mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-04 23:24:41 +08:00
Compare commits
172 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
af9079cc1f | ||
![]() |
2d6cd47713 | ||
![]() |
fe3167d7ea | ||
![]() |
31e134be35 | ||
![]() |
e84ba8056d | ||
![]() |
f20e97b092 | ||
![]() |
934683088e | ||
![]() |
de2b9e7d0a | ||
![]() |
dd7d8e5e29 | ||
![]() |
df964132fb | ||
![]() |
709ccc6800 | ||
![]() |
cf236fc390 | ||
![]() |
27d70c7d9d | ||
![]() |
0e585b4409 | ||
![]() |
0163a8e57a | ||
![]() |
578842954c | ||
![]() |
496315fe1d | ||
![]() |
0fe6895893 | ||
![]() |
0b7d71fd2f | ||
![]() |
83b11bc58d | ||
![]() |
375a8bbdcc | ||
![]() |
ea9090bbc4 | ||
![]() |
81def6ac76 | ||
![]() |
3de8ce3f3c | ||
![]() |
4d485fca24 | ||
![]() |
1865299a30 | ||
![]() |
3576b547c5 | ||
![]() |
079882495d | ||
![]() |
ab977109db | ||
![]() |
fd1c08137b | ||
![]() |
76b6cece46 | ||
![]() |
9f0df51f8d | ||
![]() |
e7a2a3dcd1 | ||
![]() |
a87ef5bfc1 | ||
![]() |
9f9cb7a2ef | ||
![]() |
7e26fd8032 | ||
![]() |
eab2685c67 | ||
![]() |
50dfb664db | ||
![]() |
0189ab6ab6 | ||
![]() |
9401507336 | ||
![]() |
eb8321d863 | ||
![]() |
79ef49b2c2 | ||
![]() |
e110ca11e2 | ||
![]() |
226748b3e7 | ||
![]() |
d568c7ee36 | ||
![]() |
e6fecbb3e1 | ||
![]() |
da83f899bb | ||
![]() |
7e5674d8be | ||
![]() |
0a558577bf | ||
![]() |
fb71a82ada | ||
![]() |
23406c9e9e | ||
![]() |
b3ec792380 | ||
![]() |
6a9b584f3d | ||
![]() |
81dd33af66 | ||
![]() |
8b76571896 | ||
![]() |
e78a6518fa | ||
![]() |
1873ffda01 | ||
![]() |
c417e42116 | ||
![]() |
358e1fd6ab | ||
![]() |
631dfbe673 | ||
![]() |
56a4eaed72 | ||
![]() |
bf925d9dc7 | ||
![]() |
1a7ed5dcb6 | ||
![]() |
5be5daa6ef | ||
![]() |
60cb11764e | ||
![]() |
cbd5445ea7 | ||
![]() |
2c7e9b5158 | ||
![]() |
2263e4b279 | ||
![]() |
863039da4c | ||
![]() |
7178ac0111 | ||
![]() |
e7f9710499 | ||
![]() |
ff4223904d | ||
![]() |
a9f80d60f6 | ||
![]() |
2e158cf6d0 | ||
![]() |
8bd6bfa4b5 | ||
![]() |
8b1906abd0 | ||
![]() |
06375e6605 | ||
![]() |
b21242faf1 | ||
![]() |
cc05a281c4 | ||
![]() |
fe96ceee66 | ||
![]() |
9814a2ae12 | ||
![]() |
6992498e7a | ||
![]() |
21623156a3 | ||
![]() |
79c859e2e0 | ||
![]() |
b00ac960b4 | ||
![]() |
02a9fc7bfa | ||
![]() |
f390957685 | ||
![]() |
17f57df797 | ||
![]() |
7f7b9662ea | ||
![]() |
19bef39f5c | ||
![]() |
a30e7ed2da | ||
![]() |
8db7161c94 | ||
![]() |
09f1777896 | ||
![]() |
490c0c4fdc | ||
![]() |
c4a471c99d | ||
![]() |
86f495985b | ||
![]() |
67d1894759 | ||
![]() |
5bfe89bdb1 | ||
![]() |
82463e9938 | ||
![]() |
771575d27b | ||
![]() |
20a01bbd9f | ||
![]() |
ec8578d41a | ||
![]() |
d0dbfe0b97 | ||
![]() |
3d405fb3b1 | ||
![]() |
b0012cdd0f | ||
![]() |
84d61d27aa | ||
![]() |
ed83908931 | ||
![]() |
ef5f7d1aea | ||
![]() |
090ff659dc | ||
![]() |
85c8a91a27 | ||
![]() |
581b699ac9 | ||
![]() |
8a0677d56d | ||
![]() |
b18468bf81 | ||
![]() |
107ba2891a | ||
![]() |
cd9e184529 | ||
![]() |
2e7c02d5cd | ||
![]() |
ae18326533 | ||
![]() |
91eba8e485 | ||
![]() |
d07e295c62 | ||
![]() |
dce4bd74a4 | ||
![]() |
ffff671273 | ||
![]() |
12d4507ee3 | ||
![]() |
8580d997ff | ||
![]() |
061cf9a4ce | ||
![]() |
99abb9eff4 | ||
![]() |
fffe072028 | ||
![]() |
a1a31eed27 | ||
![]() |
ae812350f9 | ||
![]() |
b63ef10a7f | ||
![]() |
42afe27e12 | ||
![]() |
76e63212ff | ||
![]() |
aac2f9fb61 | ||
![]() |
bddf23f175 | ||
![]() |
039da779d1 | ||
![]() |
d88d2124b5 | ||
![]() |
e142aaf8a1 | ||
![]() |
0caf35f4b8 | ||
![]() |
3fc993f82d | ||
![]() |
741eb28443 | ||
![]() |
1a87dc5ea8 | ||
![]() |
2427fa171e | ||
![]() |
639e06e1f3 | ||
![]() |
02fedbf1da | ||
![]() |
110d9b149d | ||
![]() |
9cbff5ec1d | ||
![]() |
433c0206b0 | ||
![]() |
8915901966 | ||
![]() |
f48bc496c7 | ||
![]() |
913b19329c | ||
![]() |
d8cb3128f6 | ||
![]() |
5f9ba3019f | ||
![]() |
46caf0bef0 | ||
![]() |
45f636e759 | ||
![]() |
a7b404ff53 | ||
![]() |
c4fd0e5ede | ||
![]() |
bab5386306 | ||
![]() |
aca7584635 | ||
![]() |
d611251502 | ||
![]() |
f30b659291 | ||
![]() |
90dfa43ff1 | ||
![]() |
dc175f08d3 | ||
![]() |
29221fa238 | ||
![]() |
a789685c63 | ||
![]() |
240d10699c | ||
![]() |
925014b661 | ||
![]() |
5611e1a95e | ||
![]() |
570f2bf29e | ||
![]() |
9948eddf11 | ||
![]() |
a3ee03da01 | ||
![]() |
28fcd2b519 | ||
![]() |
8e686764ac | ||
![]() |
479051ce1c |
@@ -31,7 +31,7 @@ jobs:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install git+https://github.com/wjakob/nanobind.git@4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
@@ -49,11 +49,6 @@ jobs:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
python3 -m unittest discover python/tests -v
|
||||
# TODO: Reenable when extension api becomes stable
|
||||
# - run:
|
||||
# name: Build example extension
|
||||
# command: |
|
||||
# cd examples/extensions && python3 -m pip install .
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
@@ -69,18 +64,19 @@ jobs:
|
||||
default: "15.2.0"
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.large.gen1
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.8
|
||||
brew install openmpi
|
||||
python3.8 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install git+https://github.com/wjakob/nanobind.git@4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
@@ -101,11 +97,14 @@ jobs:
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
# TODO: Reenable when extension api becomes stable
|
||||
# - run:
|
||||
# name: Build example extension
|
||||
# command: |
|
||||
# cd examples/extensions && python3.11 -m pip install .
|
||||
mpirun -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd examples/extensions
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
@@ -117,7 +116,13 @@ jobs:
|
||||
name: Run CPP tests
|
||||
command: |
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
|
||||
DEVICE=cpu ./build/tests/tests
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel -DBUILD_SHARED_LIBS=ON -DMLX_BUILD_CPU=OFF -DMLX_BUILD_SAFETENSORS=OFF -DMLX_BUILD_GGUF=OFF -DMLX_METAL_JIT=ON
|
||||
make -j
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
@@ -132,18 +137,19 @@ jobs:
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.large.gen1
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install git+https://github.com/wjakob/nanobind.git@4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install twine
|
||||
@@ -207,7 +213,7 @@ jobs:
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install git+https://github.com/wjakob/nanobind.git@4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
|
2
.github/workflows/pull_request.yml
vendored
2
.github/workflows/pull_request.yml
vendored
@@ -17,4 +17,4 @@ jobs:
|
||||
pip install pre-commit black isort clang-format
|
||||
- name: Run lint
|
||||
run: |
|
||||
pre-commit run --all-files
|
||||
pre-commit run --all-files
|
||||
|
@@ -1,11 +1,11 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v17.0.6
|
||||
rev: v18.1.4
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.2.0
|
||||
rev: 24.4.2
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/pycqa/isort
|
||||
|
@@ -7,7 +7,7 @@ with a short description of your contribution(s) below. For example:
|
||||
|
||||
MLX was developed with contributions from the following individuals:
|
||||
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
|
||||
@@ -15,6 +15,9 @@ MLX was developed with contributions from the following individuals:
|
||||
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
|
||||
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
|
||||
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
|
||||
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
155
CMakeLists.txt
155
CMakeLists.txt
@@ -15,31 +15,37 @@ option(MLX_BUILD_EXAMPLES "Build examples for mlx" ON)
|
||||
option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
|
||||
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.8.1)
|
||||
set(MLX_VERSION 0.15.1)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
|
||||
message(STATUS "Building MLX for ${CMAKE_HOST_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
|
||||
set(MLX_BUILD_ARM OFF)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64" AND ${CMAKE_HOST_APPLE})
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
elseif (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
message(WARNING
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, "
|
||||
" make sure you are building for arm64.")
|
||||
elseif(${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
if(NOT MLX_ENABLE_X64_MAC)
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
else()
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
set(MLX_BUILD_ARM ON)
|
||||
endif()
|
||||
|
||||
@@ -64,8 +70,14 @@ endif()
|
||||
if (MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif (MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
|
||||
if (MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
endif()
|
||||
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_VERSION
|
||||
@@ -73,10 +85,13 @@ elseif (MLX_BUILD_METAL)
|
||||
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip)
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 15.0)
|
||||
set(MLX_METAL_VERSION METAL_3_2)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(MLX_METAL_VERSION METAL_3_1)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14_iOS17-beta.zip)
|
||||
set(MLX_METAL_VERSION METAL_3_0)
|
||||
else()
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
@@ -93,46 +108,78 @@ elseif (MLX_BUILD_METAL)
|
||||
$<INSTALL_INTERFACE:include/metal_cpp>
|
||||
)
|
||||
target_link_libraries(
|
||||
mlx
|
||||
mlx PUBLIC
|
||||
${METAL_LIB}
|
||||
${FOUNDATION_LIB}
|
||||
${QUARTZ_LIB})
|
||||
|
||||
add_compile_definitions(${MLX_METAL_VERSION})
|
||||
endif()
|
||||
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx ${ACCELERATE_LIBRARY})
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
#set(BLA_VENDOR Generic)
|
||||
find_package(BLAS REQUIRED)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
endif()
|
||||
# TODO find a cleaner way to do this
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${BLAS_LIBRARIES})
|
||||
find_package(LAPACK REQUIRED)
|
||||
if (NOT LAPACK_FOUND)
|
||||
if (MLX_BUILD_CPU)
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
if(${CMAKE_HOST_APPLE})
|
||||
# The blas shipped in macOS SDK is not supported, search homebrew for
|
||||
# openblas instead.
|
||||
set(BLA_VENDOR OpenBLAS)
|
||||
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
|
||||
endif()
|
||||
# Search and link with lapack.
|
||||
find_package(LAPACK REQUIRED)
|
||||
if (NOT LAPACK_FOUND)
|
||||
message(FATAL_ERROR "Must have LAPACK installed")
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/local/opt/openblas/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
|
||||
# List blas after lapack otherwise we may accidentally incldue an old version
|
||||
# of lapack.h from the include dirs of blas.
|
||||
find_package(BLAS REQUIRED)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
endif()
|
||||
# TODO find a cleaner way to do this
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${LAPACK_LIBRARIES})
|
||||
else()
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
find_package(MPI)
|
||||
if (MPI_FOUND)
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "mpirun --version"
|
||||
OUTPUT_VARIABLE MPI_VERSION
|
||||
COMMAND_ERROR_IS_FATAL ANY
|
||||
)
|
||||
if (${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||
else()
|
||||
message(
|
||||
WARNING
|
||||
"MPI which is not OpenMPI found. Building without MPI."
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||
@@ -144,6 +191,14 @@ target_include_directories(
|
||||
$<INSTALL_INTERFACE:include>
|
||||
)
|
||||
|
||||
FetchContent_Declare(fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL
|
||||
)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
target_link_libraries(mlx PRIVATE fmt::fmt-header-only)
|
||||
|
||||
if (MLX_BUILD_PYTHON_BINDINGS)
|
||||
message(STATUS "Building Python bindings.")
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
|
@@ -88,13 +88,13 @@ for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](CONTRIBUTING.md) for more information
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
[docs](https://ml-explore.github.io/mlx/build/html/install.html) for more
|
||||
information on building from source, and running tests.
|
||||
|
||||
We are grateful for all of [our
|
||||
contributors](ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
|
||||
contributors](https://github.com/ml-explore/mlx/tree/main/ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
|
||||
to MLX and wish to be acknowledged, please add your name to the list in your
|
||||
pull request.
|
||||
|
||||
|
@@ -17,14 +17,13 @@
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " \
|
||||
<< "(" << MSG << ") " << #FUNC << " ... " << std::flush \
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " << "(" << MSG << ") " << #FUNC << " ... " \
|
||||
<< std::flush << std::setprecision(5) \
|
||||
<< time_fn(FUNC, ##__VA_ARGS__) << " msec" << std::endl;
|
||||
|
||||
template <typename F, typename... Args>
|
||||
double time_fn(F fn, Args... args) {
|
||||
double time_fn(F fn, Args&&... args) {
|
||||
// warmup
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
eval(fn(std::forward<Args>(args)...));
|
||||
|
@@ -185,7 +185,7 @@ def prelu(x: torch.Tensor) -> torch.Tensor:
|
||||
def mish(x: torch.Tensor) -> torch.Tensor:
|
||||
y = x
|
||||
for _ in range(100):
|
||||
return torch.nn.functional.mish(y)
|
||||
y = torch.nn.functional.mish(y)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@@ -283,6 +283,14 @@ def topk(axis, x):
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def step_function(x):
|
||||
y = x
|
||||
for i in range(100):
|
||||
y = torch.where(y < 0, 0, 1)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def selu(x):
|
||||
y = x
|
||||
@@ -446,5 +454,11 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "topk":
|
||||
print(bench(topk, axis, x))
|
||||
|
||||
elif args.benchmark == "step":
|
||||
print(bench(step_function, x))
|
||||
|
||||
elif args.benchmark == "selu":
|
||||
print(bench(selu, x))
|
||||
|
||||
else:
|
||||
raise ValueError("Unknown benchmark")
|
||||
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
||||
|
@@ -16,7 +16,9 @@ def run_or_raise(*args, **kwargs):
|
||||
result = run(*args, capture_output=True, **kwargs)
|
||||
return float(result.stdout)
|
||||
except ValueError:
|
||||
raise ValueError(f"stdout: {result.stdout}\nstderr: {result.stderr}")
|
||||
raise ValueError(
|
||||
f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}"
|
||||
)
|
||||
|
||||
|
||||
def compare(args):
|
||||
|
@@ -9,7 +9,6 @@ from time_utils import time_fn
|
||||
|
||||
|
||||
def bench_gelu():
|
||||
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
@@ -51,7 +50,6 @@ def bench_gelu():
|
||||
|
||||
|
||||
def bench_layernorm():
|
||||
|
||||
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
mx.eval(weight, bias)
|
||||
|
123
benchmarks/python/conv1d_bench.py
Normal file
123
benchmarks/python/conv1d_bench.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_1D(strides=1, padding=0, groups=1):
|
||||
def mx_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = mx.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_1D
|
||||
|
||||
|
||||
def make_pt_conv_1D(strides=1, padding=0, groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = torch.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_1D
|
||||
|
||||
|
||||
def bench_shape(N, iH, C, wH, O, strides, padding, np_dtype, groups):
|
||||
scale = 1.0 / math.sqrt(wH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, iH, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, wH, int(C / groups))).astype(np_dtype)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 2, 1))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 2, 1))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_1D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_1D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv1d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv1d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, iH, C)}, {(O, wH, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 5, 32, 1, 2, 1),
|
||||
(4, 32, 32, 5, 32, 1, 2, 2),
|
||||
(4, 32, 32, 5, 32, 1, 2, 4),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 16),
|
||||
(4, 32, 32, 5, 32, 1, 2, 32),
|
||||
(4, 32, 256, 5, 512, 1, 2, 2),
|
||||
(4, 32, 256, 5, 512, 1, 2, 128),
|
||||
(4, 32, 256, 5, 512, 1, 2, 256),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print("(N, iH, C), (O, wH, C), dtype, stride, pads, groups, diff%")
|
||||
for N, iH, C, wH, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, iH, C, wH, O, strides, padding, np_dtype, groups
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {iH:3d}, {C:3d}), ({O:3d}, {wH:2d}, {C:3d}), {dtype}, {strides:5d}, {padding:4d}, {groups:6d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
@@ -28,11 +28,11 @@ def bench(f, a, b):
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding)
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
@@ -40,12 +40,12 @@ def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
return mx_conv_2D
|
||||
|
||||
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding)
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
@@ -53,11 +53,12 @@ def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
|
||||
return pt_conv_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
@@ -67,15 +68,15 @@ def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_2D(strides, padding)
|
||||
f_pt = make_pt_conv_2D(strides, padding)
|
||||
f_mx = make_mx_conv_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding)
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
@@ -84,7 +85,7 @@ def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
@@ -95,35 +96,40 @@ if __name__ == "__main__":
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2)),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2)),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2)),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2)),
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print("(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, diff%")
|
||||
for N, H, W, C, kH, kW, O, strides, padding in shapes:
|
||||
print(
|
||||
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, np_dtype
|
||||
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {100. * diff:+5.2f}%"
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
118
benchmarks/python/fft_bench.py
Normal file
118
benchmarks/python/fft_bench.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import matplotlib
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import sympy
|
||||
import torch
|
||||
from time_utils import measure_runtime
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def bandwidth_gb(runtime_ms, system_size):
|
||||
bytes_per_fft = np.dtype(np.complex64).itemsize * 2
|
||||
bytes_per_gb = 1e9
|
||||
ms_per_s = 1e3
|
||||
return system_size * bytes_per_fft / runtime_ms * ms_per_s / bytes_per_gb
|
||||
|
||||
|
||||
def run_bench(system_size, fft_sizes, backend="mlx", dim=1):
|
||||
def fft_mlx(x):
|
||||
if dim == 1:
|
||||
out = mx.fft.fft(x)
|
||||
elif dim == 2:
|
||||
out = mx.fft.fft2(x)
|
||||
mx.eval(out)
|
||||
return out
|
||||
|
||||
def fft_mps(x):
|
||||
if dim == 1:
|
||||
out = torch.fft.fft(x)
|
||||
elif dim == 2:
|
||||
out = torch.fft.fft2(x)
|
||||
torch.mps.synchronize()
|
||||
return out
|
||||
|
||||
bandwidths = []
|
||||
for n in fft_sizes:
|
||||
batch_size = system_size // n**dim
|
||||
shape = [batch_size] + [n for _ in range(dim)]
|
||||
if backend == "mlx":
|
||||
x_np = np.random.uniform(size=(system_size // n, n)).astype(np.complex64)
|
||||
x = mx.array(x_np)
|
||||
mx.eval(x)
|
||||
fft = fft_mlx
|
||||
elif backend == "mps":
|
||||
x_np = np.random.uniform(size=(system_size // n, n)).astype(np.complex64)
|
||||
x = torch.tensor(x_np, device="mps")
|
||||
torch.mps.synchronize()
|
||||
fft = fft_mps
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
runtime_ms = measure_runtime(fft, x=x)
|
||||
bandwidth = bandwidth_gb(runtime_ms, np.prod(shape))
|
||||
print(n, bandwidth)
|
||||
bandwidths.append(bandwidth)
|
||||
|
||||
return np.array(bandwidths)
|
||||
|
||||
|
||||
def time_fft():
|
||||
x = np.array(range(2, 512))
|
||||
system_size = int(2**26)
|
||||
|
||||
print("MLX GPU")
|
||||
with mx.stream(mx.gpu):
|
||||
gpu_bandwidths = run_bench(system_size=system_size, fft_sizes=x)
|
||||
|
||||
print("MPS GPU")
|
||||
mps_bandwidths = run_bench(system_size=system_size, fft_sizes=x, backend="mps")
|
||||
|
||||
print("CPU")
|
||||
system_size = int(2**20)
|
||||
with mx.stream(mx.cpu):
|
||||
cpu_bandwidths = run_bench(system_size=system_size, fft_sizes=x)
|
||||
|
||||
x = np.array(x)
|
||||
|
||||
all_indices = x - x[0]
|
||||
radix_2to13 = (
|
||||
np.array([i for i in x if all(p <= 13 for p in sympy.primefactors(i))]) - x[0]
|
||||
)
|
||||
bluesteins = (
|
||||
np.array([i for i in x if any(p > 13 for p in sympy.primefactors(i))]) - x[0]
|
||||
)
|
||||
|
||||
for indices, name in [
|
||||
(all_indices, "All"),
|
||||
(radix_2to13, "Radix 2-13"),
|
||||
(bluesteins, "Bluestein's"),
|
||||
]:
|
||||
# plot bandwidths
|
||||
print(name)
|
||||
plt.scatter(x[indices], gpu_bandwidths[indices], color="green", label="GPU")
|
||||
plt.scatter(x[indices], mps_bandwidths[indices], color="blue", label="MPS")
|
||||
plt.scatter(x[indices], cpu_bandwidths[indices], color="red", label="CPU")
|
||||
plt.title(f"MLX FFT Benchmark -- {name}")
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("Bandwidth (GB/s)")
|
||||
plt.legend()
|
||||
plt.savefig(f"{name}.png")
|
||||
plt.clf()
|
||||
|
||||
av_gpu_bandwidth = np.mean(gpu_bandwidths)
|
||||
av_mps_bandwidth = np.mean(mps_bandwidths)
|
||||
av_cpu_bandwidth = np.mean(cpu_bandwidths)
|
||||
print("Average bandwidths:")
|
||||
print("GPU:", av_gpu_bandwidth)
|
||||
print("MPS:", av_mps_bandwidth)
|
||||
print("CPU:", av_cpu_bandwidth)
|
||||
|
||||
portion_faster = len(np.where(gpu_bandwidths > mps_bandwidths)[0]) / len(x)
|
||||
print("Percent MLX faster than MPS: ", portion_faster * 100)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_fft()
|
41
benchmarks/python/layer_norm_bench.py
Normal file
41
benchmarks/python/layer_norm_bench.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def layer_norm(x, w, b, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
mu = mx.mean(x, -1, keepdims=True)
|
||||
v = mx.var(x, -1, keepdims=True)
|
||||
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||||
|
||||
|
||||
def time_layer_norm():
|
||||
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||||
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, b, y)
|
||||
|
||||
def layer_norm_loop(g, x, w, b):
|
||||
gx, gw, gb = x, w, b
|
||||
for _ in range(32):
|
||||
gx, gw, gb = g(gx, gw, gb, y)
|
||||
return gx, gw, gb
|
||||
|
||||
time_fn(layer_norm_loop, g1, x, w, b)
|
||||
time_fn(layer_norm_loop, g2, x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_layer_norm()
|
39
benchmarks/python/rms_norm_bench.py
Normal file
39
benchmarks/python/rms_norm_bench.py
Normal file
@@ -0,0 +1,39 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def rms_norm(x, w, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
||||
return (x * n).astype(ot) * w
|
||||
|
||||
|
||||
def time_rms_norm():
|
||||
f1 = lambda x, w, y: (rms_norm(x, w, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, y: (mx.fast.rms_norm(x, w, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1))
|
||||
g2 = mx.grad(f2, argnums=(0, 1))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, y)
|
||||
|
||||
def rms_norm_loop(g, x, w):
|
||||
gx, gw = x, w
|
||||
for _ in range(32):
|
||||
gx, gw = g(gx, gw, y)
|
||||
return gx, gw
|
||||
|
||||
time_fn(rms_norm_loop, g1, x, w)
|
||||
time_fn(rms_norm_loop, g2, x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_rms_norm()
|
62
benchmarks/python/sdpa_bench.py
Normal file
62
benchmarks/python/sdpa_bench.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import argparse
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
MAX_SEQ = 300
|
||||
START_SEQ = 100
|
||||
SEQ_INCREMENT = 50
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
def sdpa_primitives(qs, ks, vs, alpha):
|
||||
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ vs
|
||||
return o
|
||||
|
||||
time_fn(sdpa_primitives, q, k, v, scale)
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
def sdpa_fused(qs, ks, vs, alpha):
|
||||
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
|
||||
return o
|
||||
|
||||
time_fn(sdpa_fused, q, k, v, scale)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("MLX benchmarks.")
