# Copyright © 2023-2024 Apple Inc. from functools import partial import mlx.core as mx import mlx.nn as nn from time_utils import time_fn def layer_norm(x, w, b, eps): ot = x.dtype x = x.astype(mx.float32) mu = mx.mean(x, -1, keepdims=True) v = mx.var(x, -1, keepdims=True) y = (x - mu) * mx.rsqrt(v + eps) if w is not None: y = y * w if b is not None: y = y + b return y def time_layer_norm(N, dt): L = 1024 f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum() f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum() g1 = mx.grad(f1, argnums=(0, 1, 2)) g2 = mx.grad(f2, argnums=(0, 1, 2)) x = mx.random.uniform(shape=(8, L, N)).astype(dt) w = mx.random.uniform(shape=(N,)).astype(dt) b = mx.random.uniform(shape=(N,)).astype(dt) y = mx.random.uniform(shape=(8, L, N)).astype(dt) mx.eval(x, w, b, y) def layer_norm_loop(f, x, w, b): for _ in range(32): x = f(x, w, b) return x time_fn(layer_norm_loop, partial(layer_norm, eps=1e-5), x, w, b) time_fn(layer_norm_loop, partial(mx.fast.layer_norm, eps=1e-5), x, w, b) def layer_norm_grad_loop(g, x, w, b): gx, gw, gb = x, w, b for _ in range(32): gx, gw, gb = g(gx, gw, gb, y) return gx, gw, gb time_fn(layer_norm_grad_loop, g1, x, w, b) time_fn(layer_norm_grad_loop, g2, x, w, b) time_fn(layer_norm_grad_loop, mx.compile(g1), x, w, b) time_fn(layer_norm_grad_loop, mx.compile(g2), x, w, b) f1 = lambda x, y: (layer_norm(x, None, None, 1e-5) * y).sum() f2 = lambda x, y: (mx.fast.layer_norm(x, None, None, 1e-5) * y).sum() g1 = mx.grad(f1, argnums=(0,)) g2 = mx.grad(f2, argnums=(0,)) x = mx.random.uniform(shape=(8, L, N)).astype(dt) w = mx.random.uniform(shape=(N,)).astype(dt) b = mx.random.uniform(shape=(N,)).astype(dt) y = mx.random.uniform(shape=(8, L, N)).astype(dt) mx.eval(x, w, b, y) def layer_norm_grad_x_loop(g, x): gx = x for _ in range(32): gx = g(gx, y) return gx time_fn(layer_norm_grad_x_loop, g1, x) time_fn(layer_norm_grad_x_loop, g2, x) time_fn(layer_norm_grad_x_loop, mx.compile(g1), x) time_fn(layer_norm_grad_x_loop, mx.compile(g2), x) if __name__ == "__main__": for dt in [mx.float32, mx.float16, mx.bfloat16]: for n in [1024, 2048, 4096, 8192, 8192 + 1024]: print(dt, n) time_layer_norm(n, dt)