
|
||||
return conv_2D_cpu(
|
||||
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
flip_);
|
||||
}
|
||||
// 1D convolution
|
||||
else if (in.ndim() == (1 + 2)) {
|
||||
return conv_1D_cpu(
|
||||
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
flip_);
|
||||
}
|
||||
// Throw error
|
||||
else {
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <numeric>
|
||||
|
||||
@@ -25,121 +25,196 @@ void copy_vector(const array& src, array& dst) {
|
||||
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_dim1(const array& src, array& dst) {
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim1(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
size_t src_idx = 0;
|
||||
size_t dst_idx = 0;
|
||||
for (size_t i = 0; i < src.shape()[0]; ++i) {
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += src.strides()[0];
|
||||
src_idx += i_strides[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_dim2(const array& src, array& dst) {
|
||||
inline void copy_general_dim1(const array& src, array& dst) {
|
||||
return copy_general_dim1<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim2(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
size_t src_idx = 0;
|
||||
size_t dst_idx = 0;
|
||||
for (size_t i = 0; i < src.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < src.shape()[1]; ++j) {
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += src.strides()[1];
|
||||
src_idx += i_strides[1];
|
||||
}
|
||||
src_idx += src.strides()[0] - src.strides()[1] * src.shape()[1];
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_dim3(const array& src, array& dst) {
|
||||
inline void copy_general_dim2(const array& src, array& dst) {
|
||||
return copy_general_dim2<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim3(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
size_t src_idx = 0;
|
||||
size_t dst_idx = 0;
|
||||
for (size_t i = 0; i < src.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < src.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < src.shape()[2]; ++k) {
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
for (int k = 0; k < data_shape[2]; ++k) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += src.strides()[2];
|
||||
src_idx += i_strides[2];
|
||||
}
|
||||
src_idx += src.strides()[1] - src.strides()[2] * src.shape()[2];
|
||||
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
|
||||
}
|
||||
src_idx += src.strides()[0] - src.strides()[1] * src.shape()[1];
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_dim4(const array& src, array& dst) {
|
||||
inline void copy_general_dim3(const array& src, array& dst) {
|
||||
return copy_general_dim3<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_dim4(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
const SrcT* src_ptr = src.data<SrcT>();
|
||||
DstT* dst_ptr = dst.data<DstT>();
|
||||
size_t src_idx = 0;
|
||||
size_t dst_idx = 0;
|
||||
for (size_t i = 0; i < src.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < src.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < src.shape()[2]; ++k) {
|
||||
for (size_t ii = 0; ii < src.shape()[3]; ++ii) {
|
||||
stride_t src_idx = i_offset;
|
||||
stride_t dst_idx = 0;
|
||||
for (int i = 0; i < data_shape[0]; ++i) {
|
||||
for (int j = 0; j < data_shape[1]; ++j) {
|
||||
for (int k = 0; k < data_shape[2]; ++k) {
|
||||
for (int ii = 0; ii < data_shape[3]; ++ii) {
|
||||
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
|
||||
src_idx += src.strides()[3];
|
||||
src_idx += i_strides[3];
|
||||
}
|
||||
src_idx += src.strides()[2] - src.strides()[3] * src.shape()[3];
|
||||
src_idx += i_strides[2] - i_strides[3] * data_shape[3];
|
||||
}
|
||||
src_idx += src.strides()[1] - src.strides()[2] * src.shape()[2];
|
||||
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
|
||||
}
|
||||
src_idx += src.strides()[0] - src.strides()[1] * src.shape()[1];
|
||||
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general(const array& src, array& dst) {
|
||||
inline void copy_general_dim4(const array& src, array& dst) {
|
||||
return copy_general_dim4<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
switch (src.ndim()) {
|
||||
case 1:
|
||||
copy_general_dim1<SrcT, DstT>(src, dst);
|
||||
copy_general_dim1<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_dim2<SrcT, DstT>(src, dst);
|
||||
copy_general_dim2<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_dim3<SrcT, DstT>(src, dst);
|
||||
copy_general_dim3<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_dim4<SrcT, DstT>(src, dst);
|
||||
copy_general_dim4<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
auto src_ptr = src.data<SrcT>();
|
||||
auto src_ptr = src.data<SrcT>() + i_offset;
|
||||
auto dst_ptr = dst.data<DstT>();
|
||||
for (size_t i = 0; i < dst.size(); ++i) {
|
||||
size_t src_elem = elem_to_loc(i, src.shape(), src.strides());
|
||||
stride_t src_elem = elem_to_loc(i, data_shape, i_strides);
|
||||
dst_ptr[i] = static_cast<DstT>(src_ptr[src_elem]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, int D>
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general(const array& src, array& dst) {
|
||||
return copy_general<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
inline void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
return copy_general<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename stride_t, int D>
|
||||
inline void copy_general_general_dims(
|
||||
const array& src,
|
||||
array& dst,
|
||||
size_t offset_src,
|
||||
size_t offset_dst) {
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
if constexpr (D > 1) {
|
||||
int axis = src.ndim() - D;
|
||||
auto stride_src = src.strides()[axis];
|
||||
auto stride_dst = dst.strides()[axis];
|
||||
auto N = src.shape(axis);
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
for (int i = 0; i < N; i++) {
|
||||
copy_general_general_dims<SrcT, DstT, D - 1>(
|
||||
src, dst, offset_src, offset_dst);
|
||||
offset_src += stride_src;
|
||||
offset_dst += stride_dst;
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, D - 1>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
i_offset += stride_src;
|
||||
o_offset += stride_dst;
|
||||
}
|
||||
} else {
|
||||
int axis = src.ndim() - 1;
|
||||
auto stride_src = src.strides()[axis];
|
||||
auto stride_dst = dst.strides()[axis];
|
||||
auto N = src.shape(axis);
|
||||
const SrcT* src_ptr = src.data<SrcT>() + offset_src;
|
||||
DstT* dst_ptr = dst.data<DstT>() + offset_dst;
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
const SrcT* src_ptr = src.data<SrcT>() + i_offset;
|
||||
DstT* dst_ptr = dst.data<DstT>() + o_offset;
|
||||
for (int i = 0; i < N; i++) {
|
||||
*dst_ptr = static_cast<DstT>(*src_ptr);
|
||||
src_ptr += stride_src;
|
||||
@@ -148,37 +223,56 @@ inline void copy_general_general_dims(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_general(const array& src, array& dst) {
|
||||
template <typename SrcT, typename DstT, typename stride_t>
|
||||
void copy_general_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
switch (src.ndim()) {
|
||||
case 1:
|
||||
copy_general_general_dims<SrcT, DstT, 1>(src, dst, 0, 0);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 1>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_general_dims<SrcT, DstT, 2>(src, dst, 0, 0);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 2>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_general_dims<SrcT, DstT, 3>(src, dst, 0, 0);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 3>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_general_dims<SrcT, DstT, 4>(src, dst, 0, 0);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 4>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
case 5:
|
||||
copy_general_general_dims<SrcT, DstT, 5>(src, dst, 0, 0);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
int size = std::accumulate(
|
||||
src.shape().begin() - 5, src.shape().end(), 1, std::multiplies<int>());
|
||||
data_shape.begin() - 5, data_shape.end(), 1, std::multiplies<int>());
|
||||
for (int i = 0; i < src.size(); i += size) {
|
||||
size_t offset_src = elem_to_loc(i, src.shape(), src.strides());
|
||||
size_t offset_dst = elem_to_loc(i, dst.shape(), dst.strides());
|
||||
copy_general_general_dims<SrcT, DstT, 5>(src, dst, offset_src, offset_dst);
|
||||
stride_t src_offset = i_offset + elem_to_loc(i, data_shape, i_strides);
|
||||
stride_t dst_offset = o_offset + elem_to_loc(i, dst.shape(), o_strides);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, src_offset, dst_offset);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy(const array& src, array& dst, CopyType ctype) {
|
||||
inline void copy_general_general(const array& src, array& dst) {
|
||||
return copy_general_general<SrcT, DstT, size_t>(
|
||||
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename... Args>
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
switch (ctype) {
|
||||
case CopyType::Scalar:
|
||||
copy_single<SrcT, DstT>(src, dst);
|
||||
@@ -187,54 +281,103 @@ void copy(const array& src, array& dst, CopyType ctype) {
|
||||
copy_vector<SrcT, DstT>(src, dst);
|
||||
return;
|
||||
case CopyType::General:
|
||||
copy_general<SrcT, DstT>(src, dst);
|
||||
copy_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
|
||||
return;
|
||||
case CopyType::GeneralGeneral:
|
||||
copy_general_general<SrcT, DstT>(src, dst);
|
||||
copy_general_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT>
|
||||
void copy(const array& src, array& dst, CopyType ctype) {
|
||||
template <typename SrcT, typename... Args>
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
switch (dst.dtype()) {
|
||||
case bool_:
|
||||
copy<SrcT, bool>(src, dst, ctype);
|
||||
copy<SrcT, bool>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint8:
|
||||
copy<SrcT, uint8_t>(src, dst, ctype);
|
||||