|
||||
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||||
args = parser.parse_args()
|
||||
if args.gpu:
|
||||
mx.set_default_device(mx.gpu)
|
||||
else:
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
50
docs/Doxyfile
Normal file
50
docs/Doxyfile
Normal file
@@ -0,0 +1,50 @@
|
||||
################################################################################
|
||||
# Primary project setup. #
|
||||
################################################################################
|
||||
|
||||
PROJECT_NAME = "MLX"
|
||||
OUTPUT_DIRECTORY = build
|
||||
XML_OUTPUT = xml
|
||||
HTML_OUTPUT = html
|
||||
STRIP_FROM_PATH = ../
|
||||
INPUT = ../mlx
|
||||
FILE_PATTERNS = *.h
|
||||
EXCLUDE_PATTERNS = */private/*
|
||||
CREATE_SUBDIRS = NO
|
||||
FULL_PATH_NAMES = YES
|
||||
RECURSIVE = YES
|
||||
GENERATE_HTML = YES
|
||||
GENERATE_LATEX = NO
|
||||
GENERATE_XML = YES
|
||||
XML_PROGRAMLISTING = YES
|
||||
|
||||
################################################################################
|
||||
# Doxygen preprocessor / parser control. #
|
||||
################################################################################
|
||||
|
||||
ENABLE_PREPROCESSING = YES
|
||||
MACRO_EXPANSION = YES
|
||||
EXPAND_ONLY_PREDEF = NO
|
||||
SKIP_FUNCTION_MACROS = NO
|
||||
|
||||
################################################################################
|
||||
# Compound extraction control. #
|
||||
################################################################################
|
||||
|
||||
EXTRACT_ALL = YES
|
||||
EXTRACT_PACKAGE = YES
|
||||
EXTRACT_STATIC = YES
|
||||
CASE_SENSE_NAMES = NO
|
||||
|
||||
################################################################################
|
||||
# Docstring control / customization. #
|
||||
################################################################################
|
||||
|
||||
JAVADOC_AUTOBRIEF = YES
|
||||
|
||||
################################################################################
|
||||
# Warning suppression. #
|
||||
################################################################################
|
||||
|
||||
QUIET = YES
|
||||
WARN_IF_UNDOCUMENTED = NO
|
@@ -2,12 +2,16 @@
|
||||
|
||||
### Setup (do once)
|
||||
|
||||
Install [sphinx](https://www.sphinx-doc.org/en/master/usage/installation.html)
|
||||
for example with `conda`:
|
||||
Install Doxygen:
|
||||
|
||||
```
|
||||
conda install sphinx
|
||||
pip install sphinx-book-theme
|
||||
brew install doxygen
|
||||
```
|
||||
|
||||
Install Python packages:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Build
|
||||
@@ -15,7 +19,7 @@ pip install sphinx-book-theme
|
||||
Build the docs from `mlx/docs/`
|
||||
|
||||
```
|
||||
make html
|
||||
doxygen && make html
|
||||
```
|
||||
|
||||
View the docs by running a server in `mlx/docs/build/html/`:
|
||||
|
3
docs/requirements.txt
Normal file
3
docs/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 746 KiB |
20
docs/src/_templates/nn-module-template.rst
Normal file
20
docs/src/_templates/nn-module-template.rst
Normal file
@@ -0,0 +1,20 @@
|
||||
{{ fullname | escape | underline}}
|
||||
|
||||
.. currentmodule:: {{ module }}
|
||||
|
||||
.. autoclass:: {{ objname }}
|
||||
|
||||
{% block methods %}
|
||||
|
||||
{% if methods %}
|
||||
.. rubric:: {{ _('Methods') }}
|
||||
|
||||
.. autosummary::
|
||||
{% for item in methods %}
|
||||
{%- if item not in inherited_members and item != "__init__" %}
|
||||
~{{ name }}.{{ item }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
||||
|
@@ -22,6 +22,7 @@ extensions = [
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.napoleon",
|
||||
"breathe",
|
||||
]
|
||||
|
||||
python_use_unqualified_type_names = True
|
||||
@@ -33,6 +34,9 @@ intersphinx_mapping = {
|
||||
"numpy": ("https://numpy.org/doc/stable/", None),
|
||||
}
|
||||
|
||||
breathe_projects = {"mlx": "../build/xml"}
|
||||
breathe_default_project = "mlx"
|
||||
|
||||
templates_path = ["_templates"]
|
||||
html_static_path = ["_static"]
|
||||
source_suffix = ".rst"
|
||||
|
@@ -3,4 +3,5 @@
|
||||
Operations
|
||||
==========
|
||||
|
||||
|
||||
.. doxygengroup:: ops
|
||||
:content-only:
|
||||
|
@@ -1,24 +1,16 @@
|
||||
Developer Documentation
|
||||
=======================
|
||||
Custom Extensions in MLX
|
||||
========================
|
||||
|
||||
MLX provides a open and flexible backend to which users may add operations
|
||||
and specialized implementations without much hassle. While the library supplies
|
||||
efficient operations that can be used and composed for any number of
|
||||
applications, there may arise cases where new functionalities or highly
|
||||
optimized implementations are needed. For such cases, you may design and
|
||||
implement your own operations that link to and build on top of :mod:`mlx.core`.
|
||||
We will introduce the inner-workings of MLX and go over a simple example to
|
||||
learn the steps involved in adding new operations to MLX with your own CPU
|
||||
and GPU implementations.
|
||||
You can extend MLX with custom operations on the CPU or GPU. This guide
|
||||
explains how to do that with a simple example.
|
||||
|
||||
Introducing the Example
|
||||
-----------------------
|
||||
|
||||
Let's say that you would like an operation that takes in two arrays,
|
||||
``x`` and ``y``, scales them both by some coefficients ``alpha`` and ``beta``
|
||||
respectively, and then adds them together to get the result
|
||||
``z = alpha * x + beta * y``. Well, you can very easily do that by just
|
||||
writing out a function as follows:
|
||||
Let's say you would like an operation that takes in two arrays, ``x`` and
|
||||
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
||||
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
||||
You can do that in MLX directly:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -27,44 +19,35 @@ writing out a function as follows:
|
||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||
return alpha * x + beta * y
|
||||
|
||||
This function performs that operation while leaving the implementations and
|
||||
differentiation to MLX.
|
||||
This function performs that operation while leaving the implementation and
|
||||
function transformations to MLX.
|
||||
|
||||
However, you work with vector math libraries often and realize that the
|
||||
``axpby`` routine defines the same operation ``Y = (alpha * X) + (beta * Y)``.
|
||||
You would really like the part of your applications that does this operation
|
||||
on the CPU to be very fast - so you decide that you want it to rely on the
|
||||
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
|
||||
our assumptions on to you, let's also assume that you want to learn how to add
|
||||
your own implementation for the gradients of your new operation while going
|
||||
over the ins-and-outs of the MLX framework.
|
||||
However you may need to customize the underlying implementation, perhaps to
|
||||
make it faster or for custom differentiation. In this tutorial we will go
|
||||
through adding custom extensions. It will cover:
|
||||
|
||||
Well, what a coincidence! You are in the right place. Over the course of this
|
||||
example, we will learn:
|
||||
|
||||
* The structure of the MLX library from the frontend API to the backend implementations.
|
||||
* How to implement your own CPU backend that redirects to Accelerate_ when appropriate (and a fallback if needed).
|
||||
* How to implement your own GPU implementation using metal.
|
||||
* How to add your own ``vjp`` and ``jvp``.
|
||||
* How to build your implementations, link them to MLX, and bind them to python.
|
||||
* The structure of the MLX library.
|
||||
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||
* Implementing a GPU operation using metal.
|
||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||
* Building a custom extension and binding it to python.
|
||||
|
||||
Operations and Primitives
|
||||
-------------------------
|
||||
|
||||
In one sentence, operations in MLX build the computation graph, and primitives
|
||||
provide the rules for evaluation and transformations of said graph. Let's start
|
||||
by discussing operations in more detail.
|
||||
Operations in MLX build the computation graph. Primitives provide the rules for
|
||||
evaluating and transforming the graph. Let's start by discussing operations in
|
||||
more detail.
|
||||
|
||||
Operations
|
||||
^^^^^^^^^^^
|
||||
|
||||
Operations are the frontend functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`) and then we provide bindings to these
|
||||
operations in the Python API (:ref:`ops`).
|
||||
Operations are the front-end functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and ``y``,
|
||||
and two scalars, ``alpha`` and ``beta``. This is how we would define it in the
|
||||
C++ API:
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||
C++:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -83,10 +66,7 @@ C++ API:
|
||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||
);
|
||||
|
||||
|
||||
This operation itself can call other operations within it if needed. So, the
|
||||
simplest way to go about implementing this operation would be do so in terms
|
||||
of existing operations.
|
||||
The simplest way to this operation is in terms of existing operations:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -100,25 +80,23 @@ of existing operations.
|
||||
// Scale x and y on the provided stream
|
||||
auto ax = multiply(array(alpha), x, s);
|
||||
auto by = multiply(array(beta), y, s);
|
||||
|
||||
|
||||
// Add and return
|
||||
return add(ax, by, s);
|
||||
}
|
||||
|
||||
However, as we discussed earlier, this is not our goal. The operations themselves
|
||||
do not contain the implementations that act on the data, nor do they contain the
|
||||
rules of transformations. Rather, they are an easy to use interface that build
|
||||
on top of the building blocks we call :class:`Primitive`.
|
||||
The operations themselves do not contain the implementations that act on the
|
||||
data, nor do they contain the rules of transformations. Rather, they are an
|
||||
easy to use interface that use :class:`Primitive` building blocks.
|
||||
|
||||
Primitives
|
||||
^^^^^^^^^^^
|
||||
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create an output given a set of input :class:`array` . Further,
|
||||
a :class:`Primitive` is a class that contains rules on how it is evaluated
|
||||
on the CPU or GPU, and how it acts under transformations such as ``vjp`` and
|
||||
``jvp``. These words on their own can be a bit abstract, so lets take a step
|
||||
back and go to our example to give ourselves a more concrete image.
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create outputs arrays given a input arrays. Further, a
|
||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||
more concrete:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -134,11 +112,15 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_gpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
void eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array jvp(
|
||||
std::vector<array> jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) override;
|
||||
@@ -147,7 +129,8 @@ back and go to our example to give ourselves a more concrete image.
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) override;
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
/**
|
||||
* The primitive must know how to vectorize itself across
|
||||
@@ -155,7 +138,7 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<array, int> vmap(
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
@@ -175,22 +158,22 @@ back and go to our example to give ourselves a more concrete image.
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
};
|
||||
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class and
|
||||
follows the above demonstrated interface. :class:`Axpby` treats ``alpha`` and
|
||||
``beta`` as parameters. It then provides implementations of how the array ``out``
|
||||
is produced given ``inputs`` through :meth:`Axpby::eval_cpu` and
|
||||
:meth:`Axpby::eval_gpu`. Further, it provides rules of transformations in
|
||||
:meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and :meth:`Axpby::vmap`.
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
||||
implementations of how the output array is produced given the inputs through
|
||||
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
||||
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
||||
:meth:`Axpby::vmap`.
|
||||
|
||||
Using the Primitives
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
Using the Primitive
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to
|
||||
the computation graph. An :class:`array` can be constructed by providing its
|
||||
data type, shape, the :class:`Primitive` that computes it, and the
|
||||
:class:`array` inputs that are passed to the primitive.
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
||||
computation graph. An :class:`array` can be constructed by providing its data
|
||||
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
||||
inputs that are passed to the primitive.
|
||||
|
||||
Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -223,7 +206,7 @@ Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
@@ -238,27 +221,26 @@ This operation now handles the following:
|
||||
Implementing the Primitive
|
||||
--------------------------
|
||||
|
||||
No computation happens when we call the operation alone. In effect, the
|
||||
operation only builds the computation graph. When we evaluate the output
|
||||
array, MLX schedules the execution of the computation graph, and calls
|
||||
:meth:`Axpby::eval_cpu` or :meth:`Axpby::eval_gpu` depending on the
|
||||
stream/device specified by the user.
|
||||
No computation happens when we call the operation alone. The operation only
|
||||
builds the computation graph. When we evaluate the output array, MLX schedules
|
||||
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
||||
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
||||
|
||||
.. warning::
|
||||
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
||||
no memory has been allocated for the output array. It falls on the implementation
|
||||
of these functions to allocate memory as needed
|
||||
of these functions to allocate memory as needed.
|
||||
|
||||
Implementing the CPU Backend
|
||||
Implementing the CPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Let's start by trying to implement a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
Let's start by implementing a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -296,19 +278,19 @@ pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
}
|
||||
}
|
||||
|
||||
Now, we would like our implementation to be able to do this pointwise operation
|
||||
for all incoming floating point arrays. Accordingly, we add dispatches for
|
||||
``float32``, ``float16``, ``bfloat16`` and ``complex64``. We throw an error
|
||||
if we encounter an unexpected type.
|
||||
Our implementation should work for all incoming floating point arrays.
|
||||
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
``complex64``. We throw an error if we encounter an unexpected type.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(const std::vector<array>& inputs, array& out) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -321,28 +303,26 @@ if we encounter an unexpected type.
|
||||
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
"[Axpby] Only supports floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
We have a fallback implementation! Now, to do what we are really here to do.
|
||||
Remember we wanted to use the ``axpby`` routine provided by the Accelerate_
|
||||
framework? Well, there are 3 complications to keep in mind:
|
||||
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||
provided by the Accelerate_ framework for a faster implementation in certain
|
||||
cases:
|
||||
|
||||
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||
floats. We can only direct to it for ``float32`` types
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all elements
|
||||
have fixed strides between them. Possibly due to broadcasts and transposes,
|
||||
we aren't guaranteed that the inputs fit this requirement. We can
|
||||
only direct to Accelerate if both ``x`` and ``y`` are row contiguous or
|
||||
column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` inplace.
|
||||
MLX expects to write out the answer to a new array. We must copy the elements
|
||||
of ``y`` into the output array and use that as an input to ``axpby``
|
||||
floats. We can only use it for ``float32`` types.
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||
elements have fixed strides between them. We only direct to Accelerate
|
||||
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||
MLX expects to write the output to a new array. We must copy the elements
|
||||
of ``y`` into the output and use that as an input to ``axpby``.
|
||||
|
||||
Let's write out an implementation that uses Accelerate in the right conditions.
|
||||
It must simply allocate data for the output, copy elements of ``y`` into it,
|
||||
and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
Let's write an implementation that uses Accelerate in the right conditions.
|
||||
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||
:func:`catlas_saxpby` from accelerate.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -356,17 +336,7 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
|
||||
// This specialization requires both x and y be contiguous in the same mode
|
||||
// i.e: corresponding linear indices in both point to corresponding elements
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -389,18 +359,20 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
Great! But what about the inputs that do not fit the criteria for accelerate?
|
||||
Luckily, we can always just direct back to :meth:`Axpby::eval`.
|
||||
|
||||
With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||
:meth:`Axpby::eval_cpu`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -410,35 +382,33 @@ With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, out);
|
||||
// Fall back to common back-end if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
We have now hit a milestone! Just this much is enough to run the operation
|
||||
:meth:`axpby` on a CPU stream!
|
||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||
you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
If you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
Implementing the GPU Backend
|
||||
Implementing the GPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
all GPU kernels in MLX are written using metal.
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
GPU kernels in MLX are written using Metal.
|
||||
|
||||
.. note::
|
||||
|
||||
Here are some helpful resources if you are new to metal!
|
||||
Here are some helpful resources if you are new to Metal:
|
||||
|
||||
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
||||
* Documentation for metal shading language: `Metal Specification`_
|
||||
* Using metal from C++: `Metal-cpp`_
|
||||
|
||||
Let's keep the GPU algorithm simple. We will launch exactly as many threads
|
||||
as there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the pointwise operation, and then update its assigned
|
||||
element in the output.
|
||||
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
||||
there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
||||
element in the output.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -457,15 +427,14 @@ element in the output.
|
||||
// Convert linear indices to offsets in array
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
||||
|
||||
|
||||
// Do the operation and update the output
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
||||
}
|
||||
|
||||
We then need to instantiate this template for all floating point types and give
|
||||
each instantiation a unique host name so we can identify the right kernel for
|
||||
each data type.
|
||||
each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -488,29 +457,21 @@ each data type.
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
|
||||
This kernel will be compiled into a metal library ``mlx_ext.metallib`` as we
|
||||
will see later in :ref:`Building with CMake`. In the following example, we
|
||||
assume that the library ``mlx_ext.metallib`` will always be co-located with
|
||||
the executable/ shared-library calling the :meth:`register_library` function.
|
||||
The :meth:`register_library` function takes the library's name and potential
|
||||
path (or in this case, a function that can produce the path of the metal
|
||||
library) and tries to load that library if it hasn't already been registered
|
||||
by the relevant static :class:`mlx::core::metal::Device` object. This is why,
|
||||
it is important to package your C++ library with the metal library. We will
|
||||
go over this process in more detail later.
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions
|
||||
and dispatch it to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
below.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -518,10 +479,10 @@ below.
|
||||
// We get the needed metal device using the stream
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
// Allocate output memory
|
||||
// Allocate output memory
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
@@ -533,7 +494,7 @@ below.
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
@@ -542,17 +503,17 @@ below.
|
||||
size_t nelem = out.size();
|
||||
|
||||
// Encode input arrays to kernel
|
||||
set_array_buffer(compute_encoder, x, 0);
|
||||
set_array_buffer(compute_encoder, y, 1);
|
||||
compute_encoder.set_input_array(x, 0);
|
||||
compute_encoder.set_input_array(y, 1);
|
||||
|
||||
// Encode output arrays to kernel
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
|
||||
// Encode shape, strides and ndim
|
||||
// Encode shape, strides and ndim
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
@@ -570,33 +531,30 @@ below.
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
||||
A few things to note about MLX and metal before moving on. MLX keeps track
|
||||
of the active ``compute_encoder``. We rely on :meth:`d.get_command_encoder`
|
||||
to give us the active metal compute command encoder instead of building a
|
||||
new one and calling :meth:`compute_encoder->end_encoding` at the end.
|
||||
MLX keeps adding kernels (compute pipelines) to the active command encoder
|
||||
until some specified limit is hit or the compute encoder needs to be flushed
|
||||
for synchronization. MLX also handles enqueuing and committing the associated
|
||||
command buffers as needed. We suggest taking a deeper dive into
|
||||
:class:`metal::Device` if you would like to study this routine further.
|
||||
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
||||
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
||||
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
||||
metal compute command encoder instead of building a new one and calling
|
||||
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
||||
pipelines) to the active command buffer until some specified limit is hit or
|
||||
the command buffer needs to be flushed for synchronization.
|
||||
|
||||
Primitive Transforms
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Now that we have come this far, let's also learn how to add implementations to
|
||||
transformations in a :class:`Primitive`. These transformations can be built on
|
||||
top of our operations, including the one we just defined now. Which then gives
|
||||
us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
Next, let's add implementations for transformations in a :class:`Primitive`.
|
||||
These transformations can be built on top of other operations, including the
|
||||
one we just defined:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array Axpby::jvp(
|
||||
std::vector<array> Axpby::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
@@ -611,12 +569,12 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
if (argnums.size() > 1) {
|
||||
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return multiply(scale_arr, tangents[0], stream());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -625,34 +583,35 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> Axpby::vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) {
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<int>& /* unused */) {
|
||||
// Reverse mode diff
|
||||
std::vector<array> vjps;
|
||||
for (auto arg : argnums) {
|
||||
auto scale = arg == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, cotan.dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotan, stream()));
|
||||
auto scale_arr = array(scale, cotangents[0].dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
||||
}
|
||||
return vjps;
|
||||
}
|
||||
|
||||
Finally, you need not have a transformation fully defined to start using your
|
||||
own :class:`Primitive`.
|
||||
Note, a transformation does not need to be fully defined to start using
|
||||
the :class:`Primitive`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Vectorize primitive along given axis */
|
||||
std::pair<array, int> Axpby::vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
throw std::runtime_error("Axpby has no vmap implementation.");
|
||||
throw std::runtime_error("[Axpby] vmap not implemented.");
|
||||
}
|
||||
|
||||
Building and Binding
|
||||
--------------------
|
||||
|
||||
Let's look at the overall directory structure first.
|
||||
Let's look at the overall directory structure first.
|
||||
|
||||
| extensions
|
||||
| ├── axpby
|
||||
@@ -666,40 +625,39 @@ Let's look at the overall directory structure first.
|
||||
| └── setup.py
|
||||
|
||||
* ``extensions/axpby/`` defines the C++ extension library
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated python package
|
||||
* ``extensions/bindings.cpp`` provides python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
python bindings
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated Python package
|
||||
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
Python bindings
|
||||
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
||||
the python package
|
||||
the Python package
|
||||
|
||||
Binding to Python
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We use PyBind11_ to build a Python API for the C++ library. Since bindings for
|
||||
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
||||
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
||||
already provided, adding our :meth:`axpby` is simple!
|
||||
already provided, adding our :meth:`axpby` is simple.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -711,17 +669,17 @@ already provided, adding our :meth:`axpby` is simple!
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
)");
|
||||
}
|
||||
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
whistles such as the literal names and doc-strings.
|
||||
|
||||
.. warning::
|
||||
|
||||
:mod:`mlx.core` needs to be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the pybind11 module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:mod:`mlx.core` must be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:class:`mlx.core.array` are available.
|
||||
|
||||
.. _Building with CMake:
|
||||
@@ -729,8 +687,8 @@ whistles such as the literal names and doc-strings.
|
||||
Building with CMake
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Building the C++ extension library itself is simple, it only requires that you
|
||||
``find_package(MLX CONFIG)`` and then link it to your library.
|
||||
Building the C++ extension library only requires that you ``find_package(MLX
|
||||
CONFIG)`` and then link it to your library.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -752,12 +710,12 @@ Building the C++ extension library itself is simple, it only requires that you
|
||||
# Link to mlx
|
||||
target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
We also need to build the attached metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
We also need to build the attached Metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
|
||||
Here is what that looks like in practice!
|
||||
Here is what that looks like in practice:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -779,27 +737,29 @@ Here is what that looks like in practice!
|
||||
|
||||
endif()
|
||||
|
||||
Finally, we build the Pybind11_ bindings
|
||||
Finally, we build the nanobind_ bindings
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
||||
Building with ``setuptools``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Once we have set out the CMake build rules as described above, we can use the
|
||||
build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
build utilities defined in :mod:`mlx.extension`:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
from mlx import extension
|
||||
from setuptools import setup
|
||||
@@ -809,48 +769,50 @@ build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages = ["mlx_sample_extensions"],
|
||||
package_dir = {"": "mlx_sample_extensions"},
|
||||
package_data = {"mlx_sample_extensions" : ["*.so", "*.dylib", "*.metallib"]},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev":[]},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.7",
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
||||
.. note::
|
||||
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
||||
even though it only contains a ``__init__.py`` to ensure the following:
|
||||
|
||||
* :mod:`mlx.core` is always imported before importing :mod:`mlx_sample_extensions`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
You can build inplace for development using
|
||||
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
To build the package, first install the build dependencies with ``pip install
|
||||
-r requirements.txt``. You can then build inplace for development using
|
||||
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
||||
|
||||
This will result in a directory structure as follows:
|
||||
This results in the directory structure:
|
||||
|
||||
| extensions
|
||||
| ├── mlx_sample_extensions
|
||||
| │ ├── __init__.py
|
||||
| │ ├── libmlx_ext.dylib # C++ extension library
|
||||
| │ ├── mlx_ext.metallib # Metal library
|
||||
| │ └── mlx_sample_extensions.cpython-3x-darwin.so # Python Binding
|
||||
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
||||
| ...
|
||||
|
||||
When you try to install using the command ``python -m pip install .``
|
||||
(in ``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and metal library will be
|
||||
copied along with the python binding since they are specified as ``package_data``.
|
||||
When you try to install using the command ``python -m pip install .`` (in
|
||||
``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
||||
copied along with the Python binding since they are specified as
|
||||
``package_data``.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the python package and play with it as you would any other MLX operation!
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the Python package and play with it as you would any other MLX operation.
|
||||
|
||||
Let's looks at a simple script and it's results!
|
||||
Let's look at a simple script and its results:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -863,7 +825,7 @@ Let's looks at a simple script and it's results!
