# Copyright © 2023 Apple Inc. import unittest import mlx.core as mx import mlx.nn as nn import mlx_tests import numpy as np class TestLosses(mlx_tests.MLXTestCase): def test_cross_entropy(self): logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) targets = mx.array([0, 1]) # Test with reduction 'none' losses_none = nn.losses.cross_entropy(logits, targets, reduction="none") expected_none = mx.array([0.0, 0.0]) self.assertTrue(mx.array_equal(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean") expected_mean = mx.mean(expected_none) self.assertEqual(losses_mean, expected_mean) # Test with reduction 'sum' losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum") expected_sum = mx.sum(expected_none) self.assertEqual(losses_sum, expected_sum) # Test cases with weights and no label smoothing logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) targets = mx.array([0, 1]) weights = mx.array([1.0, 2.0]) # Reduction 'none' losses_none = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="none", ) expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses self.assertTrue( np.allclose(losses_none, expected_none, atol=1e-5), "Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]", ) # Reduction 'mean' losses_mean = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="mean", ) expected_mean = mx.mean(expected_none) self.assertTrue( np.allclose(losses_mean, expected_mean, atol=1e-5), "Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]", ) # Reduction 'sum' losses_sum = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="sum", ) expected_sum = mx.sum(expected_none) self.assertTrue( np.allclose(losses_sum, expected_sum, atol=1e-5), "Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]", ) # Test case with equal weights and label smoothing > 0 logits = mx.array( [[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]] ) target = mx.array([2, 1, 0]) losses_none = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="none" ) expected_none = mx.array([1.29693, 1.38617, 1.48176]) self.assertTrue( mx.allclose(expected_none, losses_none), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'", ) expected_mean = mx.mean(expected_none) losses_mean = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="mean" ) self.assertTrue( mx.allclose(losses_mean, expected_mean), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'", ) expected_sum = mx.sum(expected_none) losses_sum = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="sum" ) self.assertTrue( mx.allclose(losses_sum, expected_sum), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'", ) def test_l1_loss(self): predictions = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.5, 0.2, 0.9, 0.0]) # Expected result expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32) expected_sum = mx.sum(expected_none) expected_mean = mx.mean(expected_none) losses = nn.losses.l1_loss(predictions, targets, reduction="none") self.assertTrue( mx.array_equal(losses, expected_none), "Test failed for l1_loss --reduction='none'", ) losses = nn.losses.l1_loss(predictions, targets, reduction="sum") self.assertTrue(mx.array_equal(losses, expected_sum)) losses = nn.losses.l1_loss(predictions, targets, reduction="mean") self.assertTrue(mx.array_equal(losses, expected_mean)) def test_mse_loss(self): predictions = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.7, 0.1, 0.8, 0.2]) expected_none = mx.array([0.04, 0.01, 0.01, 0.04]) expected_mean = mx.mean(expected_none) expected_sum = mx.sum(expected_none) # Test with reduction 'none' losses_none = nn.losses.mse_loss(predictions, targets, reduction="none") self.assertTrue( np.allclose(losses_none, expected_none, 1e-5), "Test case failed for mse_loss --reduction='none'", ) # Test with reduction 'mean' losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean") self.assertEqual( losses_mean, expected_mean, "Test case failed for mse_loss --reduction='mean'", ) # Test with reduction 'sum' losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum") self.assertEqual( losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'" ) def test_smooth_l1_loss(self): predictions = mx.array([1.5, 2.5, 0.5, 3.5]) targets = mx.array([1.0, 2.0, 0.5, 2.5]) beta = 1.0 # Expected results expected_none = mx.array([0.125, 0.125, 0.0, 0.5]) expected_sum = mx.sum(expected_none) expected_mean = mx.mean(expected_none) # Test with reduction 'none' loss_none = nn.losses.smooth_l1_loss( predictions, targets, beta, reduction="none" ) self.assertTrue( mx.array_equal(loss_none, expected_none), "Test case failed for smooth_l1_loss --reduction='none'", ) # Test with reduction 'sum' loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum") self.assertEqual( loss_sum, expected_sum, "Test case failed for smooth_l1_loss --reduction='sum'", ) # Test with reduction 'mean' loss_mean = nn.losses.smooth_l1_loss( predictions, targets, beta, reduction="mean" ) self.assertEqual( loss_mean, expected_mean, "Test case failed for smooth_l1_loss --reduction='mean'", ) def test_nll_loss(self): logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) targets = mx.array([0, 1]) # Test with reduction 'none' losses_none = nn.losses.nll_loss(logits, targets, reduction="none") expected_none = mx.array([0.0, 0.0]) self.assertTrue(mx.array_equal(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean") expected_mean = mx.mean(expected_none) self.assertEqual(losses_mean, expected_mean) # Test with reduction 'sum' losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum") expected_sum = mx.sum(expected_none) self.assertEqual(losses_sum, expected_sum) def test_kl_div_loss(self): p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]])) q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]])) # Test with reduction 'none' losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none") expected_none = mx.array([0.0, 0.831777]) self.assertTrue(mx.allclose(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean") expected_mean = mx.mean(expected_none) self.assertTrue(mx.allclose(losses_mean, expected_mean)) # Test with reduction 'sum' losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum") expected_sum = mx.sum(expected_none) self.assertTrue(mx.allclose(losses_sum, expected_sum)) def test_triplet_loss(self): anchors = mx.array([[1, 2, 3], [1, 2, 3]]) positives = mx.array([[4, 5, 6], [0, -1, 2]]) negatives = mx.array([[7, 8, 9], [3, 2, 3]]) # Test with reduction 'none' losses_none = nn.losses.triplet_loss( anchors, positives, negatives, reduction="none" ) expected_none = mx.array([0, 2.31662]) self.assertTrue(mx.allclose(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.triplet_loss( anchors, positives, negatives, reduction="mean" ) expected_mean = mx.mean(expected_none) self.assertTrue(mx.allclose(losses_mean, expected_mean)) # Test with reduction 'sum' losses_sum = nn.losses.triplet_loss( anchors, positives, negatives, reduction="sum" ) expected_sum = mx.sum(expected_none) self.assertTrue(mx.allclose(losses_sum, expected_sum)) def test_hinge_loss(self): inputs = mx.ones((2, 4)) targets = mx.zeros((2, 4)) loss = nn.losses.hinge_loss(inputs, targets, reduction="mean") self.assertEqual(loss, 1.0) def test_huber_loss(self): inputs = mx.ones((2, 4)) targets = mx.zeros((2, 4)) loss = nn.losses.huber_loss(inputs, targets, reduction="mean") self.assertEqual(loss, 0.5) def test_log_cosh_loss(self): inputs = mx.ones((2, 4)) targets = mx.zeros((2, 4)) loss = nn.losses.log_cosh_loss(inputs, targets, reduction="mean") self.assertAlmostEqual(loss.item(), 0.433781, places=6) if __name__ == "__main__": unittest.main()