# Copyright © 2024 Apple Inc. import argparse import math import os import subprocess import time import mlx.core as mx import numpy as np device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"]) device_name = device_name.decode("utf-8").strip("\n") N_warmup = 5 N_iter_bench = 40 N_iter_func = 8 def bench(f, *args): for i in range(N_warmup): f(*args) s = time.perf_counter_ns() for i in range(N_iter_bench): f(*args) e = time.perf_counter_ns() return (e - s) * 1e-9 def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype): np_dtype = getattr(np, dtype) shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D) shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D) scale = 1.0 / math.sqrt(D) q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype) k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype) v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype) q_mx = mx.array(q_np) k_mx = mx.array(k_np) v_mx = mx.array(v_np) if mask is not None: if mask == "additive": mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype) mask = mx.array(mask_np) elif mask == "bool": mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5 mask = mx.array(mask_np) return q_mx, k_mx, v_mx, scale, mask def mlx_ref_attn(q, k, v, scale=1.0, mask=None): q_dtype = q.dtype q = q * mx.array(scale, q_dtype) n_q_heads = q.shape[-3] n_kv_heads = k.shape[-3] n_repeats = n_q_heads // n_kv_heads B = q.shape[0] L = q.shape[2] kL = k.shape[2] if n_repeats > 1: q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1]) k = mx.expand_dims(k, 2) v = mx.expand_dims(v, 2) scores = q @ mx.swapaxes(k, -1, -2) if mask is not None: if mask == "causal": q_offset = max(0, kL - L) q_indices = mx.arange(q_offset, q_offset + L) k_indices = mx.arange(kL) mask = q_indices[:, None] >= k_indices[None] if n_repeats > 1 and mask.ndim >= 3: if mask.shape[-3] == 1: mask = mx.expand_dims(mask, -3) else: mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats)) if mask.dtype == mx.bool_: scores = mx.where(mask, scores, -np.float32(np.inf)) else: scores += mask scores = mx.softmax(scores, axis=-1, precise=True) out = scores @ v if n_repeats > 1: out = mx.reshape(out, [B, n_q_heads, L, -1]) return out def mlx_fused_attn(q, k, v, scale, mask): return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask) def do_attention(f, q, k, v, scale, mask=None, transpose=False): if transpose: q_t = mx.transpose(q, (0, 2, 1, 3)) k_t = mx.transpose(k, (0, 2, 1, 3)) v_t = mx.transpose(v, (0, 2, 1, 3)) o_t = f(q_t, k_t, v_t, scale=scale, mask=mask) return mx.transpose(o_t, (0, 2, 1, 3)) else: return f(q, k, v, scale=scale, mask=mask) def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False): q_out = q for i in range(N_iter_func): q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose) mx.eval(q_out) return q_out def bench_shape( B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None ): q_mx, k_mx, v_mx, scale, mask = prepare_inputs( B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype ) time_mlx_unfused = bench( do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose ) time_mlx_fused = bench( do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose ) o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose) o_mlx_unfused = do_attention( mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose ) atol = 1e-5 if dtype == "float32" else 2e-4 if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol): print( f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}" ) return time_mlx_fused, time_mlx_unfused def get_gflop_count(B, M, N, K): return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run gemm benchmarks") dtypes = ("float16", "float32")[:1] transposes = (False,) # fmt: off shapes_64 = ( # ( B, qsl, ksl, head_dim, n_qh, n_kvh) ( 1, 32, 32, 64, 32, 32), ( 1, 64, 64, 64, 32, 32), ( 1, 128, 128, 64, 32, 32), ( 1, 256, 256, 64, 32, 32), ( 1, 512, 512, 64, 32, 32), ( 1, 1024, 1024, 64, 32, 8), ( 1, 2048, 2048, 64, 32, 8), ( 1, 4096, 4096, 64, 32, 8), ) shapes_80 = ( # ( B, qsl, ksl, head_dim, n_qh, n_kvh) ( 1, 1024, 1024, 80, 32, 8), ( 1, 2048, 2048, 80, 32, 8), ( 1, 4096, 4096, 80, 32, 8), ) shapes_128 = ( # ( B, qsl, ksl, head_dim, n_qh, n_kvh) ( 1, 1024, 1024, 128, 32, 8), ( 1, 2048, 2048, 128, 32, 8), ( 1, 4096, 4096, 128, 32, 8), ) # fmt: on shapes = shapes_64 + shapes_80 + shapes_128 masks = [None, "bool", "causal"] print( " B, qsl, ksl, hdim, n_qh, n_kvh, t, dtype, mask, t_unfs, t_fuse, diff%" ) for dtype in dtypes: for transpose in transposes: for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes: for mask_in in masks: time_mlx_fused, time_mlx_unfused = bench_shape( B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose, mask_in, ) diff = time_mlx_unfused / time_mlx_fused - 1.0 t_str = 1 if transpose else 0 print( f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%" )