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correctness: {mx.all(c == 6.0).item()}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
|
||||
Output:
|
||||
|
||||
@@ -874,12 +836,12 @@ Output:
|
||||
c correctness: True
|
||||
|
||||
Results
|
||||
^^^^^^^^^^^^^^^^
|
||||
^^^^^^^
|
||||
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_sample_extensions import axpby
|
||||
@@ -898,7 +860,7 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
alpha = 4.0
|
||||
beta = 2.0
|
||||
|
||||
mx.eval((x, y))
|
||||
mx.eval(x, y)
|
||||
|
||||
def bench(f):
|
||||
# Warm up
|
||||
@@ -919,30 +881,23 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
|
||||
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||
|
||||
Results:
|
||||
|
||||
.. code-block::
|
||||
|
||||
Simple axpby: 0.114 s | Custom axpby: 0.109 s
|
||||
|
||||
We see some modest improvements right away!
|
||||
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||
modest improvements right away!
|
||||
|
||||
This operation is now good to be used to build other operations, in
|
||||
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
||||
:meth:`grad`!
|
||||
:meth:`grad`.
|
||||
|
||||
Scripts
|
||||
-------
|
||||
|
||||
.. admonition:: Download the code
|
||||
|
||||
The full example code is available in `mlx <code>`_.
|
||||
|
||||
.. code: `https://github.com/ml-explore/mlx/tree/main/examples/extensions/`_
|
||||
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
||||
|
||||
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
||||
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
||||
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
||||
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
||||
.. _PyBind11: https://pybind11.readthedocs.io/en/stable/
|
||||
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|
||||
|
68
docs/src/dev/metal_debugger.rst
Normal file
68
docs/src/dev/metal_debugger.rst
Normal file
@@ -0,0 +1,68 @@
|
||||
Metal Debugger
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Profiling is a key step for performance optimization. You can build MLX with
|
||||
the ``MLX_METAL_DEBUG`` option to improve the Metal debugging and
|
||||
optimization workflow. The ``MLX_METAL_DEBUG`` debug option:
|
||||
|
||||
* Records source during Metal compilation, for later inspection while
|
||||
debugging.
|
||||
* Labels Metal objects such as command queues, improving capture readability.
|
||||
|
||||
To build with debugging enabled in Python prepend
|
||||
``CMAKE_ARGS="-DMLX_METAL_DEBUG=ON"`` to the build call.
|
||||
|
||||
The :func:`metal.start_capture` function initiates a capture of all MLX GPU
|
||||
work.
|
||||
|
||||
.. note::
|
||||
|
||||
To capture a GPU trace you must run the application with
|
||||
``MTL_CAPTURE_ENABLED=1``.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
a = mx.random.uniform(shape=(512, 512))
|
||||
b = mx.random.uniform(shape=(512, 512))
|
||||
mx.eval(a, b)
|
||||
|
||||
trace_file = "mlx_trace.gputrace"
|
||||
|
||||
# Make sure to run with MTL_CAPTURE_ENABLED=1 and
|
||||
# that the path trace_file does not already exist.
|
||||
mx.metal.start_capture(trace_file)
|
||||
|
||||
for _ in range(10):
|
||||
mx.eval(mx.add(a, b))
|
||||
|
||||
mx.metal.stop_capture()
|
||||
|
||||
You can open and replay the GPU trace in Xcode. The ``Dependencies`` view
|
||||
has a great overview of all operations. Checkout the `Metal debugger
|
||||
documentation`_ for more information.
|
||||
|
||||
.. image:: ../_static/metal_debugger/capture.png
|
||||
:class: dark-light
|
||||
|
||||
Xcode Workflow
|
||||
--------------
|
||||
|
||||
You can skip saving to a path by running within Xcode. First, generate an
|
||||
Xcode project using CMake.
|
||||
|
||||
.. code-block::
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -DMLX_METAL_DEBUG=ON -G Xcode
|
||||
open mlx.xcodeproj
|
||||
|
||||
Select the ``metal_capture`` example schema and run.
|
||||
|
||||
.. image:: ../_static/metal_debugger/schema.png
|
||||
:class: dark-light
|
||||
|
||||
.. _`Metal debugger documentation`: https://developer.apple.com/documentation/xcode/metal-debugger
|
@@ -43,6 +43,7 @@ are the CPU and GPU.
|
||||
usage/function_transforms
|
||||
usage/compile
|
||||
usage/numpy
|
||||
usage/distributed
|
||||
usage/using_streams
|
||||
|
||||
.. toctree::
|
||||
@@ -58,6 +59,7 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
python/array
|
||||
python/data_types
|
||||
python/devices_and_streams
|
||||
python/ops
|
||||
python/random
|
||||
@@ -68,6 +70,7 @@ are the CPU and GPU.
|
||||
python/metal
|
||||
python/nn
|
||||
python/optimizers
|
||||
python/distributed
|
||||
python/tree_utils
|
||||
|
||||
.. toctree::
|
||||
@@ -81,3 +84,4 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
dev/extensions
|
||||
dev/metal_debugger
|
||||
|
@@ -74,7 +74,7 @@ Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install git+https://github.com/wjakob/nanobind.git
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
||||
Then simply build and install MLX using pip:
|
||||
|
||||
@@ -120,7 +120,7 @@ Create a build directory and run CMake and make:
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. && make -j
|
||||
cmake .. && make -j
|
||||
|
||||
Run tests with:
|
||||
|
||||
@@ -139,7 +139,7 @@ directory as the executable statically linked to ``libmlx.a`` or the
|
||||
preprocessor constant ``METAL_PATH`` should be defined at build time and it
|
||||
should point to the path to the built metal library.
|
||||
|
||||
.. list-table:: Build Options
|
||||
.. list-table:: Build Options
|
||||
:widths: 25 8
|
||||
:header-rows: 1
|
||||
|
||||
@@ -153,31 +153,67 @@ should point to the path to the built metal library.
|
||||
- OFF
|
||||
* - MLX_BUILD_METAL
|
||||
- ON
|
||||
* - MLX_BUILD_CPU
|
||||
- ON
|
||||
* - MLX_BUILD_PYTHON_BINDINGS
|
||||
- OFF
|
||||
|
||||
* - MLX_METAL_DEBUG
|
||||
- OFF
|
||||
* - MLX_BUILD_SAFETENSORS
|
||||
- ON
|
||||
* - MLX_BUILD_GGUF
|
||||
- ON
|
||||
* - MLX_METAL_JIT
|
||||
- OFF
|
||||
|
||||
.. note::
|
||||
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export DEVELOPER_DIR="/path/to/Xcode.app/Contents/Developer/"
|
||||
|
||||
Further, you can use the following command to find out which
|
||||
Further, you can use the following command to find out which
|
||||
macOS SDK will be used
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
xcrun -sdk macosx --show-sdk-version
|
||||
|
||||
Binary Size Minimization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To produce a smaller binary use the CMake flags ``CMAKE_BUILD_TYPE=MinSizeRel``
|
||||
and ``BUILD_SHARED_LIBS=ON``.
|
||||
|
||||
The MLX CMake build has several additional options to make smaller binaries.
|
||||
For example, if you don't need the CPU backend or support for safetensors and
|
||||
GGUF, you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cmake ..
|
||||
-DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
|
||||
THE ``MLX_METAL_JIT`` flag minimizes the size of the MLX Metal library which
|
||||
contains pre-built GPU kernels. This substantially reduces the size of the
|
||||
Metal library by run-time compiling kernels the first time they are used in MLX
|
||||
on a given machine. Note run-time compilation incurs a cold-start cost which can
|
||||
be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists accross reboots.
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
|
||||
Metal not found
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
@@ -199,7 +235,7 @@ Then set the active developer directory:
|
||||
|
||||
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
|
||||
|
||||
x86 Shell
|
||||
x86 Shell
|
||||
~~~~~~~~~
|
||||
|
||||
.. _build shell:
|
||||
|
@@ -19,7 +19,6 @@ Array
|
||||
array.ndim
|
||||
array.shape
|
||||
array.size
|
||||
Dtype
|
||||
array.abs
|
||||
array.all
|
||||
array.any
|
||||
@@ -32,7 +31,6 @@ Array
|
||||
array.cumsum
|
||||
array.diag
|
||||
array.diagonal
|
||||
array.dtype
|
||||
array.exp
|
||||
array.flatten
|
||||
array.log
|
||||
|
@@ -1,7 +1,5 @@
|
||||
.. _data_types:
|
||||
|
||||
:orphan:
|
||||
|
||||
Data Types
|
||||
==========
|
||||
|
||||
@@ -56,3 +54,15 @@ The default floating point type is ``float32`` and the default integer type is
|
||||
* - ``complex64``
|
||||
- 8
|
||||
- 64-bit complex float
|
||||
|
||||
|
||||
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
||||
documentation for more information. Use :func:`issubdtype` to determine if one
|
||||
``dtype`` (or category) is a subtype of another category.
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Dtype
|
||||
DtypeCategory
|
||||
issubdtype
|
||||
|
@@ -16,3 +16,4 @@ Devices and Streams
|
||||
new_stream
|
||||
set_default_stream
|
||||
stream
|
||||
synchronize
|
||||
|
19
docs/src/python/distributed.rst
Normal file
19
docs/src/python/distributed.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
.. _distributed:
|
||||
|
||||
.. currentmodule:: mlx.core.distributed
|
||||
|
||||
Distributed Communication
|
||||
==========================
|
||||
|
||||
MLX provides a distributed communication package using MPI. The MPI library is
|
||||
loaded at runtime; if MPI is available then distributed communication is also
|
||||
made available.
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Group
|
||||
is_available
|
||||
init
|
||||
all_sum
|
||||
all_gather
|
@@ -8,5 +8,8 @@ Linear Algebra
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
inv
|
||||
norm
|
||||
cholesky
|
||||
qr
|
||||
svd
|
||||
|
@@ -3,12 +3,17 @@ Metal
|
||||
|
||||
.. currentmodule:: mlx.core.metal
|
||||
|
||||
.. autosummary::
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
device_info
|
||||
get_active_memory
|
||||
get_peak_memory
|
||||
reset_peak_memory
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
||||
|
@@ -173,6 +173,7 @@ In detail:
|
||||
:toctree: _autosummary
|
||||
|
||||
value_and_grad
|
||||
quantize
|
||||
|
||||
.. toctree::
|
||||
|
||||
|
@@ -17,6 +17,8 @@ simple functions.
|
||||
gelu_approx
|
||||
gelu_fast_approx
|
||||
glu
|
||||
hard_shrink
|
||||
hard_tanh
|
||||
hardswish
|
||||
leaky_relu
|
||||
log_sigmoid
|
||||
@@ -29,6 +31,7 @@ simple functions.
|
||||
sigmoid
|
||||
silu
|
||||
softmax
|
||||
softmin
|
||||
softplus
|
||||
softshrink
|
||||
step
|
||||
|
@@ -15,15 +15,21 @@ Layers
|
||||
BatchNorm
|
||||
Conv1d
|
||||
Conv2d
|
||||
Conv3d
|
||||
Dropout
|
||||
Dropout2d
|
||||
Dropout3d
|
||||
Embedding
|
||||
GELU
|
||||
GLU
|
||||
GroupNorm
|
||||
GRU
|
||||
HardShrink
|
||||
HardTanh
|
||||
Hardswish
|
||||
InstanceNorm
|
||||
LayerNorm
|
||||
LeakyReLU
|
||||
Linear
|
||||
LSTM
|
||||
MaxPool1d
|
||||
@@ -31,16 +37,23 @@ Layers
|
||||
Mish
|
||||
MultiHeadAttention
|
||||
PReLU
|
||||
QuantizedEmbedding
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
SELU
|
||||
Sequential
|
||||
SiLU
|
||||
SinusoidalPositionalEncoding
|
||||
Softmin
|
||||
Softshrink
|
||||
Softsign
|
||||
Softmax
|
||||
Softplus
|
||||
Step
|
||||
Tanh
|
||||
Transformer
|
||||
Upsample
|
||||
Upsample
|
||||
|
@@ -30,6 +30,7 @@ Module
|
||||
Module.named_modules
|
||||
Module.parameters
|
||||
Module.save_weights
|
||||
Module.set_dtype
|
||||
Module.train
|
||||
Module.trainable_parameters
|
||||
Module.unfreeze
|
||||
|
@@ -5,13 +5,14 @@ Operations
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autosummary::
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
abs
|
||||
add
|
||||
addmm
|
||||
all
|
||||
allclose
|
||||
allclose
|
||||
any
|
||||
arange
|
||||
arccos
|
||||
@@ -19,19 +20,27 @@ Operations
|
||||
arcsin
|
||||
arcsinh
|
||||
arctan
|
||||
arctan2
|
||||
arctanh
|
||||
argmax
|
||||
argmin
|
||||
argpartition
|
||||
argsort
|
||||
array_equal
|
||||
as_strided
|
||||
atleast_1d
|
||||
atleast_2d
|
||||
atleast_3d
|
||||
bitwise_and
|
||||
bitwise_or
|
||||
bitwise_xor
|
||||
block_masked_mm
|
||||
broadcast_to
|
||||
ceil
|
||||
clip
|
||||
concatenate
|
||||
conj
|
||||
conjugate
|
||||
convolve
|
||||
conv1d
|
||||
conv2d
|
||||
@@ -42,6 +51,7 @@ Operations
|
||||
cummin
|
||||
cumprod
|
||||
cumsum
|
||||
degrees
|
||||
dequantize
|
||||
diag
|
||||
diagonal
|
||||
@@ -51,21 +61,26 @@ Operations
|
||||
erf
|
||||
erfinv
|
||||
exp
|
||||
expm1
|
||||
expand_dims
|
||||
eye
|
||||
flatten
|
||||
floor
|
||||
floor_divide
|
||||
full
|
||||
gather_mm
|
||||
gather_qmm
|
||||
greater
|
||||
greater_equal
|
||||
identity
|
||||
inner
|
||||
isclose
|
||||
isnan
|
||||
isposinf
|
||||
isneginf
|
||||
isinf
|
||||
isnan
|
||||
isneginf
|
||||
isposinf
|
||||
issubdtype
|
||||
left_shift
|
||||
less
|
||||
less_equal
|
||||
linspace
|
||||
@@ -83,22 +98,28 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
moveaxis
|
||||
multiply
|
||||
negative
|
||||
not_equal
|
||||
ones
|
||||
ones_like
|
||||
outer
|
||||
partition
|
||||
pad
|
||||
power
|
||||
prod
|
||||
quantize
|
||||
quantized_matmul
|
||||
radians
|
||||
reciprocal
|
||||
remainder
|
||||
repeat
|
||||
reshape
|
||||
right_shift
|
||||
round
|
||||
rsqrt
|
||||
save
|
||||
@@ -117,6 +138,7 @@ Operations
|
||||
square
|
||||
squeeze
|
||||
stack
|
||||
std
|
||||
stop_gradient
|
||||
subtract
|
||||
sum
|
||||
@@ -128,11 +150,13 @@ Operations
|
||||
tensordot
|
||||
tile
|
||||
topk
|
||||
trace
|
||||
transpose
|
||||
tri
|
||||
tril
|
||||
triu
|
||||
var
|
||||
view
|
||||
where
|
||||
zeros
|
||||
zeros_like
|
||||
|
@@ -1,5 +1,7 @@
|
||||
.. _optimizers:
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
|
||||
Optimizers
|
||||
==========
|
||||
|
||||
@@ -34,3 +36,8 @@ model's parameters and the **optimizer state**.
|
||||
optimizers/optimizer
|
||||
optimizers/common_optimizers
|
||||
optimizers/schedulers
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
clip_grad_norm
|
||||
|
@@ -38,6 +38,7 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
gumbel
|
||||
key
|
||||
normal
|
||||
multivariate_normal
|
||||
randint
|
||||
seed
|
||||
split
|
||||
|
@@ -19,3 +19,5 @@ return python trees will be using the default python ``dict``, ``list`` and
|
||||
tree_flatten
|
||||
tree_unflatten
|
||||
tree_map
|
||||
tree_map_with_path
|
||||
tree_reduce
|
||||
|
166
docs/src/usage/distributed.rst
Normal file
166
docs/src/usage/distributed.rst
Normal file
@@ -0,0 +1,166 @@
|
||||
.. _usage_distributed:
|
||||
|
||||
Distributed Communication
|
||||
=========================
|
||||
|
||||
.. currentmodule:: mlx.core.distributed
|
||||
|
||||
MLX utilizes `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ to
|
||||
provide distributed communication operations that allow the computational cost
|
||||
of training or inference to be shared across many physical machines. You can
|
||||
see a list of the supported operations in the :ref:`API docs<distributed>`.
|
||||
|
||||
.. note::
|
||||
A lot of operations may not be supported or not as fast as they should be.
|
||||
We are adding more and tuning the ones we have as we are figuring out the
|
||||
best way to do distributed computing on Macs using MLX.
|
||||
|
||||
Getting Started
|
||||
---------------
|
||||
|
||||
MLX already comes with the ability to "talk" to MPI if it is installed on the
|
||||
machine. The minimal distributed program in MLX is as simple as:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
world = mx.distributed.init()
|
||||
x = mx.distributed.all_sum(mx.ones(10))
|
||||
print(world.rank(), x)
|
||||
|
||||
The program above sums the array ``mx.ones(10)`` across all
|
||||
distributed processes. If simply run with ``python``, however, only one
|
||||
process is launched and no distributed communication takes place.
|
||||
|
||||
To launch the program in distributed mode we need to use ``mpirun`` or
|
||||
``mpiexec`` depending on the MPI installation. The simplest possible way is the
|
||||
following:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mpirun -np 2 python test.py
|
||||
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
|
||||
The above launches two processes on the same (local) machine and we can see
|
||||
both standard output streams. The processes send the array of 1s to each other
|
||||
and compute the sum which is printed. Launching with ``mpirun -np 4 ...`` would
|
||||
print 4 etc.
|
||||
|
||||
Installing MPI
|
||||
---------------
|
||||
|
||||
MPI can be installed with Homebrew, using the Anaconda package manager or
|
||||
compiled from source. Most of our testing is done using ``openmpi`` installed
|
||||
with the Anaconda package manager as follows:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ conda install openmpi
|
||||
|
||||
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
|
||||
so that MLX can find it and load it at runtime. This can simply be achieved by
|
||||
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun``.
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
|
||||
|
||||
Setting up Remote Hosts
|
||||
-----------------------
|
||||
|
||||
MPI can automatically connect to remote hosts and set up the communication over
|
||||
the network if the remote hosts can be accessed via ssh. A good checklist to
|
||||
debug connectivity issues is the following:
|
||||
|
||||
* ``ssh hostname`` works from all machines to all machines without asking for
|
||||
password or host confirmation
|
||||
* ``mpirun`` is accessible on all machines. You can call ``mpirun`` using its
|
||||
full path to force all machines to use a specific path.
|
||||
* Ensure that the ``hostname`` used by MPI is the one that you have configured
|
||||
in the ``.ssh/config`` files on all machines.
|
||||
|
||||
.. note::
|
||||
For an example hostname ``foo.bar.com`` MPI can use only ``foo`` as
|
||||
the hostname passed to ssh if the current hostname matches ``*.bar.com``.
|
||||
|
||||
An easy way to pass the host names to MPI is using a host file. A host file
|
||||
looks like the following, where ``host1`` and ``host2`` should be the fully
|
||||
qualified domain names or IPs for these hosts.
|
||||
|
||||
.. code::
|
||||
|
||||
host1 slots=1
|
||||
host2 slots=1
|
||||
|
||||
When using MLX, it is very likely that you want to use 1 slot per host, ie one
|
||||
process per host. The hostfile also needs to contain the current
|
||||
host if you want to run on the local host. Passing the host file to
|
||||
``mpirun`` is simply done using the ``--hostfile`` command line argument.
|
||||
|
||||
Training Example
|
||||
----------------
|
||||
|
||||
In this section we will adapt an MLX training loop to support data parallel
|
||||
distributed training. Namely, we will average the gradients across a set of
|
||||
hosts before applying them to the model.
|
||||
|
||||
Our training loop looks like the following code snippet if we omit the model,
|
||||
dataset and optimizer initialization.
|
||||
|
||||
.. code:: python
|
||||
|
||||
model = ...
|
||||
optimizer = ...
|
||||
dataset = ...
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
for x, y in dataset:
|
||||
loss = step(model, x, y)
|
||||
mx.eval(loss, model.parameters())
|
||||
|
||||
All we have to do to average the gradients across machines is perform an
|
||||
:func:`all_sum` and divide by the size of the :class:`Group`. Namely we
|
||||
have to :func:`mlx.utils.tree_map` the gradients with following function.
|
||||
|
||||
.. code:: python
|
||||
|
||||
def all_avg(x):
|
||||
return mx.distributed.all_sum(x) / mx.distributed.init().size()
|
||||
|
||||
Putting everything together our training loop step looks as follows with
|
||||
everything else remaining the same.
|
||||
|
||||
.. code:: python
|
||||
|
||||
from mlx.utils import tree_map
|
||||
|
||||
def all_reduce_grads(grads):
|
||||
N = mx.distributed.init()
|
||||
if N == 1:
|
||||
return grads
|
||||
return tree_map(
|
||||
lambda x: mx.distributed.all_sum(x) / N,
|
||||
grads)
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = all_reduce_grads(grads) # <--- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
Tuning All Reduce
|
||||
-----------------
|
||||
|
||||
We are working on improving the performance of all reduce on MLX but for now
|
||||
the two main things one can do to extract the most out of distributed training with MLX are:
|
||||
|
||||
1. Perform a few large reductions instead of many small ones to improve
|
||||
bandwidth and latency
|
||||
2. Pass ``--mca btl_tcp_links 4`` to ``mpirun`` to configure it to use 4 tcp
|
||||
connections between each host to improve bandwidth
|
@@ -18,7 +18,7 @@ describe below.
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Lazy evaluation let's us record a compute graph without actually doing any
|
||||
Lazy evaluation lets us record a compute graph without actually doing any
|
||||
computations. This is useful for function transformations like :func:`grad` and
|
||||
:func:`vmap` and graph optimizations.
|
||||
|
||||
|
@@ -3,7 +3,11 @@
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array implements the `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
.. code-block:: python
|
||||
|
@@ -49,7 +49,7 @@ it will be added. You can load the array with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("array.npy", a)
|
||||
>>> mx.load("array.npy")
|
||||
array([1], dtype=float32)
|
||||
|
||||
Here's an example of saving several arrays to a single file:
|
||||
|
@@ -8,3 +8,5 @@ endfunction(build_example)
|
||||
build_example(tutorial.cpp)
|
||||
build_example(linear_regression.cpp)
|
||||
build_example(logistic_regression.cpp)
|
||||
build_example(metal_capture.cpp)
|
||||
build_example(distributed.cpp)
|
||||
|
22
examples/cpp/distributed.cpp
Normal file
22
examples/cpp/distributed.cpp
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
int main() {
|
||||
if (!distributed::is_available()) {
|
||||
std::cout << "No communication backend found" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto global_group = distributed::init();
|
||||
std::cout << global_group.rank() << " / " << global_group.size() << std::endl;
|
||||
|
||||
array x = ones({10});
|
||||
array out = distributed::all_sum(x, global_group);
|
||||
|
||||
std::cout << out << std::endl;
|
||||
}
|
31
examples/cpp/metal_capture.cpp
Normal file
31
examples/cpp/metal_capture.cpp
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
int main() {
|
||||
// To use Metal debugging and profiling:
|
||||
// 1. Build with the MLX_METAL_DEBUG CMake option (i.e. -DMLX_METAL_DEBUG=ON).
|
||||
// 2. Run with MTL_CAPTURE_ENABLED=1.
|
||||
metal::start_capture("mlx_trace.gputrace");
|
||||
|
||||
// Start at index two because the default GPU and CPU streams have indices
|
||||
// zero and one, respectively. This naming matches the label assigned to each
|
||||
// stream's command queue.
|
||||
auto s2 = new_stream(Device::gpu);
|
||||
auto s3 = new_stream(Device::gpu);
|
||||
|
||||
auto a = arange(1.f, 10.f, 1.f, float32, s2);
|
||||
auto b = arange(1.f, 10.f, 1.f, float32, s3);
|
||||
auto x = add(a, a, s2);
|
||||
auto y = add(b, b, s3);
|
||||
|
||||
// The multiply will happen on the default stream.
