# Copyright © 2023 Apple Inc. import os import tempfile import unittest import mlx.core as mx import mlx.nn as nn import mlx_tests import numpy as np from mlx.utils import tree_flatten, tree_map, tree_unflatten class TestNN(mlx_tests.MLXTestCase): def test_linear(self): inputs = mx.zeros((10, 4)) layer = nn.Linear(input_dims=4, output_dims=8) outputs = layer(inputs) self.assertEqual(tuple(outputs.shape), (10, 8)) def test_cross_entropy(self): logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) targets = mx.array([0, 1]) # Test with reduction 'none' losses_none = nn.losses.cross_entropy(logits, targets, reduction="none") expected_none = mx.array([0.0, 0.0]) self.assertTrue(mx.array_equal(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean") expected_mean = mx.mean(expected_none) self.assertEqual(losses_mean, expected_mean) # Test with reduction 'sum' losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum") expected_sum = mx.sum(expected_none) self.assertEqual(losses_sum, expected_sum) # Test cases with weights and no label smoothing logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) targets = mx.array([0, 1]) weights = mx.array([1.0, 2.0]) # Reduction 'none' losses_none = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="none", ) expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses self.assertTrue( np.allclose(losses_none, expected_none, atol=1e-5), "Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]", ) # Reduction 'mean' losses_mean = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="mean", ) expected_mean = mx.mean(expected_none) self.assertTrue( np.allclose(losses_mean, expected_mean, atol=1e-5), "Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]", ) # Reduction 'sum' losses_sum = nn.losses.cross_entropy( logits, targets, weights=weights, reduction="sum", ) expected_sum = mx.sum(expected_none) self.assertTrue( np.allclose(losses_sum, expected_sum, atol=1e-5), "Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]", ) # Test case with equal weights and label smoothing > 0 logits = mx.array( [[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]] ) target = mx.array([2, 1, 0]) losses_none = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="none" ) expected_none = mx.array([1.29693, 1.38617, 1.48176]) self.assertTrue( mx.allclose(expected_none, losses_none), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'", ) expected_mean = mx.mean(expected_none) losses_mean = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="mean" ) self.assertTrue( mx.allclose(losses_mean, expected_mean), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'", ) expected_sum = mx.sum(expected_none) losses_sum = nn.losses.cross_entropy( logits, target, label_smoothing=0.3, reduction="sum" ) self.assertTrue( mx.allclose(losses_sum, expected_sum), "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'", ) def test_l1_loss(self): predictions = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.5, 0.2, 0.9, 0.0]) # Expected result expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32) expected_sum = mx.sum(expected_none) expected_mean = mx.mean(expected_none) losses = nn.losses.l1_loss(predictions, targets, reduction="none") self.assertTrue( mx.array_equal(losses, expected_none), "Test failed for l1_loss --reduction='none'", ) losses = nn.losses.l1_loss(predictions, targets, reduction="sum") self.assertTrue(mx.array_equal(losses, expected_sum)) losses = nn.losses.l1_loss(predictions, targets, reduction="mean") self.assertTrue(mx.array_equal(losses, expected_mean)) def test_mse_loss(self): predictions = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.7, 0.1, 0.8, 0.2]) expected_none = mx.array([0.04, 0.01, 0.01, 0.04]) expected_mean = mx.mean(expected_none) expected_sum = mx.sum(expected_none) # Test with reduction 'none' losses_none = nn.losses.mse_loss(predictions, targets, reduction="none") self.assertTrue( np.allclose(losses_none, expected_none, 1e-5), "Test case failed for mse_loss --reduction='none'", ) # Test with reduction 'mean' losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean") self.assertEqual( losses_mean, expected_mean, "Test case failed for mse_loss --reduction='mean'", ) # Test with reduction 'sum' losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum") self.assertEqual( losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'" ) def test_smooth_l1_loss(self): predictions = mx.array([1.5, 2.5, 0.5, 3.5]) targets = mx.array([1.0, 