copy<SrcT, uint8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint16:
|
||||
copy<SrcT, uint16_t>(src, dst, ctype);
|
||||
copy<SrcT, uint16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint32:
|
||||
copy<SrcT, uint32_t>(src, dst, ctype);
|
||||
copy<SrcT, uint32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint64:
|
||||
copy<SrcT, uint64_t>(src, dst, ctype);
|
||||
copy<SrcT, uint64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int8:
|
||||
copy<SrcT, int8_t>(src, dst, ctype);
|
||||
copy<SrcT, int8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int16:
|
||||
copy<SrcT, int16_t>(src, dst, ctype);
|
||||
copy<SrcT, int16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int32:
|
||||
copy<SrcT, int32_t>(src, dst, ctype);
|
||||
copy<SrcT, int32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int64:
|
||||
copy<SrcT, int64_t>(src, dst, ctype);
|
||||
copy<SrcT, int64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float16:
|
||||
copy<SrcT, float16_t>(src, dst, ctype);
|
||||
copy<SrcT, float16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float32:
|
||||
copy<SrcT, float>(src, dst, ctype);
|
||||
copy<SrcT, float>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case bfloat16:
|
||||
copy<SrcT, bfloat16_t>(src, dst, ctype);
|
||||
copy<SrcT, bfloat16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case complex64:
|
||||
copy<SrcT, complex64_t>(src, dst, ctype);
|
||||
copy<SrcT, complex64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
inline void copy_inplace_dispatch(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Args&&... args) {
|
||||
switch (src.dtype()) {
|
||||
case bool_:
|
||||
copy<bool>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint8:
|
||||
copy<uint8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint16:
|
||||
copy<uint16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint32:
|
||||
copy<uint32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint64:
|
||||
copy<uint64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int8:
|
||||
copy<int8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int16:
|
||||
copy<int16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int32:
|
||||
copy<int32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int64:
|
||||
copy<int64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float16:
|
||||
copy<float16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float32:
|
||||
copy<float>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case bfloat16:
|
||||
copy<bfloat16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case complex64:
|
||||
copy<complex64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -242,47 +385,7 @@ void copy(const array& src, array& dst, CopyType ctype) {
|
||||
} // namespace
|
||||
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype) {
|
||||
switch (src.dtype()) {
|
||||
case bool_:
|
||||
copy<bool>(src, dst, ctype);
|
||||
break;
|
||||
case uint8:
|
||||
copy<uint8_t>(src, dst, ctype);
|
||||
break;
|
||||
case uint16:
|
||||
copy<uint16_t>(src, dst, ctype);
|
||||
break;
|
||||
case uint32:
|
||||
copy<uint32_t>(src, dst, ctype);
|
||||
break;
|
||||
case uint64:
|
||||
copy<uint64_t>(src, dst, ctype);
|
||||
break;
|
||||
case int8:
|
||||
copy<int8_t>(src, dst, ctype);
|
||||
break;
|
||||
case int16:
|
||||
copy<int16_t>(src, dst, ctype);
|
||||
break;
|
||||
case int32:
|
||||
copy<int32_t>(src, dst, ctype);
|
||||
break;
|
||||
case int64:
|
||||
copy<int64_t>(src, dst, ctype);
|
||||
break;
|
||||
case float16:
|
||||
copy<float16_t>(src, dst, ctype);
|
||||
break;
|
||||
case float32:
|
||||
copy<float>(src, dst, ctype);
|
||||
break;
|
||||
case bfloat16:
|
||||
copy<bfloat16_t>(src, dst, ctype);
|
||||
break;
|
||||
case complex64:
|
||||
copy<complex64_t>(src, dst, ctype);
|
||||
break;
|
||||
}
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
|
||||
void copy(const array& src, array& dst, CopyType ctype) {
|
||||
@@ -312,4 +415,62 @@ void copy(const array& src, array& dst, CopyType ctype) {
|
||||
copy_inplace(src, dst, ctype);
|
||||
}
|
||||
|
||||
template <typename stride_t>
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype) {
|
||||
switch (ctype) {
|
||||
case CopyType::General:
|
||||
case CopyType::GeneralGeneral:
|
||||
return copy_inplace_dispatch(
|
||||
src,
|
||||
dst,
|
||||
ctype,
|
||||
data_shape,
|
||||
i_strides,
|
||||
o_strides,
|
||||
i_offset,
|
||||
o_offset);
|
||||
|
||||
case CopyType::Scalar:
|
||||
case CopyType::Vector:
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void copy_inplace<int64_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<int64_t>& i_strides,
|
||||
const std::vector<int64_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype) {
|
||||
switch (ctype) {
|
||||
case CopyType::General:
|
||||
case CopyType::GeneralGeneral:
|
||||
return copy_inplace_dispatch(
|
||||
src,
|
||||
dst,
|
||||
ctype,
|
||||
data_shape,
|
||||
i_strides,
|
||||
o_strides,
|
||||
i_offset,
|
||||
o_offset);
|
||||
|
||||
case CopyType::Scalar:
|
||||
case CopyType::Vector:
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -26,4 +26,15 @@ enum class CopyType {
|
||||
void copy(const array& src, array& dst, CopyType ctype);
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype);
|
||||
|
||||
template <typename stride_t>
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -41,9 +41,9 @@ DEFAULT(ArgSort)
|
||||
DEFAULT(AsType)
|
||||
DEFAULT(AsStrided)
|
||||
DEFAULT(Broadcast)
|
||||
DEFAULT(BlockMaskedMM)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(Ceil)
|
||||
DEFAULT_MULTI(Compiled)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Convolution)
|
||||
DEFAULT(Copy)
|
||||
@@ -52,11 +52,13 @@ DEFAULT(Cosh)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT(Divide)
|
||||
DEFAULT(NumberOfElements)
|
||||
DEFAULT(Remainder)
|
||||
DEFAULT(Equal)
|
||||
DEFAULT(Erf)
|
||||
DEFAULT(ErfInv)
|
||||
DEFAULT(Exp)
|
||||
DEFAULT(Expm1)
|
||||
DEFAULT(FFT)
|
||||
DEFAULT(Floor)
|
||||
DEFAULT(Full)
|
||||
@@ -88,11 +90,13 @@ DEFAULT(Reshape)
|
||||
DEFAULT(Round)
|
||||
DEFAULT(Scan)
|
||||
DEFAULT(Scatter)
|
||||
DEFAULT(Select)
|
||||
DEFAULT(Sigmoid)
|
||||
DEFAULT(Sign)
|
||||
DEFAULT(Sin)
|
||||
DEFAULT(Sinh)
|
||||
DEFAULT(Slice)
|
||||
DEFAULT(SliceUpdate)
|
||||
DEFAULT(Softmax)
|
||||
DEFAULT(Sort)
|
||||
DEFAULT_MULTI(Split)
|
||||
@@ -100,9 +104,11 @@ DEFAULT(Square)
|
||||
DEFAULT(Sqrt)
|
||||
DEFAULT(StopGradient)
|
||||
DEFAULT(Subtract)
|
||||
DEFAULT_MULTI(SVD)
|
||||
DEFAULT(Tan)
|
||||
DEFAULT(Tanh)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
|
||||
namespace {
|
||||
|
||||
|
@@ -1,11 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
/* Approximation to the inverse error function.
|
||||
* Based on code from:
|
||||
* https://stackoverflow.com/questions/27229371/inverse-error-function-in-c#answer-49743348
|
||||
*/
|
||||
float erfinv(float a);
|
||||
|
||||
} // namespace mlx::core
|
104
mlx/backend/common/inverse.cpp
Normal file
104
mlx/backend/common/inverse.cpp
Normal file
@@ -0,0 +1,104 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void inverse_impl(const array& a, array& inv) {
|
||||
// Lapack uses the column-major convention. We take advantage of the following
|
||||
// identity to avoid transposing (see
|
||||
// https://math.stackexchange.com/a/340234):
|
||||
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
||||
|
||||
// The inverse is computed in place, so just copy the input to the output.
|
||||
copy(a, inv, a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
int info;
|
||||
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute LU factorization.
|
||||
sgetrf_(
|
||||
/* m = */ &N,
|
||||
/* n = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU factorization failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
static const int lwork_query = -1;
|
||||
float workspace_size = 0;
|
||||
|
||||
// Compute workspace size.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ nullptr,
|
||||
/* work = */ &workspace_size,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU workspace calculation failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_size;
|
||||
auto scratch =
|
||||
array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Compute inverse.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Inverse::eval(const std::vector<array>& inputs, array& output) {
|
||||
if (inputs[0].dtype() != float32) {
|
||||
throw std::runtime_error("[Inverse::eval] only supports float32.");
|
||||
}
|
||||
inverse_impl(inputs[0], output);
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<int>> Inverse::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
auto ax = axes[0] >= 0 ? 0 : -1;
|
||||
auto a = axes[0] > 0 ? moveaxis(inputs[0], axes[0], 0, stream()) : inputs[0];
|
||||
return {{linalg::inv(a, stream())}, {ax}};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
23
mlx/backend/common/lapack_helper.h
Normal file
23
mlx/backend/common/lapack_helper.h
Normal file
@@ -0,0 +1,23 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
#if defined(LAPACK_GLOBAL) || defined(LAPACK_NAME)
|
||||
|
||||
// This is to work around a change in the function signatures of lapack >= 3.9.1
|
||||
// where functions taking char* also include a strlen argument, see a similar
|
||||
// change in OpenCV:
|
||||
// https://github.com/opencv/opencv/blob/1eb061f89de0fb85c4c75a2deeb0f61a961a63ad/cmake/OpenCVFindLAPACK.cmake#L57
|
||||
#define MLX_LAPACK_FUNC(f) LAPACK_##f
|
||||
|
||||
#else
|
||||
|
||||
#define MLX_LAPACK_FUNC(f) f##_
|
||||
|
||||
#endif
|
34
mlx/backend/common/make_compiled_preamble.sh
Normal file
34
mlx/backend/common/make_compiled_preamble.sh
Normal file
@@ -0,0 +1,34 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This script generates a C++ function that provides the CPU
