.. _init: .. currentmodule:: mlx.nn.init Initializers ------------ The ``mlx.nn.init`` package contains commonly used initializers for neural network parameters. Initializers return a function which can be applied to any input :obj:`mlx.core.array` to produce an initialized output. For example: .. code:: python import mlx.core as mx import mlx.nn as nn init_fn = nn.init.uniform() # Produces a [2, 2] uniform matrix param = init_fn(mx.zeros((2, 2))) To re-initialize all the parameter in an :obj:`mlx.nn.Module` from say a uniform distribution, you can do: .. code:: python import mlx.nn as nn model = nn.Sequential(nn.Linear(5, 10), nn.ReLU(), nn.Linear(10, 5)) init_fn = nn.init.uniform(low=-0.1, high=0.1) model.apply(init_fn) .. autosummary:: :toctree: _autosummary constant normal uniform identity glorot_normal glorot_uniform he_normal he_uniform