import math import unittest import mlx.core as mx import mlx_tests import numpy as np # SDPA for MHA (n_heads == n_kv_heads) def mlx_primitives_sdpa(q, k, v, scale, mask=None): p = (q * scale) @ k.transpose(0, 1, 3, 2) if mask is not None: if mask.dtype == mx.bool_: p = mx.where(mask, p, mx.finfo(mx.float32).min) else: p += mask scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype) return scores @ v # SDPA for GQA (n_heads > n_kv_heads, n_kv_heads > 1, n_heads % n_kv_heads == 0) def mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=None): n_repeats = q.shape[1] // k.shape[1] # borrowing kv cache tiling from mlx-examples/llms/mistral/mistral.py n_heads = q.shape[1] B = q.shape[0] L = k.shape[2] def repeat(a): a = mx.concatenate([mx.expand_dims(a, 2)] * n_repeats, axis=2) return a.reshape([B, n_heads, L, -1]) k, v = map(repeat, (k, v)) return mlx_primitives_sdpa(q, k, v, scale, mask=mask) class TestFastSelfAttentionSDPA(mlx_tests.MLXTestCase): def test_fast_sdpa(self): # Not yet supported: # * K pre-transposed in kernel, V pre-transposed in kernel np.random.seed(0) R = 20 L = R Dk = 64 H = 3 scale = float(1.0 / np.sqrt(Dk)) q_npy = np.random.normal(0.0, 1.0, (1, H, R, Dk)).astype(np.float32) k_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32) v_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32) q_mlx = mx.array(q_npy) k_mlx = mx.array(k_npy) v_mlx = mx.array(v_npy) reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale) o_mlx = mx.fast.scaled_dot_product_attention( q_mlx, k_mlx, v_mlx, scale=scale, mask=None ) self.assertListEqual(list(reference.shape), list(o_mlx.shape)) self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4)) dtypes = [np.float32] Dk = 64 if self.is_apple_silicon: dtypes.append(np.half) for SEQUENCE_LENGTH in [63, 129, 400]: for DTYPE in dtypes: B = 2 H = 24 n_kv_heads = H q_npy = np.random.normal(0.0, 1.0, (B, H, SEQUENCE_LENGTH, Dk)).astype( DTYPE ) k_npy = np.random.normal( 0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk) ).astype(DTYPE) v_npy = np.random.normal( 0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk) ).astype(DTYPE) q_mlx = mx.array(q_npy) k_mlx = mx.array(k_npy) v_mlx = mx.array(v_npy) reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale) o_mlx = mx.fast.scaled_dot_product_attention( q_mlx, k_mlx, v_mlx, scale=scale, memory_efficient_threshold=2 ) self.assertListEqual(list(reference.shape), list(o_mlx.shape)) rtol = 1e-3 atol = 1e-2 if SEQUENCE_LENGTH > 500: rtol = 1e-2 if DTYPE == np.half: rtol = 1e-2 self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol)) class TestFastSDPA(mlx_tests.MLXTestCase): def test_fast_sdpa(self): # Not yet supported: # * K pre-transposed in kernel, V pre-transposed in kernel np.random.seed(0) L = 43 R = 1 Dk = 128 scale = float(1.0 / np.sqrt(128.0)) q_npy = np.random.normal(0.0, 1.0, (1, 32, R, Dk)).astype(np.float32) k_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32) v_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32) q_mlx = mx.array(q_npy) k_mlx = mx.array(k_npy) v_mlx = mx.array(v_npy) reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale) o_mlx = mx.fast.scaled_dot_product_attention( q_mlx, k_mlx, v_mlx, scale=scale, mask=None ) self.assertListEqual(list(reference.shape), list(o_mlx.shape)) self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4)) B = 1 H = 32 dtypes = [np.float32] if self.is_apple_silicon: dtypes.append(np.half) for SEQUENCE_LENGTH in [1, 7, 9, 32, 63, 67, 129, 400, 2000]: for DO_GQA in [0, 1]: for DTYPE in dtypes: n_kv_heads = 8 if DO_GQA else 32 q_npy = np.random.normal(0.0, 1.0, (B, H, R, Dk)).astype(DTYPE) k_npy = np.random.normal( 