# Copyright © 2023 Apple Inc. #!/usr/bin/env python import argparse import re from pathlib import Path from subprocess import run BENCH_MLX = Path(__file__).parent / "bench_mlx.py" BENCH_TORCH = Path(__file__).parent / "bench_torch.py" def run_or_raise(*args, **kwargs): try: result = run(*args, capture_output=True, **kwargs) return float(result.stdout) except ValueError: raise ValueError( f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}" ) def compare(args): t_mlx = run_or_raise(["python", BENCH_MLX] + args) t_torch = run_or_raise(["python", BENCH_TORCH] + args) print((t_torch - t_mlx) / t_torch, " ".join(args), sep="\t") def compare_mlx_dtypes(args, dt1, dt2): t_mlx_dt1 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt1]) t_mlx_dt2 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt2]) print((t_mlx_dt2 - t_mlx_dt1) / t_mlx_dt2, " ".join(args), sep="\t") def make_regex_search(regexes): compiled_regexes = list(map(re.compile, regexes)) def search(x): return (c.search(x) is not None for c in compiled_regexes) return search def make_predicate(positive_filter, negative_filter): if positive_filter is not None: positive_filter_search = make_regex_search(positive_filter) positive_filter = lambda x: all(positive_filter_search(x)) else: positive_filter = lambda x: True if negative_filter is not None: negative_filter_search = make_regex_search(negative_filter) negative_filter = lambda x: not any(negative_filter_search(x)) else: negative_filter = lambda x: True def predicate(x): return positive_filter(x) and negative_filter(x) return predicate if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run comparisons against PyTorch") parser.add_argument( "--filter", "-f", help="Regex filter to select benchmarks", nargs="+" ) parser.add_argument( "--negative_filter", "-n", help="Regex filter to remove benchmarks", nargs="+" ) parser.add_argument( "--mlx_dtypes", "-d", help="Compare mlx benchmarks between the 2 provided data types", nargs=2, ) args, rest = parser.parse_known_args() _filter = make_predicate(args.filter, args.negative_filter) if args.mlx_dtypes: compare_filtered = lambda x: ( compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1]) if _filter(x) else None ) else: compare_filtered = lambda x: compare(x.split() + rest) if _filter(x) else None # Binary ops compare_filtered("add --size 10x1024x128 --size 1x1024x128 --cpu") compare_filtered("add --size 10x1024x128 --size 1x1024x128") compare_filtered("add --size 1024x128 --size 1x128 --cpu") compare_filtered("add --size 1024x128 --size 1x128") compare_filtered("add --size 1024x4096 --size 1x4096 --cpu") compare_filtered("add --size 1024x4096 --size 1x4096") compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0 --cpu") compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0") compare_filtered("add --size 1024x1024 --size 1024x1024 --cpu") compare_filtered("add --size 1024x1024 --size 1024x1024") compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0 --cpu") compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0") compare_filtered( "add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0 --cpu" ) compare_filtered( "add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0" ) # Reduction ops compare_filtered("sum_all --size 10x1024x128 --cpu") compare_filtered("sum_all --size 10x1024x128") compare_filtered("sum_axis --size 16x1024x128 --axis 2 --cpu") compare_filtered("sum_axis --size 16x1024x128 --axis 2") compare_filtered("sum_axis --size 16x128x1024 --axis 2 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 2") compare_filtered("sum_axis --size 1024x1024 --axis 1 --cpu") compare_filtered("sum_axis --size 1024x1024 --axis 1") compare_filtered("sum_axis --size 1024x1024 --axis 0 --cpu") compare_filtered("sum_axis --size 1024x1024 --axis 0") compare_filtered("sum_axis --size 16x128x1024 --axis 1 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 1") compare_filtered("sum_axis --size 16x128x1024 --axis 0 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 0") compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 0,1") compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 0,2") compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1") compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1 --cpu") compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1") compare_filtered("argmax --size 10x1024x128 --axis 1 --cpu") compare_filtered("argmax --size 10x1024x128 --axis 1") compare_filtered("argmax --size 10x1024x128 --axis 2 --cpu") compare_filtered("argmax --size 10x1024x128 --axis 2") compare_filtered("argmax --size 1024x1024 --axis 1 --cpu") compare_filtered("argmax --size 1024x1024 --axis 1") # Matmul ops compare_filtered("matmul_square --size 1024x1024") compare_filtered("matmul_square --size 1024x1024 --cpu") compare_filtered("matmul_square --size 16x1024x1024") compare_filtered("matmul_square --size 16x1024x1024 --cpu") compare_filtered( "matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1" ) compare_filtered( "matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1 --cpu" ) compare_filtered( "matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1" ) compare_filtered( "matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1 --cpu" ) compare_filtered("matmul --size 512x8192 --size 8192x512") compare_filtered("matmul --size 512x8192 --size 8192x512 --cpu") # compare_filtered("matmul --size 512x131072 --size 131072x512") # compare_filtered("matmul --size 512x131072 --size 131072x512 --cpu") compare_filtered("matmul --size 8192x512 --size 512x8192") compare_filtered("matmul --size 8192x512 --size 512x8192 --cpu") # compare_filtered("matmul --size 131072x512 --size 512x512") # compare_filtered("matmul --size 131072x512 --size 512x512 --cpu") compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024") compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --cpu") compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --fused") compare_filtered( "linear --size 1024x1024 --size 1024 --size 128x1024 --fused --cpu" ) # Matvec ops compare_filtered("matmul --size 1x1x4096 --size 4096x4096 --cpu") compare_filtered("matmul --size 1x1x4096 --size 4096x4096") compare_filtered( "matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0 --cpu" ) compare_filtered( "matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0" ) compare_filtered("matmul --size 32x1x1000 --size 32x1000x128 --cpu") compare_filtered("matmul --size 32x1x1000 --size 32x1000x128") compare_filtered( "matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1 --cpu" ) compare_filtered( "matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1" ) # Various ops compare_filtered("softmax --size 32x16x1024 --axis 2") compare_filtered("softmax --size 32x16x1024 --axis 2 --cpu") compare_filtered("softmax --size 32x16x1024 --axis 2 --fused") compare_filtered("softmax --size 32x16x1024 --axis 2 --fused --cpu") compare_filtered("softmax --size 2x1024x1024 --axis 1") compare_filtered("softmax --size 2x1024x1024 --axis 1 --cpu") compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused") compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused --cpu") compare_filtered("relu --size 32x16x1024") compare_filtered("relu --size 32x16x1024 --cpu") compare_filtered("leaky_relu --size 32x16x1024") compare_filtered("leaky_relu --size 32x16x1024 --cpu") compare_filtered("elu --size 32x16x1024") compare_filtered("elu --size 32x16x1024 --cpu") compare_filtered("relu6 --size 32x16x1024") compare_filtered("relu6 --size 32x16x1024 --cpu") compare_filtered("relu_squared --size 32x16x1024") compare_filtered("relu_squared --size 32x16x1024 --cpu") compare_filtered("softplus --size 32x16x1024") compare_filtered("softplus --size 32x16x1024 --cpu") compare_filtered("celu --size 32x16x1024") compare_filtered("celu --size 32x16x1024 --cpu") compare_filtered("log_sigmoid --size 32x16x1024") compare_filtered("log_sigmoid --size 32x16x1024 --cpu") compare_filtered("step --size 32x16x1024") compare_filtered("step --size 32x16x1024 --cpu") compare_filtered("selu --size 32x16x1024") compare_filtered("selu --size 32x16x1024 --cpu") # compare_filtered("mish --size 32x16x1024") NOTE: Torch does not implement Mish in MPS atm compare_filtered("mish --size 32x16x1024 --cpu") compare_filtered("prelu --size 32x16x1024") compare_filtered("prelu --size 32x16x1024 --cpu") compare_filtered("scalar_mul --size 32x16x1024") compare_filtered("scalar_mul --size 32x16x1024 --cpu") compare_filtered("cross_entropy --size 256x1024") compare_filtered("cross_entropy --size 256x1024 --cpu") compare_filtered("logsumexp --size 1024x1024 --axis 1") compare_filtered("logsumexp --size 1024x1024 --axis 1 --cpu") compare_filtered("logsumexp --size 1024x1024 --axis 0") compare_filtered("logsumexp --size 1024x1024 --axis 0 --cpu") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2 --cpu") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1 --cpu") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0") compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0 --cpu") compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1") compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1 --cpu") compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1") compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1 --cpu") compare_filtered("concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2") compare_filtered( "concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2 --cpu" ) compare_filtered("conv1d --size 1x1000x80 --size 128x11x80") compare_filtered("conv1d --size 1x1000x80 --size 128x11x80 --cpu") compare_filtered("conv1d --size 16x1000x80 --size 128x11x80") compare_filtered("conv1d --size 4x1000x80 --size 128x11x80 --cpu") compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3") compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3 --cpu") compare_filtered("conv2d --size 16x256x256x3 --size 8x3x3x3") compare_filtered("conv2d --size 4x256x256x3 --size 8x3x3x3 --cpu") compare_filtered("cumsum --size 1024x1024 --axis 1 --cpu") compare_filtered("cumsum --size 1024x1024 --axis 0 --cpu") compare_filtered("cumsum --size 1024x1024 --axis 1") compare_filtered("cumsum --size 1024x1024 --axis 0") compare_filtered("cumsum --size 128x1024 --axis 1") compare_filtered("cumsum --size 128x1024 --axis 0") compare_filtered("cumsum --size 1024x4096 --axis 1") compare_filtered("cumsum --size 1024x4096 --axis 0") compare_filtered("cumsum --size 128x4096 --axis 1") compare_filtered("cumsum --size 128x4096 --axis 0") compare_filtered("cumsum --size 1024x7777 --axis 1") compare_filtered("cumsum --size 1024x7777 --axis 0") compare_filtered("cumsum --size 128x7777 --axis 1") compare_filtered("cumsum --size 128x7777 --axis 0") compare_filtered("cumsum --size 32768x128 --axis 1") compare_filtered("cumsum --size 32768x128 --axis 0") compare_filtered("sort --size 1024x1024 --axis 0") compare_filtered("sort --size 1024x1024 --axis 1") compare_filtered("sort --size 32768x128 --axis 0") compare_filtered("sort --size 32768x128 --axis 1") compare_filtered("sort --size 128x128 --axis 0 --cpu") compare_filtered("sort --size 128x128 --axis 1 --cpu") compare_filtered("topk --size 1024x1024 --axis 0") compare_filtered("topk --size 1024x1024 --axis 1") compare_filtered("topk --size 32768x128 --axis 0") compare_filtered("topk --size 32768x128 --axis 1") compare_filtered("topk --size 128x128 --axis 0 --cpu") compare_filtered("topk --size 128x128 --axis 1 --cpu")