|
||||
std::cout << multiply(x, y) << std::endl;
|
||||
|
||||
metal::stop_capture();
|
||||
}
|
@@ -89,8 +89,8 @@ void automatic_differentiation() {
|
||||
// dfdx is 2 * x
|
||||
|
||||
// Get the second derivative by composing grad with grad
|
||||
auto df2dx2 = grad(grad(fn))(x);
|
||||
// df2dx2 is 2
|
||||
auto d2fdx2 = grad(grad(fn))(x);
|
||||
// d2fdx2 is 2
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
@@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
|
||||
project(mlx_sample_extensions LANGUAGES CXX)
|
||||
project(_ext LANGUAGES CXX)
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
@@ -11,8 +11,12 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
# ----------------------------- Extensions -----------------------------
|
||||
|
||||
@@ -38,7 +42,6 @@ target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
# Build metallib
|
||||
if(MLX_BUILD_METAL)
|
||||
|
||||
mlx_build_metallib(
|
||||
TARGET mlx_ext_metallib
|
||||
TITLE mlx_ext
|
||||
@@ -54,13 +57,15 @@ if(MLX_BUILD_METAL)
|
||||
|
||||
endif()
|
||||
|
||||
# ----------------------------- Pybind -----------------------------
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
# ----------------------------- Python Bindings -----------------------------
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
24
examples/extensions/README.md
Normal file
24
examples/extensions/README.md
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
## Build
|
||||
|
||||
```
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
For faster builds during development, you can also pre-install the requirements:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
And then run:
|
||||
|
||||
```
|
||||
python setup.py build_ext -j8 --inplace
|
||||
```
|
||||
|
||||
## Test
|
||||
|
||||
```
|
||||
python test.py
|
||||
```
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
@@ -43,7 +43,7 @@ array axpby(
|
||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||
|
||||
// Upcast to float32 for non-floating point inputs x and y
|
||||
auto out_dtype = is_floating_point(promoted_dtype)
|
||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
||||
? promoted_dtype
|
||||
: promote_types(promoted_dtype, float32);
|
||||
|
||||
@@ -61,7 +61,7 @@ array axpby(
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
@@ -106,12 +106,12 @@ void axpby_impl(
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out_arr) {
|
||||
auto out = out_arr[0];
|
||||
std::vector<array>& outputs) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -150,11 +150,7 @@ void axpby_impl_accelerate(
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -180,11 +176,11 @@ void axpby_impl_accelerate(
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
auto out = outarr[0];
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -195,7 +191,7 @@ void Axpby::eval_cpu(
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, outarr);
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#else // Accelerate not available
|
||||
@@ -203,8 +199,8 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on CPU falling back to common backend */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out) {
|
||||
eval(inputs, out);
|
||||
const std::vector<array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -218,12 +214,12 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
auto out = outarr[0];
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -261,7 +257,7 @@ void Axpby::eval_gpu(
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
@@ -270,11 +266,11 @@ void Axpby::eval_gpu(
|
||||
size_t nelem = out.size();
|
||||
|
||||
// Encode input arrays to kernel
|
||||
set_array_buffer(compute_encoder, x, 0);
|
||||
set_array_buffer(compute_encoder, y, 1);
|
||||
compute_encoder.set_input_array(x, 0);
|
||||
compute_encoder.set_input_array(y, 1);
|
||||
|
||||
// Encode output arrays to kernel
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
@@ -300,7 +296,7 @@ void Axpby::eval_gpu(
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
#else // Metal is not available
|
||||
@@ -372,4 +368,4 @@ bool Axpby::is_equivalent(const Primitive& other) const {
|
||||
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -33,7 +33,7 @@ array axpby(
|
||||
class Axpby : public Primitive {
|
||||
public:
|
||||
explicit Axpby(Stream stream, float alpha, float beta)
|
||||
: Primitive(stream), alpha_(alpha), beta_(beta){};
|
||||
: Primitive(stream), alpha_(alpha), beta_(beta) {};
|
||||
|
||||
/**
|
||||
* A primitive must know how to evaluate itself on the CPU/GPU
|
||||
@@ -42,9 +42,9 @@ class Axpby : public Primitive {
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
@@ -83,7 +83,7 @@ class Axpby : public Primitive {
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& out);
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -19,7 +19,7 @@ template <typename T>
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
||||
}
|
||||
|
||||
@@ -31,30 +31,30 @@ template <typename T>
|
||||
constant const float& alpha [[buffer(3)]],
|
||||
constant const float& beta [[buffer(4)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
|
||||
}
|
||||
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] \
|
||||
[[kernel]] void axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("axpby_contiguous_" #type_name)]] \
|
||||
[[kernel]] void axpby_contiguous<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] [[kernel]] void \
|
||||
axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("axpby_contiguous_" #type_name)]] [[kernel]] void \
|
||||
axpby_contiguous<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
|
@@ -1,31 +1,31 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <nanobind/nanobind.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
|
||||
#include "axpby/axpby.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
namespace nb = nanobind;
|
||||
using namespace nb::literals;
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -37,5 +37,5 @@ PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
}
|
||||
)");
|
||||
}
|
||||
|
@@ -2,4 +2,4 @@
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .mlx_sample_extensions import *
|
||||
from ._ext import axpby
|
||||
|
@@ -1,3 +1,8 @@
|
||||
[build-system]
|
||||
requires = ["setuptools>=42", "pybind11>=2.10", "cmake>=3.24", "mlx @ git+https://github.com/mlx-explore/mlx@main"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"cmake>=3.24",
|
||||
"mlx>=0.9.0",
|
||||
"nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
4
examples/extensions/requirements.txt
Normal file
4
examples/extensions/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
@@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from setuptools import setup
|
||||
|
||||
@@ -9,11 +9,11 @@ if __name__ == "__main__":
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_dir={"": "."},
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev": []},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
10
examples/extensions/test.py
Normal file
10
examples/extensions/test.py
Normal file
@@ -0,0 +1,10 @@
|
||||
import mlx.core as mx
|
||||
from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
@@ -19,11 +19,17 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h
|
||||
)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
if (MLX_BUILD_CPU)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
||||
if (MLX_BUILD_ACCELERATE)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||
else()
|
||||
elseif(MLX_BUILD_CPU)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
|
@@ -14,7 +14,7 @@ class Buffer {
|
||||
void* ptr_;
|
||||
|
||||
public:
|
||||
Buffer(void* ptr) : ptr_(ptr){};
|
||||
Buffer(void* ptr) : ptr_(ptr) {};
|
||||
|
||||
// Get the raw data pointer from the buffer
|
||||
void* raw_ptr();
|
||||
|
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <functional>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -93,7 +92,13 @@ void array::detach() {
|
||||
}
|
||||
|
||||
void array::eval() {
|
||||
mlx::core::eval({*this});
|
||||
// Ensure the array is ready to be read
|
||||
if (status() == Status::scheduled) {
|
||||
event().wait();
|
||||
set_status(Status::available);
|
||||
} else if (status() == Status::unscheduled) {
|
||||
mlx::core::eval({*this});
|
||||
}
|
||||
}
|
||||
|
||||
bool array::is_tracer() const {
|
||||
@@ -161,6 +166,39 @@ void array::move_shared_buffer(array other) {
|
||||
move_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
array::~array() {
|
||||
if (array_desc_ == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Ignore arrays that will be detached
|
||||
if (status() != array::Status::unscheduled) {
|
||||
return;
|
||||
}
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
bool do_detach = true;
|
||||
// If all siblings have siblings.size() references except
|
||||
// the one we are currently destroying (which has siblings.size() + 1)
|
||||
// then there are no more external references
|
||||
do_detach &= (array_desc_.use_count() == (n + 1));
|
||||
for (auto& s : siblings()) {
|
||||
do_detach &= (s.array_desc_.use_count() == n);
|
||||
if (!do_detach) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (do_detach) {
|
||||
for (auto& s : siblings()) {
|
||||
for (auto& ss : s.siblings()) {
|
||||
ss.array_desc_ = nullptr;
|
||||
}
|
||||
s.array_desc_->siblings.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void array::ArrayDesc::init() {
|
||||
strides.resize(shape.size());
|
||||
size = 1;
|
||||
@@ -168,13 +206,13 @@ void array::ArrayDesc::init() {
|
||||
strides[i] = size;
|
||||
size *= shape[i];
|
||||
}
|
||||
for (auto& in : inputs) {
|
||||
for (const auto& in : inputs) {
|
||||
is_tracer |= in.is_tracer();
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
|
||||
: shape(std::move(shape)), dtype(dtype) {
|
||||
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
|
||||
init();
|
||||
}
|
||||
|
||||
@@ -185,11 +223,42 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::~ArrayDesc() {
|
||||
// When an array description is destroyed it will delete a bunch of arrays
|
||||
// that may also destroy their corresponding descriptions and so on and so
|
||||
// forth.
|
||||
//
|
||||
// This calls recursively the destructor and can result in stack overflow, we
|
||||
// instead put them in a vector and destroy them one at a time resulting in a
|
||||
// max stack depth of 2.
|
||||
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
|
||||
|
||||
for (array& a : inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
|
||||
while (!for_deletion.empty()) {
|
||||
// top is going to be deleted at the end of the block *after* the arrays
|
||||
// with inputs have been moved into the vector
|
||||
auto top = std::move(for_deletion.back());
|
||||
for_deletion.pop_back();
|
||||
|
||||
for (array& a : top->inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayIterator::ArrayIterator(const array& arr, int idx)
|
||||
: arr(arr), idx(idx) {
|
||||
if (arr.ndim() == 0) {
|
||||
|
111
mlx/array.h
111
mlx/array.h
@@ -9,6 +9,7 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -72,32 +73,32 @@ class array {
|
||||
this->array_desc_ = other.array_desc_;
|
||||
}
|
||||
return *this;
|
||||
};
|
||||
}
|
||||
|
||||
/** The size of the array's datatype in bytes. */
|
||||
size_t itemsize() const {
|
||||
return size_of(dtype());
|
||||
};
|
||||
}
|
||||
|
||||
/** The number of elements in the array. */
|
||||
size_t size() const {
|
||||
return array_desc_->size;
|
||||
};
|
||||
}
|
||||
|
||||
/** The number of bytes in the array. */
|
||||
size_t nbytes() const {
|
||||
return size() * itemsize();
|
||||
};
|
||||
}
|
||||
|
||||
/** The number of dimensions of the array. */
|
||||
size_t ndim() const {
|
||||
return array_desc_->shape.size();
|
||||
};
|
||||
}
|
||||
|
||||
/** The shape of the array as a vector of integers. */
|
||||
const std::vector<int>& shape() const {
|
||||
return array_desc_->shape;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the size of the corresponding dimension.
|
||||
@@ -106,17 +107,26 @@ class array {
|
||||
* bounds checking. */
|
||||
int shape(int dim) const {
|
||||
return shape().at(dim < 0 ? dim + ndim() : dim);
|
||||
};
|
||||
}
|
||||
|
||||
/** The strides of the array. */
|
||||
const std::vector<size_t>& strides() const {
|
||||
return array_desc_->strides;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the stride of the corresponding dimension.
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
size_t strides(int dim) const {
|
||||
return strides().at(dim < 0 ? dim + ndim() : dim);
|
||||
}
|
||||
|
||||
/** Get the arrays data type. */
|
||||
Dtype dtype() const {
|
||||
return array_desc_->dtype;
|
||||
};
|
||||
}
|
||||
|
||||
/** Evaluate the array. */
|
||||
void eval();
|
||||
@@ -150,10 +160,10 @@ class array {
|
||||
|
||||
friend bool operator==(const ArrayIterator& a, const ArrayIterator& b) {
|
||||
return a.arr.id() == b.arr.id() && a.idx == b.idx;
|
||||
};
|
||||
}
|
||||
friend bool operator!=(const ArrayIterator& a, const ArrayIterator& b) {
|
||||
return !(a == b);
|
||||
};
|
||||
}
|
||||
|
||||
private:
|
||||
const array& arr;
|
||||
@@ -199,7 +209,7 @@ class array {
|
||||
allocator::Buffer buffer;
|
||||
deleter_t d;
|
||||
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
|
||||
: buffer(buffer), d(d){};
|
||||
: buffer(buffer), d(d) {}
|
||||
// Not copyable
|
||||
Data(const Data& d) = delete;
|
||||
Data& operator=(const Data& d) = delete;
|
||||
@@ -220,22 +230,22 @@ class array {
|
||||
/** The array's primitive. */
|
||||
Primitive& primitive() const {
|
||||
return *(array_desc_->primitive);
|
||||
};
|
||||
}
|
||||
|
||||
/** A shared pointer to the array's primitive. */
|
||||
std::shared_ptr<Primitive>& primitive_ptr() const {
|
||||
return array_desc_->primitive;
|
||||
};
|
||||
}
|
||||
|
||||
/** Check if the array has an attached primitive or is a leaf node. */
|
||||
bool has_primitive() const {
|
||||
return array_desc_->primitive != nullptr;
|
||||
};
|
||||
}
|
||||
|
||||
/** The array's inputs. */
|
||||
const std::vector<array>& inputs() const {
|
||||
return array_desc_->inputs;
|
||||
};
|
||||
}
|
||||
|
||||
std::vector<array>& inputs() {
|
||||
return array_desc_->inputs;
|
||||
@@ -249,7 +259,12 @@ class array {
|
||||
/** The array's siblings. */
|
||||
const std::vector<array>& siblings() const {
|
||||
return array_desc_->siblings;
|
||||
};
|
||||
}
|
||||
|
||||
/** The array's siblings. */
|
||||
std::vector<array>& siblings() {
|
||||
return array_desc_->siblings;
|
||||
}
|
||||
|
||||
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
||||
array_desc_->siblings = std::move(siblings);
|
||||
@@ -266,7 +281,7 @@ class array {
|
||||
outputs.push_back(*this);
|
||||
outputs.insert(outputs.end(), siblings().begin() + idx, siblings().end());
|
||||
return outputs;
|
||||
};
|
||||
}
|
||||
|
||||
/** Detach the array from the graph. */
|
||||
void detach();
|
||||
@@ -274,19 +289,19 @@ class array {
|
||||
/** Get the Flags bit-field. */
|
||||
const Flags& flags() const {
|
||||
return array_desc_->flags;
|
||||
};
|
||||
}
|
||||
|
||||
/** The size (in elements) of the underlying buffer the array points to. */
|
||||
size_t data_size() const {
|
||||
return array_desc_->data_size;
|
||||
};
|
||||
}
|
||||
|
||||
allocator::Buffer& buffer() {
|
||||
return array_desc_->data->buffer;
|
||||
};
|
||||
}
|
||||
const allocator::Buffer& buffer() const {
|
||||
return array_desc_->data->buffer;
|
||||
};
|
||||
}
|
||||
|
||||
// Return a copy of the shared pointer
|
||||
// to the array::Data struct
|
||||
@@ -297,16 +312,35 @@ class array {
|
||||
template <typename T>
|
||||
T* data() {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* data() const {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
};
|
||||
}
|
||||
|
||||
// Check if the array has been evaluated
|
||||
bool is_evaled() const {
|
||||
return array_desc_->data != nullptr;
|
||||
enum Status { unscheduled, scheduled, available };
|
||||
|
||||
bool is_available() const {
|
||||
return status() == Status::available;
|
||||
}
|
||||
|
||||
Status status() const {
|
||||
return array_desc_->status;
|
||||
}
|
||||
|
||||
void set_status(Status s) const {
|
||||
array_desc_->status = s;
|
||||
}
|
||||
|
||||
// Get the array's shared event
|
||||
Event& event() const {
|
||||
return array_desc_->event;
|
||||
}
|
||||
|
||||
// Attach an event to a not yet evaluated array
|
||||
void attach_event(Event e) const {
|
||||
array_desc_->event = std::move(e);
|
||||
}
|
||||
|
||||
// Mark the array as a tracer array (true) or not.
|
||||
@@ -347,6 +381,8 @@ class array {
|
||||
array_desc_ = other.array_desc_;
|
||||
}
|
||||
|
||||
~array();
|
||||
|
||||
private:
|
||||
// Initialize the arrays data
|
||||
template <typename It>
|
||||
@@ -359,6 +395,11 @@ class array {
|
||||
Dtype dtype;
|
||||
std::shared_ptr<Primitive> primitive;
|
||||
|
||||
Status status;
|
||||
|
||||
// An event on the array used for synchronization
|
||||
Event event;
|
||||
|
||||
// Indicates an array is being used in a graph transform
|
||||
// and should not be detached from the graph
|
||||
bool is_tracer{false};
|
||||
@@ -393,6 +434,8 @@ class array {
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
|
||||
~ArrayDesc();
|
||||
|
||||
private:
|
||||
// Initialize size, strides, and other metadata
|
||||
void init();
|
||||
@@ -457,10 +500,11 @@ T array::item() const {
|
||||
if (size() != 1) {
|
||||
throw std::invalid_argument("item can only be called on arrays of size 1.");
|
||||
}
|
||||
if (!is_evaled()) {
|
||||
if (status() == Status::unscheduled) {
|
||||
throw std::invalid_argument(
|
||||
"item() const can only be called on evaled arrays");
|
||||
}
|
||||
const_cast<array*>(this)->eval();
|
||||
return *data<T>();
|
||||
}
|
||||
|
||||
@@ -510,4 +554,15 @@ void array::init(It src) {
|
||||
}
|
||||
}
|
||||
|
||||
/* Utilities for determining whether a template parameter is array. */
|
||||
template <typename T>
|
||||
inline constexpr bool is_array_v =
|
||||
std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, array>;
|
||||
|
||||
template <typename... T>
|
||||
inline constexpr bool is_arrays_v = (is_array_v<T> && ...);
|
||||
|
||||
template <typename... T>
|
||||
using enable_for_arrays_t = typename std::enable_if_t<is_arrays_v<T...>>;
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -196,6 +196,40 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
return matmul_bnns_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const bool* mask,
|
||||
int tile_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str) {
|
||||
int tX = (X + tile_size - 1) / tile_size;
|
||||
int tY = (Y + tile_size - 1) / tile_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||
if (!do_mask) {
|
||||
int loc_x = i * tile_size;
|
||||
int loc_y = j * tile_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(tile_size, X - loc_x);
|
||||
int size_y = std::min(tile_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
@@ -31,9 +31,11 @@ DEFAULT(ArgPartition)
|
||||
DEFAULT(ArgReduce)
|
||||
DEFAULT(ArgSort)
|
||||
DEFAULT(AsStrided)
|
||||
DEFAULT(BlockMaskedMM)
|
||||
DEFAULT(Broadcast)
|
||||
DEFAULT(Ceil)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Conjugate)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(Depends)
|
||||
@@ -45,6 +47,8 @@ DEFAULT(ErfInv)
|
||||
DEFAULT(FFT)
|
||||
DEFAULT(Floor)
|
||||
DEFAULT(Gather)
|
||||
DEFAULT(GatherMM)
|
||||
DEFAULT(GatherQMM)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Less)
|
||||
@@ -76,6 +80,7 @@ DEFAULT(StopGradient)
|
||||
DEFAULT_MULTI(SVD)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
DEFAULT(Cholesky)
|
||||
|
||||
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
@@ -191,6 +196,26 @@ void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (out.dtype() == float32 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
if (a.is_donatable()) {
|
||||
out.copy_shared_buffer(a);
|
||||
} else if (b.is_donatable()) {
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
}
|
||||
int size = a.data_size();
|
||||
vvatan2f(out.data<float>(), a.data<float>(), b.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -301,7 +326,7 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (is_floating_point(out.dtype())) {
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::exp(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -310,6 +335,19 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Expm1::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpm1f(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
@@ -355,7 +393,7 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vvlog1pf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (is_floating_point(out.dtype())) {
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::log1p(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
@@ -123,7 +123,7 @@ struct AccelerateSimdOps {
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
};
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return simd_fast_exp(x);
|
||||
@@ -170,7 +170,7 @@ struct NeonFp16SimdOps {
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return vmaxq_f16(a, b);
|
||||
};
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return neon_fast_exp(x);
|
||||
@@ -201,7 +201,7 @@ struct NeonFp16SimdOps {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT, typename Ops, int N>
|
||||
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||
void softmax(const array& in, array& out) {
|
||||
Ops ops;
|
||||
|
||||
@@ -218,13 +218,21 @@ void softmax(const array& in, array& out) {
|
||||
VT vmaximum = ops.init(-std::numeric_limits<float>::infinity());
|
||||
size_t s = M;
|
||||
while (s >= N) {
|
||||
vmaximum = ops.max(ops.load(current_in_ptr), vmaximum);
|
||||
VT vals;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vals = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vals[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vmaximum = ops.max(vals, vmaximum);
|
||||
current_in_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
T maximum = ops.reduce_max(vmaximum);
|
||||
AccT maximum = ops.reduce_max(vmaximum);
|
||||
while (s-- > 0) {
|
||||
maximum = std::max(maximum, *current_in_ptr);
|
||||
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
|
||||
current_in_ptr++;
|
||||
}
|
||||
|
||||
@@ -234,18 +242,29 @@ void softmax(const array& in, array& out) {
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
VT vexp = ops.exp(ops.sub(*(VT*)current_in_ptr, maximum));
|
||||
ops.store(current_out_ptr, vexp);
|
||||
*(VT*)current_out_ptr = vexp;
|
||||
VT vexp;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vexp = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vexp = ops.exp(ops.sub(vexp, maximum));
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, vexp);
|
||||
}
|
||||
vnormalizer = ops.add(vnormalizer, vexp);
|
||||
current_in_ptr += N;
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
T normalizer = ops.reduce_add(vnormalizer);
|
||||
AccT normalizer = ops.reduce_add(vnormalizer);
|
||||
while (s-- > 0) {
|
||||
T _exp = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = _exp;
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
if (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr = _exp;
|
||||
}
|
||||
normalizer += _exp;
|
||||
current_in_ptr++;
|
||||
current_out_ptr++;
|
||||
@@ -254,14 +273,33 @@ void softmax(const array& in, array& out) {
|
||||
|
||||
// Normalize
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||
} else {
|
||||
VT vexp;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
vexp = ops.mul(ops.exp(ops.sub(vexp, maximum)), normalizer);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
current_out_ptr[i] = vexp[i];
|
||||
}
|
||||
current_in_ptr += N;
|
||||
}
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*current_out_ptr *= normalizer;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr *= normalizer;
|
||||
} else {
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = static_cast<T>(_exp * normalizer);
|
||||
current_in_ptr++;
|
||||
}
|
||||
current_out_ptr++;
|
||||
}
|
||||
}
|
||||
@@ -308,15 +346,29 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
"Softmax is defined only for floating point types");
|
||||
break;
|
||||
case float32:
|
||||
softmax<float, simd_float16, AccelerateSimdOps<float, simd_float16>, 16>(
|
||||
in, out);
|
||||
softmax<
|
||||
float,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
break;
|
||||
case float16:
|
||||
softmax<
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
if (precise_) {
|
||||
softmax<
|
||||
float16_t,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
} else {
|
||||
softmax<
|
||||
float16_t,
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
eval(inputs, out);
|
||||
|
@@ -37,15 +37,19 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||
@@ -54,6 +58,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
)
|
||||
|
||||
|
@@ -179,18 +179,16 @@ void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
|
||||
} else {
|
||||
std::ostringstream err;
|
||||
err << "[logaddexp] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
}
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
std::ostringstream err;
|
||||
err << "[logaddexp] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[logaddexp] Cannot compute logaddexp for arrays with"
|
||||
@@ -198,6 +196,20 @@ void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalAnd());
|
||||
}
|
||||
|
||||
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalOr());
|
||||
}
|
||||
|
||||
void Maximum::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
@@ -238,4 +250,82 @@ void Subtract::eval(const std::vector<array>& inputs, array& out) {
|
||||
binary(a, b, out, detail::Subtract());
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto dispatch_type = [&a, &b, &out](auto op) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, out, op);
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, out, op);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, out, op);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, out, op);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, out, op);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, out, op);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[BitwiseBinary::eval_cpu] Type not supported");
|
||||
break;
|
||||
}
|
||||
};
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
dispatch_type(detail::BitwiseAnd());
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
dispatch_type(detail::BitwiseOr());
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
dispatch_type(detail::BitwiseXor());
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
dispatch_type(detail::LeftShift());
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
dispatch_type(detail::RightShift());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTan2::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::ArcTan2());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::ArcTan2());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::ArcTan2());
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
std::ostringstream err;
|
||||
err << "[arctan2] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arctan2] Cannot compute inverse tangent for arrays"
|
||||
" with non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,6 +1,8 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
101
mlx/backend/common/cholesky.cpp
Normal file
101
mlx/backend/common/cholesky.cpp
Normal file
@@ -0,0 +1,101 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Delegate to the Cholesky factorization taking into account differences in
|
||||
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
|
||||
int spotrf_wrapper(char uplo, float* matrix, int N) {
|
||||
int info;
|
||||
|
||||
#ifdef LAPACK_FORTRAN_STRLEN_END
|
||||
spotrf_(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info,
|
||||
/* uplo_len = */ static_cast<size_t>(1));
|
||||
#else
|
||||
spotrf_(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
#endif
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void cholesky_impl(const array& a, array& factor, bool upper) {
|
||||
// Lapack uses the column-major convention. We take advantage of the fact that
|
||||
// the matrix should be symmetric:
|
||||
// (A)ᵀ = A
|
||||
// and that a column-major lower triangular matrix is a row-major upper
|
||||
// triangular matrix, so uplo is the opposite of what we would expect from
|
||||
// upper
|
||||
|
||||
char uplo = (upper) ? 'L' : 'U';
|
||||
|
||||
// The decomposition is computed in place, so just copy the input to the
|
||||
// output.
|
||||
copy(
|
||||
a,
|
||||
factor,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
float* matrix = factor.data<float>();
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info = spotrf_wrapper(uplo, matrix, N);
|
||||
|
||||
// TODO: We do nothing when the matrix is not positive semi-definite
|
||||
// because throwing an error would result in a crash. If we figure out how
|
||||
// to catch errors from the implementation we should throw.
|
||||
if (info < 0) {
|
||||
std::stringstream msg;
|
||||
msg << "[cholesky] Cholesky decomposition failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
// Zero out the upper/lower triangle while advancing the pointer to the
|
||||
// next matrix at the same time.
|
||||
for (int row = 0; row < N; row++) {
|
||||
if (upper) {
|
||||
std::fill(matrix, matrix + row, 0);
|
||||
} else {
|
||||
std::fill(matrix + row + 1, matrix + N, 0);
|
||||
}
|
||||
matrix += N;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Cholesky::eval(const std::vector<array>& inputs, array& output) {
|
||||
if (inputs[0].dtype() != float32) {
|
||||
throw std::runtime_error("[Cholesky::eval] only supports float32.");
|
||||
}
|
||||
cholesky_impl(inputs[0], output, upper_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
304
mlx/backend/common/common.cpp
Normal file
304
mlx/backend/common/common.cpp
Normal file
@@ -0,0 +1,304 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
if (!in.flags().row_contiguous) {
|
||||
// Just ensuring that inputs[0] came from the ops which would ensure the
|
||||
// input is row contiguous.
|
||||
throw std::runtime_error(
|
||||
"AsStrided must be used with row contiguous arrays only.");
|
||||
}
|
||||
|
||||
// Compute the flags given the shape and strides
|
||||
bool row_contiguous = true, col_contiguous = true;
|
||||
size_t r = 1, c = 1;
|
||||
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
|
||||
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
|
||||
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
|
||||
r *= shape_[i];
|
||||
c *= shape_[j];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
// TODO: Compute the contiguous flag in a better way cause now we are
|
||||
// unnecessarily strict.
|
||||
flags.contiguous = row_contiguous || col_contiguous;
|
||||
flags.row_contiguous = row_contiguous;
|
||||
flags.col_contiguous = col_contiguous;
|
||||
|
||||
// There is no easy way to compute the actual data size so we use out.size().
|
||||
// The contiguous flag will almost certainly not be set so no code should
|
||||
// rely on data_size anyway.
|
||||
size_t data_size = out.size();
|
||||
|
||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
std::vector<size_t> strides(out.ndim(), 0);
|
||||
int diff = out.ndim() - in.ndim();
|
||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void CustomVJP::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
void Depends::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
double numel = 1;
|
||||
for (auto ax : axes_) {
|
||||
numel *= inputs[0].shape(ax);
|
||||
}
|
||||
|
||||
if (inverted_) {
|
||||
numel = 1.0 / numel;
|
||||
}
|
||||
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
*out.data<bool>() = static_cast<bool>(numel);
|
||||
break;
|
||||
case uint8:
|
||||
*out.data<uint8_t>() = static_cast<uint8_t>(numel);
|
||||
break;
|
||||
case uint16:
|
||||
*out.data<uint16_t>() = static_cast<uint16_t>(numel);
|
||||
break;
|
||||
case uint32:
|
||||
*out.data<uint32_t>() = static_cast<uint32_t>(numel);
|
||||
break;
|
||||
case uint64:
|
||||
*out.data<uint64_t>() = static_cast<uint64_t>(numel);
|
||||
break;
|
||||
case int8:
|
||||
*out.data<int8_t>() = static_cast<int8_t>(numel);
|
||||
break;
|
||||
case int16:
|
||||
*out.data<int16_t>() = static_cast<int16_t>(numel);
|
||||
break;
|
||||
case int32:
|
||||
*out.data<int32_t>() = static_cast<int32_t>(numel);
|
||||
break;
|
||||
case int64:
|
||||
*out.data<int64_t>() = static_cast<int64_t>(numel);
|
||||
break;
|
||||
case float16:
|
||||
*out.data<float16_t>() = static_cast<float16_t>(numel);
|
||||
break;
|
||||
case float32:
|
||||
*out.data<float>() = static_cast<float>(numel);
|
||||
break;
|
||||
case bfloat16:
|
||||
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
||||
break;
|
||||
case complex64:
|
||||
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
const array& in,
|
||||
const array& out) {
|
||||
// Special case for empty arrays or row contiguous arrays
|
||||
if (in.size() == 0 || in.flags().row_contiguous) {
|
||||
return {false, out.strides()};
|
||||
}
|
||||
|
||||
// Special case for scalars
|
||||
if (in.ndim() == 0) {
|
||||
std::vector<size_t> out_strides(out.ndim(), 0);
|
||||
return {false, out_strides};
|
||||
}
|
||||
|
||||
// Firstly let's collapse all the contiguous dimensions of the input
|
||||
auto [shape, _strides] = collapse_contiguous_dims(in);
|
||||
auto& strides = _strides[0];
|
||||
|
||||
// If shapes fit exactly in the contiguous dims then no copy is necessary so
|
||||
// let's check.
|
||||
std::vector<size_t> out_strides;
|
||||
bool copy_necessary = false;
|
||||
int j = 0;
|
||||
for (int i = 0; i < out.ndim(); i++) {
|
||||
int N = out.shape(i);
|
||||
if (j < shape.size() && shape[j] % N == 0) {
|
||||
shape[j] /= N;
|
||||
out_strides.push_back(shape[j] * strides[j]);
|
||||
j += (shape[j] == 1);
|
||||
} else if (N == 1) {
|
||||
// i > 0 because otherwise j < shape.size() && shape[j] % 1 == 0
|
||||
out_strides.push_back(out_strides.back());
|
||||
} else {
|
||||
copy_necessary = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return {copy_necessary, out_strides};
|
||||
}
|
||||
|
||||
void Reshape::shared_buffer_reshape(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
array& out) {
|
||||
auto flags = in.flags();
|
||||
if (flags.row_contiguous) {
|
||||
// For row contiguous reshapes:
|
||||
// - Shallow copy the buffer
|
||||
// - If reshaping into a vector (all singleton dimensions except one) it
|
||||
// becomes col contiguous again.
