# Copyright © 2023 Apple Inc. import os import tempfile import unittest import mlx.core as mx import mlx_tests import numpy as np class TestLoad(mlx_tests.MLXTestCase): dtypes = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float32", "float16", "complex64", ] @classmethod def setUpClass(cls): cls.test_dir_fid = tempfile.TemporaryDirectory() cls.test_dir = cls.test_dir_fid.name @classmethod def tearDownClass(cls): cls.test_dir_fid.cleanup() def test_save_and_load(self): if not os.path.isdir(self.test_dir): os.mkdir(self.test_dir) for dt in self.dtypes: with self.subTest(dtype=dt): for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]): with self.subTest(shape=shape): save_file_mlx = os.path.join(self.test_dir, f"mlx_{dt}_{i}.npy") save_file_npy = os.path.join(self.test_dir, f"npy_{dt}_{i}.npy") save_arr = np.random.uniform(0.0, 32.0, size=shape) save_arr_npy = save_arr.astype(getattr(np, dt)) save_arr_mlx = mx.array(save_arr_npy) mx.save(save_file_mlx, save_arr_mlx) np.save(save_file_npy, save_arr_npy) # Load array saved by mlx as mlx array load_arr_mlx_mlx = mx.load(save_file_mlx) self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx)) # Load array saved by numpy as mlx array load_arr_npy_mlx = mx.load(save_file_npy) self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx)) # Load array saved by mlx as numpy array load_arr_mlx_npy = np.load(save_file_mlx) self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy)) def test_save_and_load_fs(self): if not os.path.isdir(self.test_dir): os.mkdir(self.test_dir) for dt in self.dtypes: with self.subTest(dtype=dt): for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]): with self.subTest(shape=shape): save_file_mlx = os.path.join( self.test_dir, f"mlx_{dt}_{i}_fs.npy" ) save_file_npy = os.path.join( self.test_dir, f"npy_{dt}_{i}_fs.npy" ) save_arr = np.random.uniform(0.0, 32.0, size=shape) save_arr_npy = save_arr.astype(getattr(np, dt)) save_arr_mlx = mx.array(save_arr_npy) with open(save_file_mlx, "wb") as f: mx.save(f, save_arr_mlx) np.save(save_file_npy, save_arr_npy) # Load array saved by mlx as mlx array with open(save_file_mlx, "rb") as f: load_arr_mlx_mlx = mx.load(f) self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx)) # Load array saved by numpy as mlx array with open(save_file_npy, "rb") as f: load_arr_npy_mlx = mx.load(f) self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx)) # Load array saved by mlx as numpy array load_arr_mlx_npy = np.load(save_file_mlx) self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy)) def test_savez_and_loadz(self): if not os.path.isdir(self.test_dir): os.mkdir(self.test_dir) for dt in self.dtypes: with self.subTest(dtype=dt): shapes = [(6,), (6, 6), (4, 1, 3, 1, 2)] save_file_mlx_uncomp = os.path.join( self.test_dir, f"mlx_{dt}_uncomp.npz" ) save_file_npy_uncomp = os.path.join( self.test_dir, f"npy_{dt}_uncomp.npz" ) save_file_mlx_comp = os.path.join(self.test_dir, f"mlx_{dt}_comp.npz") save_file_npy_comp = os.path.join(self.test_dir, f"npy_{dt}_comp.npz") # Make dictionary of multiple save_arrs_npy = { f"save_arr_{i}": np.random.uniform( 0.0, 32.0, size=shapes[i] ).astype(getattr(np, dt)) for i in range(len(shapes)) } save_arrs_mlx = {k: mx.array(v) for k, v in save_arrs_npy.items()} # Save as npz files np.savez(save_file_npy_uncomp, **save_arrs_npy) mx.savez(save_file_mlx_uncomp, **save_arrs_mlx) np.savez_compressed(save_file_npy_comp, **save_arrs_npy) mx.savez_compressed(save_file_mlx_comp, **save_arrs_mlx) for save_file_npy, save_file_mlx in ( (save_file_npy_uncomp, save_file_mlx_uncomp), (save_file_npy_comp, save_file_mlx_comp), ): # Load array saved by mlx as mlx array load_arr_mlx_mlx = mx.load(save_file_mlx) for k, v in load_arr_mlx_mlx.items(): self.assertTrue(mx.array_equal(save_arrs_mlx[k], v)) # Load arrays saved by numpy as mlx arrays load_arr_npy_mlx = mx.load(save_file_npy) for k, v in load_arr_npy_mlx.items(): self.assertTrue(mx.array_equal(save_arrs_mlx[k], v)) # Load array saved by mlx as numpy array load_arr_mlx_npy = np.load(save_file_mlx) for k, v in load_arr_mlx_npy.items(): self.assertTrue(np.array_equal(save_arrs_npy[k], v)) if __name__ == "__main__": unittest.main()