// Copyright © 2023 Apple Inc. #include "mlx/mlx.h" #include "time_utils.h" namespace mx = mlx::core; void time_creation_ops() { int M = 2000; int N = 500; auto shape = {M, N}; auto full_fp32 = [&]() { return mx::full(shape, 3.3f); }; TIME(full_fp32); auto zeros_fp32 = [&]() { return mx::zeros(shape, mx::float32); }; TIME(zeros_fp32); auto ones_fp32 = [&]() { return mx::ones(shape, mx::float32); }; TIME(ones_fp32); auto arange_fp32 = [&]() { return mx::arange(0.0, 10.0, 1e-4); }; TIME(arange_fp32); } void time_type_conversions() { int M = 2000; int N = 500; auto shape = {M, N}; auto device = mx::default_device(); auto a = mx::zeros(shape, mx::float32); mx::eval(a); TIMEM("mx::float32 to mx::int32", mx::astype, a, mx::int32, device); TIMEM("mx::float32 to mx::uint32", mx::astype, a, mx::uint32, device); a = mx::zeros(shape, mx::int32); mx::eval(a); TIMEM("mx::int32 to mx::float32", mx::astype, a, mx::float32, device); a = mx::zeros(shape, mx::bool_); mx::eval(a); TIMEM("bool to mx::float32", mx::astype, a, mx::float32, device); TIMEM("bool to mx::int32", mx::astype, a, mx::int32, device); TIMEM("bool to mx::uint32", mx::astype, a, mx::uint32, device); } void time_random_generation() { int M = 2000; int N = 500; auto uniform = [&]() { return mx::random::uniform({M, N}, mx::float32); }; TIME(uniform); auto normal = [&]() { return mx::random::normal({M, N}, mx::float32); }; TIME(normal); } void time_unary_ops() { int M = 2000; int N = 500; auto device = mx::default_device(); auto a = mx::random::normal({M, N}); mx::eval(a); TIME(mlx::core::abs, a, device); TIME(mx::negative, a, device); TIME(mx::sign, a, device); TIME(mx::square, a, device); TIME(mlx::core::sqrt, a, device); TIME(mx::rsqrt, a, device); TIME(mlx::core::exp, a, device); a = mx::random::uniform({M, N}); TIME(mlx::core::log, a, device); } void time_binary_ops() { int M = 1000, N = 100, K = 10; auto condition = mx::random::randint(0, 2, {M, N, K}); auto a = mx::random::uniform({M, N, K}); auto b = mx::random::uniform({M, N, K}); auto device = mx::default_device(); mx::eval(a, b); TIME(mx::add, a, b, device); TIME(mx::subtract, a, b, device); TIME(mx::multiply, a, b, device); TIME(mx::divide, a, b, device); TIME(mx::maximum, a, b, device); TIME(mx::minimum, a, b, device); TIME(mx::where, condition, a, b, device); condition = mx::array({true}); b = mx::random::uniform({1}); mx::eval(b); TIMEM("scalar", mx::add, a, b, device); TIMEM("vector-scalar", mx::subtract, a, b, device); TIMEM("scalar-vector", mx::subtract, b, a, device); TIMEM("scalar", mx::multiply, a, b, device); TIMEM("vector-scalar", mx::divide, a, b, device); TIMEM("scalar-vector", mx::divide, b, a, device); TIMEM("scalar-vector", mx::where, condition, a, b, device); condition = mx::broadcast_to(mx::array({true}), {1000, 100}); a = mx::broadcast_to(mx::random::uniform({1}), {1000, 100}); b = mx::broadcast_to(mx::random::uniform({1}), {1000, 100}); mx::eval(a, b); TIMEM("scalar-scalar broadcast", mx::add, a, b, device); TIMEM("scalar-scalar broadcast", mx::subtract, a, b, device); TIMEM("scalar-scalar broadcast", mx::multiply, a, b, device); TIMEM("scalar-scalar broadcast", mx::divide, a, b, device); TIMEM("scalar-scalar broadcast", mx::where, condition, a, b, device); } void time_strided_ops() { int M = 50, N = 50, O = 50, P = 50; auto a = mx::random::uniform({M, N, O, P}); auto b = mx::random::uniform({M, N, O, P}); auto device = mx::default_device(); mx::eval(a, b); TIMEM("non-strided", mx::add, a, b, device); a = mx::transpose(a, {1, 0, 2, 3}); b = mx::transpose(b, {3, 2, 0, 1}); mx::eval(a, b); TIMEM("strided", mx::add, a, b, device); } void time_comparisons() { int M = 1000, N = 100, K = 