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
auto compute_new_flags = [](const auto& shape,
|
||||
const auto& strides,
|
||||
size_t in_data_size,
|
||||
auto flags) {
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
flags.col_contiguous &= strides[i] == f_stride || shape[i] == 1;
|
||||
flags.row_contiguous &= strides[ri] == b_stride || shape[ri] == 1;
|
||||
f_stride *= shape[i];
|
||||
b_stride *= shape[ri];
|
||||
if (strides[i] > 0) {
|
||||
data_size *= shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
flags.contiguous = true;
|
||||
} else if (data_size == in_data_size) {
|
||||
// Means we sliced a broadcasted dimension so leave the "no holes" flag
|
||||
// alone.
|
||||
} else {
|
||||
// We sliced something. So either we are row or col contiguous or we
|
||||
// punched a hole.
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
return std::pair<decltype(flags), size_t>{flags, data_size};
|
||||
};
|
||||
|
||||
std::vector<int> indices(1, 0);
|
||||
indices.insert(indices.end(), indices_.begin(), indices_.end());
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
size_t offset = indices[i] * in.strides()[axis_];
|
||||
auto [new_flags, data_size] = compute_new_flags(
|
||||
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
|
||||
outputs[i].copy_shared_buffer(
|
||||
in, in.strides(), new_flags, data_size, offset);
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
}
|
||||
|
||||
return std::make_tuple(data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
std::vector<size_t> out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
}
|
||||
|
||||
// Conditions for {row/col}_contiguous
|
||||
// - array must be contiguous (no gaps)
|
||||
// - underlying buffer size should have the same size as the array
|
||||
// - cumulative product of shapes is equal to the strides (we can ignore axes
|
||||
// with size == 1)
|
||||
// - in the forward direction (column contiguous)
|
||||
// - in the reverse direction (row contiguous)
|
||||
// - vectors are both row and col contiguous (hence if both row/col are
|
||||
// true, they stay true)
|
||||
auto flags = in.flags();
|
||||
if (flags.contiguous && in.data_size() == in.size()) {
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.col_contiguous = true;
|
||||
flags.row_contiguous = true;
|
||||
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
|
||||
flags.col_contiguous &= (out_strides[i] == f_stride || out.shape(i) == 1);
|
||||
f_stride *= out.shape(i);
|
||||
flags.row_contiguous &=
|
||||
(out_strides[ri] == b_stride || out.shape(ri) == 1);
|
||||
b_stride *= out.shape(ri);
|
||||
}
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -126,4 +126,102 @@ std::string build_lib_name(
|
||||
return os.str();
|
||||
}
|
||||
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& shape) {
|
||||
bool contiguous = true;
|
||||
bool all_contig = true;
|
||||
bool all_row_contig = true;
|
||||
bool all_col_contig = true;
|
||||
int non_scalar_inputs = 0;
|
||||
for (const auto& x : inputs) {
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
non_scalar_inputs++;
|
||||
bool shape_eq = x.shape() == shape;
|
||||
all_contig &= (x.flags().contiguous && shape_eq);
|
||||
all_row_contig &= (x.flags().row_contiguous && shape_eq);
|
||||
all_col_contig &= (x.flags().col_contiguous && shape_eq);
|
||||
}
|
||||
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
|
||||
contiguous = false;
|
||||
} else if (non_scalar_inputs == 1 && !all_contig) {
|
||||
contiguous = false;
|
||||
} else if (non_scalar_inputs == 0 && !shape.empty()) {
|
||||
contiguous = false;
|
||||
}
|
||||
return contiguous;
|
||||
}
|
||||
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
bool contiguous,
|
||||
bool move_buffers /* = false */) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
std::vector<size_t> strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Correct size
|
||||
// - Not a scalar
|
||||
// - Donatable
|
||||
// - Not a constant
|
||||
if (in.itemsize() == outputs[o].itemsize() && !is_scalar(in) &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o++].move_shared_buffer(in);
|
||||
} else {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
// Get representative input flags to properly set non-donated outputs
|
||||
if (strides.empty() && in.size() == outputs[0].size()) {
|
||||
strides = in.strides();
|
||||
flags = in.flags();
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
strides,
|
||||
flags);
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o].move_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
} else {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
}
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -53,4 +53,18 @@ inline bool is_scalar(const array& x) {
|
||||
return x.ndim() == 0;
|
||||
}
|
||||
|
||||
// Check if we can use a contiguous operation given inputs and the output shape
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& shape);
|
||||
|
||||
// Allocate space for the outputs possibly with input donation
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
bool contiguous,
|
||||
bool move_buffers = false);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -52,8 +52,25 @@ void* compile(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string kernel_file_name;
|
||||
|
||||
// Deal with long kernel names. Maximum length for files on macOS is 255
|
||||
// characters. Clip file name with a little extra room and append a 16
|
||||
// character hash.
|
||||
constexpr int max_file_name_length = 245;
|
||||
if (kernel_name.size() > max_file_name_length) {
|
||||
std::ostringstream file_name;
|
||||
file_name
|
||||
<< std::string_view(kernel_name).substr(0, max_file_name_length - 16);
|
||||
auto file_id = std::hash<std::string>{}(kernel_name);
|
||||
file_name << "_" << std::hex << std::setw(16) << file_id << std::dec;
|
||||
kernel_file_name = file_name.str();
|
||||
} else {
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
std::ostringstream shared_lib_name;
|
||||
shared_lib_name << "lib" << kernel_name << ".so";
|
||||
shared_lib_name << "lib" << kernel_file_name << ".so";
|
||||
auto shared_lib_path = get_temp_file(shared_lib_name.str());
|
||||
bool lib_exists = false;
|
||||
{
|
||||
@@ -64,7 +81,7 @@ void* compile(
|
||||
if (!lib_exists) {
|
||||
// Open source file and write source code to it
|
||||
std::ostringstream source_file_name;
|
||||
source_file_name << kernel_name << ".cpp";
|
||||
source_file_name << kernel_file_name << ".cpp";
|
||||
auto source_file_path = get_temp_file(source_file_name.str());
|
||||
|
||||
std::ofstream source_file(source_file_path);
|
||||
@@ -248,28 +265,7 @@ void Compiled::eval_cpu(
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& shape = outputs[0].shape();
|
||||
bool contiguous = true;
|
||||
{
|
||||
bool all_contig = true;
|
||||
bool all_row_contig = true;
|
||||
bool all_col_contig = true;
|
||||
int non_scalar_inputs = 0;
|
||||
for (auto& x : inputs) {
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
non_scalar_inputs++;
|
||||
bool shape_eq = x.shape() == shape;
|
||||
all_contig &= (x.flags().contiguous && shape_eq);
|
||||
all_row_contig &= (x.flags().row_contiguous && shape_eq);
|
||||
all_col_contig &= (x.flags().col_contiguous && shape_eq);
|
||||
}
|
||||
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
|
||||
contiguous = false;
|
||||
} else if (non_scalar_inputs == 1 && !all_contig) {
|
||||
contiguous = false;
|
||||
}
|
||||
}
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
|
||||
// Handle all broadcasting and collect function input arguments
|
||||
std::vector<void*> args;
|
||||
@@ -342,58 +338,8 @@ void Compiled::eval_cpu(
|
||||
fn_ptr = compile(kernel_name, kernel.str());
|
||||
}
|
||||
|
||||
// Allocate space for the outputs possibly with input donation
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
std::vector<size_t> strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Contiguous
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().contiguous && !is_scalar(in) && in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
// Get representative input flags to properly set non-donated outputs
|
||||
if (strides.empty() && in.size() == outputs[0].size()) {
|
||||
strides = in.strides();
|
||||
flags = in.flags();
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
strides,
|
||||
flags);
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous, false);
|
||||
|
||||
for (auto& x : outputs) {
|
||||
args.push_back(x.data<void>());
|
||||
|
@@ -38,11 +38,15 @@ void slow_conv_1D(
|
||||
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
|
||||
const int C = in.shape(2); // Input channels
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(2); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
|
||||
const int groups = C / wt.shape(2);
|
||||
const int C_per_group = wt.shape(2);
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
const size_t in_stride_N = in.strides()[0];
|
||||
const size_t in_stride_H = in.strides()[1];
|
||||
const size_t in_stride_C = in.strides()[2];
|
||||
@@ -57,35 +61,36 @@ void slow_conv_1D(
|
||||
|
||||
for (int n = 0; n < N; ++n) {
|
||||
for (int oh = 0; oh < oH; ++oh) {
|
||||
for (int o = 0; o < O; ++o) {
|
||||
const T* filter_wt_ptr = start_wt_ptr + o * wt_stride_O;
|
||||
float r = 0.;
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
|
||||
const T* filter_wt_ptr = start_wt_ptr + o * wt_stride_O;
|
||||
float r = 0.;
|
||||
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
|
||||
|
||||
int wh_flip = flip ? (wH - wh - 1) : wh;
|
||||
int ih = oh * wt_strides[0] - padding[0] + wh_flip * wt_dilation[0];
|
||||
int wh_flip = flip ? (wH - wh - 1) : wh;
|
||||
int ih = oh * wt_strides[0] - padding[0] + wh_flip * wt_dilation[0];
|
||||
|
||||
auto ih_div = std::div(ih, in_dilation[0]);
|
||||
auto ih_div = std::div(ih, in_dilation[0]);
|
||||
|
||||
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(
|
||||
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
|
||||
static_cast<float>(wt_ptr[c * wt_stride_C]);
|
||||
} // c
|
||||
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
|
||||
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
|
||||
r += static_cast<float>(
|
||||
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
|
||||
static_cast<float>(wt_ptr[(c % C_per_group) * wt_stride_C]);
|
||||
} // c
|
||||
|
||||
} // ih check
|
||||
} // wh
|
||||
} // ih check
|
||||
} // wh
|
||||
|
||||
out_ptr[oh * out_stride_H + o * out_stride_O] = static_cast<T>(r);
|
||||
} // o
|
||||
out_ptr[oh * out_stride_H + o * out_stride_O] = static_cast<T>(r);
|
||||
} // o
|
||||
} // g
|
||||
} // oh
|
||||
|
||||
in_ptr += in_stride_N;
|
||||
out_ptr += out_stride_N;
|
||||
|
||||
} // n
|
||||
}
|
||||
|
||||
@@ -106,13 +111,17 @@ void slow_conv_2D(
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
|
||||
const int iW = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
|
||||
const int C = in.shape(3); // In channels
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(3); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
const int wW = wt.shape(2); // Weight spatial dim
|
||||
|
||||
const int groups = C / wt.shape(3);
|
||||
const int C_per_group = wt.shape(3);
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
const size_t in_stride_N = in.strides()[0];
|
||||
const size_t in_stride_H = in.strides()[1];
|
||||
const size_t in_stride_W = in.strides()[2];
|
||||
@@ -136,33 +145,35 @@ void slow_conv_2D(
|
||||
int ih_base = oh * wt_strides[0] - padding[0];
|
||||
int iw_base = ow * wt_strides[1] - padding[1];
|
||||
|
||||
for (int o = 0; o < O; ++o) {
|
||||
float r = 0.;
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
|
||||
float r = 0.;
|
||||
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
for (int ww = 0; ww < wW; ++ww) {
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
for (int ww = 0; ww < wW; ++ww) {
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
|
||||
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
|
||||
const T* wt_ptr_pt =
|
||||
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
const T* in_ptr_pt =
|
||||
in_ptr + ih * in_stride_H + iw * in_stride_W;
|
||||
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[0]) *
|
||||
static_cast<float>(wt_ptr_pt[0]);
|
||||
in_ptr_pt += in_stride_C;
|
||||
wt_ptr_pt += wt_stride_C;
|
||||
} // c
|
||||
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
|
||||
static_cast<float>(
|
||||
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
|
||||
} // c
|
||||
} // ww
|
||||
} // wh
|
||||
|
||||
} // ww
|
||||
} // wh
|
||||
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
} // g
|
||||
};
|
||||
|
||||
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
|
||||
@@ -214,41 +225,43 @@ void slow_conv_2D(
|
||||
int wh_base = base_h[oh % f_out_jump_h];
|
||||
int ww_base = base_w[ow % f_out_jump_w];
|
||||
|
||||
for (int o = 0; o < O; ++o) {
|
||||
float r = 0.;
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
|
||||
float r = 0.;
|
||||
|
||||
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
|
||||
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
|
||||
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int ih = ih_base + wh_flip * wt_dilation[0];
|
||||
int iw = iw_base + ww_flip * wt_dilation[1];
|
||||
|
||||
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
|
||||
const T* wt_ptr_pt =
|
||||
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
|
||||
const T* wt_ptr_pt =
|
||||
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
|
||||
|
||||
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
|
||||
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
|
||||
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
|
||||
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
|
||||
|
||||
const T* in_ptr_pt =
|
||||
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
|
||||
const T* in_ptr_pt =
|
||||
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
|
||||
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[0]) *
|
||||
static_cast<float>(wt_ptr_pt[0]);
|
||||
in_ptr_pt += in_stride_C;
|
||||
wt_ptr_pt += wt_stride_C;
|
||||
} // c
|
||||
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
|
||||
++c) {
|
||||
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
|
||||
static_cast<float>(
|
||||
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
|
||||
} // c
|
||||
|
||||
} // ih, iw check
|
||||
} // ww
|
||||
} // wh
|
||||
} // ih, iw check
|
||||
} // ww
|
||||
} // wh
|
||||
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
} // g
|
||||
};
|
||||
|
||||
int oH_border_0 = 0;
|
||||
@@ -305,6 +318,296 @@ void slow_conv_2D(
|
||||
} // n
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void slow_conv_3D(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
const T* st_wt_ptr = wt.data<T>();
|
||||
const T* st_in_ptr = in.data<T>();
|
||||
T* st_out_ptr = out.data<T>();
|
||||
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iD = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
|
||||
const int iH = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
|
||||
const int iW = 1 + in_dilation[2] * (in.shape(3) - 1); // Input spatial dim
|
||||
const int oD = out.shape(1); // Output spatial dim
|
||||
const int oH = out.shape(2); // Output spatial dim
|
||||
const int oW = out.shape(3); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(4); // In channels
|
||||
const int wD = wt.shape(1); // Weight spatial dim
|
||||
const int wH = wt.shape(2); // Weight spatial dim
|
||||
const int wW = wt.shape(3); // Weight spatial dim
|
||||
|
||||
const size_t in_stride_N = in.strides()[0];
|
||||
const size_t in_stride_D = in.strides()[1];
|
||||
const size_t in_stride_H = in.strides()[2];
|
||||
const size_t in_stride_W = in.strides()[3];
|
||||
const size_t in_stride_C = in.strides()[4];
|
||||
|
||||
const size_t wt_stride_O = wt.strides()[0];
|
||||
const size_t wt_stride_D = wt.strides()[1];
|
||||
const size_t wt_stride_H = wt.strides()[2];
|
||||
const size_t wt_stride_W = wt.strides()[3];
|
||||
const size_t wt_stride_C = wt.strides()[4];
|
||||
|
||||
const size_t out_stride_N = out.strides()[0];
|
||||
const size_t out_stride_D = out.strides()[1];
|
||||
const size_t out_stride_H = out.strides()[2];
|
||||
const size_t out_stride_W = out.strides()[3];
|
||||
const size_t out_stride_O = out.strides()[4];
|
||||
|
||||
bool is_idil_one =
|
||||
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1;
|
||||
|
||||
auto pt_conv_no_checks = [&](const T* in_ptr,
|
||||
const T* wt_ptr,
|
||||
T* out_ptr,
|
||||
int od,
|
||||
int oh,
|
||||
int ow) {
|
||||
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
|
||||
int id_base = od * wt_strides[0] - padding[0];
|
||||
int ih_base = oh * wt_strides[1] - padding[1];
|
||||
int iw_base = ow * wt_strides[2] - padding[2];
|
||||
|
||||
for (int o = 0; o < O; ++o) {
|
||||
float r = 0.;
|
||||
|
||||
for (int wd = 0; wd < wD; ++wd) {
|
||||
for (int wh = 0; wh < wH; ++wh) {
|
||||
for (int ww = 0; ww < wW; ++ww) {
|
||||
int wd_flip = flip ? wD - wd - 1 : wd;
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int id = id_base + wd_flip * wt_dilation[0];
|
||||
int ih = ih_base + wh_flip * wt_dilation[1];
|
||||
int iw = iw_base + ww_flip * wt_dilation[2];
|
||||
|
||||
const T* wt_ptr_pt =
|
||||
wt_ptr + wd * wt_stride_D + wh * wt_stride_H + ww * wt_stride_W;
|
||||
const T* in_ptr_pt =
|
||||
in_ptr + id * in_stride_D + ih * in_stride_H + iw * in_stride_W;
|
||||
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[0]) *
|
||||
static_cast<float>(wt_ptr_pt[0]);
|
||||
in_ptr_pt += in_stride_C;
|
||||
wt_ptr_pt += wt_stride_C;
|
||||
} // c
|
||||
|
||||
} // ww
|
||||
} // wh
|
||||
} // wd
|
||||
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
};
|
||||
|
||||
int jump_d = flip ? -wt_dilation[0] : wt_dilation[0];
|
||||
int jump_h = flip ? -wt_dilation[1] : wt_dilation[1];
|
||||
int jump_w = flip ? -wt_dilation[2] : wt_dilation[2];
|
||||
|
||||
int init_d = (flip ? (wD - 1) * wt_dilation[0] : 0);
|
||||
int init_h = (flip ? (wH - 1) * wt_dilation[1] : 0);
|
||||
int init_w = (flip ? (wW - 1) * wt_dilation[2] : 0);
|
||||
|
||||
int f_wgt_jump_d = std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
|
||||
int f_wgt_jump_h = std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
|
||||
int f_wgt_jump_w = std::lcm(in_dilation[2], wt_dilation[2]) / wt_dilation[2];
|
||||
|
||||
int f_out_jump_d = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
|
||||
int f_out_jump_h = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
|
||||
int f_out_jump_w = std::lcm(in_dilation[2], wt_strides[2]) / wt_strides[2];
|
||||
|
||||
std::vector<int> base_d(f_out_jump_d);
|
||||
std::vector<int> base_h(f_out_jump_h);
|
||||
std::vector<int> base_w(f_out_jump_w);
|
||||
|
||||
for (int i = 0; i < f_out_jump_d; ++i) {
|
||||
int id_loop = i * wt_strides[0] - padding[0] + init_d;
|
||||
|
||||
int wd_base = 0;
|
||||
while (wd_base < wD && id_loop % in_dilation[0] != 0) {
|
||||
wd_base++;
|
||||
id_loop += jump_d;
|
||||
}
|
||||
|
||||
base_d[i] = wd_base;
|
||||
}
|
||||
|
||||
for (int i = 0; i < f_out_jump_h; ++i) {
|
||||
int ih_loop = i * wt_strides[1] - padding[1] + init_h;
|
||||
|
||||
int wh_base = 0;
|
||||
while (wh_base < wH && ih_loop % in_dilation[1] != 0) {
|
||||
wh_base++;
|
||||
ih_loop += jump_h;
|
||||
}
|
||||
|
||||
base_h[i] = wh_base;
|
||||
}
|
||||
|
||||
for (int j = 0; j < f_out_jump_w; ++j) {
|
||||
int iw_loop = j * wt_strides[2] - padding[2] + init_w;
|
||||
|
||||
int ww_base = 0;
|
||||
while (ww_base < wW && iw_loop % in_dilation[2] != 0) {
|
||||
ww_base++;
|
||||
iw_loop += jump_w;
|
||||
}
|
||||
|
||||
base_w[j] = ww_base;
|
||||
}
|
||||
|
||||
auto pt_conv_all_checks = [&](const T* in_ptr,
|
||||
const T* wt_ptr,
|
||||
T* out_ptr,
|
||||
int od,
|
||||
int oh,
|
||||
int ow) {
|
||||
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
|
||||
|
||||
int id_base = od * wt_strides[0] - padding[0];
|
||||
int ih_base = oh * wt_strides[1] - padding[1];
|
||||
int iw_base = ow * wt_strides[2] - padding[2];
|
||||
|
||||
int wd_base = base_d[od % f_out_jump_d];
|
||||
int wh_base = base_h[oh % f_out_jump_h];
|
||||
int ww_base = base_w[ow % f_out_jump_w];
|
||||
|
||||
for (int o = 0; o < O; ++o) {
|
||||
float r = 0.;
|
||||
|
||||
for (int wd = wd_base; wd < wD; wd += f_wgt_jump_d) {
|
||||
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
|
||||
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
|
||||
int wd_flip = flip ? wD - wd - 1 : wd;
|
||||
int wh_flip = flip ? wH - wh - 1 : wh;
|
||||
int ww_flip = flip ? wW - ww - 1 : ww;
|
||||
int id = id_base + wd_flip * wt_dilation[0];
|
||||
int ih = ih_base + wh_flip * wt_dilation[1];
|
||||
int iw = iw_base + ww_flip * wt_dilation[2];
|
||||
|
||||
if (id >= 0 && id < iD && ih >= 0 && ih < iH && iw >= 0 &&
|
||||
iw < iW) {
|
||||
const T* wt_ptr_pt = wt_ptr + wd * wt_stride_D +
|
||||
wh * wt_stride_H + ww * wt_stride_W;
|
||||
|
||||
int id_dil = !is_idil_one ? (id / in_dilation[0]) : id;
|
||||
int ih_dil = !is_idil_one ? (ih / in_dilation[1]) : ih;
|
||||
int iw_dil = !is_idil_one ? (iw / in_dilation[2]) : iw;
|
||||
|
||||
const T* in_ptr_pt = in_ptr + id_dil * in_stride_D +
|
||||
ih_dil * in_stride_H + iw_dil * in_stride_W;
|
||||
|
||||
for (int c = 0; c < C; ++c) {
|
||||
r += static_cast<float>(in_ptr_pt[0]) *
|
||||
static_cast<float>(wt_ptr_pt[0]);
|
||||
in_ptr_pt += in_stride_C;
|
||||
wt_ptr_pt += wt_stride_C;
|
||||
} // c
|
||||
|
||||
} // iD, ih, iw check
|
||||
} // ww
|
||||
} // wh
|
||||
} // wd
|
||||
|
||||
out_ptr[0] = static_cast<T>(r);
|
||||
out_ptr += out_stride_O;
|
||||
wt_ptr += wt_stride_O;
|
||||
} // o
|
||||
};
|
||||
|
||||
int oD_border_0 = 0;
|
||||
int oD_border_1 =
|
||||
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oD;
|
||||
int oD_border_2 = std::max(
|
||||
oD_border_1, (iD + padding[0] - wD * wt_dilation[0]) / wt_strides[0]);
|
||||
int oD_border_3 = oD;
|
||||
|
||||
int oH_border_0 = 0;
|
||||
int oH_border_1 =
|
||||
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oH;
|
||||
int oH_border_2 = std::max(
|
||||
oH_border_1, (iH + padding[1] - wH * wt_dilation[1]) / wt_strides[1]);
|
||||
int oH_border_3 = oH;
|
||||
|
||||
int oW_border_0 = 0;
|
||||
int oW_border_1 =
|
||||
is_idil_one ? ((padding[2] + wt_strides[2] - 1) / wt_strides[2]) : oW;
|
||||
int oW_border_2 = std::max(
|
||||
oW_border_1, (iW + padding[2] - wW * wt_dilation[2]) / wt_strides[2]);
|
||||
int oW_border_3 = oW;
|
||||
|
||||
for (int n = 0; n < N; ++n) {
|
||||
// Case 1: od might put us out of bounds
|
||||
for (int od = oD_border_0; od < oD_border_1; ++od) {
|
||||
for (int oh = 0; oh < oH; ++oh) {
|
||||
for (int ow = 0; ow < oW; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
} // oh
|
||||
} // od
|
||||
|
||||
// Case 2: od in bounds
|
||||
for (int od = oD_border_1; od < oD_border_2; ++od) {
|
||||
// Case 2.1: oh might put us out of bounds
|
||||
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
|
||||
for (int ow = 0; ow < oW; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
} // oh
|
||||
|
||||
// Case 2.2: oh in bounds
|
||||
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
|
||||
// Case 2.2.1: ow might put us out of bounds
|
||||
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
|
||||
// Case 2.2.2: ow in bounds
|
||||
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
|
||||
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
|
||||
// Case 2.2.3: ow might put us out of bounds
|
||||
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
} // oh
|
||||
|
||||
// Case 2.3: oh might put us out of bounds
|
||||
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
|
||||
for (int ow = 0; ow < oW; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
} // oh
|
||||
} // od
|
||||
|
||||
// Case 3: od might put us out of bounds
|
||||
for (int od = oD_border_2; od < oD_border_3; ++od) {
|
||||
for (int oh = 0; oh < oH; ++oh) {
|
||||
for (int ow = 0; ow < oW; ++ow) {
|
||||
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
|
||||
} // ow
|
||||
} // oh
|
||||
} // od
|
||||
|
||||
st_in_ptr += in_stride_N;
|
||||
st_out_ptr += out_stride_N;
|
||||
|
||||
} // n
|
||||
}
|
||||
|
||||
void dispatch_slow_conv_1D(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
@@ -353,6 +656,30 @@ void dispatch_slow_conv_2D(
|
||||
}
|
||||
}
|
||||
|
||||
void dispatch_slow_conv_3D(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
if (in.dtype() == float32) {
|
||||
return slow_conv_3D<float>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == float16) {
|
||||
return slow_conv_3D<float16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else if (in.dtype() == bfloat16) {
|
||||
return slow_conv_3D<bfloat16_t>(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[Convolution::eval] got unsupported data type.");
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Explicit gemm conv
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -366,11 +693,15 @@ void explicit_gemm_conv_1D_cpu(
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int C = in.shape(2); // Input channels
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(2); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
|
||||
const int groups = C / wt.shape(2);
|
||||
const int C_per_group = wt.shape(2);
|
||||
const int O_per_group = O / groups;
|
||||
|
||||
auto conv_dtype = float32;
|
||||
|
||||
// Pad input
|
||||
@@ -402,6 +733,11 @@ void explicit_gemm_conv_1D_cpu(
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2]};
|
||||
auto flags = in_padded.flags();
|
||||
if (groups > 1) {
|
||||
// Transpose the last two dimensions for grouped convolutions
|
||||
std::swap(strided_shape[2], strided_shape[3]);
|
||||
std::swap(strided_strides[2], strided_strides[3]);
|
||||
}
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
@@ -416,7 +752,19 @@ void explicit_gemm_conv_1D_cpu(
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
if (groups > 1) {
|
||||
// Transpose the last two dimensions for grouped convolutions
|
||||
array wt_transpose(
|
||||
{wt.shape(0), wt.shape(2), wt.shape(1)}, wt.dtype(), nullptr, {});
|
||||
wt_transpose.copy_shared_buffer(
|
||||
wt,
|
||||
{wt.strides(0), wt.strides(2), wt.strides(1)},
|
||||
wt.flags(),
|
||||
wt.size(),
|
||||
0);
|
||||