|
||||
# code for use with kernel generation.
|
||||
#
|
||||
# Copyright © 2023-24 Apple Inc.
|
||||
|
||||
|
||||
OUTPUT_FILE=$1
|
||||
GCC=$2
|
||||
SRCDIR=$3
|
||||
CLANG=$4
|
||||
|
||||
if [ $CLANG = "TRUE" ]; then
|
||||
read -r -d '' INCLUDES <<- EOM
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
EOM
|
||||
|
||||
fi
|
||||
|
||||
CONTENT=$($GCC -I $SRCDIR -E $SRCDIR/mlx/backend/common/compiled_preamble.h 2>/dev/null)
|
||||
|
||||
cat << EOF > "$OUTPUT_FILE"
|
||||
const char* get_kernel_preamble() {
|
||||
return R"preamble(
|
||||
$INCLUDES
|
||||
$CONTENT
|
||||
using namespace mlx::core::detail;
|
||||
)preamble";
|
||||
}
|
||||
EOF
|
193
mlx/backend/common/masked_mm.cpp
Normal file
193
mlx/backend/common/masked_mm.cpp
Normal file
@@ -0,0 +1,193 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const bool* mask,
|
||||
int block_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||
if (!do_mask) {
|
||||
int loc_x = i * block_size;
|
||||
int loc_y = j * block_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(block_size, X - loc_x);
|
||||
int size_y = std::min(block_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[BlockMaskedMM::eval] Currently only supports float32.");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
auto& out_mask = inputs[2];
|
||||
|
||||
auto check_transpose = [](const array& arr, bool do_copy) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (stx == arr.shape(-1) && sty == 1) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
return std::make_tuple(false, stx, arr);
|
||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector);
|
||||
return std::make_tuple(true, sty, arr_copy);
|
||||
}
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
|
||||
bool has_op_mask = inputs.size() > 3;
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre, has_op_mask);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre, has_op_mask);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_array = [](const array& mask,
|
||||
float* data,
|
||||
int block_size,
|
||||
int batch_idx,
|
||||
int X,
|
||||
int Y,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str) {
|
||||
const bool* mask_ptr = mask.data<bool>() +
|
||||
elem_to_loc(mask.shape(-1) * mask.shape(-2) * batch_idx,
|
||||
mask.shape(),
|
||||
mask.strides());
|
||||
|
||||
size_t X_mask_str = mask.strides()[mask.ndim() - 2];
|
||||
size_t Y_mask_str = mask.strides()[mask.ndim() - 1];
|
||||
|
||||
return mask_matrix(
|
||||
data,
|
||||
mask_ptr,
|
||||
block_size,
|
||||
X,
|
||||
Y,
|
||||
X_data_str,
|
||||
Y_data_str,
|
||||
X_mask_str,
|
||||
Y_mask_str);
|
||||
};
|
||||
|
||||
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||
// Adjust pointer
|
||||
float* ai =
|
||||
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides());
|
||||
float* bi =
|
||||
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides());
|
||||
float* ci = out.data<float>() + M * N * i;
|
||||
|
||||
// Zero out blocks in a and b if needed
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[3];
|
||||
mask_array(
|
||||
a_mask,
|
||||
ai,
|
||||
block_size_,
|
||||
i,
|
||||
M,
|
||||
K,
|
||||
a_transposed ? 1 : lda,
|
||||
a_transposed ? lda : 1);
|
||||
|
||||
auto& b_mask = inputs[4];
|
||||
mask_array(
|
||||
b_mask,
|
||||
bi,
|
||||
block_size_,
|
||||
i,
|
||||
K,
|
||||
N,
|
||||
b_transposed ? 1 : ldb,
|
||||
b_transposed ? ldb : 1);
|
||||
}
|
||||
|
||||
// Do matmul
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1.0, // alpha
|
||||
ai,
|
||||
lda,
|
||||
bi,
|
||||
ldb,
|
||||
0.0, // beta
|
||||
ci,
|
||||
out.shape(-1) // ldc
|
||||
);
|
||||
|
||||
// Zero out blocks in out
|
||||
mask_array(out_mask, ci, block_size_, i, M, N, N, 1);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
644
mlx/backend/common/ops.h
Normal file
644
mlx/backend/common/ops.h
Normal file
@@ -0,0 +1,644 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
|
||||
namespace mlx::core::detail {
|
||||
|
||||
namespace {
|
||||
constexpr float inf = std::numeric_limits<float>::infinity();
|
||||
} // namespace
|
||||
|
||||
typedef union {
|
||||
int i;
|
||||
float f;
|
||||
} IntOrFloat;
|
||||
|
||||
inline float fast_exp(float x) {
|
||||
if (x == -std::numeric_limits<float>::infinity()) {
|
||||
return 0.0f;
|
||||
} else if (x == std::numeric_limits<float>::infinity() || std::isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
x *= 1.442695; // multiply with log_2(e)
|
||||
float ipart, fpart;
|
||||
IntOrFloat epart;
|
||||
x = std::max(-80.f, std::min(x, 80.f));
|
||||
ipart = std::floor(x + 0.5);
|
||||
fpart = x - ipart;
|
||||
|
||||
x = 1.535336188319500e-4f;
|
||||
x = x * fpart + 1.339887440266574e-3f;
|
||||
x = x * fpart + 9.618437357674640e-3f;
|
||||
x = x * fpart + 5.550332471162809e-2f;
|
||||
x = x * fpart + 2.402264791363012e-1f;
|
||||
x = x * fpart + 6.931472028550421e-1f;
|
||||
x = x * fpart + 1.000000000000000f;
|
||||
|
||||
// generate 2**ipart in the floating point representation using integer
|
||||
// bitshifting
|
||||
epart.i = (int(ipart) + 127) << 23;
|
||||
|
||||
return epart.f * x;
|
||||
}
|
||||
|
||||
inline float fast_erf(float a) {
|
||||
float r, s, t, u;
|
||||
t = std::abs(a);
|
||||
s = a * a;
|
||||
if (t > 0.927734375f) {
|
||||
// maximum error 0.99527 ulp
|
||||
r = std::fma(
|
||||
-1.72853470e-5f, t, 3.83197126e-4f); // -0x1.220000p-16,0x1.91cfb2p-12
|
||||
u = std::fma(
|
||||
-3.88396438e-3f, t, 2.42546219e-2f); // -0x1.fd1438p-9, 0x1.8d6342p-6
|
||||
r = std::fma(r, s, u);
|
||||
r = std::fma(r, t, -1.06777877e-1f); // -0x1.b55cb8p-4
|
||||
r = std::fma(r, t, -6.34846687e-1f); // -0x1.450aa0p-1
|
||||
r = std::fma(r, t, -1.28717512e-1f); // -0x1.079d0cp-3
|
||||
r = std::fma(r, t, -t);
|
||||
// TODO, replace with expm1 when implemented
|
||||
r = 1.0f - std::exp(r);
|
||||
r = std::copysign(r, a);
|
||||
} else {
|
||||
// maximum error 0.98929 ulp
|
||||
r = -5.96761703e-4f; // -0x1.38e000p-11
|
||||
r = std::fma(r, s, 4.99119423e-3f); // 0x1.471a58p-8
|
||||
r = std::fma(r, s, -2.67681349e-2f); // -0x1.b691b2p-6
|
||||
r = std::fma(r, s, 1.12819925e-1f); // 0x1.ce1c44p-4
|
||||
r = std::fma(r, s, -3.76125336e-1f); // -0x1.812700p-2
|
||||
r = std::fma(r, s, 1.28379166e-1f); // 0x1.06eba8p-3
|
||||
r = std::fma(r, a, a);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
inline float fast_erfinv(float a) {
|
||||
auto t = std::fma(a, 0.0f - a, 1.0f);
|
||||
t = std::log(t);
|
||||
float p;
|
||||
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
|
||||
p = 3.03697567e-10f; // 0x1.4deb44p-32
|
||||
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
|
||||
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
|
||||
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
|
||||
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
|
||||
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
|
||||
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
|
||||
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
|
||||
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
|
||||
} else { // maximum ulp error = 2.35002
|
||||
p = 5.43877832e-9f; // 0x1.75c000p-28
|
||||
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
|
||||
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
|
||||
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
|
||||
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
|
||||
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
|
||||
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
|
||||
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
|
||||
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
|
||||
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
|
||||
}
|
||||
return a * p;
|
||||
}
|
||||
|
||||
struct Abs {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::abs(x);
|
||||
};
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcCos {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::acos(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcCosh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::acosh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcSin {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::asin(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcSinh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::asinh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcTan {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::atan(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct ArcTanh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::atanh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Ceil {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::ceil(x);
|
||||
};
|
||||
int8_t operator()(int8_t x) {
|
||||
return x;
|
||||
};
|
||||
int16_t operator()(int16_t x) {
|
||||
return x;
|
||||
};
|
||||
int32_t operator()(int32_t x) {
|
||||
return x;
|
||||
};
|
||||
int64_t operator()(int64_t x) {
|
||||
return x;
|
||||
};
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
};
|
||||
|
||||
struct Cos {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::cos(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Cosh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::cosh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Erf {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<T>(fast_erf(static_cast<float>(x)));
|
||||
};
|
||||
};
|
||||
|
||||
struct ErfInv {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<T>(fast_erfinv(static_cast<float>(x)));
|
||||
};
|
||||
};
|
||||
|
||||
struct Exp {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return fast_exp(x);
|
||||
};
|
||||
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return std::exp(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Expm1 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return expm1(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Floor {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::floor(x);
|
||||
};
|
||||
int8_t operator()(int8_t x) {
|
||||
return x;
|
||||
};
|
||||
int16_t operator()(int16_t x) {
|
||||
return x;
|
||||
};
|
||||
int32_t operator()(int32_t x) {
|
||||
return x;
|
||||
};
|
||||
int64_t operator()(int64_t x) {
|
||||
return x;
|
||||
};
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
};
|
||||
|
||||
struct Log {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Log2 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log2(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Log10 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log10(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Log1p {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return log1p(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct LogicalNot {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return !x;
|
||||
};
|
||||
};
|
||||
|
||||
struct Negative {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return -x;
|
||||
};
|
||||
};
|
||||
|
||||
struct Round {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::rint(x);
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return {std::rint(x.real()), std::rint(x.imag())};
|
||||
}
|
||||
};
|
||||
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
auto one = static_cast<decltype(x)>(1.0);
|
||||
return one / (one + fast_exp(-x));
|
||||
}
|
||||
};
|
||||
|
||||
struct Sign {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return (x > T(0)) - (x < T(0));
|
||||
}
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct Sin {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sin(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Sinh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sinh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Square {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return x * x;
|
||||
};
|
||||
};
|
||||
|
||||
struct Sqrt {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sqrt(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Rsqrt {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<decltype(x)>(1.0) / std::sqrt(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Tan {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::tan(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Tanh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::tanh(x);
|
||||
};
|
||||
};
|
||||
|
||||
struct Add {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x + y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Divide {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x / y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Remainder {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T> & !std::is_signed_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
return numerator % denominator;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T> & std::is_signed_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
auto r = numerator % denominator;
|
||||
if (r != 0 && (r < 0 != denominator < 0))
|
||||
r += denominator;
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
|
||||
T numerator,
|
||||
T denominator) {
|
||||
auto r = std::fmod(numerator, denominator);
|
||||
if (r != 0 && (r < 0 != denominator < 0)) {
|
||||
r += denominator;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t numerator, complex64_t denominator) {