10; auto a = mx::random::uniform({M, N, K}); auto b = mx::random::uniform({M, N, K}); auto device = mx::default_device(); mx::eval(a, b); TIME(mx::equal, a, b, device); TIME(mx::greater, a, b, device); TIME(mx::greater_equal, a, b, device); TIME(mx::less, a, b, device); TIME(mx::less_equal, a, b, device); } void time_matvec() { int M = 2000, N = 200; auto a = mx::random::uniform({M, N}); auto b = mx::random::uniform({N}); auto c = mx::random::uniform({M}); mx::eval(a, b, c); auto matvec = [&]() { return mx::matmul(a, b); }; TIME(matvec); auto matvec_transpose = [&]() { return mx::matmul(mx::transpose(a), c); }; TIME(matvec_transpose); } void time_matmul() { int M = 1000, N = 1000, K = 1000; auto a = mx::random::uniform({M, K}); auto b = mx::random::uniform({K, N}); auto device = mx::default_device(); mx::eval(a, b); TIME(mx::matmul, a, b, device); auto transpose_matmul = [&]() { return mx::matmul(mx::transpose(a), b); }; TIME(transpose_matmul); } void time_reductions() { auto a = mx::random::normal({10000, 1000}); mx::eval(a); auto sum_all = [&a]() { return mx::sum(a, false); }; TIME(sum_all); auto sum_along_0 = [&a]() { return mx::sum(a, 0, false); }; TIME(sum_along_0); auto sum_along_1 = [&a]() { return mx::sum(a, 1, false); }; TIME(sum_along_1); auto prod_all = [&a]() { return mx::prod(a, false); }; TIME(prod_all); auto all_true = [&a]() { return mx::all(a, false); }; TIME(all_true); auto all_along_0 = [&a]() { return mx::all(a, 0, false); }; TIME(all_along_0); auto all_along_1 = [&a]() { return mx::all(a, 1, false); }; TIME(all_along_1); auto any_true = [&a]() { return mx::any(a, false); }; TIME(any_true); auto argmin_along_0 = [&a]() { return mx::argmin(a, 0, false); }; TIME(argmin_along_0); auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); }; TIME(argmin_along_1); } void time_gather_scatter() { auto a = mx::random::normal({1000, 768}); mx::eval(a); auto indices = mx::random::randint(0, 1000, {256}); mx::eval(indices); auto embedding_lookup = [&a, &indices]() { return mx::take(a, indices, 0); }; TIME(embedding_lookup); indices = mx::random::randint(0, 768 * 1000, {256 * 768}); mx::eval(indices); auto single_element_lookup = [&a, &indices]() { return mx::take(a, indices); }; TIME(single_element_lookup); indices = mx::random::randint(0, 1000, {256}); auto updates = mx::random::normal({256, 1, 768}); mx::eval(indices, updates); auto embedding_update = [&a, &indices, &updates]() { return scatter(a, indices, updates, 0); }; TIME(embedding_update); auto embedding_add = [&a, &indices, &updates]() { return scatter_add(a, indices, updates, 0); }; TIME(embedding_add); a = mx::reshape(a, {-1}); indices = mx::random::randint(0, 768 * 1000, {768 * 256}); updates = mx::random::normal({256 * 768, 1}); mx::eval(a, indices, updates); auto single_element_update = [&a, &indices, &updates]() { return scatter(a, indices, updates, 0); }; TIME(single_element_update); auto single_element_add = [&a, &indices, &updates]() { return scatter_add(a, indices, updates, 0); }; TIME(single_element_add); } void time_divmod() { auto a = mx::random::normal({1000}); auto b = mx::random::normal({1000}); mx::eval({a, b}); auto divmod_fused = [&a, &b]() { return mx::divmod(a, b); }; TIME(divmod_fused); auto divmod_separate = [&a, &b]() { return std::vector{mx::floor_divide(a, b), mx::remainder(a, b)}; }; TIME(divmod_separate); } int main() { std::cout << "Benchmarks for " << mx::default_device() << std::endl; time_creation_ops(); time_type_conversions(); time_unary_ops(); time_binary_ops(); time_strided_ops(); time_random_generation(); time_comparisons(); time_matvec(); time_matmul(); time_reductions(); time_gather_scatter(); time_divmod(); }