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
||||
copy(wt_transpose, gemm_wt, CopyType::General);
|
||||
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
@@ -428,27 +776,29 @@ void explicit_gemm_conv_1D_cpu(
|
||||
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
|
||||
}
|
||||
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided.data<float>(),
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt.data<float>(),
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out.data<float>(),
|
||||
O // ldc
|
||||
);
|
||||
for (int g = 0; g < groups; ++g) {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O_per_group, // N
|
||||
C_per_group * wH, // K
|
||||
1.0f, // alpha
|
||||
in_strided.data<float>() + g * C_per_group * wH, // A
|
||||
wH * C, // lda
|
||||
gemm_wt.data<float>() + g * O_per_group * C_per_group * wH, // B
|
||||
wH * C_per_group, // ldb
|
||||
0.0f, // beta
|
||||
gemm_out.data<float>() + g * O_per_group, // C
|
||||
O // ldc
|
||||
);
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy(gemm_out, out, CopyType::Vector);
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy(gemm_out, out, CopyType::Vector);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -554,6 +904,131 @@ void explicit_gemm_conv_2D_cpu(
|
||||
}
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_ND_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const auto iDim = std::vector<int>(
|
||||
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
|
||||
const auto oDim = std::vector<int>(
|
||||
out.shape().begin() + 1, out.shape().end() - 1); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(-1); // In channels
|
||||
const auto wDim = std::vector<int>(
|
||||
wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
|
||||
|
||||
auto conv_dtype = float32;
|
||||
|
||||
// Pad input
|
||||
std::vector<int> padded_shape(in.shape().size());
|
||||
padded_shape.front() = N;
|
||||
for (size_t i = 0; i < iDim.size(); i++) {
|
||||
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
|
||||
}
|
||||
padded_shape.back() = C;
|
||||
array in_padded(padded_shape, conv_dtype, nullptr, {});
|
||||
|
||||
// Fill with zeros
|
||||
copy(array(0, conv_dtype), in_padded, CopyType::Scalar);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = 0;
|
||||
for (size_t i = 0; i < padding.size(); i++) {
|
||||
data_offset += padding[i] * in_padded.strides()[i + 1];
|
||||
}
|
||||
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
|
||||
in_padded_slice.copy_shared_buffer(
|
||||
in_padded,
|
||||
in_padded.strides(),
|
||||
in_padded.flags(),
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
|
||||
|
||||
// Make strided view
|
||||
std::vector<int> strided_shape(oDim.size() + wDim.size() + 2);
|
||||
strided_shape.front() = N;
|
||||
for (size_t i = 0; i < oDim.size(); i++) {
|
||||
strided_shape[i + 1] = oDim[i];
|
||||
}
|
||||
for (size_t i = 0; i < wDim.size(); i++) {
|
||||
strided_shape[i + 1 + oDim.size()] = wDim[i];
|
||||
}
|
||||
strided_shape.back() = C;
|
||||
|
||||
std::vector<size_t> strided_strides(in.shape().size() * 2 - 2);
|
||||
strided_strides[0] = in_padded.strides()[0];
|
||||
for (size_t i = 0; i < wt_strides.size(); i++) {
|
||||
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
|
||||
}
|
||||
for (size_t i = 1; i < in_padded.strides().size(); i++) {
|
||||
strided_strides[i + wt_strides.size()] = in_padded.strides()[i];
|
||||
}
|
||||
|
||||
auto flags = in_padded.flags();
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
std::vector<int> strided_reshape = {N, C};
|
||||
for (const auto& o : oDim) {
|
||||
strided_reshape[0] *= o;
|
||||
}
|
||||
for (const auto& w : wDim) {
|
||||
strided_reshape[1] *= w;
|
||||
}
|
||||
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy(in_strided_view, in_strided, CopyType::General);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy(wt, gemm_wt, ctype);
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
|
||||
}
|
||||
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided.data<float>(),
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt.data<float>(),
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out.data<float>(),
|
||||
O // ldc
|
||||
);
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy(gemm_out, out, CopyType::Vector);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Conv routing
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -589,6 +1064,19 @@ void conv_2D_cpu(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
|
||||
void conv_3D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& in_dilation,
|
||||
bool flip) {
|
||||
return dispatch_slow_conv_3D(
|
||||
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Convolution::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -597,8 +1085,20 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto& in = inputs[0];
|
||||
auto& wt = inputs[1];
|
||||
|
||||
// 3D convolution
|
||||
if (in.ndim() == (3 + 2)) {
|
||||
return conv_3D_cpu(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
flip_);
|
||||
}
|
||||
// 2D convolution
|
||||
if (in.ndim() == (2 + 2)) {
|
||||
else if (in.ndim() == (2 + 2)) {
|
||||
return conv_2D_cpu(
|
||||
in,
|
||||
wt,
|
||||
|
@@ -256,7 +256,7 @@ void copy_general_general(
|
||||
}
|
||||
|
||||
int size = std::accumulate(
|
||||
data_shape.begin() - 5, data_shape.end(), 1, std::multiplies<int>());
|
||||
data_shape.end() - 5, data_shape.end(), 1, std::multiplies<int>());
|
||||
for (int i = 0; i < src.size(); i += size) {
|
||||
stride_t src_offset = i_offset + elem_to_loc(i, data_shape, i_strides);
|
||||
stride_t dst_offset = o_offset + elem_to_loc(i, dst.shape(), o_strides);
|
||||
@@ -272,7 +272,7 @@ inline void copy_general_general(const array& src, array& dst) {
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename... Args>
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args... args) {
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
switch (ctype) {
|
||||
case CopyType::Scalar:
|
||||
copy_single<SrcT, DstT>(src, dst);
|
||||
@@ -281,54 +281,54 @@ void copy(const array& src, array& dst, CopyType ctype, Args... args) {
|
||||
copy_vector<SrcT, DstT>(src, dst);
|
||||
return;
|
||||
case CopyType::General:
|
||||
copy_general<SrcT, DstT>(src, dst, args...);
|
||||
copy_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
|
||||
return;
|
||||
case CopyType::GeneralGeneral:
|
||||
copy_general_general<SrcT, DstT>(src, dst, args...);
|
||||
copy_general_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename... Args>
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args... args) {
|
||||
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
|
||||
switch (dst.dtype()) {
|
||||
case bool_:
|
||||
copy<SrcT, bool>(src, dst, ctype, args...);
|
||||
copy<SrcT, bool>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint8:
|
||||
copy<SrcT, uint8_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, uint8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint16:
|
||||
copy<SrcT, uint16_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, uint16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint32:
|
||||
copy<SrcT, uint32_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, uint32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint64:
|
||||
copy<SrcT, uint64_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, uint64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int8:
|
||||
copy<SrcT, int8_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, int8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int16:
|
||||
copy<SrcT, int16_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, int16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int32:
|
||||
copy<SrcT, int32_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, int32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int64:
|
||||
copy<SrcT, int64_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, int64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float16:
|
||||
copy<SrcT, float16_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, float16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float32:
|
||||
copy<SrcT, float>(src, dst, ctype, args...);
|
||||
copy<SrcT, float>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case bfloat16:
|
||||
copy<SrcT, bfloat16_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, bfloat16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case complex64:
|
||||
copy<SrcT, complex64_t>(src, dst, ctype, args...);
|
||||
copy<SrcT, complex64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -338,46 +338,46 @@ inline void copy_inplace_dispatch(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Args... args) {
|
||||
Args&&... args) {
|
||||
switch (src.dtype()) {
|
||||
case bool_:
|
||||
copy<bool>(src, dst, ctype, args...);
|
||||
copy<bool>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint8:
|
||||
copy<uint8_t>(src, dst, ctype, args...);
|
||||
copy<uint8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint16:
|
||||
copy<uint16_t>(src, dst, ctype, args...);
|
||||
copy<uint16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint32:
|
||||
copy<uint32_t>(src, dst, ctype, args...);
|
||||
copy<uint32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case uint64:
|
||||
copy<uint64_t>(src, dst, ctype, args...);
|
||||
copy<uint64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int8:
|
||||
copy<int8_t>(src, dst, ctype, args...);
|
||||
copy<int8_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int16:
|
||||
copy<int16_t>(src, dst, ctype, args...);
|
||||
copy<int16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int32:
|
||||
copy<int32_t>(src, dst, ctype, args...);
|
||||
copy<int32_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case int64:
|
||||
copy<int64_t>(src, dst, ctype, args...);
|
||||
copy<int64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float16:
|
||||
copy<float16_t>(src, dst, ctype, args...);
|
||||
copy<float16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case float32:
|
||||
copy<float>(src, dst, ctype, args...);
|
||||
copy<float>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case bfloat16:
|
||||
copy<bfloat16_t>(src, dst, ctype, args...);
|
||||
copy<bfloat16_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
case complex64:
|
||||
copy<complex64_t>(src, dst, ctype, args...);
|
||||
copy<complex64_t>(src, dst, ctype, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@@ -5,7 +5,6 @@
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -34,6 +33,7 @@ DEFAULT(ArcCosh)
|
||||
DEFAULT(ArcSin)
|
||||
DEFAULT(ArcSinh)
|
||||
DEFAULT(ArcTan)
|
||||
DEFAULT(ArcTan2)
|
||||
DEFAULT(ArcTanh)
|
||||
DEFAULT(ArgPartition)
|
||||
DEFAULT(ArgReduce)
|
||||
@@ -41,9 +41,13 @@ DEFAULT(ArgSort)
|
||||
DEFAULT(AsType)
|
||||
DEFAULT(AsStrided)
|
||||
DEFAULT(Broadcast)
|
||||
DEFAULT(BlockMaskedMM)
|
||||
DEFAULT(GatherMM)
|
||||
DEFAULT(GatherQMM)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(Ceil)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Conjugate)
|
||||
DEFAULT(Convolution)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT(Cos)
|
||||
@@ -57,6 +61,7 @@ DEFAULT(Equal)
|
||||
DEFAULT(Erf)
|
||||
DEFAULT(ErfInv)
|
||||
DEFAULT(Exp)
|
||||
DEFAULT(Expm1)
|
||||
DEFAULT(FFT)
|
||||
DEFAULT(Floor)
|
||||
DEFAULT(Full)
|
||||
@@ -107,6 +112,7 @@ DEFAULT(Tan)
|
||||
DEFAULT(Tanh)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
DEFAULT(Cholesky)
|
||||
|
||||
namespace {
|
||||
|
||||
|
@@ -2,7 +2,6 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
@@ -93,12 +92,4 @@ void Inverse::eval(const std::vector<array>& inputs, array& output) {
|
||||
inverse_impl(inputs[0], output);
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<int>> Inverse::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
auto ax = axes[0] >= 0 ? 0 : -1;
|
||||
auto a = axes[0] > 0 ? moveaxis(inputs[0], axes[0], 0, stream()) : inputs[0];
|
||||
return {{linalg::inv(a, stream())}, {ax}};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -11,7 +11,7 @@ GCC=$2
|
||||
SRCDIR=$3
|
||||
CLANG=$4
|
||||
|
||||
if [ $CLANG = "TRUE" ]; then
|
||||
if [ "$CLANG" = "TRUE" ]; then
|
||||
read -r -d '' INCLUDES <<- EOM
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
@@ -28,6 +28,7 @@ const char* get_kernel_preamble() {
|
||||
return R"preamble(
|
||||
$INCLUDES
|
||||
$CONTENT
|
||||
using namespace mlx::core;
|
||||
using namespace mlx::core::detail;
|
||||
)preamble";
|
||||
}
|
||||
|
305
mlx/backend/common/masked_mm.cpp
Normal file
305
mlx/backend/common/masked_mm.cpp
Normal file
@@ -0,0 +1,305 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename mask_t>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const mask_t* mask,
|
||||
int block_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str,
|
||||
const size_t mask_offset) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
mask_t do_mask = mask[mask_offset + i * X_mask_str + j * Y_mask_str];
|
||||
if (do_mask != 1) {
|
||||
int loc_x = i * block_size;
|
||||
int loc_y = j * block_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(block_size, X - loc_x);
|
||||
int size_y = std::min(block_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
if constexpr (std::is_same_v<mask_t, bool>) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
} else {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] *= do_mask;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[BlockMaskedMM::eval] Currently only supports float32.");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
|
||||
auto check_transpose =
|
||||
[](const array& arr, bool do_copy, bool expand_all = false) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
return std::make_tuple(false, stx, arr);
|
||||
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector);
|
||||
return std::make_tuple(true, sty, arr_copy);
|
||||
}
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
|
||||
bool has_op_mask = inputs.size() > 3;
|
||||
bool has_out_mask = inputs.size() == 3 || inputs.size() == 5;
|
||||
auto [a_transposed, lda, a] =
|
||||
check_transpose(a_pre, has_op_mask, inputs.back().dtype() != bool_);
|
||||
auto [b_transposed, ldb, b] =
|
||||
check_transpose(b_pre, has_op_mask, inputs.back().dtype() != bool_);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_array = [](const array& mask,
|
||||
float* data,
|
||||
int block_size,
|
||||
int batch_idx,
|
||||
int X,
|
||||
int Y,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str) {
|
||||
size_t mask_offset = elem_to_loc(
|
||||
mask.shape(-1) * mask.shape(-2) * batch_idx,
|
||||
mask.shape(),
|
||||
mask.strides());
|
||||
|
||||
size_t X_mask_str = mask.strides()[mask.ndim() - 2];
|
||||
size_t Y_mask_str = mask.strides()[mask.ndim() - 1];
|
||||
|
||||
if (mask.dtype() == bool_) {
|
||||
return mask_matrix(
|
||||
data,
|
||||
mask.data<bool>(),
|
||||
block_size,
|
||||
X,
|
||||
Y,
|
||||
X_data_str,
|
||||
Y_data_str,
|
||||
X_mask_str,
|
||||
Y_mask_str,
|
||||
mask_offset);
|
||||
} else {
|
||||
return mask_matrix(
|
||||
data,
|
||||
mask.data<float>(),
|
||||
block_size,
|
||||
X,
|
||||
Y,
|
||||
X_data_str,
|
||||
Y_data_str,
|
||||
X_mask_str,
|
||||
Y_mask_str,
|
||||
mask_offset);
|
||||
}
|
||||
};
|
||||
|
||||
for (int i = 0; i < (out.size() / (M * size_t(N))); ++i) {
|
||||
// Adjust pointer
|
||||
float* ai =
|
||||
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides());
|
||||
float* bi =
|
||||
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides());
|
||||
float* ci = out.data<float>() + M * N * i;
|
||||
|
||||
// Zero out blocks in a and b if needed
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[inputs.size() - 2];
|
||||
mask_array(
|
||||
a_mask,
|
||||
ai,
|
||||
block_size_,
|
||||
i,
|
||||
M,
|
||||
K,
|
||||
a_transposed ? 1 : lda,
|
||||
a_transposed ? lda : 1);
|
||||
|
||||
auto& b_mask = inputs[inputs.size() - 1];
|
||||
mask_array(
|
||||
b_mask,
|
||||
bi,
|
||||
block_size_,
|
||||
i,
|
||||
K,
|
||||
N,
|
||||
b_transposed ? 1 : ldb,
|
||||
b_transposed ? ldb : 1);
|
||||
}
|
||||
|
||||
// Do matmul
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1.0, // alpha
|
||||
ai,
|
||||
lda,
|
||||
bi,
|
||||
ldb,
|
||||
0.0, // beta
|
||||
ci,
|
||||
out.shape(-1) // ldc
|
||||
);
|
||||
|
||||
// Zero out blocks in out
|
||||
if (has_out_mask) {
|
||||
mask_array(inputs[2], ci, block_size_, i, M, N, N, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GatherMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[GatherMM::eval] Currently only supports float32.");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
|
||||
auto check_transpose = [](const array& arr) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (stx == arr.shape(-1) && sty == 1) {
|
||||
return std::make_tuple(false, stx, arr);
|
||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
// Get batch dims
|
||||
auto batch_size_out = out.size() / (M * N);
|
||||
size_t matrix_stride_out = M * N;
|
||||
|
||||
auto get_batch_dims = [](const auto& v) {
|
||||
return decltype(v){v.begin(), v.end() - 2};
|
||||
};
|
||||
|
||||
auto& lhs_indices = inputs[2];
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
std::vector<int> batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
std::vector<int> batch_shape_A = get_batch_dims(a.shape());
|
||||
std::vector<size_t> batch_strides_A = get_batch_dims(a.strides());
|
||||
std::vector<int> batch_shape_B = get_batch_dims(b.shape());
|
||||
std::vector<size_t> batch_strides_B = get_batch_dims(b.strides());
|
||||
|
||||
const uint32_t* lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
const uint32_t* rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < batch_size_out; i++) {
|
||||
// Get index
|
||||
uint32_t indx_A = lhs_indices_ptr[elem_to_loc(i, lhs_indices)];
|
||||
uint32_t indx_B = rhs_indices_ptr[elem_to_loc(i, rhs_indices)];
|
||||
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1.0f, // alpha
|
||||
a.data<float>() + elem_to_loc(indx_A, batch_shape_A, batch_strides_A),
|
||||
lda,
|
||||
b.data<float>() + elem_to_loc(indx_B, batch_shape_B, batch_strides_B),
|
||||
ldb,
|
||||
0.0f, // beta
|
||||
out.data<float>() + matrix_stride_out * i,
|
||||
out.shape(-1) // ldc
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -108,213 +108,233 @@ struct Abs {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::abs(x);
|
||||
};
|
||||
}
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcCos {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::acos(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcCosh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::acosh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcSin {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::asin(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcSinh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::asinh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcTan {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::atan(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcTan2 {
|
||||
template <typename T>
|
||||
T operator()(T y, T x) {
|
||||
return std::atan2(y, x);
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcTanh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::atanh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Ceil {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::ceil(x);
|
||||
};
|
||||
}
|
||||
int8_t operator()(int8_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int16_t operator()(int16_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int32_t operator()(int32_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int64_t operator()(int64_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Conjugate {
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return std::conj(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Cos {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::cos(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Cosh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::cosh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Erf {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<T>(fast_erf(static_cast<float>(x)));
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct ErfInv {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<T>(fast_erfinv(static_cast<float>(x)));
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Exp {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return fast_exp(x);
|
||||
};
|
||||
}
|
||||
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return std::exp(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Expm1 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return expm1(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Floor {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::floor(x);
|
||||
};
|
||||
}
|
||||
int8_t operator()(int8_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int16_t operator()(int16_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int32_t operator()(int32_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
int64_t operator()(int64_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint8_t operator()(uint8_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint16_t operator()(uint16_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint32_t operator()(uint32_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
uint64_t operator()(uint64_t x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
bool operator()(bool x) {
|
||||
return x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Log {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Log2 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log2(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Log10 {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::log10(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Log1p {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return log1p(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct LogicalNot {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return !x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Negative {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return -x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Round {
|
||||
@@ -359,49 +379,49 @@ struct Sin {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sin(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Sinh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sinh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Square {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return x * x;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Sqrt {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::sqrt(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Rsqrt {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return static_cast<decltype(x)>(1.0) / std::sqrt(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Tan {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::tan(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Tanh {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
return std::tanh(x);
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Add {
|
||||
@@ -534,7 +554,7 @@ struct LogAddExp {
|
||||
? maxval
|
||||
: static_cast<decltype(x)>(
|
||||
maxval + std::log1p(fast_exp(minval - maxval)));
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Multiply {
|
||||
@@ -582,14 +602,14 @@ struct LogicalAnd {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x && y;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct LogicalOr {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x || y;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
struct Select {
|
||||
@@ -599,4 +619,39 @@ struct Select {
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseAnd {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x & y;
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseOr {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x | y;
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseXor {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x ^ y;
|
||||
}
|
||||
};
|
||||
|
||||
struct LeftShift {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x << y;
|
||||
}
|
||||
};
|
||||
|
||||
struct RightShift {
|
||||
template <typename T>
|
||||
T operator()(T x, T y) {
|
||||
return x >> y;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::detail
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
@@ -8,9 +8,9 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/arange.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/backend/common/slicing.h"
|
||||
#include "mlx/backend/common/threefry.h"
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
@@ -22,7 +22,7 @@ namespace mlx::core {
|
||||
void Abs::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (is_unsigned(in.dtype())) {
|
||||
if (issubdtype(in.dtype(), unsignedinteger)) {
|
||||
// No-op for unsigned types
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
@@ -37,7 +37,7 @@ void Arange::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcCos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcCos());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -49,7 +49,7 @@ void ArcCos::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcCosh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -61,7 +61,7 @@ void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcSin::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcSin());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -73,7 +73,7 @@ void ArcSin::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcSinh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -85,7 +85,7 @@ void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcTan::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcTan());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -97,7 +97,7 @@ void ArcTan::eval(const std::vector<array>& inputs, array& out) {
|
||||
void ArcTanh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::ArcTanh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -113,65 +113,10 @@ void AsType::eval(const std::vector<array>& inputs, array& out) {
|
||||
copy(in, out, ctype);
|
||||
}
|
||||
|
||||
void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
if (!in.flags().row_contiguous) {
|
||||
// Just ensuring that inputs[0] came from the ops which would ensure the
|
||||
// input is row contiguous.