|
||||
return numerator % denominator;
|
||||
}
|
||||
};
|
||||
|
||||
struct Equal {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x == y;
|
||||
}
|
||||
};
|
||||
|
||||
struct NaNEqual {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x == y || (std::isnan(x) && std::isnan(y));
|
||||
}
|
||||
};
|
||||
|
||||
struct Greater {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x > y;
|
||||
}
|
||||
};
|
||||
|
||||
struct GreaterEqual {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x >= y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Less {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x < y;
|
||||
}
|
||||
};
|
||||
|
||||
struct LessEqual {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x <= y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Maximum {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
|
||||
return (x > y) ? x : y;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
|
||||
if (std::isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
return (x > y) ? x : y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Minimum {
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
|
||||
return x < y ? x : y;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
|
||||
if (std::isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
return x < y ? x : y;
|
||||
}
|
||||
};
|
||||
|
||||
struct LogAddExp {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
constexpr float inf = std::numeric_limits<float>::infinity();
|
||||
auto maxval = Maximum()(x, y);
|
||||
auto minval = Minimum()(x, y);
|
||||
return (minval == -inf || maxval == inf)
|
||||
? maxval
|
||||
: static_cast<decltype(x)>(
|
||||
maxval + std::log1p(fast_exp(minval - maxval)));
|
||||
};
|
||||
};
|
||||
|
||||
struct Multiply {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x * y;
|
||||
}
|
||||
};
|
||||
|
||||
struct NotEqual {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x != y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Power {
|
||||
template <typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
|
||||
return std::pow(base, exp);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
|
||||
T res = 1;
|
||||
while (exp) {
|
||||
if (exp & 1) {
|
||||
res *= base;
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
struct Subtract {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x - y;
|
||||
}
|
||||
};
|
||||
|
||||
struct LogicalAnd {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x && y;
|
||||
};
|
||||
};
|
||||
|
||||
struct LogicalOr {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x || y;
|
||||
};
|
||||
};
|
||||
|
||||
struct Select {
|
||||
template <typename T>
|
||||
T operator()(bool condition, T x, T y) {
|
||||
return condition ? x : y;
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseAnd {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x & y;
|
||||
};
|
||||
};
|
||||
|
||||
struct BitwiseOr {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x | y;
|
||||
};
|
||||
};
|
||||
|
||||
struct BitwiseXor {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x ^ y;
|
||||
};
|
||||
};
|
||||
|
||||
struct LeftShift {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x << y;
|
||||
};
|
||||
};
|
||||
|
||||
struct RightShift {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x >> y;
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace mlx::core::detail
|
@@ -10,7 +10,7 @@
|
||||
#include "mlx/backend/common/arange.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/erf.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/backend/common/threefry.h"
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
@@ -22,11 +22,11 @@ namespace mlx::core {
|
||||
void Abs::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (is_unsigned(in.dtype())) {
|
||||
if (issubdtype(in.dtype(), unsignedinteger)) {
|
||||
// No-op for unsigned types
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
unary(in, out, AbsOp());
|
||||
unary(in, out, detail::Abs());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -37,8 +37,8 @@ void Arange::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcCos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::acos(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcCos());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arccos] Cannot compute inverse cosine of elements in array"
|
||||
@@ -49,8 +49,8 @@ void ArcCos::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::acosh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcCosh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arccosh] Cannot compute inverse hyperbolic cosine of elements in"
|
||||
@@ -61,8 +61,8 @@ void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcSin::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::asin(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcSin());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arcsin] Cannot compute inverse sine of elements in array"
|
||||
@@ -73,8 +73,8 @@ void ArcSin::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::asinh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcSinh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arcsinh] Cannot compute inverse hyperbolic sine of elements in"
|
||||
@@ -85,8 +85,8 @@ void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcTan::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::atan(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcTan());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arctan] Cannot compute inverse tangent of elements in array"
|
||||
@@ -97,8 +97,8 @@ void ArcTan::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcTanh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::atanh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcTanh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arctanh] Cannot compute inverse hyperbolic tangent of elements in"
|
||||
@@ -171,8 +171,8 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Ceil::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::ceil(x); });
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Ceil());
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
@@ -211,8 +211,8 @@ void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::cos(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Cos());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[cos] Cannot compute cosine of elements in array"
|
||||
@@ -223,8 +223,8 @@ void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Cosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::cosh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Cosh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[cosh] Cannot compute hyperbolic cosine of elements in array"
|
||||
@@ -251,22 +251,74 @@ void Depends::eval(
|
||||
}
|
||||
}
|
||||
|
||||
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
double numel = 1;
|
||||
for (auto ax : axes_) {
|
||||
numel *= inputs[0].shape(ax);
|
||||
}
|
||||
|
||||
if (inverted_) {
|
||||
numel = 1.0 / numel;
|
||||
}
|
||||
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
*out.data<bool>() = static_cast<bool>(numel);
|
||||
break;
|
||||
case uint8:
|
||||
*out.data<uint8_t>() = static_cast<uint8_t>(numel);
|
||||
break;
|
||||
case uint16:
|
||||
*out.data<uint16_t>() = static_cast<uint16_t>(numel);
|
||||
break;
|
||||
case uint32:
|
||||
*out.data<uint32_t>() = static_cast<uint32_t>(numel);
|
||||
break;
|
||||
case uint64:
|
||||
*out.data<uint64_t>() = static_cast<uint64_t>(numel);
|
||||
break;
|
||||
case int8:
|
||||
*out.data<int8_t>() = static_cast<int8_t>(numel);
|
||||
break;
|
||||
case int16:
|
||||
*out.data<int16_t>() = static_cast<int16_t>(numel);
|
||||
break;
|
||||
case int32:
|
||||
*out.data<int32_t>() = static_cast<int32_t>(numel);
|
||||
break;
|
||||
case int64:
|
||||
*out.data<int64_t>() = static_cast<int64_t>(numel);
|
||||
break;
|
||||
case float16:
|
||||
*out.data<float16_t>() = static_cast<float16_t>(numel);
|
||||
break;
|
||||
case float32:
|
||||
*out.data<float>() = static_cast<float>(numel);
|
||||
break;
|
||||
case bfloat16:
|
||||
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
||||
break;
|
||||
case complex64:
|
||||
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Erf::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
switch (out.dtype()) {
|
||||
case float32:
|
||||
unary_op<float>(in, out, [](auto x) { return std::erf(x); });
|
||||
unary_op<float>(in, out, detail::Erf());
|
||||
break;
|
||||
case float16:
|
||||
unary_op<float16_t>(in, out, [](auto x) {
|
||||
return static_cast<float16_t>(std::erf(static_cast<float>(x)));
|
||||
});
|
||||
unary_op<float16_t>(in, out, detail::Erf());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<bfloat16_t>(in, out, [](auto x) {
|
||||
return static_cast<bfloat16_t>(std::erf(static_cast<float>(x)));
|
||||
});
|
||||
unary_op<bfloat16_t>(in, out, detail::Erf());
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
@@ -280,17 +332,13 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
|
||||
const auto& in = inputs[0];
|
||||
switch (out.dtype()) {
|
||||
case float32:
|
||||
unary_op<float>(in, out, [](auto x) { return erfinv(x); });
|
||||
unary_op<float>(in, out, detail::ErfInv());
|
||||
break;
|
||||
case float16:
|
||||
unary_op<float16_t>(in, out, [](auto x) {
|
||||
return static_cast<float16_t>(erfinv(static_cast<float>(x)));
|
||||
});
|
||||
unary_op<float16_t>(in, out, detail::ErfInv());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<bfloat16_t>(in, out, [](auto x) {
|
||||
return static_cast<bfloat16_t>(erfinv(static_cast<float>(x)));
|
||||
});
|
||||
unary_op<bfloat16_t>(in, out, detail::ErfInv());
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
@@ -302,9 +350,8 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Exp::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::exp(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Exp());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[exp] Cannot exponentiate elements in array"
|
||||
@@ -312,11 +359,23 @@ void Exp::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Expm1::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Expm1());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[expm1] Cannot exponentiate elements in array"
|
||||
" with non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
void Floor::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::floor(x); });
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Floor());
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
@@ -341,16 +400,16 @@ void Full::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Log::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
unary_fp(in, out, [](auto x) { return std::log(x); });
|
||||
unary_fp(in, out, detail::Log());
|
||||
break;
|
||||
case Base::two:
|
||||
unary_fp(in, out, [](auto x) { return std::log2(x); });
|
||||
unary_fp(in, out, detail::Log2());
|
||||
break;
|
||||
case Base::ten:
|
||||
unary_fp(in, out, [](auto x) { return std::log10(x); });
|
||||
unary_fp(in, out, detail::Log10());
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
@@ -363,8 +422,8 @@ void Log::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Log1p::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::log1p(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Log1p());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[log1p] Cannot compute log of elements in array with"
|
||||
@@ -375,27 +434,27 @@ void Log1p::eval(const std::vector<array>& inputs, array& out) {
|
||||
void LogicalNot::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
unary(in, out, [](auto x) { return !x; });
|
||||
unary(in, out, detail::LogicalNot());
|
||||
}
|
||||
|
||||
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, [](auto x, auto y) { return x && y; });
|
||||
binary(in1, in2, out, detail::LogicalAnd());
|
||||
}
|
||||
|
||||
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, [](auto x, auto y) { return x || y; });
|
||||
binary(in1, in2, out, detail::LogicalOr());
|
||||
}
|
||||
|
||||
void Negative::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
unary(in, out, [](auto x) { return -x; });
|
||||
unary(in, out, detail::Negative());
|
||||
}
|
||||
|
||||
void Pad::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -477,28 +536,81 @@ void RandomBits::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (in.flags().row_contiguous) {
|
||||
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
const array& in,
|
||||
const array& out) {
|
||||
// Special case for empty arrays or row contiguous arrays
|
||||
if (in.size() == 0 || in.flags().row_contiguous) {
|
||||
return {false, out.strides()};
|
||||
}
|
||||
|
||||
// Special case for scalars
|
||||
if (in.ndim() == 0) {
|
||||
std::vector<size_t> out_strides(out.ndim(), 0);
|
||||
return {false, out_strides};
|
||||
}
|
||||
|
||||
// Firstly let's collapse all the contiguous dimensions of the input
|
||||
auto [shape, _strides] = collapse_contiguous_dims(in);
|
||||
auto& strides = _strides[0];
|
||||
|
||||
// If shapes fit exactly in the contiguous dims then no copy is necessary so
|
||||
// let's check.
