# Copyright © 2023 Apple Inc. import unittest from itertools import product import mlx.core as mx import mlx_tests class TestQuantized(mlx_tests.MLXTestCase): def test_quantize_dequantize(self): w = mx.random.normal(shape=(128, 512)) for gs in [32, 64, 128]: for b in [2, 4, 8]: w_q, scales, biases = mx.quantize(w, gs, b) w_hat = mx.dequantize(w_q, scales, biases, gs, b) errors = (w - w_hat).abs().reshape(*scales.shape, -1) eps = 1e-6 self.assertTrue((errors <= (scales[..., None] / 2 + eps)).all()) def test_qmm(self): key = mx.random.key(0) k1, k2 = mx.random.split(key) tests = product( [128, 64, 32], # group_size [2, 4, 8], # bits [8, 32, 33, 64], # M [512, 1024], # N [512, 1024], # K [True, False], # transposed ) for group_size, bits, M, N, K, transposed in tests: with self.subTest( shape=(M, N, K), group_size=group_size, bits=bits, transposed=transposed, ): x = mx.random.normal(shape=(M, K), key=k1) w = mx.random.normal(shape=(N, K) if transposed else (K, N), key=k2) w_q, scales, biases = mx.quantize(w, group_size, bits) w_hat = mx.dequantize(w_q, scales, biases, group_size, bits) y_q = mx.quantized_matmul( x, w_q, scales, biases, transposed, group_size, bits ) y_hat = (x @ w_hat.T) if transposed else (x @ w_hat) self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) def test_qmm_shapes(self): key = mx.random.key(0) k1, k2 = mx.random.split(key) group_size = 64 bits = 4 w = mx.random.normal(shape=(32, 256), key=k2) w_q, scales, biases = mx.quantize(w, group_size, bits) w_hat = mx.dequantize(w_q, scales, biases, group_size, bits) for s in [(3, 256), (2, 1, 7, 256)]: x = mx.random.normal(shape=s, key=k1) y_q = mx.quantized_matmul(x, w_q, scales, biases, True, group_size, bits) y_hat = x @ w_hat.T self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) w = mx.random.normal(shape=(256, 256), key=k2) w_q, scales, biases = mx.quantize(w, group_size, bits) w_hat = mx.dequantize(w_q, scales, biases, group_size, bits) for s in [(3, 256), (2, 1, 7, 256)]: x = mx.random.normal(shape=s, key=k1) y_q = mx.quantized_matmul(x, w_q, scales, biases, False, group_size, bits) y_hat = x @ w_hat self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) def test_qmv(self): key = mx.random.key(0) k1, k2 = mx.random.split(key) tests = product( [128, 64, 32], # group_size [2, 4, 8], # bits [512, 1024], # M [512, 1024], # N ) for group_size, bits, M, N in tests: with self.subTest(shape=(M, N), group_size=group_size, bits=bits): x = mx.random.normal(shape=(1, N), key=k1) w = mx.random.normal(shape=(M, N), key=k2) w_q, scales, biases = mx.quantize(w, group_size, bits) w_hat = mx.dequantize(w_q, scales, biases, group_size, bits) y_q = mx.quantized_matmul( x, w_q, scales, biases, True, group_size, bits ) y_hat = x @ w_hat.T self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) def test_qvm(self): key = mx.random.key(0) k1, k2 = mx.random.split(key) tests = product( [128, 64, 32], # group_size [2, 4, 8], # bits [512, 1024], # M [512, 1024], # N ) for group_size, bits, M, N in tests: with self.subTest(shape=(M, N), group_size=group_size, bits=bits): x = mx.random.normal(shape=(1, N), key=k1) w = mx.random.normal(shape=(N, M), key=k2) w_q, scales, biases = mx.quantize(w, group_size, bits) w_hat = mx.dequantize(w_q, scales, biases, group_size, bits) y_q = mx.quantized_matmul( x, w_q, scales, biases, False, group_size, bits ) y_hat = x @ w_hat self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) def test_throw(self): x = mx.random.normal(shape=(10, 512)) w = mx.random.normal(shape=(32, 512)) w_q, scales, biases = mx.quantize(w) with self.assertRaises(ValueError): mx.quantized_matmul(x, w_q.T, scales, biases) with self.assertRaises(ValueError): mx.quantized_matmul(x, w_q.T, scales.T, biases) with self.assertRaises(ValueError): mx.quantized_matmul(x, w_q, scales, biases, False) with self.assertRaises(ValueError): mx.quantized_matmul(x, w_q, scales.T, biases.T) y = mx.quantized_matmul(x, w_q, scales, biases, True) mx.eval(y) def test_small_matrix(self): w = mx.random.normal(shape=(8, 256)) w_q, scales, biases = mx.quantize(w) w_hat = mx.dequantize(w_q, scales, biases) # Test qmv x = mx.random.normal(shape=(1, 256)) y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True) y_hat = x @ w_hat.T self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) # Test qmm_t x = mx.random.normal(shape=(10, 256)) y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True) y_hat = x @ w_hat.T self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) # Test qmv x = mx.random.normal(shape=(1, 8)) y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False) y_hat = x @ w_hat self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) # Test qmm x = mx.random.normal(shape=(10, 8)) y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False) y_hat = x @ w_hat self.assertEqual(y_q.shape, y_hat.shape) self.assertLess((y_q - y_hat).abs().max(), 1e-3) if __name__ == "__main__": unittest.main()