|
||||
throw std::runtime_error(
|
||||
"AsStrided must be used with row contiguous arrays only.");
|
||||
}
|
||||
|
||||
// Compute the flags given the shape and strides
|
||||
bool row_contiguous = true, col_contiguous = true;
|
||||
size_t r = 1, c = 1;
|
||||
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
|
||||
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
|
||||
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
|
||||
r *= shape_[i];
|
||||
c *= shape_[j];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
// TODO: Compute the contiguous flag in a better way cause now we are
|
||||
// unnecessarily strict.
|
||||
flags.contiguous = row_contiguous || col_contiguous;
|
||||
flags.row_contiguous = row_contiguous;
|
||||
flags.col_contiguous = col_contiguous;
|
||||
|
||||
// There is no easy way to compute the actual data size so we use out.size().
|
||||
// The contiguous flag will almost certainly not be set so no code should
|
||||
// rely on data_size anyway.
|
||||
size_t data_size = out.size();
|
||||
|
||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
std::vector<size_t> strides(out.ndim(), 0);
|
||||
int diff = out.ndim() - in.ndim();
|
||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Ceil::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Ceil());
|
||||
} else {
|
||||
// No-op integer types
|
||||
@@ -203,15 +148,21 @@ void Concatenate::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Conjugate::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == complex64) {
|
||||
unary_fp(in, out, detail::Conjugate());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[conjugate] conjugate must be called on complex input.");
|
||||
}
|
||||
}
|
||||
|
||||
void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Cos());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -223,7 +174,7 @@ void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Cosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Cosh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -232,81 +183,6 @@ void Cosh::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void CustomVJP::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
void Depends::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
double numel = 1;
|
||||
for (auto ax : axes_) {
|
||||
numel *= inputs[0].shape(ax);
|
||||
}
|
||||
|
||||
if (inverted_) {
|
||||
numel = 1.0 / numel;
|
||||
}
|
||||
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
*out.data<bool>() = static_cast<bool>(numel);
|
||||
break;
|
||||
case uint8:
|
||||
*out.data<uint8_t>() = static_cast<uint8_t>(numel);
|
||||
break;
|
||||
case uint16:
|
||||
*out.data<uint16_t>() = static_cast<uint16_t>(numel);
|
||||
break;
|
||||
case uint32:
|
||||
*out.data<uint32_t>() = static_cast<uint32_t>(numel);
|
||||
break;
|
||||
case uint64:
|
||||
*out.data<uint64_t>() = static_cast<uint64_t>(numel);
|
||||
break;
|
||||
case int8:
|
||||
*out.data<int8_t>() = static_cast<int8_t>(numel);
|
||||
break;
|
||||
case int16:
|
||||
*out.data<int16_t>() = static_cast<int16_t>(numel);
|
||||
break;
|
||||
case int32:
|
||||
*out.data<int32_t>() = static_cast<int32_t>(numel);
|
||||
break;
|
||||
case int64:
|
||||
*out.data<int64_t>() = static_cast<int64_t>(numel);
|
||||
break;
|
||||
case float16:
|
||||
*out.data<float16_t>() = static_cast<float16_t>(numel);
|
||||
break;
|
||||
case float32:
|
||||
*out.data<float>() = static_cast<float>(numel);
|
||||
break;
|
||||
case bfloat16:
|
||||
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
||||
break;
|
||||
case complex64:
|
||||
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Erf::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -350,7 +226,7 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Exp::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Exp());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -359,10 +235,22 @@ void Exp::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Expm1::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Expm1());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[expm1] Cannot exponentiate elements in array"
|
||||
" with non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
void Floor::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Floor());
|
||||
} else {
|
||||
// No-op integer types
|
||||
@@ -388,7 +276,7 @@ void Full::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Log::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
unary_fp(in, out, detail::Log());
|
||||
@@ -410,7 +298,7 @@ void Log::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Log1p::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Log1p());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -425,20 +313,6 @@ void LogicalNot::eval(const std::vector<array>& inputs, array& out) {
|
||||
unary(in, out, detail::LogicalNot());
|
||||
}
|
||||
|
||||
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalAnd());
|
||||
}
|
||||
|
||||
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalOr());
|
||||
}
|
||||
|
||||
void Negative::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
@@ -524,63 +398,6 @@ void RandomBits::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
const array& in,
|
||||
const array& out) {
|
||||
// Special case for empty arrays or row contiguous arrays
|
||||
if (in.size() == 0 || in.flags().row_contiguous) {
|
||||
return {false, out.strides()};
|
||||
}
|
||||
|
||||
// Special case for scalars
|
||||
if (in.ndim() == 0) {
|
||||
std::vector<size_t> out_strides(out.ndim(), 0);
|
||||
return {false, out_strides};
|
||||
}
|
||||
|
||||
// Firstly let's collapse all the contiguous dimensions of the input
|
||||
auto [shape, _strides] = collapse_contiguous_dims(in);
|
||||
auto& strides = _strides[0];
|
||||
|
||||
// If shapes fit exactly in the contiguous dims then no copy is necessary so
|
||||
// let's check.
|
||||
std::vector<size_t> out_strides;
|
||||
bool copy_necessary = false;
|
||||
int j = 0;
|
||||
for (int i = 0; i < out.ndim(); i++) {
|
||||
int N = out.shape(i);
|
||||
if (j < shape.size() && shape[j] % N == 0) {
|
||||
shape[j] /= N;
|
||||
out_strides.push_back(shape[j] * strides[j]);
|
||||
j += (shape[j] == 1);
|
||||
} else if (N == 1) {
|
||||
// i > 0 because otherwise j < shape.size() && shape[j] % 1 == 0
|
||||
out_strides.push_back(out_strides.back());
|
||||
} else {
|
||||
copy_necessary = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return {copy_necessary, out_strides};
|
||||
}
|
||||
|
||||
void Reshape::shared_buffer_reshape(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
array& out) {
|
||||
auto flags = in.flags();
|
||||
if (flags.row_contiguous) {
|
||||
// For row contiguous reshapes:
|
||||
// - Shallow copy the buffer
|
||||
// - If reshaping into a vector (all singleton dimensions except one) it
|
||||
// becomes col contiguous again.
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -597,7 +414,7 @@ void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Round::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (not is_integral(in.dtype())) {
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Round());
|
||||
} else {
|
||||
// No-op integer types
|
||||
@@ -608,7 +425,7 @@ void Round::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Sigmoid::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sigmoid());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -630,7 +447,7 @@ void Sign::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Sin::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sin());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -642,7 +459,7 @@ void Sin::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Sinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Sinh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -651,49 +468,6 @@ void Sinh::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> Slice::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
bool copy_needed = false;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
|
||||
copy_needed |= strides_[i] < 0;
|
||||
}
|
||||
|
||||
return std::make_tuple(copy_needed, data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void Slice::shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [data_size, is_row_contiguous, is_col_contiguous] =
|
||||
check_contiguity(out.shape(), out_strides);
|
||||
|
||||
auto flags = in.flags();
|
||||
flags.row_contiguous = is_row_contiguous;
|
||||
flags.col_contiguous = is_col_contiguous;
|
||||
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
flags.contiguous = true;
|
||||
} else if (data_size == in.data_size()) {
|
||||
// Means we sliced a broadcasted dimension so leave the "no holes" flag
|
||||
// alone.
|
||||
} else {
|
||||
// We sliced something. So either we are row or col contiguous or we
|
||||
// punched a hole.
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
||||
}
|
||||
|
||||
void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
if (out.size() == 0) {
|
||||
@@ -704,7 +478,8 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [copy_needed, data_offset, inp_strides] = prepare_slice(in);
|
||||
auto [copy_needed, data_offset, inp_strides] =
|
||||
prepare_slice(in, start_indices_, strides_);
|
||||
|
||||
// Do copy if needed
|
||||
if (copy_needed) {
|
||||
@@ -725,18 +500,6 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
}
|
||||
|
||||
return std::make_tuple(data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (out.size() == 0) {
|
||||
@@ -774,58 +537,6 @@ void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
|
||||
/* CopyType ctype = */ CopyType::GeneralGeneral);
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
auto compute_new_flags = [](const auto& shape,
|
||||
const auto& strides,
|
||||
size_t in_data_size,
|
||||
auto flags) {
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
flags.col_contiguous &= strides[i] == f_stride || shape[i] == 1;
|
||||
flags.row_contiguous &= strides[ri] == b_stride || shape[ri] == 1;
|
||||
f_stride *= shape[i];
|
||||
b_stride *= shape[ri];
|
||||
if (strides[i] > 0) {
|
||||
data_size *= shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
flags.contiguous = true;
|
||||
} else if (data_size == in_data_size) {
|
||||
// Means we sliced a broadcasted dimension so leave the "no holes" flag
|
||||
// alone.
|
||||
} else {
|
||||
// We sliced something. So either we are row or col contiguous or we
|
||||
// punched a hole.
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
return std::pair<decltype(flags), size_t>{flags, data_size};
|
||||
};
|
||||
|
||||
std::vector<int> indices(1, 0);
|
||||
indices.insert(indices.end(), indices_.begin(), indices_.end());
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
size_t offset = indices[i] * in.strides()[axis_];
|
||||
auto [new_flags, data_size] = compute_new_flags(
|
||||
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
|
||||
outputs[i].copy_shared_buffer(
|
||||
in, in.strides(), new_flags, data_size, offset);
|
||||
}
|
||||
}
|
||||
|
||||
void Square::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
@@ -842,15 +553,10 @@ void Sqrt::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void Tan::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Tan());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -862,7 +568,7 @@ void Tan::eval(const std::vector<array>& inputs, array& out) {
|
||||
void Tanh::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (is_floating_point(out.dtype())) {
|
||||
if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, detail::Tanh());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
@@ -871,38 +577,36 @@ void Tanh::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
std::vector<size_t> out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
}
|
||||
|
||||
// Conditions for {row/col}_contiguous
|
||||
// - array must be contiguous (no gaps)
|
||||
// - underlying buffer size should have the same size as the array
|
||||
// - cumulative product of shapes is equal to the strides (we can ignore axes
|
||||
// with size == 1)
|
||||
// - in the forward direction (column contiguous)
|
||||
// - in the reverse direction (row contiguous)
|
||||
// - vectors are both row and col contiguous (hence if both row/col are
|
||||
// true, they stay true)
|
||||
auto flags = in.flags();
|
||||
if (flags.contiguous && in.data_size() == in.size()) {
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.col_contiguous = true;
|
||||
flags.row_contiguous = true;
|
||||
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
|
||||
flags.col_contiguous &= (out_strides[i] == f_stride || out.shape(i) == 1);
|
||||
f_stride *= out.shape(i);
|
||||
flags.row_contiguous &=
|
||||
(out_strides[ri] == b_stride || out.shape(ri) == 1);
|
||||
b_stride *= out.shape(ri);
|
||||
auto ibytes = size_of(in.dtype());
|
||||
auto obytes = size_of(out.dtype());
|
||||
// Conditions for buffer copying (disjunction):
|
||||
// - type size is the same
|
||||
// - type size is smaller and the last axis is contiguous
|
||||
// - the entire array is row contiguous
|
||||
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
|
||||
in.flags().row_contiguous) {
|
||||
auto strides = in.strides();
|
||||
for (int i = 0; i < strides.size() - 1; ++i) {
|
||||
strides[i] *= ibytes;
|
||||
strides[i] /= obytes;
|
||||
}
|
||||
out.copy_shared_buffer(
|
||||
in, strides, in.flags(), in.data_size() * obytes / ibytes);
|
||||
} else {
|
||||
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
|
||||
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
|
||||
copy_inplace(in, tmp, CopyType::General);
|
||||
|
||||
auto flags = out.flags();
|
||||
flags.contiguous = true;
|
||||
flags.row_contiguous = true;
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
out.move_shared_buffer(tmp, out.strides(), flags, out.size());
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -192,7 +192,7 @@ void _qmm_dispatch_typed(
|
||||
}
|
||||
|
||||
void _qmm_dispatch(
|
||||
array out,
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
@@ -253,6 +253,81 @@ void _qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
void _bs_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
int bits,
|
||||
int group_size,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.shape(-1) * w.shape(-2);
|
||||
int g_els = scales.shape(-1) * scales.shape(-2);
|
||||
|
||||
const uint32_t* lhs_indices_data = lhs_indices.data<uint32_t>();
|
||||
const uint32_t* rhs_indices_data = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < lhs_indices.size(); i++) {
|
||||
int x_idx = lhs_indices_data[elem_to_loc(i, lhs_indices)];
|
||||
int w_idx = rhs_indices_data[elem_to_loc(i, rhs_indices)];
|
||||
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
_qmm_dispatch_typed<float>(
|
||||
out.data<float>() + i * M * N,
|
||||
x.data<float>() + elem_to_loc(x_idx * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
|
||||
scales.data<float>() + elem_to_loc(w_idx * g_els, scales),
|
||||
biases.data<float>() + elem_to_loc(w_idx * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
_qmm_dispatch_typed<float16_t>(
|
||||
out.data<float16_t>() + i * M * N,
|
||||
x.data<float16_t>() + elem_to_loc(x_idx * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
|
||||
scales.data<float16_t>() + elem_to_loc(w_idx * g_els, scales),
|
||||
biases.data<float16_t>() + elem_to_loc(w_idx * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
_qmm_dispatch_typed<bfloat16_t>(
|
||||
out.data<bfloat16_t>() + i * M * N,
|
||||
x.data<bfloat16_t>() + elem_to_loc(x_idx * M * K, x),
|
||||
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
|
||||
scales.data<bfloat16_t>() + elem_to_loc(w_idx * g_els, scales),
|
||||
biases.data<bfloat16_t>() + elem_to_loc(w_idx * g_els, biases),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -282,4 +357,45 @@ void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
}
|
||||
|
||||
void GatherQMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 6);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
auto& lhs_indices = inputs[4];
|
||||
auto& rhs_indices = inputs[5];
|
||||
|
||||
auto ensure_row_contiguous_last_dims = [](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
return arr_copy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous_last_dims(x_pre);
|
||||
auto w = ensure_row_contiguous_last_dims(w_pre);
|
||||
auto scales = ensure_row_contiguous_last_dims(scales_pre);
|
||||
auto biases = ensure_row_contiguous_last_dims(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -104,48 +104,14 @@ void reduce_dispatch_out(
|
||||
}
|
||||
case Reduce::Sum: {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
reduction_op<InT, bool>(in, out, axes, false, op);
|
||||
break;
|
||||
case uint8:
|
||||
reduction_op<InT, uint8_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case uint16:
|
||||
reduction_op<InT, uint16_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case uint32:
|
||||
reduction_op<InT, uint32_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case uint64:
|
||||
reduction_op<InT, uint64_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case int8:
|
||||
reduction_op<InT, int8_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case int16:
|
||||
reduction_op<InT, int16_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case int32:
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case int64:
|
||||
reduction_op<InT, int64_t>(in, out, axes, 0, op);
|
||||
break;
|
||||
case float16:
|
||||
reduction_op<InT, float16_t>(in, out, axes, 0.0f, op);
|
||||
break;
|
||||
case float32:
|
||||
reduction_op<InT, float>(in, out, axes, 0.0f, op);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduction_op<InT, bfloat16_t>(in, out, axes, 0.0f, op);
|
||||
break;
|
||||
case complex64:
|
||||
reduction_op<InT, complex64_t>(in, out, axes, complex64_t{0.0f}, op);
|
||||
break;
|
||||
if (out.dtype() == int32) {
|
||||
// special case since the input type can be bool
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 0, op);
|
||||
}
|
||||
} break;
|
||||
break;
|
||||
}
|
||||
case Reduce::Prod: {
|
||||
auto op = [](auto y, auto x) { (*y) *= x; };
|
||||
reduction_op<InT, InT>(in, out, axes, 1, op);
|
||||
@@ -168,6 +134,29 @@ void reduce_dispatch_out(
|
||||
|
||||
} // namespace
|
||||
|
||||
void nd_loop(
|
||||
std::function<void(int)> callback,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides) {
|
||||
std::function<void(int, int)> loop_inner;
|
||||
loop_inner = [&](int dim, int offset) {
|
||||
if (dim < shape.size() - 1) {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
loop_inner(dim + 1, offset + i * stride);
|
||||
}
|
||||
} else {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
callback(offset + i * stride);
|
||||
}
|
||||
}
|
||||
};
|
||||
loop_inner(0, 0);
|
||||
}
|
||||
|
||||
void Reduce::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
@@ -6,8 +6,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
enum ReductionOpType {
|
||||
// Self-explanatory. Read everything and produce 1 output.
|
||||
ContiguousAllReduce,
|
||||
@@ -38,45 +36,31 @@ enum ReductionOpType {
|
||||
GeneralReduce
|
||||
};
|
||||
|
||||
struct ReductionPlan {
|
||||
ReductionOpType type;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
|
||||
ReductionPlan(
|
||||
ReductionOpType type_,
|
||||
std::vector<int> shape_,
|
||||
std::vector<size_t> strides_)
|
||||
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes);
|
||||
|
||||
// Helper for the ndimensional strided loop
|
||||
// Should this be in utils?
|
||||
inline void nd_loop(
|
||||
void nd_loop(
|
||||
std::function<void(int)> callback,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides) {
|
||||
std::function<void(int, int)> loop_inner;
|
||||
loop_inner = [&](int dim, int offset) {
|
||||
if (dim < shape.size() - 1) {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
loop_inner(dim + 1, offset + i * stride);
|
||||
}
|
||||
} else {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
callback(offset + i * stride);
|
||||
}
|
||||
}
|
||||
};
|
||||
loop_inner(0, 0);
|
||||
}
|
||||
const std::vector<size_t>& strides);
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
std::vector<int> shape = x.shape();
|
||||
std::vector<size_t> strides = x.strides();
|
||||
|
||||
for (int i = axes.size() - 1; i >= 0; i--) {
|
||||
int a = axes[i];
|
||||
shape.erase(shape.begin() + a);
|
||||
strides.erase(strides.begin() + a);
|
||||
}
|
||||
|
||||
return std::make_pair(shape, strides);
|
||||
}
|
||||
const std::vector<int>& axes);
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
struct DefaultStridedReduce {
|
||||
@@ -110,115 +94,6 @@ struct DefaultContiguousReduce {
|
||||
}
|
||||
};
|
||||
|
||||
struct ReductionPlan {
|
||||
ReductionOpType type;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
|
||||
ReductionPlan(
|
||||
ReductionOpType type_,
|
||||
std::vector<int> shape_,
|
||||
std::vector<size_t> strides_)
|
||||
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
return ContiguousAllReduce;
|
||||
}
|
||||
|
||||
// Row contiguous input so the output is row contiguous
|
||||
if (x.flags().row_contiguous) {
|
||||
// Merge consecutive axes
|
||||
std::vector<int> shape = {x.shape(axes[0])};
|
||||
std::vector<size_t> strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1]) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
} else {
|
||||
shape.push_back(x.shape(axes[i]));
|
||||
strides.push_back(x.strides()[axes[i]]);
|
||||
}
|
||||
}
|
||||
|
||||
if (strides.back() == 1) {
|
||||
return ReductionPlan(ContiguousReduce, shape, strides);
|
||||
} else if (strides.back() > 1) {
|
||||
return ReductionPlan(ContiguousStridedReduce, shape, strides);
|
||||
}
|
||||
}
|
||||
|
||||
// Let's check if we can optimize our access patterns
|
||||
//
|
||||
// 1. We have a reduction axis with stride 1. Simply call
|
||||
// GeneralContiguousReduce and be done with it.
|
||||
// 2. We have transpositions and we are not reducing over the axis with
|
||||
// stride 1. However, we are reducing over an axis where everything is
|
||||
// contiguous in memory to the right of that axis. We can call strided
|
||||
// reduce and be done with it.
|
||||
// 2. We have weird transpositions and expands. Copy the strides to the
|
||||
// output, then call strided reduce.
|
||||
|
||||
// Sort reduction axes by stride in order to merge them and figure out if we
|
||||
// have a contiguous reduction.
|
||||
std::vector<std::pair<int, size_t>> reductions;
|
||||
for (auto a : axes) {
|
||||
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
||||
}
|
||||
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
// Extract the two smallest and try to merge them in case the contiguous
|
||||
// reduction can be bigger than just the last axis.
|
||||
for (int i = reductions.size() - 1; i >= 1; i--) {
|
||||
auto a = reductions[i];
|
||||
auto b = reductions[i - 1];
|
||||
|
||||
// b.stride = a.shape * a.stride then a and b are contiguous
|
||||
if (b.second == a.first * a.second) {
|
||||
reductions.erase(reductions.begin() + i);
|
||||
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
for (auto r : reductions) {
|
||||
shape.push_back(r.first);
|
||||
strides.push_back(r.second);
|
||||
}
|
||||
|
||||
// We can call the contiguous reduction op for every weird way the input is
|
||||
// structured in the rest of the axes.
|
||||
if (strides.back() == 1) {
|
||||
return ReductionPlan(GeneralContiguousReduce, shape, strides);
|
||||
}
|
||||
|
||||
// Delegate to the general strided reduction op if the axes after
|
||||
// strides.back() are contiguous.
|
||||
if (strides.back() > 1) {
|
||||
int size = 1;
|
||||
for (int i = x.ndim() - 1; i >= 0; i--) {
|
||||
if (axes.back() == i) {
|
||||
continue;
|
||||
}
|
||||
if (x.strides()[i] != size) {
|
||||
break;
|
||||
}
|
||||
size *= x.shape(i);
|
||||
}
|
||||
if (size >= strides.back()) {
|
||||
return ReductionPlan(GeneralStridedReduce, shape, strides);
|
||||
}
|
||||
}
|
||||
|
||||
return ReductionPlan(GeneralReduce, shape, strides);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename OpS, typename OpC, typename Op>
|
||||
void reduction_op(
|
||||
const array& x,
|
||||
@@ -361,6 +236,4 @@ void reduction_op(
|
||||
reduction_op<T, U>(x, out, axes, init, ops, opc, op);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
} // namespace mlx::core
|
||||
|
118
mlx/backend/common/reduce_utils.cpp
Normal file
118
mlx/backend/common/reduce_utils.cpp
Normal file
@@ -0,0 +1,118 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
std::vector<int> shape = x.shape();
|
||||
std::vector<size_t> strides = x.strides();
|
||||
|
||||
for (int i = axes.size() - 1; i >= 0; i--) {
|
||||
int a = axes[i];
|
||||
shape.erase(shape.begin() + a);
|
||||
strides.erase(strides.begin() + a);
|
||||
}
|
||||
|
||||
return std::make_pair(shape, strides);
|
||||
}
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int> axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
return ContiguousAllReduce;
|
||||
}
|
||||
|
||||
// Row contiguous input so the output is row contiguous
|
||||
if (x.flags().row_contiguous) {
|
||||
// Merge consecutive axes
|
||||
std::vector<int> shape = {x.shape(axes[0])};
|
||||
std::vector<size_t> strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1]) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
} else {
|
||||
shape.push_back(x.shape(axes[i]));
|
||||
strides.push_back(x.strides()[axes[i]]);
|
||||
}
|
||||
}
|
||||
|
||||
if (strides.back() == 1) {
|
||||
return ReductionPlan(ContiguousReduce, shape, strides);
|
||||
} else if (strides.back() > 1) {
|
||||
return ReductionPlan(ContiguousStridedReduce, shape, strides);
|
||||
}
|
||||
}
|
||||
|
||||
// Let's check if we can optimize our access patterns
|
||||
//
|
||||
// 1. We have a reduction axis with stride 1. Simply call
|
||||
// GeneralContiguousReduce and be done with it.
|
||||
// 2. We have transpositions and we are not reducing over the axis with
|
||||
// stride 1. However, we are reducing over an axis where everything is
|
||||
// contiguous in memory to the right of that axis. We can call strided
|
||||
// reduce and be done with it.
|
||||
// 2. We have weird transpositions and expands. Copy the strides to the
|
||||
// output, then call strided reduce.
|
||||
|
||||
// Sort reduction axes by stride in order to merge them and figure out if we
|
||||
// have a contiguous reduction.
|
||||
std::vector<std::pair<int, size_t>> reductions;
|
||||
for (auto a : axes) {
|
||||
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
||||
}
|
||||
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
// Extract the two smallest and try to merge them in case the contiguous
|
||||
// reduction can be bigger than just the last axis.
|
||||
for (int i = reductions.size() - 1; i >= 1; i--) {
|
||||
auto a = reductions[i];
|
||||
auto b = reductions[i - 1];
|
||||
|
||||
// b.stride = a.shape * a.stride then a and b are contiguous
|
||||
if (b.second == a.first * a.second) {
|
||||
reductions.erase(reductions.begin() + i);
|
||||
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
for (auto r : reductions) {
|
||||
shape.push_back(r.first);
|
||||
strides.push_back(r.second);
|
||||
}
|
||||
|
||||
// We can call the contiguous reduction op for every weird way the input is
|
||||
// structured in the rest of the axes.