|
||||
std::vector<size_t> out_strides;
|
||||
bool copy_necessary = false;
|
||||
int j = 0;
|
||||
for (int i = 0; i < out.ndim(); i++) {
|
||||
int N = out.shape(i);
|
||||
if (j < shape.size() && shape[j] % N == 0) {
|
||||
shape[j] /= N;
|
||||
out_strides.push_back(shape[j] * strides[j]);
|
||||
j += (shape[j] == 1);
|
||||
} else if (N == 1) {
|
||||
// i > 0 because otherwise j < shape.size() && shape[j] % 1 == 0
|
||||
out_strides.push_back(out_strides.back());
|
||||
} else {
|
||||
copy_necessary = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return {copy_necessary, out_strides};
|
||||
}
|
||||
|
||||
void Reshape::shared_buffer_reshape(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
array& out) {
|
||||
auto flags = in.flags();
|
||||
if (flags.row_contiguous) {
|
||||
// For row contiguous reshapes:
|
||||
// - Shallow copy the buffer
|
||||
// - If reshaping into a vector (all singleton dimensions except one) it
|
||||
// becomes col contiguous again.
|
||||
auto flags = in.flags();
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
out.copy_shared_buffer(in, out.strides(), flags, in.data_size());
|
||||
} else {
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
|
||||
if (copy_necessary) {
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : CopyType::General);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Round::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
unary_fp(in, out, RoundOp());
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Round());
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
@@ -508,12 +620,8 @@ void Round::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Sigmoid::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
auto sigmoid_op = [](auto x) {
|
||||
auto one = static_cast<decltype(x)>(1.0);
|
||||
return one / (one + std::exp(-x));
|
||||
};
|
||||
unary_fp(in, out, sigmoid_op);
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sigmoid());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[sigmoid] Cannot sigmoid of elements in array with"
|
||||
@@ -527,15 +635,15 @@ void Sign::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (in.dtype() == bool_) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
unary(in, out, SignOp());
|
||||
unary(in, out, detail::Sign());
|
||||
}
|
||||
}
|
||||
|
||||
void Sin::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::sin(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sin());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[sin] Cannot compute sine of elements in array"
|
||||
@@ -546,8 +654,8 @@ void Sin::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Sinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::sinh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sinh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[sinh] Cannot compute hyperbolic sine of elements in array"
|
||||
@@ -555,36 +663,33 @@ void Sinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
auto& in = inputs[0];
|
||||
auto strides = in.strides();
|
||||
auto flags = in.flags();
|
||||
size_t data_offset = 0;
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> Slice::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
bool copy_needed = false;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
strides[i] *= strides_[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
|
||||
copy_needed |= strides_[i] < 0;
|
||||
}
|
||||
|
||||
return std::make_tuple(copy_needed, data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void Slice::shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = out.ndim() - 1; ri >= 0; i++, ri--) {
|
||||
flags.col_contiguous &= strides[i] == f_stride || out.shape(i) == 1;
|
||||
flags.row_contiguous &= strides[ri] == b_stride || out.shape(ri) == 1;
|
||||
f_stride *= out.shape(i);
|
||||
b_stride *= out.shape(ri);
|
||||
if (strides[i] > 0) {
|
||||
data_size *= out.shape(i);
|
||||
}
|
||||
}
|
||||
auto [data_size, is_row_contiguous, is_col_contiguous] =
|
||||
check_contiguity(out.shape(), out_strides);
|
||||
|
||||
auto flags = in.flags();
|
||||
flags.row_contiguous = is_row_contiguous;
|
||||
flags.col_contiguous = is_col_contiguous;
|
||||
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
@@ -598,7 +703,87 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
out.copy_shared_buffer(in, strides, flags, data_size, data_offset);
|
||||
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
||||
}
|
||||
|
||||
void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [copy_needed, data_offset, inp_strides] = prepare_slice(in);
|
||||
|
||||
// Do copy if needed
|
||||
if (copy_needed) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
|
||||
copy_inplace<int64_t>(
|
||||
/* const array& src = */ in,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ out.shape(),
|
||||
/* const std::vector<stride_t>& i_strides = */ inp_strides,
|
||||
/* const std::vector<stride_t>& o_strides = */ ostrides,
|
||||
/* int64_t i_offset = */ data_offset,
|
||||
/* int64_t o_offset = */ 0,
|
||||
/* CopyType ctype = */ CopyType::General);
|
||||
} else {
|
||||
std::vector<size_t> ostrides{inp_strides.begin(), inp_strides.end()};
|
||||
shared_buffer_slice(in, ostrides, data_offset, out);
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
}
|
||||
|
||||
return std::make_tuple(data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
|
||||
auto& in = inputs[0];
|
||||
auto& upd = inputs[1];
|
||||
|
||||
if (upd.size() == 0) {
|
||||
out.copy_shared_buffer(in);
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if materialization is needed
|
||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [data_offset, out_strides] = prepare_slice(out);
|
||||
|
||||
// Do copy
|
||||
std::vector<int64_t> upd_strides{upd.strides().begin(), upd.strides().end()};
|
||||
copy_inplace<int64_t>(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
/* const std::vector<stride_t>& i_strides = */ upd_strides,
|
||||
/* const std::vector<stride_t>& o_strides = */ out_strides,
|
||||
/* int64_t i_offset = */ 0,
|
||||
/* int64_t o_offset = */ data_offset,
|
||||
/* CopyType ctype = */ CopyType::GeneralGeneral);
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
@@ -656,18 +841,16 @@ void Split::eval(
|
||||
void Square::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
unary(in, out, [](auto x) { return x * x; });
|
||||
unary(in, out, detail::Square());
|
||||
}
|
||||
|
||||
void Sqrt::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (recip_) {
|
||||
unary_fp(in, out, [](auto x) {
|
||||
return static_cast<decltype(x)>(1.0) / sqrt(x);
|
||||
});
|
||||
unary_fp(in, out, detail::Rsqrt());
|
||||
} else {
|
||||
unary_fp(in, out, [](auto x) { return sqrt(x); });
|
||||
unary_fp(in, out, detail::Sqrt());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -679,8 +862,8 @@ void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Tan::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::tan(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Tan());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[tan] Cannot compute tangent of elements in array"
|
||||
@@ -691,8 +874,8 @@ void Tan::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Tanh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
unary_fp(in, out, [](auto x) { return std::tanh(x); });
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Tanh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[tanh] Cannot compute hyperbolic tangent of elements in array"
|
||||
|
@@ -6,8 +6,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
enum ReductionOpType {
|
||||
// Self-explanatory. Read everything and produce 1 output.
|
||||
ContiguousAllReduce,
|
||||
@@ -38,6 +36,21 @@ enum ReductionOpType {
|
||||
GeneralReduce
|
||||
};
|
||||
|
||||
struct ReductionPlan {
|
||||
ReductionOpType type;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
|
||||
ReductionPlan(
|
||||
ReductionOpType type_,
|
||||
std::vector<int> shape_,
|
||||
std::vector<size_t> strides_)
|
||||
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
// Helper for the ndimensional strided loop
|
||||
// Should this be in utils?
|
||||
inline void nd_loop(
|
||||
@@ -110,19 +123,6 @@ struct DefaultContiguousReduce {
|
||||
}
|
||||
};
|
||||
|
||||
struct ReductionPlan {
|
||||
ReductionOpType type;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
|
||||
ReductionPlan(
|
||||
ReductionOpType type_,
|
||||
std::vector<int> shape_,
|
||||
std::vector<size_t> strides_)
|
||||
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
|
@@ -1,14 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/fast.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
void RoPE::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
throw std::runtime_error("NYI");
|
||||
}
|
||||
|
||||
} // namespace mlx::core::fast
|
@@ -222,7 +222,7 @@ void scan_dispatch(
|
||||
}
|
||||
case Scan::Min: {
|
||||
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *x : *y; };
|
||||
auto init = (is_floating_point(input.dtype()))
|
||||
auto init = (issubdtype(input.dtype(), floating))
|
||||
? static_cast<U>(std::numeric_limits<float>::infinity())
|
||||
: std::numeric_limits<U>::max();
|
||||
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
|
||||
@@ -232,7 +232,7 @@ void scan_dispatch(
|
||||
}
|
||||
case Scan::Max: {
|
||||
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *y : *x; };
|
||||
auto init = (is_floating_point(input.dtype()))
|
||||
auto init = (issubdtype(input.dtype(), floating))
|
||||
? static_cast<U>(-std::numeric_limits<float>::infinity())
|
||||
: std::numeric_limits<U>::max();
|
||||
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
|
||||
|
72
mlx/backend/common/select.cpp
Normal file
72
mlx/backend/common/select.cpp
Normal file
@@ -0,0 +1,72 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/ternary.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename Op>
|
||||
void select_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
ternary_op<bool, bool, bool, bool>(a, b, c, out, op);
|
||||
break;
|
||||
case uint8:
|
||||
ternary_op<bool, uint8_t, uint8_t, uint8_t>(a, b, c, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
ternary_op<bool, uint16_t, uint16_t, uint16_t>(a, b, c, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
ternary_op<bool, uint32_t, uint32_t, uint32_t>(a, b, c, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
ternary_op<bool, uint64_t, uint64_t, uint64_t>(a, b, c, out, op);
|
||||
break;
|
||||
case int8:
|
||||
ternary_op<bool, int8_t, int8_t, int8_t>(a, b, c, out, op);
|
||||
break;
|
||||
case int16:
|
||||
ternary_op<bool, int16_t, int16_t, int16_t>(a, b, c, out, op);
|
||||
break;
|
||||
case int32:
|
||||
ternary_op<bool, int32_t, int32_t, int32_t>(a, b, c, out, op);
|
||||
break;
|
||||
case int64:
|
||||
ternary_op<bool, int64_t, int64_t, int64_t>(a, b, c, out, op);
|
||||
break;
|
||||
case float16:
|
||||
ternary_op<bool, float16_t, float16_t, float16_t>(a, b, c, out, op);
|
||||
break;
|
||||
case float32:
|
||||
ternary_op<bool, float, float, float>(a, b, c, out, op);
|
||||
break;
|
||||
case bfloat16:
|
||||
ternary_op<bool, bfloat16_t, bfloat16_t, bfloat16_t>(a, b, c, out, op);
