// Copyright © 2024 Apple Inc. #include "mlx/backend/common/binary.h" #include "mlx/backend/metal/device.h" #include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/utils.h" #include "mlx/primitives.h" #define BINARY_GPU(func) \ void func::eval_gpu(const std::vector& inputs, array& out) { \ binary_op_gpu(inputs, out, get_primitive_string(this)); \ } #define BINARY_GPU_MULTI(func) \ void func::eval_gpu( \ const std::vector& inputs, std::vector& outputs) { \ binary_op_gpu(inputs, outputs, get_primitive_string(this)); \ } namespace mlx::core { std::string get_kernel_name( BinaryOpType bopt, const std::string& op, const array& a, bool large, int ndim, int work_per_thread) { std::string kname; switch (bopt) { case BinaryOpType::ScalarScalar: kname = "ss"; break; case BinaryOpType::ScalarVector: kname = (large ? "sv2" : "sv"); break; case BinaryOpType::VectorScalar: kname = (large ? "vs2" : "vs"); break; case BinaryOpType::VectorVector: kname = (large ? "vv2" : "vv"); break; case BinaryOpType::General: kname = "g"; if (ndim <= 3) { kname += std::to_string(ndim); } else { concatenate(kname, "n", std::to_string(work_per_thread)); } if (large) { kname += "large"; } break; } concatenate(kname, "_", op, type_to_name(a)); return kname; } void binary_op_gpu_inplace( const std::vector& inputs, std::vector& outputs, const std::string& op, const Stream& s) { auto& a = inputs[0]; auto& b = inputs[1]; auto bopt = get_binary_op_type(a, b); auto& out = outputs[0]; if (out.size() == 0) { return; } // Try to collapse contiguous dims auto maybe_collapse = [bopt, &a, &b, &out]() { if (bopt == BinaryOpType::General) { auto [shape, strides] = collapse_contiguous_dims(a, b, out); return std::make_tuple(shape, strides[0], strides[1], strides[2]); } else { std::vector e; return std::make_tuple(std::vector{}, e, e, e); } }; auto [shape, strides_a, strides_b, strides_out] = maybe_collapse(); bool large = out.data_size() > UINT32_MAX; auto ndim = shape.size(); int work_per_thread; if (bopt == BinaryOpType::General) { large |= (a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX); work_per_thread = large ? 4 : 2; } else { work_per_thread = 1; } std::string kernel_name = get_kernel_name(bopt, op, a, large, shape.size(), work_per_thread); auto& d = metal::device(s.device); auto kernel = outputs.size() == 2 ? get_binary_two_kernel(d, kernel_name, a.dtype(), out.dtype(), op) : get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op); auto& compute_encoder = d.get_command_encoder(s.index); compute_encoder.set_compute_pipeline_state(kernel); // - If a is donated it goes to the first output // - If b is donated it goes to the first output if a was not donated // otherwise it goes to the second output. // - If there is only one output only one of a and b will be donated. bool donate_a = a.data_shared_ptr() == nullptr; bool donate_b = b.data_shared_ptr() == nullptr; int arg_idx = 0; compute_encoder.set_input_array(donate_a ? outputs[0] : a, arg_idx++); compute_encoder.set_input_array( donate_b ? (donate_a ? outputs[1] : outputs[0]) : b, arg_idx++); compute_encoder.set_output_array(outputs[0], arg_idx++); if (outputs.size() == 2) { compute_encoder.set_output_array(outputs[1], arg_idx++); } auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup(); if (bopt == BinaryOpType::General) { // Launch up to 3D grid of threads size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1; size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1; size_t rest = out.size() / (dim0 * dim1); if (ndim > 3) { compute_encoder.set_vector_bytes(shape, arg_idx++); compute_encoder.set_vector_bytes(strides_a, arg_idx++); compute_encoder.set_vector_bytes(strides_b, arg_idx++); compute_encoder.set_bytes(ndim, arg_idx++); dim0 = (dim0 + work_per_thread - 1) / work_per_thread; } else { // The shape is implicit in the grid for <= 3D compute_encoder.set_vector_bytes(strides_a, arg_idx++); compute_encoder.set_vector_bytes(strides_b, arg_idx++); } if (thread_group_size != 1024) { throw std::runtime_error("[Metal::binary] Must use 1024 sized block"); } auto group_dims = get_block_dims(dim0, dim1, rest); MTL::Size grid_dims = MTL::Size(dim0, dim1, rest); compute_encoder.dispatch_threads(grid_dims, group_dims); } else { // Launch a 1D or 2D grid of threads size_t nthreads = out.data_size(); if (thread_group_size > nthreads) { thread_group_size = nthreads; } MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1); MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides()) : MTL::Size(nthreads, 1, 1); compute_encoder.dispatch_threads(grid_dims, group_dims); } } void binary_op_gpu( const std::vector& inputs, std::vector& outputs, const std::string& op, const Stream& s) { assert(inputs.size() == 2); auto& a = inputs[0]; auto& b = inputs[1]; auto bopt = get_binary_op_type(a, b); set_binary_op_output_data(a, b, outputs[0], bopt, true); set_binary_op_output_data(a, b, outputs[1], bopt, true); binary_op_gpu_inplace(inputs, outputs, op, s); } void binary_op_gpu( const std::vector& inputs, std::vector& outputs, const std::string& op) { auto& s = outputs[0].primitive().stream(); binary_op_gpu(inputs, outputs, op, s); } void binary_op_gpu_inplace( const std::vector& inputs, array& out, const std::string& op, const Stream& s) { std::vector outputs = {out}; binary_op_gpu_inplace(inputs, outputs, op, s); } void binary_op_gpu( const std::vector& inputs, array& out, const std::string& op, const Stream& s) { assert(inputs.size() == 2); auto& a = inputs[0]; auto& b = inputs[1]; auto bopt = get_binary_op_type(a, b); set_binary_op_output_data(a, b, out, bopt, true); binary_op_gpu_inplace(inputs, out, op, s); } void binary_op_gpu( const std::vector& inputs, array& out, const std::string& op) { auto& s = out.primitive().stream(); binary_op_gpu(inputs, out, op, s); } BINARY_GPU(Add) BINARY_GPU(ArcTan2) BINARY_GPU(Divide) BINARY_GPU_MULTI(DivMod) BINARY_GPU(Remainder) BINARY_GPU(Equal) BINARY_GPU(Greater) BINARY_GPU(GreaterEqual) BINARY_GPU(Less) BINARY_GPU(LessEqual) BINARY_GPU(LogicalAnd) BINARY_GPU(LogicalOr) BINARY_GPU(LogAddExp) BINARY_GPU(Maximum) BINARY_GPU(Minimum) BINARY_GPU(Multiply) BINARY_GPU(NotEqual) BINARY_GPU(Power) BINARY_GPU(Subtract) void BitwiseBinary::eval_gpu(const std::vector& inputs, array& out) { switch (op_) { case BitwiseBinary::And: binary_op_gpu(inputs, out, get_primitive_string(this)); break; case BitwiseBinary::Or: binary_op_gpu(inputs, out, get_primitive_string(this)); break; case BitwiseBinary::Xor: binary_op_gpu(inputs, out, get_primitive_string(this)); break; case BitwiseBinary::LeftShift: binary_op_gpu(inputs, out, get_primitive_string(this)); break; case BitwiseBinary::RightShift: binary_op_gpu(inputs, out, get_primitive_string(this)); break; } } } // namespace mlx::core