|
||||
if (strides.back() == 1) {
|
||||
return ReductionPlan(GeneralContiguousReduce, shape, strides);
|
||||
}
|
||||
|
||||
// Delegate to the general strided reduction op if the axes after
|
||||
// strides.back() are contiguous.
|
||||
if (strides.back() > 1) {
|
||||
int size = 1;
|
||||
for (int i = x.ndim() - 1; i >= 0; i--) {
|
||||
if (axes.back() == i) {
|
||||
continue;
|
||||
}
|
||||
if (x.strides()[i] != size) {
|
||||
break;
|
||||
}
|
||||
size *= x.shape(i);
|
||||
}
|
||||
if (size >= strides.back()) {
|
||||
return ReductionPlan(GeneralStridedReduce, shape, strides);
|
||||
}
|
||||
}
|
||||
|
||||
return ReductionPlan(GeneralReduce, shape, strides);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -222,7 +222,7 @@ void scan_dispatch(
|
||||
}
|
||||
case Scan::Min: {
|
||||
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *x : *y; };
|
||||
auto init = (is_floating_point(input.dtype()))
|
||||
auto init = (issubdtype(input.dtype(), floating))
|
||||
? static_cast<U>(std::numeric_limits<float>::infinity())
|
||||
: std::numeric_limits<U>::max();
|
||||
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
|
||||
@@ -232,9 +232,9 @@ void scan_dispatch(
|
||||
}
|
||||
case Scan::Max: {
|
||||
auto op = [](U* o, const U* y, const T* x) { *o = (*x < *y) ? *y : *x; };
|
||||
auto init = (is_floating_point(input.dtype()))
|
||||
auto init = (issubdtype(input.dtype(), floating))
|
||||
? static_cast<U>(-std::numeric_limits<float>::infinity())
|
||||
: std::numeric_limits<U>::max();
|
||||
: std::numeric_limits<U>::min();
|
||||
auto opcs = DefaultContiguousScan<T, U, decltype(op)>(op, init);
|
||||
auto opss = DefaultStridedScan<T, U, decltype(op)>(op, init);
|
||||
scan_op<T, U>(opcs, opss, input, output, axis, reverse, inclusive);
|
||||
|
52
mlx/backend/common/slicing.cpp
Normal file
52
mlx/backend/common/slicing.cpp
Normal file
@@ -0,0 +1,52 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
const array& in,
|
||||
std::vector<int>& start_indices,
|
||||
std::vector<int>& strides) {
|
||||
int64_t data_offset = 0;
|
||||
bool copy_needed = false;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides[i];
|
||||
|
||||
copy_needed |= strides[i] < 0;
|
||||
}
|
||||
|
||||
return std::make_tuple(copy_needed, data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [data_size, is_row_contiguous, is_col_contiguous] =
|
||||
check_contiguity(out.shape(), out_strides);
|
||||
|
||||
auto flags = in.flags();
|
||||
flags.row_contiguous = is_row_contiguous;
|
||||
flags.col_contiguous = is_col_contiguous;
|
||||
|
||||
if (data_size == 1) {
|
||||
// Broadcasted scalar array is contiguous.
|
||||
flags.contiguous = true;
|
||||
} else if (data_size == in.data_size()) {
|
||||
// Means we sliced a broadcasted dimension so leave the "no holes" flag
|
||||
// alone.
|
||||
} else {
|
||||
// We sliced something. So either we are row or col contiguous or we
|
||||
// punched a hole.
|
||||
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
|
||||
}
|
||||
|
||||
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
20
mlx/backend/common/slicing.h
Normal file
20
mlx/backend/common/slicing.h
Normal file
@@ -0,0 +1,20 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
const array& in,
|
||||
std::vector<int>& start_indices,
|
||||
std::vector<int>& strides);
|
||||
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
size_t data_offset,
|
||||
array& out);
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
@@ -10,7 +10,7 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
template <typename T, typename AccT>
|
||||
void softmax(const array& in, array& out) {
|
||||
const T* in_ptr = in.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
@@ -22,26 +22,36 @@ void softmax(const array& in, array& out) {
|
||||
for (int i = 0; i < M; i++, in_ptr += N, out_ptr += N) {
|
||||
// Find the maximum
|
||||
current_in_ptr = in_ptr;
|
||||
T maximum = *current_in_ptr;
|
||||
AccT maximum = *current_in_ptr;
|
||||
for (int j = 0; j < N; j++, current_in_ptr++) {
|
||||
maximum = (maximum < *current_in_ptr) ? *current_in_ptr : maximum;
|
||||
maximum = (maximum < *current_in_ptr) ? static_cast<AccT>(*current_in_ptr)
|
||||
: maximum;
|
||||
}
|
||||
|
||||
// Compute the normalizer and the exponentials
|
||||
T normalizer = 0;
|
||||
AccT normalizer = 0;
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
for (int j = 0; j < N; j++, current_out_ptr++, current_in_ptr++) {
|
||||
T expv = std::exp(*current_in_ptr - maximum);
|
||||
AccT expv = std::exp(*current_in_ptr - maximum);
|
||||
normalizer += expv;
|
||||
*current_out_ptr = expv;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr = expv;
|
||||
}
|
||||
}
|
||||
normalizer = 1 / normalizer;
|
||||
|
||||
// Normalize
|
||||
current_in_ptr = in_ptr;
|
||||
current_out_ptr = out_ptr;
|
||||
for (int j = 0; j < N; j++, current_out_ptr++) {
|
||||
*current_out_ptr *= normalizer;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr *= normalizer;
|
||||
} else {
|
||||
auto v = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = static_cast<T>(v * normalizer);
|
||||
current_in_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -91,13 +101,21 @@ void Softmax::eval(const std::vector<array>& inputs, array& out) {
|
||||
"Softmax is defined only for floating point types");
|
||||
break;
|
||||
case float32:
|
||||
softmax<float>(in, out);
|
||||
softmax<float, float>(in, out);
|
||||
break;
|
||||
case float16:
|
||||
softmax<float16_t>(in, out);
|
||||
if (precise_) {
|
||||
softmax<float16_t, float>(in, out);
|
||||
} else {
|
||||
softmax<float16_t, float16_t>(in, out);
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
softmax<bfloat16_t>(in, out);
|
||||
if (precise_) {
|
||||
softmax<bfloat16_t, float>(in, out);
|
||||
} else {
|
||||
softmax<bfloat16_t, bfloat16_t>(in, out);
|
||||
}
|
||||
break;
|
||||
case complex64:
|
||||
throw std::invalid_argument(
|
||||
|
@@ -3,7 +3,6 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack_helper.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -145,12 +144,4 @@ void SVD::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
|
||||
svd_impl(inputs[0], outputs[0], outputs[1], outputs[2]);
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<int>> SVD::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
auto ax = axes[0] >= 0 ? 0 : -1;
|
||||
auto a = axes[0] > 0 ? moveaxis(inputs[0], axes[0], 0, stream()) : inputs[0];
|
||||
return {{linalg::svd(a, stream())}, {ax, ax, ax}};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -89,9 +89,8 @@ collapse_contiguous_dims(const std::vector<array>& xs) {
|
||||
return collapse_contiguous_dims(xs[0].shape(), strides);
|
||||
}
|
||||
|
||||
template <typename... Arrays>
|
||||
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
|
||||
collapse_contiguous_dims(Arrays... xs) {
|
||||
template <typename... Arrays, typename = enable_for_arrays_t<Arrays...>>
|
||||
inline auto collapse_contiguous_dims(Arrays&&... xs) {
|
||||
return collapse_contiguous_dims(
|
||||
std::vector<array>{std::forward<Arrays>(xs)...});
|
||||
}
|
||||
|
@@ -1,31 +1,136 @@
|
||||
add_custom_command(
|
||||
OUTPUT compiled_preamble.cpp
|
||||
function(make_jit_source SRC_FILE)
|
||||
# This function takes a metal header file,
|
||||
# runs the C preprocessesor on it, and makes
|
||||
# the processed contents available as a string in a C++ function
|
||||
# mlx::core::metal::${SRC_NAME}()
|
||||
#
|
||||
# To use the function, declare it in jit/includes.h and
|
||||
# include jit/includes.h.
|
||||
#
|
||||
# Additional arguments to this function are treated as dependencies
|
||||
# in the Cmake build system.
|
||||
get_filename_component(SRC_NAME ${SRC_FILE} NAME)
|
||||
add_custom_command(
|
||||
OUTPUT jit/${SRC_NAME}.cpp
|
||||
COMMAND /bin/bash
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/jit
|
||||
${CMAKE_C_COMPILER}
|
||||
${PROJECT_SOURCE_DIR}
|
||||
${SRC_FILE}
|
||||
"-D${MLX_METAL_VERSION}"
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
kernels/compiled_preamble.h
|
||||
kernels/unary.h
|
||||
kernels/binary.h
|
||||
)
|
||||
kernels/${SRC_FILE}.h
|
||||
${ARGN}
|
||||
)
|
||||
add_custom_target(${SRC_NAME} DEPENDS jit/${SRC_NAME}.cpp)
|
||||
add_dependencies(mlx ${SRC_NAME})
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_BINARY_DIR}/jit/${SRC_NAME}.cpp
|
||||
)
|
||||
endfunction(make_jit_source)
|
||||
|
||||
add_custom_target(
|
||||
compiled_preamble
|
||||
DEPENDS compiled_preamble.cpp
|
||||
make_jit_source(
|
||||
utils
|
||||
kernels/bf16.h
|
||||
kernels/complex.h
|
||||
kernels/defines.h
|
||||
)
|
||||
make_jit_source(
|
||||
unary_ops
|
||||
kernels/erf.h
|
||||
kernels/expm1f.h
|
||||
)
|
||||
make_jit_source(binary_ops)
|
||||
make_jit_source(ternary_ops)
|
||||
make_jit_source(
|
||||
reduce_utils
|
||||
kernels/atomic.h
|
||||
kernels/reduction/ops.h
|
||||
)
|
||||
make_jit_source(scatter)
|
||||
make_jit_source(gather)
|
||||
|
||||
add_dependencies(mlx compiled_preamble)
|
||||
if (MLX_METAL_JIT)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_kernels.cpp
|
||||
)
|
||||
make_jit_source(arange)
|
||||
make_jit_source(copy)
|
||||
make_jit_source(unary)
|
||||
make_jit_source(binary)
|
||||
make_jit_source(binary_two)
|
||||
make_jit_source(
|
||||
fft
|
||||
kernels/fft/radix.h
|
||||
kernels/fft/readwrite.h
|
||||
)
|
||||
make_jit_source(ternary)
|
||||
make_jit_source(softmax)
|
||||
make_jit_source(scan)
|
||||
make_jit_source(sort)
|
||||
make_jit_source(
|
||||
reduce
|
||||
kernels/reduction/reduce_all.h
|
||||
kernels/reduction/reduce_col.h
|
||||
kernels/reduction/reduce_row.h
|
||||
)
|
||||
make_jit_source(
|
||||
steel/gemm/gemm
|
||||
kernels/steel/utils.h
|
||||
kernels/steel/gemm/loader.h
|
||||
kernels/steel/gemm/mma.h
|
||||
kernels/steel/gemm/params.h
|
||||
kernels/steel/gemm/transforms.h
|
||||
)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_fused)
|
||||
make_jit_source(
|
||||
steel/gemm/kernels/steel_gemm_masked
|
||||
kernels/steel/defines.h
|
||||
)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
|
||||
make_jit_source(
|
||||
steel/conv/conv
|
||||
kernels/steel/utils.h
|
||||
kernels/steel/defines.h
|
||||
kernels/steel/gemm/mma.h
|
||||
kernels/steel/gemm/transforms.h
|
||||
kernels/steel/conv/params.h
|
||||
kernels/steel/conv/loader.h
|
||||
kernels/steel/conv/loaders/loader_channel_l.h
|
||||
kernels/steel/conv/loaders/loader_channel_n.h
|
||||
)
|
||||
make_jit_source(
|
||||
steel/conv/kernels/steel_conv
|
||||
)
|
||||
make_jit_source(
|
||||
steel/conv/kernels/steel_conv_general
|
||||
kernels/steel/defines.h
|
||||
kernels/steel/conv/loaders/loader_general.h
|
||||
)
|
||||
make_jit_source(quantized)
|
||||
else()
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/nojit_kernels.cpp
|
||||
)
|
||||
endif()
|
||||
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
@@ -36,10 +141,12 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/normalization.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
|
||||
)
|
||||
|
||||
if (NOT MLX_METAL_PATH)
|
||||
|
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include "mlx/backend/metal/allocator.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "mlx/backend/metal/metal_impl.h"
|
||||
|
||||
#include <mach/vm_page_size.h>
|
||||
#include <unistd.h>
|
||||
@@ -139,10 +140,15 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
|
||||
|
||||
MetalAllocator::MetalAllocator()
|
||||
: device_(device(mlx::core::Device::gpu).mtl_device()),
|
||||
buffer_cache_(device_),
|
||||
block_limit_(1.5 * device_->recommendedMaxWorkingSetSize()),
|
||||
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()),
|
||||
max_pool_size_(block_limit_) {}
|
||||
buffer_cache_(device_) {
|
||||
auto memsize = std::get<size_t>(device_info()["memory_size"]);
|
||||
block_limit_ =
|
||||
std::min(1.5 * device_->recommendedMaxWorkingSetSize(), 0.95 * memsize);
|
||||
gc_limit_ = std::min(
|
||||
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()),
|
||||
block_limit_);
|
||||
max_pool_size_ = block_limit_;
|
||||
}
|
||||
|
||||
size_t MetalAllocator::set_cache_limit(size_t limit) {
|
||||
std::swap(limit, max_pool_size_);
|
||||
@@ -164,6 +170,15 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
return Buffer{nullptr};
|
||||
}
|
||||
|
||||
// More helpful message if maximum buffer length is exceeded
|
||||
if (size > device_->maxBufferLength()) {
|
||||
std::ostringstream msg;
|
||||
msg << "Attempting to allocate " << size << " bytes which is greater than"
|
||||
<< " the maximum allowed buffer size of " << device_->maxBufferLength()
|
||||
<< " bytes.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
// Align up memory
|
||||
if (size > vm_page_size) {
|
||||
size = vm_page_size * ((size + vm_page_size - 1) / vm_page_size);
|
||||
@@ -208,6 +223,11 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
return Buffer{static_cast<void*>(buf)};
|
||||
}
|
||||
|
||||
void MetalAllocator::clear_cache() {
|
||||
std::unique_lock lk(mutex_);
|
||||
buffer_cache_.clear();
|
||||
}
|
||||
|
||||
void MetalAllocator::free(Buffer buffer) {
|
||||
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
|
||||
std::unique_lock lk(mutex_);
|
||||
@@ -238,9 +258,15 @@ size_t get_active_memory() {
|
||||
size_t get_peak_memory() {
|
||||
return allocator().get_peak_memory();
|
||||
}
|
||||
void reset_peak_memory() {
|
||||
allocator().reset_peak_memory();
|
||||
}
|
||||
size_t get_cache_memory() {
|
||||
return allocator().get_cache_memory();
|
||||
}
|
||||
void clear_cache() {
|
||||
return allocator().clear_cache();
|
||||
}
|
||||
|
||||
} // namespace metal
|
||||
|
||||
|
@@ -26,6 +26,7 @@ class BufferCache {
|
||||
size_t cache_size() {
|
||||
return pool_size_;
|
||||
}
|
||||
void clear();
|
||||
|
||||
private:
|
||||
struct BufferHolder {
|
||||
@@ -37,7 +38,6 @@ class BufferCache {
|
||||
MTL::Buffer* buf;
|
||||
};
|
||||
|
||||
void clear();
|
||||
void add_at_head(BufferHolder* to_add);
|
||||
void remove_from_list(BufferHolder* to_remove);
|
||||
|
||||
@@ -62,11 +62,16 @@ class MetalAllocator : public allocator::Allocator {
|
||||
size_t get_peak_memory() {
|
||||
return peak_memory_;
|
||||
};
|
||||
void reset_peak_memory() {
|
||||
std::unique_lock lk(mutex_);
|
||||
peak_memory_ = 0;
|
||||
};
|
||||
size_t get_cache_memory() {
|
||||
return buffer_cache_.cache_size();
|
||||
};
|
||||
size_t set_cache_limit(size_t limit);
|
||||
size_t set_memory_limit(size_t limit, bool relaxed);
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
MTL::Device* device_;
|
||||
|
314
mlx/backend/metal/binary.cpp
Normal file
314
mlx/backend/metal/binary.cpp
Normal file
@@ -0,0 +1,314 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this)); \
|
||||
}
|
||||
|
||||
#define BINARY_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
binary_op_gpu(inputs, outputs, get_primitive_string(this)); \
|
||||
}
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
constexpr int MAX_BINARY_SPECIALIZED_DIMS = 5;
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
|
||||
auto& out = outputs[0];
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Try to collapse contiguous dims
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& strides_a = strides[0];
|
||||
auto& strides_b = strides[1];
|
||||
auto& strides_out = strides[2];
|
||||
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << "sv";
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << "vs";
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << "vv";
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
if (shape.size() <= MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
} else {
|
||||
kname << "n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << op << type_to_name(a);
|
||||
kernel_name = kname.str();
|
||||
}
|
||||
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto kernel =
|
||||
get_binary_two_kernel(d, kernel_name, a.dtype(), outputs[0].dtype(), op);
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// - If a is donated it goes to the first output
|
||||
// - If b is donated it goes to the first output if a was not donated
|
||||
// otherwise it goes to the second output
|
||||
bool donate_a = a.data_shared_ptr() == nullptr;
|
||||
bool donate_b = b.data_shared_ptr() == nullptr;
|
||||
compute_encoder.set_input_array(donate_a ? outputs[0] : a, 0);
|
||||
compute_encoder.set_input_array(
|
||||
donate_b ? (donate_a ? outputs[1] : outputs[0]) : b, 1);
|
||||
compute_encoder.set_output_array(outputs[0], 2);
|
||||
compute_encoder.set_output_array(outputs[1], 3);
|
||||
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto ndim = shape.size();
|
||||
if (ndim > 3) {
|
||||
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), 4);
|
||||
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 5);
|
||||
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 6);
|
||||
} else {
|
||||
// The shape is implicit in the grid for <= 3D
|
||||
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 4);
|
||||
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 5);
|
||||
}
|
||||
|
||||
if (ndim > MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 7);
|
||||
}
|
||||
|
||||
// Launch up to 3D grid of threads
|
||||
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
size_t rest = out.size() / (dim0 * dim1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size != 1024) {
|
||||
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
|
||||
}
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
// Launch a 1D grid of threads
|
||||
size_t nthreads = out.data_size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
}
|
||||
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt, true);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt, true);
|
||||
binary_op_gpu_inplace(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op) {
|
||||
auto& s = outputs[0].primitive().stream();
|
||||
binary_op_gpu(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Try to collapse contiguous dims
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& strides_a = strides[0];
|
||||
auto& strides_b = strides[1];
|
||||
auto& strides_out = strides[2];
|
||||
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << "sv";
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << "vs";
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << "vv";
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
if (shape.size() <= MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
} else {
|
||||
kname << "n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << op << type_to_name(a);
|
||||
kernel_name = kname.str();
|
||||
}
|
||||
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto kernel = get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
bool donate_a = a.data_shared_ptr() == nullptr;
|
||||
bool donate_b = b.data_shared_ptr() == nullptr;
|
||||
compute_encoder.set_input_array(donate_a ? out : a, 0);
|
||||
compute_encoder.set_input_array(donate_b ? out : b, 1);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto ndim = shape.size();
|
||||
if (ndim > 3) {
|
||||
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), 3);
|
||||
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 4);
|
||||
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 5);
|
||||
} else {
|
||||
// The shape is implicit in the grid for <= 3D
|
||||
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 3);
|
||||
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 4);
|
||||
}
|
||||
|
||||
if (ndim > MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 6);
|
||||
}
|
||||
|
||||
// Launch up to 3D grid of threads
|
||||
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
size_t rest = out.size() / (dim0 * dim1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size != 1024) {
|
||||
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
|
||||
}
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
// Launch a 1D grid of threads
|
||||
size_t nthreads =
|
||||
bopt == BinaryOpType::General ? out.size() : out.data_size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
}
|
||||
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt, true);
|
||||
binary_op_gpu_inplace(inputs, out, op, s);
|
||||
}
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op) {
|
||||
auto& s = out.primitive().stream();
|
||||
binary_op_gpu(inputs, out, op, s);
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU_MULTI(DivMod)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Equal)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu(inputs, out, get_primitive_string(this));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
33
mlx/backend/metal/binary.h
Normal file
33
mlx/backend/metal/binary.h
Normal file
@@ -0,0 +1,33 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
@@ -4,8 +4,8 @@
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/metal/compiled_preamble.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/jit/includes.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -56,12 +56,15 @@ inline void build_kernel(
|
||||
} else {
|
||||
add_indices = true;
|
||||
os << " device const " << get_type_string(x.dtype()) << "* " << xname
|
||||
<< " [[buffer(" << cnt++ << ")]]," << std::endl
|
||||
<< " constant const size_t* " << xname << "_strides [[buffer("
|
||||
<< cnt++ << ")]]," << std::endl;
|
||||
<< " [[buffer(" << cnt++ << ")]]," << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (add_indices) {
|
||||
os << " constant const size_t* in_strides [[buffer(" << cnt++
|
||||
<< ")]],\n";
|
||||
}
|
||||
|
||||
// Add the output arguments
|
||||
for (auto& x : outputs) {
|
||||
os << " device " << get_type_string(x.dtype()) << "* "
|
||||
@@ -110,13 +113,17 @@ inline void build_kernel(
|
||||
}
|
||||
|
||||
// Read the inputs in tmps
|
||||
for (auto& x : inputs) {
|
||||
int nc_in_count = 0;
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
auto& x = inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
if (is_constant(x)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
|
||||
auto type_str = get_type_string(x.dtype());
|
||||
os << " auto tmp_" << xname << " = static_cast<"
|
||||
<< get_type_string(x.dtype()) << ">(";
|
||||
print_constant(os, x);
|
||||
os << ";" << std::endl;
|
||||
os << ");" << std::endl;
|
||||
} else if (is_scalar(x)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[0];" << std::endl;
|
||||
@@ -124,17 +131,20 @@ inline void build_kernel(
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[index];" << std::endl;
|
||||
} else if (!dynamic_dims) {
|
||||
int offset = nc_in_count * ndim;
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[";
|
||||
os << "index_0 * " << xname << "_strides[0]";
|
||||
os << "index_0 * " << "in_strides[" << offset << "]";
|
||||
for (int i = 1; i < ndim; i++) {
|
||||
os << " + index_" << i << " * " << xname << "_strides[" << i << "]";
|
||||
os << " + index_" << i << " * " << "in_strides[" << offset + i << "]";
|
||||
}
|
||||
os << "];" << std::endl;
|
||||
nc_in_count++;
|
||||
} else {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[elem_to_loc(index, output_shape, " << xname
|
||||
<< "_strides, ndim)];" << std::endl;
|
||||
<< xname << "[elem_to_loc(index, output_shape, in_strides + "
|
||||
<< nc_in_count * ndim << ", ndim)];" << std::endl;
|
||||
nc_in_count++;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -190,7 +200,8 @@ void Compiled::eval_gpu(
|
||||
// If not we have to build it ourselves
|
||||
if (lib == nullptr) {
|
||||
std::ostringstream kernel;
|
||||
kernel << metal::get_kernel_preamble() << std::endl;
|
||||
kernel << metal::utils() << metal::unary_ops() << metal::binary_ops()
|
||||
<< metal::ternary_ops();
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_lib_ + "_contiguous",
|
||||
@@ -229,14 +240,7 @@ void Compiled::eval_gpu(
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& output_shape = outputs[0].shape();
|
||||
bool contiguous = true;
|
||||
for (auto& x : inputs) {
|
||||
if ((!x.flags().row_contiguous || x.shape() != output_shape) &&
|
||||
!is_scalar(x)) {
|
||||
contiguous = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
bool contiguous = compiled_check_contiguity(inputs, output_shape);
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
// handle all broadcasting.
|
||||
@@ -296,53 +300,38 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Put the inputs in
|
||||
int cnt = 0;
|
||||
int stride_idx = 1; // idx 0 is the output strides
|
||||
std::vector<size_t> in_strides;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
set_array_buffer(compute_encoder, x, cnt++);
|
||||
compute_encoder.set_input_array(x, cnt++);
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
compute_encoder->setBytes(
|
||||
strides[stride_idx].data(),
|
||||
strides[stride_idx].size() * sizeof(size_t),
|
||||
cnt++);
|
||||
in_strides.insert(
|
||||
in_strides.end(),
|
||||
strides[stride_idx].begin(),
|
||||
strides[stride_idx].end());
|
||||
stride_idx++;
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate space for the outputs possibly with input donation
|
||||
{
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
outputs[o].move_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
|
||||
}
|
||||
if (!in_strides.empty()) {
|
||||
compute_encoder->setBytes(
|
||||
in_strides.data(), in_strides.size() * sizeof(size_t), cnt++);
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous, true);
|
||||
|
||||
// Put the outputs in
|
||||
for (auto& x : outputs) {
|
||||
set_array_buffer(compute_encoder, x, cnt++);
|
||||
compute_encoder.set_output_array(x, cnt++);
|
||||
}
|
||||
|
||||
// Put the output shape and strides in
|
||||
@@ -363,7 +352,7 @@ void Compiled::eval_gpu(
|
||||
MTL::Size grid_dims(nthreads, 1, 1);
|
||||
MTL::Size group_dims(
|
||||
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
@@ -374,7 +363,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user