|
||||
break;
|
||||
case complex64:
|
||||
ternary_op<bool, complex64_t, complex64_t, complex64_t>(a, b, c, out, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Select::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 3);
|
||||
const auto& condition = inputs[0];
|
||||
const auto& a = inputs[1];
|
||||
const auto& b = inputs[2];
|
||||
select_op(condition, a, b, out, detail::Select());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
@@ -10,7 +10,7 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
template <typename T, typename AccT>
|
||||
void softmax(const array& in, array& out) {
|
||||
const T* in_ptr = in.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
@@ -22,26 +22,36 @@ void softmax(const array& in, array& out) {
|
||||
for (int i = 0; i < M; i++, in_ptr += N, out_ptr += N) {
|
||||
// Find the maximum
|
||||
current_in_ptr = in_ptr;
|
||||
T maximum = *current_in_ptr;
|
||||
AccT maximum = *current_in_ptr;
|
||||
for (int j = 0; j < N; j++, current_in_ptr++) {
|
||||
maximum = (maximum < *current_in_ptr) ? *current_in_ptr : maximum;
|
||||
maximum = (maximum < *current_in_ptr) ? static_cast<AccT>(*current_in_ptr)
|
||||
: maximum;
|
||||
}
|
||||
|
||||
// Compute the normalizer and the exponentials
|
||||
T normalizer = 0;
|
||||
AccT normalizer = 0;
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
for (int j = 0; j < N; j++, current_out_ptr++, current_in_ptr++) {
|
||||
T expv = std::exp(*current_in_ptr - maximum);
|
||||
AccT expv = std::exp(*current_in_ptr - maximum);
|
||||
normalizer += expv;
|
||||
*current_out_ptr = expv;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr = expv;
|
||||
}
|
||||
}
|
||||
normalizer = 1 / normalizer;
|
||||
|
||||
// Normalize
|
||||
current_in_ptr = in_ptr;
|
||||
current_out_ptr = out_ptr;
|
||||
for (int j = 0; j < N; j++, current_out_ptr++) {
|
||||
*current_out_ptr *= normalizer;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr *= normalizer;
|
||||
} else {
|
||||
auto v = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = static_cast<T>(v * normalizer);
|
||||
current_in_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -67,11 +77,15 @@ void Softmax::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
};
|
||||
array in = check_input(std::move(inputs[0]));
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(in.data_size() * in.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
if (in.is_donatable()) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(in.data_size() * in.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
}
|
||||
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
@@ -87,13 +101,21 @@ void Softmax::eval(const std::vector<array>& inputs, array& out) {
|
||||
"Softmax is defined only for floating point types");
|
||||
break;
|
||||
case float32:
|
||||
softmax<float>(in, out);
|
||||
softmax<float, float>(in, out);
|
||||
break;
|
||||
case float16:
|
||||
softmax<float16_t>(in, out);
|
||||
if (precise_) {
|
||||
softmax<float16_t, float>(in, out);
|
||||
} else {
|
||||
softmax<float16_t, float16_t>(in, out);
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
softmax<bfloat16_t>(in, out);
|
||||
if (precise_) {
|
||||
softmax<bfloat16_t, float>(in, out);
|
||||
} else {
|
||||
softmax<bfloat16_t, bfloat16_t>(in, out);
|
||||
}
|
||||
break;
|
||||
case complex64:
|
||||
throw std::invalid_argument(
|
||||
|
156
mlx/backend/common/svd.cpp
Normal file
156
mlx/backend/common/svd.cpp
Normal file
@@ -0,0 +1,156 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack_helper.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void svd_impl(const array& a, array& u, array& s, array& vt) {
|
||||
// Lapack uses the column-major convention. To avoid having to transpose
|
||||
// the input and then transpose the outputs, we swap the indices/sizes of the
|
||||
// matrices and take advantage of the following identity (see
|
||||
// https://math.stackexchange.com/a/30077)
|
||||
// A = UΣVᵀ
|
||||
// Aᵀ = VΣUᵀ
|
||||
// As a result some of the indices/sizes are swapped as noted above.
|
||||
|
||||
// Rows and cols of the original matrix in row-major order.
|
||||
const int M = a.shape(-2);
|
||||
const int N = a.shape(-1);
|
||||
const int K = std::min(M, N);
|
||||
|
||||
// A of shape M x N. The leading dimension is N since lapack receives Aᵀ.
|
||||
const int lda = N;
|
||||
// U of shape M x M. (N x N in lapack).
|
||||
const int ldu = N;
|
||||
// Vᵀ of shape N x N. (M x M in lapack).
|
||||
const int ldvt = M;
|
||||
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), float32, nullptr, {});
|
||||
copy(a, in, a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
|
||||
// Allocate outputs.
|
||||
u.set_data(allocator::malloc_or_wait(u.nbytes()));
|
||||
s.set_data(allocator::malloc_or_wait(s.nbytes()));
|
||||
vt.set_data(allocator::malloc_or_wait(vt.nbytes()));
|
||||
|
||||
static constexpr auto job_u = "V";
|
||||
static constexpr auto job_vt = "V";
|
||||
static constexpr auto range = "A";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
float workspace_dimension = 0;
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not used
|
||||
// here but required by lapack).
|
||||
auto iwork = array::Data{allocator::malloc_or_wait(sizeof(int) * 12 * K)};
|
||||
|
||||
static const int lwork_query = -1;
|
||||
|
||||
static const int ignored_int = 0;
|
||||
static const float ignored_float = 0;
|
||||
|
||||
int info;
|
||||
|
||||
// Compute workspace size.
|
||||
MLX_LAPACK_FUNC(sgesvdx)
|
||||
(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ nullptr,
|
||||
/* u = */ nullptr,
|
||||
/* ldu = */ &ldu,
|
||||
/* vt = */ nullptr,
|
||||
/* ldvt = */ &ldvt,
|
||||
/* work = */ &workspace_dimension,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: sgesvdx_ workspace calculation failed with code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_dimension;
|
||||
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Loop over matrices.
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
MLX_LAPACK_FUNC(sgesvdx)
|
||||
(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ in.data<float>() + M * N * i,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ s.data<float>() + K * i,
|
||||
// According to the identity above, lapack will write Vᵀᵀ as U.
|
||||
/* u = */ vt.data<float>() + N * N * i,
|
||||
/* ldu = */ &ldu,
|
||||
// According to the identity above, lapack will write Uᵀ as Vᵀ.
|
||||
/* vt = */ u.data<float>() + M * M * i,
|
||||
/* ldvt = */ &ldvt,
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: sgesvdx_ failed with code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
if (ns != K) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: expected " << K << " singular values, but " << ns
|
||||
<< " were computed.";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SVD::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
|
||||
if (!(inputs[0].dtype() == float32)) {
|
||||
throw std::runtime_error("[SVD::eval] only supports float32.");
|
||||
}
|
||||
svd_impl(inputs[0], outputs[0], outputs[1], outputs[2]);
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<int>> SVD::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
auto ax = axes[0] >= 0 ? 0 : -1;
|
||||
auto a = axes[0] > 0 ? moveaxis(inputs[0], axes[0], 0, stream()) : inputs[0];
|
||||
return {{linalg::svd(a, stream())}, {ax, ax, ax}};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
226
mlx/backend/common/ternary.h
Normal file
226
mlx/backend/common/ternary.h
Normal file
@@ -0,0 +1,226 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// TODO: Add support for more combinations of input types.
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
General,
|
||||
};
|
||||
|
||||
TernaryOpType
|
||||
get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
TernaryOpType topt;
|
||||
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
|
||||
topt = TernaryOpType::ScalarScalarScalar;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
return topt;
|
||||
}
|
||||
|
||||
void set_ternary_op_output_data(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
TernaryOpType topt,
|
||||
bool donate_with_move = false) {
|
||||
switch (topt) {
|
||||
case TernaryOpType::ScalarScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize()), 1, b.strides(), b.flags());
|
||||
break;
|
||||
case TernaryOpType::General:
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims1(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[0];
|
||||
b_idx += b.strides()[0];
|
||||
c_idx += c.strides()[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims2(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[1];
|
||||
b_idx += b.strides()[1];
|
||||
c_idx += c.strides()[1];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims3(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[2];
|
||||
b_idx += b.strides()[2];
|
||||
c_idx += c.strides()[2];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dims4(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
|
||||
U* dst = out.data<U>();
|
||||
size_t a_idx = 0;
|
||||
size_t b_idx = 0;
|
||||
size_t c_idx = 0;
|
||||
size_t out_idx = 0;
|
||||
for (size_t i = 0; i < a.shape()[0]; ++i) {
|
||||
for (size_t j = 0; j < a.shape()[1]; ++j) {
|
||||
for (size_t k = 0; k < a.shape()[2]; ++k) {
|
||||
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
|
||||
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
a_idx += a.strides()[3];
|
||||
b_idx += b.strides()[3];
|
||||
c_idx += c.strides()[3];
|
||||
}
|
||||
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
|
||||
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
|
||||
c_idx += c.strides()[2] - c.strides()[3] * c.shape()[3];
|
||||
}
|
||||
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
|
||||
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
|
||||
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
|
||||
}
|
||||
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
|
||||
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
|
||||
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
switch (out.ndim()) {
|
||||
case 1:
|
||||
ternary_op_dims1<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 2:
|
||||
ternary_op_dims2<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 3:
|
||||
ternary_op_dims3<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
case 4:
|
||||
ternary_op_dims4<T1, T2, T3, U, Op>(a, b, c, out, op);
|
||||
return;
|
||||
}
|
||||
|
||||
const T1* a_ptr = a.data<T1>();
|
||||
const T2* b_ptr = b.data<T2>();
|
||||
const T3* c_ptr = c.data<T3>();
|
||||
U* dst = out.data<U>();
|
||||
for (size_t i = 0; i < out.size(); i++) {
|
||||
int a_idx = elem_to_loc(i, a.shape(), a.strides());
|
||||
int b_idx = elem_to_loc(i, b.shape(), b.strides());
|
||||
int c_idx = elem_to_loc(i, c.shape(), c.strides());
|
||||
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
||||
void ternary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
Op op) {
|
||||
TernaryOpType topt = get_ternary_op_type(a, b, c);
|
||||
set_ternary_op_output_data(a, b, c, out, topt);
|
||||
|
||||
// The full computation is scalar-scalar-scalar so we call the base op once.