0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk) ).astype(DTYPE) v_npy = np.random.normal( 0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk) ).astype(DTYPE) q_mlx = mx.array(q_npy) k_mlx = mx.array(k_npy) v_mlx = mx.array(v_npy) reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale) o_mlx = mx.fast.scaled_dot_product_attention( q_mlx, k_mlx, v_mlx, scale=scale ) self.assertListEqual(list(reference.shape), list(o_mlx.shape)) rtol = 1e-5 atol = 1e-1 if SEQUENCE_LENGTH > 500: rtol = 1e-2 if DTYPE == np.half: rtol = 1e-2 self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol)) q = mx.random.normal(shape=(1, 32, 1, Dk)) k = mx.random.normal(shape=(1, 32, 32, Dk)) v = mx.random.normal(shape=(1, 32, 128, Dk)) atol = 1e-6 y = mlx_primitives_sdpa(q, k, v[:, :, :32], scale) y_hat = mx.fast.scaled_dot_product_attention(q, k, v[:, :, :32], scale=scale) self.assertTrue(mx.allclose(y, y_hat, atol=atol)) # Test with per-example mask q = mx.random.normal(shape=(2, 8, 4, 32)) k = mx.random.normal(shape=(2, 2, 8, 32)) v = mx.random.normal(shape=(2, 2, 8, 32)) mask = 10 * mx.random.normal(shape=(2, 1, 4, 8)) y = mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=mask) y_hat = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask) self.assertTrue(mx.allclose(y, y_hat, atol=atol)) # Test with boolean causal mask indices = mx.arange(8) bool_mask = indices[:, None] >= indices[None] additive_mask = (~bool_mask).astype(mx.float32) * mx.finfo(mx.float32).min x = mx.random.normal(shape=(1, 2, 8, 32)) y = mlx_primitives_sdpa_with_gqa(x, x, x, scale, mask=additive_mask) y_hat = mx.fast.scaled_dot_product_attention( x, x, x, scale=scale, mask=bool_mask ) self.assertTrue(mx.allclose(y, y_hat, atol=atol)) def test_fast_sdpa_vector(self): D = 64 L = 43 Nq = 4 Nkv = 1 scale = 1.0 mx.random.seed(0) q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D)) k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D)) v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D)) with self.assertRaises(ValueError): mx.fast.scaled_dot_product_attention( q, k, v, scale=scale, mask=mx.full((Nq, 2, L), False), ) masks = [ mx.array(True), mx.array([True] * (L - 10) + [False] * 10), mx.random.uniform(shape=(Nq, 1, L)) > 0.2, mx.random.uniform(shape=(L, 1, Nq)).T > 0.2, ] for m in masks: ref = mlx_primitives_sdpa(q, k, v, scale, mask=m) out = mx.fast.scaled_dot_product_attention( q, k, v, scale=scale, mask=m, ) self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4)) L = 4096 scale = 1.0 mx.random.seed(0) q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D)) k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D)) v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D)) masks = [ mx.array(True), mx.array([True] * (L - 10) + [False] * 10), mx.random.uniform(shape=(Nq, 1, L)) > 0.2, mx.random.uniform(shape=(L, 1, Nq)).T > 0.2, ] for m in masks: ref = mlx_primitives_sdpa(q, k, v, scale, mask=m) out = mx.fast.scaled_dot_product_attention( q, k, v, scale=scale, mask=m, ) self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4)) @unittest.skip("Different head and value dims is not enabled") def test_fast_sdpa_vector_value_dims(self): D = 192 V = 128 Nq = 4 Nkv = 1 scale = 1.0 mx.random.seed(0) for L in [43, 128, 237, 8192]: q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D)) k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D)) v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, V)) ref = mlx_primitives_sdpa(q, k, v, scale) out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale) self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4)) if __name__ == "__main__": unittest.main(failfast=True)