import argparse import math import mlx.core as mx from time_utils import time_fn L = 16384 H = 32 H_k = H // 4 D = 128 dtype = mx.float16 loops = 10 def attention(q, k, v): def _sdpa(q, k, v): B, Hq, L, D = q.shape _, Hk, S, _ = k.shape q = q.reshape(B, Hk, Hq // Hk, L, D) k = k[:, :, None, :, :] v = v[:, :, None, :, :] s = q @ k.transpose(0, 1, 2, 4, 3) p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype) o = p @ v return o.reshape(B, Hq, L, D) for i in range(loops): q = _sdpa(q, k, v) return q def sdpa(q, k, v): for i in range(loops): q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0) return q def time_self_attention_primitives(): mx.random.seed(3) q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype) k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype) v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype) mx.eval(q, k, v) time_fn(attention, q, k, v) def time_self_attention_sdpa(): mx.random.seed(3) q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype) k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype) v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype) mx.eval(q, k, v) time_fn(sdpa, q, k, v) if __name__ == "__main__": time_self_attention_sdpa() time_self_attention_primitives()