// Copyright © 2024 Apple Inc. #include "mlx/backend/common/ternary.h" #include "mlx/backend/metal/device.h" #include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/utils.h" #include "mlx/primitives.h" namespace mlx::core { void ternary_op_gpu_inplace( const std::vector& inputs, array& out, const std::string op, const Stream& s) { assert(inputs.size() == 3); auto& a = inputs[0]; auto& b = inputs[1]; auto& c = inputs[2]; TernaryOpType topt = get_ternary_op_type(a, b, c); if (out.size() == 0) { return; } // Try to collapse contiguous dims auto maybe_collapse = [topt, &a, &b, &c, &out]() { if (topt == TernaryOpType::General) { auto [shape, strides] = collapse_contiguous_dims(a, b, c, out); return std::make_tuple( shape, strides[0], strides[1], strides[2], strides[3]); } else { Strides e; return std::make_tuple(Shape{}, e, e, e, e); } }; auto [shape, strides_a, strides_b, strides_c, strides_out] = maybe_collapse(); bool large; auto ndim = shape.size(); int work_per_thread; if (topt == TernaryOpType::General) { large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX || c.data_size() > INT32_MAX || out.size() > INT32_MAX; work_per_thread = large ? 4 : 2; } else { large = out.data_size() > INT32_MAX; work_per_thread = get_work_per_thread(b.dtype()); } std::string kernel_name; if (topt == TernaryOpType::General) { kernel_name = "g"; if (shape.size() <= 3) { kernel_name += std::to_string(shape.size()); } else if (work_per_thread > 1) { concatenate(kernel_name, "n", std::to_string(work_per_thread)); } if (large) { kernel_name += "large"; } } else if (large) { kernel_name = "v2"; } else { kernel_name = "v"; } concatenate(kernel_name, "_", op, type_to_name(b)); auto& d = metal::device(s.device); auto kernel = get_ternary_kernel(d, kernel_name, out.dtype(), op); auto& compute_encoder = d.get_command_encoder(s.index); compute_encoder.set_compute_pipeline_state(kernel); compute_encoder.set_input_array(a, 0); compute_encoder.set_input_array(b, 1); compute_encoder.set_input_array(c, 2); compute_encoder.set_output_array(out, 3); auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup(); if (topt == TernaryOpType::General) { // Launch up to 3D grid of threads size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1; size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1; size_t rest = out.size() / (dim0 * dim1); if (ndim > 3) { compute_encoder.set_vector_bytes(shape, 4); compute_encoder.set_vector_bytes(strides_a, 5); compute_encoder.set_vector_bytes(strides_b, 6); compute_encoder.set_vector_bytes(strides_c, 7); compute_encoder.set_bytes(ndim, 8); dim0 = (dim0 + work_per_thread - 1) / work_per_thread; } else { // The shape is implicit in the grid for <= 3D compute_encoder.set_vector_bytes(strides_a, 4); compute_encoder.set_vector_bytes(strides_b, 5); compute_encoder.set_vector_bytes(strides_c, 6); } if (thread_group_size != 1024) { throw std::runtime_error("[Metal::ternary] Must use 1024 sized block"); } MTL::Size group_dims = get_block_dims(dim0, dim1, rest); MTL::Size grid_dims = MTL::Size(dim0, dim1, rest); compute_encoder.dispatch_threads(grid_dims, group_dims); } else { // Launch a 1D or 2D grid of threads size_t nthreads = ceildiv(out.data_size(), work_per_thread); if (thread_group_size > nthreads) { thread_group_size = nthreads; } MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1); MTL::Size grid_dims; if (large) { compute_encoder.set_bytes(out.data_size(), 4); grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread); } else { compute_encoder.set_bytes(out.data_size(), 4); grid_dims = MTL::Size(nthreads, 1, 1); } compute_encoder.dispatch_threads(grid_dims, group_dims); } } void ternary_op_gpu( const std::vector& inputs, array& out, const std::string op, const Stream& s) { auto& a = inputs[0]; auto& b = inputs[1]; auto& c = inputs[2]; TernaryOpType topt = get_ternary_op_type(a, b, c); set_ternary_op_output_data(a, b, c, out, topt); ternary_op_gpu_inplace(inputs, out, op, s); } void ternary_op_gpu( const std::vector& inputs, array& out, const std::string op) { auto& s = out.primitive().stream(); ternary_op_gpu(inputs, out, op, s); } void Select::eval_gpu(const std::vector& inputs, array& out) { ternary_op_gpu(inputs, out, get_primitive_string(this)); } } // namespace mlx::core