# Copyright © 2023 Apple Inc. import math import unittest import mlx.core as mx import mlx_tests class TestRandom(mlx_tests.MLXTestCase): def test_global_rng(self): mx.random.seed(3) a = mx.random.uniform() b = mx.random.uniform() mx.random.seed(3) x = mx.random.uniform() y = mx.random.uniform() self.assertEqual(a.item(), x.item()) self.assertEqual(y.item(), b.item()) def test_key(self): k1 = mx.random.key(0) k2 = mx.random.key(0) self.assertTrue(mx.array_equal(k1, k2)) k2 = mx.random.key(1) self.assertFalse(mx.array_equal(k1, k2)) def test_key_split(self): key = mx.random.key(0) k1, k2 = mx.random.split(key) self.assertFalse(mx.array_equal(k1, k2)) r1, r2 = mx.random.split(key) self.assertTrue(mx.array_equal(k1, r1)) self.assertTrue(mx.array_equal(k2, r2)) keys = mx.random.split(key, 10) self.assertEqual(keys.shape, (10, 2)) def test_uniform(self): key = mx.random.key(0) a = mx.random.uniform(key=key) self.assertEqual(a.shape, ()) self.assertEqual(a.dtype, mx.float32) b = mx.random.uniform(key=key) self.assertEqual(a.item(), b.item()) a = mx.random.uniform(shape=(2, 3)) self.assertEqual(a.shape, (2, 3)) a = mx.random.uniform(shape=(1000,), low=-1, high=5) self.assertTrue(mx.all((a > -1) < 5).item()) a = mx.random.uniform(shape=(1000,), low=mx.array(-1), high=5) self.assertTrue(mx.all((a > -1) < 5).item()) a = mx.random.uniform(low=-0.1, high=0.1, shape=(1,), dtype=mx.bfloat16) self.assertEqual(a.dtype, mx.bfloat16) self.assertEqual(mx.random.uniform().dtype, mx.random.uniform(dtype=None).dtype) def test_normal_and_laplace(self): # Same tests for normal and laplace. for distribution_sampler in [mx.random.normal, mx.random.laplace]: key = mx.random.key(0) a = distribution_sampler(key=key) self.assertEqual(a.shape, ()) self.assertEqual(a.dtype, mx.float32) b = distribution_sampler(key=key) self.assertEqual(a.item(), b.item()) a = distribution_sampler(shape=(2, 3)) self.assertEqual(a.shape, (2, 3)) ## Generate in float16 or bfloat16 for t in [mx.float16, mx.bfloat16]: a = distribution_sampler(dtype=t) self.assertEqual(a.dtype, t) # Generate with a given mean and standard deviation loc = 1.0 scale = 2.0 a = distribution_sampler(shape=(3, 2), loc=loc, scale=scale, key=key) b = scale * distribution_sampler(shape=(3, 2), key=key) + loc self.assertTrue(mx.allclose(a, b)) a = distribution_sampler( shape=(3, 2), loc=loc, scale=scale, dtype=mx.float16, key=key ) b = ( scale * distribution_sampler(shape=(3, 2), dtype=mx.float16, key=key) + loc ) self.assertTrue(mx.allclose(a, b)) self.assertEqual( distribution_sampler().dtype, distribution_sampler(dtype=None).dtype ) # Test not getting -inf or inf with half precison for hp in [mx.float16, mx.bfloat16]: a = abs(distribution_sampler(shape=(10000,), loc=0, scale=1, dtype=hp)) self.assertTrue(mx.all(a < mx.inf)) def test_multivariate_normal(self): key = mx.random.key(0) mean = mx.array([0, 0]) cov = mx.array([[1, 0], [0, 1]]) a = mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu) self.assertEqual(a.shape, (2,)) ## Check dtypes for t in [mx.float32]: a = mx.random.multivariate_normal( mean, cov, dtype=t, key=key, stream=mx.cpu ) self.assertEqual(a.dtype, t) for t in [ mx.int8, mx.int32, mx.int64, mx.uint8, mx.uint32, mx.uint64, mx.float16, mx.bfloat16, ]: with self.assertRaises(ValueError): mx.random.multivariate_normal( mean, cov, dtype=t, key=key, stream=mx.cpu ) ## Check incompatible shapes with self.assertRaises(ValueError): mean = mx.zeros((2, 2)) cov = mx.zeros((2, 2)) mx.random.multivariate_normal(mean, cov, shape=(3,), key=key, stream=mx.cpu) with self.assertRaises(ValueError): mean = mx.zeros((2)) cov = mx.zeros((2, 2, 2)) mx.random.multivariate_normal(mean, cov, shape=(3,), key=key, stream=mx.cpu) with self.assertRaises(ValueError): mean = mx.zeros((3,)) cov = mx.zeros((2, 2)) mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu) with self.assertRaises(ValueError): mean = mx.zeros((2,)) cov = mx.zeros((2, 3)) mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu) ## Different shape of mean and cov mean = mx.array([[0, 7], [1, 2], [3, 4]]) cov = mx.array([[1, 0.5], [0.5, 1]]) a = mx.random.multivariate_normal(mean, cov, shape=(4, 3), stream=mx.cpu) self.assertEqual(a.shape, (4, 3, 2)) ## Check correcteness of the mean and covariance n_test = int(1e5) def check_jointly_gaussian(data, mean, cov): empirical_mean = mx.mean(data, axis=0) empirical_cov = ( (data - empirical_mean).T @ (data - empirical_mean) / data.shape[0] ) N = data.shape[1] self.assertTrue( mx.allclose( empirical_mean, mean, rtol=0.0, atol=10 * N**2 / math.sqrt(n_test) ) ) self.assertTrue( mx.allclose( empirical_cov, cov, rtol=0.0, atol=10 * N**2 / math.sqrt(n_test) ) ) mean = mx.array([4.0, 7.0]) cov = mx.array([[2, 0.5], [0.5, 1]]) data = mx.random.multivariate_normal( mean, cov, shape=(n_test,), key=key, stream=mx.cpu ) check_jointly_gaussian(data, mean, cov) mean = mx.arange(3) cov = mx.array([[1, -1, 0.5], [-1, 1, -0.5], [0.5, -0.5, 1]]) data = mx.random.multivariate_normal( mean, cov, shape=(n_test,), key=key, stream=mx.cpu ) check_jointly_gaussian(data, mean, cov) def test_randint(self): a = mx.random.randint(0, 1, []) self.assertEqual(a.shape, ()) self.assertEqual(a.dtype, mx.int32) shape = (88,) low = mx.array(3) high = mx.array(15) key = mx.random.key(0) a = mx.random.randint(low, high, shape, key=key) self.assertEqual(a.shape, shape) self.assertEqual(a.dtype, mx.int32) # Check using the same key yields the same value b = mx.random.randint(low, high, shape, key=key) self.assertListEqual(a.tolist(), b.tolist()) shape = (3, 4) low = mx.reshape(mx.array([0] * 3), [3, 1]) high = mx.reshape(mx.array([12, 13, 14, 15]), [1, 4]) a = mx.random.randint(low, high, shape) self.assertEqual(a.shape, shape) a = mx.random.randint(-10, 10, [1000, 1000]) self.assertTrue(mx.all(-10 <= a).item() and mx.all(a < 10).item()) a = mx.random.randint(10, -10, [1000, 1000]) self.assertTrue(mx.all(a == 10).item()) self.assertEqual( mx.random.randint(0, 1).dtype, mx.random.randint(0, 1, dtype=None).dtype ) def test_bernoulli(self): a = mx.random.bernoulli() self.assertEqual(a.shape, ()) self.assertEqual(a.dtype, mx.bool_) a = mx.random.bernoulli(mx.array(0.5), [5]) self.assertEqual(a.shape, (5,)) a = mx.random.bernoulli(mx.array([2.0, -2.0])) self.assertEqual(a.tolist(), [True, False]) self.assertEqual(a.shape, (2,)) p = mx.array([0.1, 0.2, 0.3]) mx.reshape(p, [1, 3]) x = mx.random.bernoulli(p, [4, 3]) self.assertEqual(x.shape, (4, 3)) with self.assertRaises(ValueError): mx.random.bernoulli(p, [2]) # Bad shape with self.assertRaises(ValueError): mx.random.bernoulli(0, [2]) # Bad type def test_truncated_normal(self): a = mx.random.truncated_normal(-2.0, 2.0) self.assertEqual(a.size, 1) self.assertEqual(a.dtype, mx.float32) a = mx.random.truncated_normal(mx.array([]), mx.array([])) self.assertEqual(a.dtype, mx.float32) self.assertEqual(a.size, 0) lower = mx.reshape(mx.array([-2.0, 0.0]), [1, 2]) upper = mx.reshape(mx.array([0.0, 1.0, 2.0]), [3, 1]) a = mx.random.truncated_normal(lower, upper) self.assertEqual(a.shape, (3, 2)) self.assertTrue(mx.all(lower <= a).item() and mx.all(a <= upper).item()) a = mx.random.truncated_normal(2.0, -2.0) self.assertTrue(mx.all(a == 