|
||||
if (topt == TernaryOpType::ScalarScalarScalar) {
|
||||
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
|
||||
return;
|
||||
}
|
||||
|
||||
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
} // namespace mlx::core
|
@@ -11,59 +11,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
struct AbsOp {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::abs(x);
|
||||
}
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
}
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
struct SignOp {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return (x > T(0)) - (x < T(0));
|
||||
}
|
||||
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x != 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct RoundOp {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::rint(x);
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return {std::rint(x.real()), std::rint(x.imag())};
|
||||
}
|
||||
};
|
||||
|
||||
void set_unary_output_data(const array& in, array& out) {
|
||||
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
|
||||
out.copy_shared_buffer(in);
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -8,11 +8,12 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
inline size_t elem_to_loc(
|
||||
template <typename stride_t>
|
||||
inline stride_t elem_to_loc(
|
||||
int elem,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides) {
|
||||
size_t loc = 0;
|
||||
const std::vector<stride_t>& strides) {
|
||||
stride_t loc = 0;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
auto q_and_r = ldiv(elem, shape[i]);
|
||||
loc += q_and_r.rem * strides[i];
|
||||
@@ -28,4 +29,93 @@ inline size_t elem_to_loc(int elem, const array& a) {
|
||||
return elem_to_loc(elem, a.shape(), a.strides());
|
||||
}
|
||||
|
||||
// Collapse dims that are contiguous to possibly route to a better kernel
|
||||
// e.g. for x = transpose(array({0, 1, 2, 3, 4, 5, 6, 7}, {2, 2, 2}), {2, 0, 1})
|
||||
// should return {{2, 4}, {{1, 2}}}.
|
||||
//
|
||||
// When multiple arrays are passed they should all have the same shape. The
|
||||
// collapsed axes are also the same so one shape is returned.
|
||||
template <typename stride_t>
|
||||
inline std::tuple<std::vector<int>, std::vector<std::vector<stride_t>>>
|
||||
collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<stride_t>> strides) {
|
||||
// Make a vector that has axes separated with -1. Collapse all axes between
|
||||
// -1.
|
||||
std::vector<int> to_collapse;
|
||||
if (shape.size() > 0) {
|
||||
to_collapse.push_back(0);
|
||||
for (int i = 1; i < shape.size(); i++) {
|
||||
bool contiguous = true;
|
||||
for (const std::vector<stride_t>& st : strides) {
|
||||
if (st[i] * shape[i] != st[i - 1]) {
|
||||
contiguous = false;
|
||||
}
|
||||
if (!contiguous) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!contiguous) {
|
||||
to_collapse.push_back(-1);
|
||||
}
|
||||
to_collapse.push_back(i);
|
||||
}
|
||||
to_collapse.push_back(-1);
|
||||
}
|
||||
|
||||
std::vector<int> out_shape;
|
||||
std::vector<std::vector<stride_t>> out_strides(strides.size());
|
||||
for (int i = 0; i < to_collapse.size(); i++) {
|
||||
int current_shape = shape[to_collapse[i]];
|
||||
while (to_collapse[++i] != -1) {
|
||||
current_shape *= shape[to_collapse[i]];
|
||||
}
|
||||
out_shape.push_back(current_shape);
|
||||
for (int j = 0; j < strides.size(); j++) {
|
||||
const std::vector<stride_t>& st = strides[j];
|
||||
out_strides[j].push_back(st[to_collapse[i - 1]]);
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(out_shape, out_strides);
|
||||
}
|
||||
|
||||
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
|
||||
collapse_contiguous_dims(const std::vector<array>& xs) {
|
||||
std::vector<std::vector<size_t>> strides;
|
||||
for (auto& x : xs) {
|
||||
strides.emplace_back(x.strides());
|
||||
}
|
||||
return collapse_contiguous_dims(xs[0].shape(), strides);
|
||||
}
|
||||
|
||||
template <typename... Arrays, typename = enable_for_arrays_t<Arrays...>>
|
||||
inline auto collapse_contiguous_dims(Arrays&&... xs) {
|
||||
return collapse_contiguous_dims(
|
||||
std::vector<array>{std::forward<Arrays>(xs)...});
|
||||
}
|
||||
|
||||
template <typename stride_t>
|
||||
inline auto check_contiguity(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<stride_t>& strides) {
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
bool is_row_contiguous = true;
|
||||
bool is_col_contiguous = true;
|
||||
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
is_row_contiguous &= strides[i] == f_stride || shape[i] == 1;
|
||||
is_col_contiguous &= strides[ri] == b_stride || shape[ri] == 1;
|
||||
f_stride *= shape[i];
|
||||
b_stride *= shape[ri];
|
||||
if (strides[i] > 0) {
|
||||
data_size *= shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(data_size, is_row_contiguous, is_col_contiguous);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -4,7 +4,7 @@ add_custom_command(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
${CMAKE_C_COMPILER}
|
||||
${CMAKE_SOURCE_DIR}
|
||||
${PROJECT_SOURCE_DIR}
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
kernels/compiled_preamble.h
|
||||
kernels/unary.h
|
||||
@@ -26,12 +26,15 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/normalization.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
|
@@ -1,7 +1,7 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include "mlx/backend/metal/allocator.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "mlx/backend/metal/metal_impl.h"
|
||||
|
||||
#include <mach/vm_page_size.h>
|
||||
#include <unistd.h>
|
||||
@@ -23,16 +23,6 @@ void* Buffer::raw_ptr() {
|
||||
|
||||
namespace metal {
|
||||
|
||||
static bool cache_enabled_ = true;
|
||||
|
||||
bool cache_enabled() {
|
||||
return cache_enabled_;
|
||||
}
|
||||
|
||||
void set_cache_enabled(bool enabled) {
|
||||
cache_enabled_ = enabled;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
BufferCache::BufferCache(MTL::Device* device)
|
||||
@@ -44,7 +34,6 @@ BufferCache::~BufferCache() {
|
||||
}
|
||||
|
||||
void BufferCache::clear() {
|
||||
std::lock_guard<std::mutex> lk(cache_mutex_);
|
||||
for (auto& [size, holder] : buffer_pool_) {
|
||||
if (holder->buf)
|
||||
holder->buf->release();
|
||||
@@ -57,12 +46,9 @@ void BufferCache::clear() {
|
||||
}
|
||||
|
||||
MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
|
||||
std::lock_guard<std::mutex> lk(cache_mutex_);
|
||||
|
||||
// Find the closest buffer in pool
|
||||
MTL::Buffer* pbuf = nullptr;
|
||||
|
||||
// Make sure we use most of the available memory
|
||||
auto it = buffer_pool_.lower_bound(size);
|
||||
|
||||
// Make sure we use most of the available memory
|
||||
@@ -85,8 +71,6 @@ MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
|
||||
}
|
||||
|
||||
void BufferCache::recycle_to_cache(MTL::Buffer* buf) {
|
||||
std::lock_guard<std::mutex> lk(cache_mutex_);
|
||||
|
||||
// Add to cache
|
||||
if (buf) {
|
||||
BufferHolder* bh = new BufferHolder(buf);
|
||||
@@ -100,7 +84,6 @@ void BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
|
||||
if (min_bytes_to_free >= 0.9 * pool_size_) {
|
||||
clear();
|
||||
} else {
|
||||
std::lock_guard<std::mutex> lk(cache_mutex_);
|
||||
size_t total_bytes_freed = 0;
|
||||
|
||||
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
|
||||
@@ -158,9 +141,23 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
|
||||
MetalAllocator::MetalAllocator()
|
||||
: device_(device(mlx::core::Device::gpu).mtl_device()),
|
||||
buffer_cache_(device_),
|
||||
peak_allocated_size_(0),
|
||||
block_limit_(1.5 * device_->recommendedMaxWorkingSetSize()),
|
||||
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()) {}
|
||||
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()),
|
||||
max_pool_size_(block_limit_) {}
|
||||
|
||||
size_t MetalAllocator::set_cache_limit(size_t limit) {
|
||||
std::swap(limit, max_pool_size_);
|
||||
return limit;
|
||||
};
|
||||
|
||||
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
|
||||
std::swap(limit, block_limit_);
|
||||
relaxed_ = relaxed;
|
||||
gc_limit_ = std::min(
|
||||
block_limit_,
|
||||
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()));
|
||||
return limit;
|
||||
};
|
||||
|
||||
Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
// Metal doesn't like empty buffers
|
||||
@@ -168,47 +165,73 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
return Buffer{nullptr};
|
||||
}
|
||||
|
||||
// More helpful message if maximum buffer length is exceeded
|
||||
if (size > device_->maxBufferLength()) {
|
||||
std::ostringstream msg;
|
||||
msg << "Attempting to allocate " << size << " bytes which is greater than"
|
||||
<< " the maximum allowed buffer size of " << device_->maxBufferLength()
|
||||
<< " bytes.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
// Align up memory
|
||||
if (size > vm_page_size) {
|
||||
size = vm_page_size * ((size + vm_page_size - 1) / vm_page_size);
|
||||
}
|
||||
|
||||
// Try the cache
|
||||
std::unique_lock lk(mutex_);
|
||||
MTL::Buffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
|
||||
if (!buf) {
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
|
||||
// If there is too much memory pressure, fail (likely causes a wait).
