Custom Metal Kernels#
MLX supports writing custom Metal kernels through the Python and C++ APIs.
Simple Example#
Let’s write a custom kernel that computes exp elementwise:
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp",
source=source,
)
outputs = kernel(
inputs={"inp": a},
template={"T": mx.float32},
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes={"out": a.shape},
output_dtypes={"out": a.dtype},
)
return outputs["out"]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))
Note
We are only required to pass the body of the Metal kernel in source.
The full function signature will be generated using:
- The keys and shapes/dtypes of
inputs In the above,
ais anmx.arrayof typemx.float16and we pass it with the keyinpso we will addconst device float16_t* inpto the signature.inp_shape,inp_stridesandinp_ndimare also added for convenience.
- The keys and shapes/dtypes of
- The keys and values of
output_shapesandoutput_dtypes In the above,
outis anmx.arrayof typemx.float16so we adddevice float16_t* out.
- The keys and values of
- Template parameters passed using
template In the above,
template={"T": mx.float32}adds a template oftemplate <typename T>to the function and instantiates the template withcustom_kernel_myexp_float<float>. Template parameters can bemx.core.Dtype,intorbool.
- Template parameters passed using
- Metal attributes used in
sourcesuch as[[thread_position_in_grid]] These will be added as function arguments. All the attributes defined in Table 5.8 of the Metal Shading Language Specification are supported.
- Metal attributes used in
Putting this all together, the generated function signature for myexp is as follows:
template <typename T>
[[kernel]] void custom_kernel_myexp_float(
const device float16_t* inp [[buffer(0)]],
device float16_t* out [[buffer(1)]],
uint3 thread_position_in_grid [[thread_position_in_grid]]) {
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
}
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
You can print the generated code for a mx.fast.metal_kernel by passing verbose=True when you call it.
Using Shape/Strides#
mx.fast.metal_kernel supports an argument ensure_row_contiguous which is True by default.
This will copy the mx.array inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
Generally this makes writing the kernel easier, since we don’t have to worry about gaps or the ordering of the dims
when indexing.
If we want to avoid this copy, metal_kernel automatically passes a_shape, a_strides and a_ndim for each
input array a if any are present in source.
We can then use MLX’s built in indexing utils to fetch the right elements for each thread.
Let’s convert myexp above to support arbitrarily strided arrays without relying on a copy from ensure_row_contiguous:
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
source=source
)
outputs = kernel(
inputs={"inp": a},
template={"T": mx.float32},
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes={"out": a.shape},
output_dtypes={"out": a.dtype},
ensure_row_contiguous=False,
)
return outputs["out"]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
# make non-contiguous
a = a[::2]
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))