2.0).item()) a = mx.random.truncated_normal(-3.0, 3.0, [542, 399]) self.assertEqual(a.shape, (542, 399)) lower = mx.array([-2.0, -1.0]) higher = mx.array([1.0, 2.0, 3.0]) with self.assertRaises(ValueError): mx.random.truncated_normal(lower, higher) # Bad shape self.assertEqual( mx.random.truncated_normal(0, 1).dtype, mx.random.truncated_normal(0, 1, dtype=None).dtype, ) def test_gumbel(self): samples = mx.random.gumbel(shape=(100, 100)) self.assertEqual(samples.shape, (100, 100)) self.assertEqual(samples.dtype, mx.float32) mean = 0.5772 # Std deviation of the sample mean is small (<0.02), # so this test is pretty conservative self.assertTrue(mx.abs(mx.mean(samples) - mean) < 0.2) self.assertEqual( mx.random.gumbel((1, 1)).dtype, mx.random.gumbel((1, 1), dtype=None).dtype ) def test_categorical(self): logits = mx.zeros((10, 20)) self.assertEqual(mx.random.categorical(logits, -1).shape, (10,)) self.assertEqual(mx.random.categorical(logits, 0).shape, (20,)) self.assertEqual(mx.random.categorical(logits, 1).shape, (10,)) out = mx.random.categorical(logits) self.assertEqual(out.shape, (10,)) self.assertEqual(out.dtype, mx.uint32) self.assertTrue(mx.max(out).item() < 20) out = mx.random.categorical(logits, 0, [5, 20]) self.assertEqual(out.shape, (5, 20)) self.assertTrue(mx.max(out).item() < 10) out = mx.random.categorical(logits, 1, num_samples=7) self.assertEqual(out.shape, (10, 7)) out = mx.random.categorical(logits, 0, num_samples=7) self.assertEqual(out.shape, (20, 7)) with self.assertRaises(ValueError): mx.random.categorical(logits, shape=[10, 5], num_samples=5) def test_permutation(self): x = sorted(mx.random.permutation(4).tolist()) self.assertEqual([0, 1, 2, 3], x) x = mx.array([0, 1, 2, 3]) x = sorted(mx.random.permutation(x).tolist()) self.assertEqual([0, 1, 2, 3], x) x = mx.array([0, 1, 2, 3]) x = sorted(mx.random.permutation(x).tolist()) # 2-D x = mx.arange(16).reshape(4, 4) out = mx.sort(mx.random.permutation(x, axis=0), axis=0) self.assertTrue(mx.array_equal(x, out)) out = mx.sort(mx.random.permutation(x, axis=1), axis=1) self.assertTrue(mx.array_equal(x, out)) # Basically 0 probability this should fail. sorted_x = mx.arange(16384) x = mx.random.permutation(16384) self.assertFalse(mx.array_equal(sorted_x, x)) # Preserves shape / doesn't cast input to int x = mx.random.permutation(mx.array([[1]])) self.assertEqual(x.shape, (1, 1)) def test_complex_normal(self): sample = mx.random.normal(tuple(), dtype=mx.complex64) self.assertEqual(sample.shape, tuple()) self.assertEqual(sample.dtype, mx.complex64) sample = mx.random.normal((1, 2, 3, 4), dtype=mx.complex64) self.assertEqual(sample.shape, (1, 2, 3, 4)) self.assertEqual(sample.dtype, mx.complex64) sample = mx.random.normal((1, 2, 3, 4), dtype=mx.complex64, scale=2.0, loc=3.0) self.assertEqual(sample.shape, (1, 2, 3, 4)) self.assertEqual(sample.dtype, mx.complex64) sample = mx.random.normal( (1, 2, 3, 4), dtype=mx.complex64, scale=2.0, loc=3.0 + 1j ) self.assertEqual(sample.shape, (1, 2, 3, 4)) self.assertEqual(sample.dtype, mx.complex64) def test_broadcastable_scale_loc(self): b = mx.random.normal((10, 2)) sample = mx.random.normal((2, 10, 2), loc=b, scale=b) mx.eval(sample) self.assertEqual(sample.shape, (2, 10, 2)) with self.assertRaises(ValueError): b = mx.random.normal((10,)) sample = mx.random.normal((2, 10, 2), loc=b, scale=b) b = mx.random.normal((3, 1, 2)) sample = mx.random.normal((3, 4, 2), dtype=mx.float16, loc=b, scale=b) mx.eval(sample) self.assertEqual(sample.shape, (3, 4, 2)) self.assertEqual(sample.dtype, mx.float16) if __name__ == "__main__": mlx_tests.MLXTestRunner()