|
||||
if (!allow_swap && device_->currentAllocatedSize() + size >= block_limit_) {
|
||||
if (!(allow_swap && relaxed_) && mem_required >= block_limit_) {
|
||||
return Buffer{nullptr};
|
||||
}
|
||||
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
|
||||
// If we have a lot of memory pressure, check if we can reclaim some memory
|
||||
// from the cache
|
||||
if (device_->currentAllocatedSize() + size >= gc_limit_) {
|
||||
size_t min_bytes_to_free =
|
||||
size + device_->currentAllocatedSize() - gc_limit_;
|
||||
buffer_cache_.release_cached_buffers(min_bytes_to_free);
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache
|
||||
if (mem_required >= gc_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
|
||||
}
|
||||
|
||||
// Allocate new buffer if needed
|
||||
size_t res_opt = MTL::ResourceStorageModeShared;
|
||||
res_opt |= MTL::ResourceHazardTrackingModeTracked;
|
||||
lk.unlock();
|
||||
buf = device_->newBuffer(size, res_opt);
|
||||
lk.lock();
|
||||
}
|
||||
|
||||
peak_allocated_size_ =
|
||||
std::max(peak_allocated_size_, device_->currentAllocatedSize());
|
||||
active_memory_ += buf->length();
|
||||
peak_memory_ = std::max(peak_memory_, active_memory_);
|
||||
|
||||
// Maintain the cache below the requested limit
|
||||
if (get_cache_memory() >= max_pool_size_) {
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{static_cast<void*>(buf)};
|
||||
}
|
||||
|
||||
void MetalAllocator::clear_cache() {
|
||||
std::unique_lock lk(mutex_);
|
||||
buffer_cache_.clear();
|
||||
}
|
||||
|
||||
void MetalAllocator::free(Buffer buffer) {
|
||||
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
|
||||
if (cache_enabled()) {
|
||||
std::unique_lock lk(mutex_);
|
||||
active_memory_ -= buf->length();
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
lk.unlock();
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
buf->release();
|
||||
}
|
||||
}
|
||||
@@ -218,6 +241,25 @@ MetalAllocator& allocator() {
|
||||
return allocator_;
|
||||
}
|
||||
|
||||
size_t set_cache_limit(size_t limit) {
|
||||
return allocator().set_cache_limit(limit);
|
||||
}
|
||||
size_t set_memory_limit(size_t limit, bool relaxed /* = true */) {
|
||||
return allocator().set_memory_limit(limit, relaxed);
|
||||
}
|
||||
size_t get_active_memory() {
|
||||
return allocator().get_active_memory();
|
||||
}
|
||||
size_t get_peak_memory() {
|
||||
return allocator().get_peak_memory();
|
||||
}
|
||||
size_t get_cache_memory() {
|
||||
return allocator().get_cache_memory();
|
||||
}
|
||||
void clear_cache() {
|
||||
return allocator().clear_cache();
|
||||
}
|
||||
|
||||
} // namespace metal
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -19,11 +19,14 @@ class BufferCache {
|
||||
public:
|
||||
BufferCache(MTL::Device* device);
|
||||
~BufferCache();
|
||||
void clear();
|
||||
|
||||
MTL::Buffer* reuse_from_cache(size_t size);
|
||||
void recycle_to_cache(MTL::Buffer* buf);
|
||||
void release_cached_buffers(size_t min_bytes_to_free);
|
||||
size_t cache_size() {
|
||||
return pool_size_;
|
||||
}
|
||||
void clear();
|
||||
|
||||
private:
|
||||
struct BufferHolder {
|
||||
@@ -39,7 +42,6 @@ class BufferCache {
|
||||
void remove_from_list(BufferHolder* to_remove);
|
||||
|
||||
MTL::Device* device_;
|
||||
std::mutex cache_mutex_;
|
||||
|
||||
std::multimap<size_t, BufferHolder*> buffer_pool_;
|
||||
BufferHolder* head_;
|
||||
@@ -54,6 +56,18 @@ class MetalAllocator : public allocator::Allocator {
|
||||
public:
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
|
||||
virtual void free(Buffer buffer) override;
|
||||
size_t get_active_memory() {
|
||||
return active_memory_;
|
||||
};
|
||||
size_t get_peak_memory() {
|
||||
return peak_memory_;
|
||||
};
|
||||
size_t get_cache_memory() {
|
||||
return buffer_cache_.cache_size();
|
||||
};
|
||||
size_t set_cache_limit(size_t limit);
|
||||
size_t set_memory_limit(size_t limit, bool relaxed);
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
MTL::Device* device_;
|
||||
@@ -64,9 +78,14 @@ class MetalAllocator : public allocator::Allocator {
|
||||
BufferCache buffer_cache_;
|
||||
|
||||
// Allocation stats
|
||||
size_t peak_allocated_size_;
|
||||
size_t block_limit_;
|
||||
size_t gc_limit_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
size_t max_pool_size_;
|
||||
bool relaxed_{true};
|
||||
|
||||
std::mutex mutex_;
|
||||
};
|
||||
|
||||
MetalAllocator& allocator();
|
||||
|
@@ -2,6 +2,8 @@
|
||||
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/metal/compiled_preamble.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
@@ -11,125 +13,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
inline bool is_static_cast(const Primitive& p) {
|
||||
return (
|
||||
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
|
||||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
|
||||
}
|
||||
|
||||
inline auto get_type_string(Dtype d) {
|
||||
switch (d) {
|
||||
case float32:
|
||||
return "float";
|
||||
case float16:
|
||||
return "half";
|
||||
case bfloat16:
|
||||
return "bfloat16_t";
|
||||
case bool_:
|
||||
return "bool";
|
||||
case int8:
|
||||
return "int8_t";
|
||||
case int16:
|
||||
return "int16_t";
|
||||
case int32:
|
||||
return "int32_t";
|
||||
case int64:
|
||||
return "int64_t";
|
||||
case uint8:
|
||||
return "uint8_t";
|
||||
case uint16:
|
||||
return "uint16_t";
|
||||
case uint32:
|
||||
return "uint32_t";
|
||||
case uint64:
|
||||
return "uint64_t";
|
||||
default: {
|
||||
std::ostringstream msg;
|
||||
msg << "Unsupported compilation type " << d;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_float_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< x.item<T>() << std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_int_constant(std::ostream& os, const array& x) {
|
||||
os << x.item<T>();
|
||||
}
|
||||
|
||||
void print_constant(std::ostream& os, const array& x) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
return print_float_constant<float>(os, x);
|
||||
case float16:
|
||||
return print_float_constant<float16_t>(os, x);
|
||||
case bfloat16:
|
||||
return print_float_constant<bfloat16_t>(os, x);
|
||||
case int8:
|
||||
return print_int_constant<int8_t>(os, x);
|
||||
case int16:
|
||||
return print_int_constant<int16_t>(os, x);
|
||||
case int32:
|
||||
return print_int_constant<int32_t>(os, x);
|
||||
case int64:
|
||||
return print_int_constant<int64_t>(os, x);
|
||||
case uint8:
|
||||
return print_int_constant<uint8_t>(os, x);
|
||||
case uint16:
|
||||
return print_int_constant<uint16_t>(os, x);
|
||||
case uint32:
|
||||
return print_int_constant<uint32_t>(os, x);
|
||||
case uint64:
|
||||
return print_int_constant<uint64_t>(os, x);
|
||||
case bool_:
|
||||
os << std::boolalpha << x.item<bool>();
|
||||
return;
|
||||
default:
|
||||
throw std::runtime_error("Unsupported constant type");
|
||||
}
|
||||
}
|
||||
|
||||
inline std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids) {
|
||||
std::ostringstream os;
|
||||
std::ostringstream constant_hasher;
|
||||
|
||||
// The primitives describing the tape. For unary and binary primitives this
|
||||
// must be enough to describe the full computation.
|
||||
for (auto& a : tape) {
|
||||
a.primitive().print(os);
|
||||
}
|
||||
os << "_";
|
||||
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
os << "C";
|
||||
print_constant(constant_hasher, x);
|
||||
} else {
|
||||
os << ((x.size() == 1) ? "S" : "V");
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
continue;
|
||||
}
|
||||
os << kindof(x.dtype()) << x.itemsize();
|
||||
}
|
||||
os << "_" << std::hash<std::string>{}(constant_hasher.str());
|
||||
|
||||
return os.str();
|
||||
}
|
||||
|
||||
inline void build_kernel(
|
||||
std::ostream& os,
|
||||
const std::string& kernel_name,
|
||||
@@ -149,9 +32,6 @@ inline void build_kernel(
|
||||
return constant_ids.find(x.id()) != constant_ids.end();
|
||||
};
|
||||
|
||||
// For scalar we shouldn't do the indexing things, just read at 0
|
||||
auto is_scalar = [](const array& x) { return x.size() == 1; };
|
||||
|
||||
NodeNamer namer;
|
||||
bool add_indices = false;
|
||||
int cnt = 0;
|
||||
@@ -286,7 +166,7 @@ inline void build_kernel(
|
||||
|
||||
if (cnt > 31) {
|
||||
std::ostringstream msg;
|
||||
msg << "[compile] Too many inputs/outputs fused in the Metal Compile "
|
||||
msg << "[compile] Too many inputs/outputs fused in the Metal Compiled "
|
||||
<< "primitive which exhausted the available argument buffers for "
|
||||
<< "the kernel. Please file an issue with the function that results "
|
||||
<< "in this error. The name of the kernel is '" << kernel_name << "'";
|
||||
@@ -344,25 +224,12 @@ void Compiled::eval_gpu(
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ true);
|
||||
|
||||
kernel_source_ = kernel.str();
|
||||
lib = d.get_library(kernel_lib_, kernel_source_);
|
||||
}
|
||||
|
||||
// Allocate space for the outputs
|
||||
for (auto& out : outputs) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
lib = d.get_library(kernel_lib_, kernel.str());
|
||||
}
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& output_shape = outputs[0].shape();
|
||||
bool contiguous = true;
|
||||
for (auto& x : inputs) {
|
||||
if ((!x.flags().row_contiguous || x.shape() != output_shape) &&
|
||||
x.size() > 1) {
|
||||
contiguous = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
bool contiguous = compiled_check_contiguity(inputs, output_shape);
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
// handle all broadcasting.
|
||||
@@ -379,7 +246,7 @@ void Compiled::eval_gpu(
|
||||
auto& x = inputs[i];
|
||||
|
||||
// Skip scalar inputs.
|
||||
if (x.size() <= 1) {
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -422,7 +289,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Put the inputs in
|
||||
@@ -433,8 +300,8 @@ void Compiled::eval_gpu(
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
set_array_buffer(compute_encoder, x, cnt++);
|
||||
if (!contiguous && x.size() > 1) {
|
||||
compute_encoder.set_input_array(x, cnt++);
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
compute_encoder->setBytes(
|
||||
strides[stride_idx].data(),
|
||||
strides[stride_idx].size() * sizeof(size_t),
|
||||
@@ -443,9 +310,12 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous, true);
|
||||
|
||||
// Put the outputs in
|
||||
for (auto& x : outputs) {
|
||||
set_array_buffer(compute_encoder, x, cnt++);
|
||||
compute_encoder.set_output_array(x, cnt++);
|
||||
}
|
||||
|
||||
// Put the output shape and strides in
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user