// Copyright © 2023-2024 Apple Inc. #include #include #include #include "mlx/fast.h" #include "mlx/ops.h" namespace nb = nanobind; using namespace nb::literals; using namespace mlx::core; void init_fast(nb::module_& parent_module) { auto m = parent_module.def_submodule("fast", "mlx.core.fast: fast operations"); m.def( "rope", [](const array& a, int dims, bool traditional, float base, float scale, int offset, const StreamOrDevice& s /* = {} */) { return fast::rope(a, dims, traditional, base, scale, offset, s); }, "a"_a, "dims"_a, nb::kw_only(), "traditional"_a, "base"_a, "scale"_a, "offset"_a, "stream"_a = nb::none(), nb::sig( "def rope(a: array, dims: int, *, traditinoal: bool, base: float, scale: float, offset: int, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( Apply rotary positional encoding to the input. Args: a (array): Input array. dims (int): The feature dimensions to be rotated. If the input feature is larger than dims then the rest is left unchanged. traditional (bool): If set to ``True`` choose the traditional implementation which rotates consecutive dimensions. base (float): The base used to compute angular frequency for each dimension in the positional encodings. scale (float): The scale used to scale the positions. offset (int): The position offset to start at. Returns: array: The output array. )pbdoc"); m.def( "scaled_dot_product_attention", [](const array& q, const array& k, const array& v, const float scale, const std::optional& mask, const StreamOrDevice& s) { return fast::scaled_dot_product_attention(q, k, v, scale, mask, s); }, "q"_a, "k"_a, "v"_a, nb::kw_only(), "scale"_a, "mask"_a = nb::none(), "stream"_a = nb::none(), nb::sig( "def scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Union[None, array] = None, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( A fast implementation of multi-head attention: ``O = softmax(Q @ K.T, dim=-1) @ V``. Supports: * [Multi-Head Attention](https://arxiv.org/abs/1706.03762) * [Grouped Query Attention](https://arxiv.org/abs/2305.13245) * [Multi-Query Attention](https://arxiv.org/abs/1911.02150). Note: The softmax operation is performed in ``float32`` regardless of input precision. Note: For Grouped Query Attention and Multi-Query Attention, the ``k`` and ``v`` inputs should not be pre-tiled to match ``q``. Args: q (array): Input query array. k (array): Input keys array. v (array): Input values array. scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``) mask (array, optional): An additive mask to apply to the query-key scores. Returns: array: The output array. )pbdoc"); }