import math import time import mlx.core as mx import numpy as np import torch N_warmup = 10 N_iter_bench = 100 N_iter_func = 5 def bench(f, a, b): for i in range(N_warmup): f(a, b) torch.mps.synchronize() s = time.perf_counter_ns() for i in range(N_iter_bench): f(a, b) e = time.perf_counter_ns() return (e - s) * 1e-9 def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1): def mx_conv_2D(a, b): ys = [] for i in range(N_iter_func): y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups) ys.append(y) mx.eval(ys) return ys return mx_conv_2D def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1): @torch.no_grad() def pt_conv_2D(a, b): ys = [] for i in range(N_iter_func): y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups) ys.append(y) torch.mps.synchronize() return ys return pt_conv_2D def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype): scale = 1.0 / math.sqrt(kH * kH * C) a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype) b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype( np_dtype ) a_mx = mx.array(a_np) b_mx = mx.array(b_np) a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps") b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps") torch.mps.synchronize() f_mx = make_mx_conv_2D(strides, padding, groups) f_pt = make_pt_conv_2D(strides, padding, groups) time_torch = bench(f_pt, a_pt, b_pt) time_mlx = bench(f_mx, a_mx, b_mx) out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups) out_pt = torch.conv2d( a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups ) out_pt = torch.permute(out_pt, (0, 2, 3, 1)) out_pt = out_pt.numpy(force=True) atol = 2e-5 if np_dtype == np.float32 else 1e-4 if not np.allclose(out_pt, out_mx, atol=atol): print( f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}" ) return time_mlx, time_torch if __name__ == "__main__": dtype = "float32" shapes = ( (4, 32, 32, 21, 3, 3, 128), (4, 32, 32, 21, 3, 3, 37), (4, 32, 32, 370, 3, 3, 370), (4, 32, 32, 370, 7, 7, 128), (2, 320, 640, 21, 7, 7, 21), ) for N, H, W, C, kh, kw, O in shapes: time_mlx, time_torch = bench_shape( N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype ) diff = time_torch / time_mlx - 1.0 print( f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%" ) if time_mlx >= 2.0 * time_torch: print("ATTENTION ^^^^^^^")