2.0, 0.5, 2.5]) beta = 1.0 # Expected results expected_none = mx.array([0.125, 0.125, 0.0, 0.5]) expected_sum = mx.sum(expected_none) expected_mean = mx.mean(expected_none) # Test with reduction 'none' loss_none = nn.losses.smooth_l1_loss( predictions, targets, beta, reduction="none" ) self.assertTrue( mx.array_equal(loss_none, expected_none), "Test case failed for smooth_l1_loss --reduction='none'", ) # Test with reduction 'sum' loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum") self.assertEqual( loss_sum, expected_sum, "Test case failed for smooth_l1_loss --reduction='sum'", ) # Test with reduction 'mean' loss_mean = nn.losses.smooth_l1_loss( predictions, targets, beta, reduction="mean" ) self.assertEqual( loss_mean, expected_mean, "Test case failed for smooth_l1_loss --reduction='mean'", ) def test_nll_loss(self): logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) targets = mx.array([0, 1]) # Test with reduction 'none' losses_none = nn.losses.nll_loss(logits, targets, reduction="none") expected_none = mx.array([0.0, 0.0]) self.assertTrue(mx.array_equal(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean") expected_mean = mx.mean(expected_none) self.assertEqual(losses_mean, expected_mean) # Test with reduction 'sum' losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum") expected_sum = mx.sum(expected_none) self.assertEqual(losses_sum, expected_sum) def test_kl_div_loss(self): p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]])) q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]])) # Test with reduction 'none' losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none") expected_none = mx.array([0.0, 0.831777]) self.assertTrue(mx.allclose(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean") expected_mean = mx.mean(expected_none) self.assertTrue(mx.allclose(losses_mean, expected_mean)) # Test with reduction 'sum' losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum") expected_sum = mx.sum(expected_none) self.assertTrue(mx.allclose(losses_sum, expected_sum)) def test_triplet_loss(self): anchors = mx.array([[1, 2, 3], [1, 2, 3]]) positives = mx.array([[4, 5, 6], [0, -1, 2]]) negatives = mx.array([[7, 8, 9], [3, 2, 3]]) # Test with reduction 'none' losses_none = nn.losses.triplet_loss( anchors, positives, negatives, reduction="none" ) expected_none = mx.array([0, 2.31662]) self.assertTrue(mx.allclose(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.triplet_loss( anchors, positives, negatives, reduction="mean" ) expected_mean = mx.mean(expected_none) self.assertTrue(mx.allclose(losses_mean, expected_mean)) # Test with reduction 'sum' losses_sum = nn.losses.triplet_loss( anchors, positives, negatives, reduction="sum" ) expected_sum = mx.sum(expected_none) self.assertTrue(mx.allclose(losses_sum, expected_sum)) def test_gelu(self): inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414] # From: jax.nn.gelu(np.array(inputs), approximate=False) expected = np.array( [1.0093501, -0.16925684, 0.22918941, 0.60498625, 0.49459383] ) out = nn.GELU()(mx.array(inputs)) self.assertTrue(np.allclose(out, expected)) # Crudely check the approximations x = mx.arange(-6.0, 6.0, 12 / 100) y = nn.gelu(x) y_hat1 = nn.gelu_approx(x) y_hat2 = nn.gelu_fast_approx(x) self.assertLess(mx.abs(y - y_hat1).max(), 0.0003) self.assertLess(mx.abs(y - y_hat2).max(), 0.02) def test_group_norm(self): x = mx.arange(100, dtype=mx.float32) x = x.reshape(1, 10, 10, 1) x = mx.broadcast_to(x, (2, 10, 10, 4)) x = mx.concatenate([x, 0.5 * x], axis=-1) # Group norm in groups last mode g = nn.GroupNorm(2, 8) y = g(x) means = y.reshape(2, -1, 2).mean(axis=1) var = y.reshape(2, -1, 2).var(axis=1) self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6)) g.weight = g.weight * 2 g.bias = g.bias + 3 y = g(x) means = y.reshape(2, -1, 2).mean(axis=1) var = y.reshape(2, -1, 2).var(axis=1) self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6)) # Group norm in groups first mode g = nn.GroupNorm(2, 8, pytorch_compatible=True) y = g(x) means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1)) var = y.reshape(2, -1, 2, 4).var(axis=(1, -1)) self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6)) g.weight = g.weight * 2 g.bias = g.bias + 3 y = g(x) means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1)) var = y.reshape(2, -1, 2, 4).var(axis=(1, -1)) self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6)) def test_instance_norm(self): # Test InstanceNorm1d x = mx.array( [ [ [-0.0119524, -0.500331, 1.12958, 1.39955], [1.1263, 0.517899, -0.21413, 0.891329], [2.02223, -1.21143, -2.48738, 1.63289], ], [ [0.241417, -1.42512, 2.739, -1.23175], [-0.619157, 0.970817, -1.2506, 0.32756], [-0.77484, -1.31352, 1.56844, 1.13969], ], ] ) inorm = nn.InstanceNorm(num_features=3) y = inorm(x) expected_y = [ [ [-0.657082, -1.27879, 0.796097, 1.13978], [1.07593, -0.123075, -1.56572, 0.61286], [1.0712, -0.632503, -1.30476, 0.866066], ], [ [0.0964433, -0.904773, 1.59693, -0.788599], [-0.557908, 1.30444, -1.29751, 0.550987], [-0.759886, -1.20013, 1.15521, 0.804804], ], ] self.assertTrue(x.shape == y.shape) self.assertTrue(np.allclose(y, expected_y, atol=1e-5)) # Test InstanceNorm2d x = mx.array( [ [ [ [-0.458824, -0.447996, 0.0486988], [1.13049, 0.301795, -2.23876], [0.0986325, -1.25257, -0.329399], ], [ [0.483254, -0.176577, -0.0611224], [0.345315, 0.99207, -0.758631], [-1.82973, 0.154442, -0.319107], ], [ [-0.58611, -0.622545, 1.8845], [-0.926389, -0.184927, -1.12639], [-0.241765, -0.556204, 0.830584], ], ], [ [ [1.04407, 0.0800776, 0.782321], [0.671423, -0.110299, 0.159905], [0.810252, 0.182597, -0.0621687], ], [ [0.073752, 1.2513, -0.444367], [-1.21689, -1.42248, 0.516452], [1.50456, 0.0576239, 0.184253], ], [ [0.407081, 1.20627, 0.563132], [-1.88979, 1.17838, -0.539121], [1.08659, 0.973883, 0.784216], ], ], ] ) inorm = nn.InstanceNorm(num_features=3) y = inorm(x) expected_y = [ [ [ [-0.120422, -0.108465, 0.440008], [1.63457, 0.719488, -2.08591], [0.495147, -0.996913, 0.0224944], ], [ [0.801504, -0.0608616, 0.0900314], [0.621224, 1.4665, -0.821576], [-2.22144, 0.371763, -0.247141], ], [ [-0.463984, -0.504602, 2.29032], [-0.843336, -0.0167355, -1.0663], [-0.0800997, -0.430644, 1.11538], ], ], [ [ [1.59749, -0.776381, 0.95293], [0.679838, -1.24519, -0.579803], [1.02171, -0.523923, -1.12667], ], [ [0.0190289, 1.28291, -0.537076], [-1.36624, -1.5869, 0.494185], [1.55474, 0.00171834, 0.137631], ], [ [-0.012331, 0.817234, 0.149652], [-2.39651, 0.78829, -0.994498], [0.693007, 0.576016, 0.37914], ], ], ] self.assertTrue(x.shape == y.shape) self.assertTrue(np.allclose(y, expected_y, atol=1e-5)) # Test InstanceNorm3d x = mx.array( [ [ [ [[0.777621, -2.1722], [-1.41317, 0.284446]], [[0.11, -0.837743], [-2.40205, 0.336682]], [[0.789185, -1.42998], [-0.459489, 0.0298199]], ], [ [[0.528145, 0.128192], [0.476288, -0.649858]], [[-0.12431, 1.93502], [-1.25873, -0.261986]], [[-1.63747, -1.73247], [-2.15559, 0.10275]], ], [ [[-1.56133, 0.153862], [-1.20411, 0.152112]], [[1.18768, 0.00236324], [-2.04243, 1.54289]], [[0.67917, -0.402572], [-0.249959, -0.821897]], ], ], [ [ [[-2.12354, 0.317797], [-0.146628, 0.0329215]], [[-1.55784, 2.41031], [0.226341, 0.265387]], [[0.990317, 0.475161], [-1.37804, -0.501041]], ], [ [[0.643973, -0.682916], [-0.987925, 1.54086]], [[0.71179, -0.290786], [0.057712, -0.742304]], [[-0.399875, -1.10479], [1.40097, 0.0723374]], ], [ [[0.72391, 0.016364], [0.573199, 0.213092]], [[-0.0678402, 0.00449439], [-1.58342, 1.28133]], [[-0.357647, -1.07389], [0.141618, -0.386141]], ], ], ] ) inorm = nn.InstanceNorm(num_features=3) y = inorm(x) expected_y = [ [ [ [[1.23593, -1.54739], [-0.831204, 0.770588]], [[0.605988, -0.288258], [-1.76427, 0.819875]], [[1.24684, -0.847068], [0.0686449, 0.530334]], ], [ [[0.821849, 0.462867], [0.775304, -0.23548]], [[0.236231, 2.0846], [-0.78198, 0.112659]], [[-1.12192, -1.20719], [-1.58697, 0.440032]], ], [ [[-1.30944, 0.357126], [-0.962338, 0.355425]], [[1.36163, 0.209922], [-1.77689, 1.70677]], [[0.867539, -0.183531], [-0.0352458, -0.590967]], ], ], [ [ [[-1.75315, 0.343736], [-0.0551618, 0.0990544]], [[-1.26726, 2.14101], [0.265184, 0.298721]], [[0.921369, 0.478897], [-1.11283, -0.35957]], ], [ [[0.733967, -0.822472], [-1.18025, 1.78602]], [[0.813517, -0.362504], [0.0462839, -0.892134]], [[-0.490465, -1.31732], [1.62192, 0.0634394]], ], [ [[1.04349, 0.080661], [0.838402, 0.348368]], [[-0.033924, 0.0645089], [-2.09632, 1.80203]], [[-0.428293, -1.40296], [0.251107, -0.467067]], ], ], ] self.assertTrue(x.shape == y.shape) self.assertTrue(np.allclose(y, expected_y, atol=1e-5)) def test_conv1d(self): N = 5 L = 12 ks = 3 C_in = 2 C_out = 4 x = mx.ones((N, L, C_in)) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks) c.weight = mx.ones_like(c.weight) y = c(x) self.assertEqual(y.shape, [N, L - ks + 1, C_out]) self.assertTrue(mx.allclose(y, mx.full(y.shape, ks * C_in, mx.float32))) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, stride=2) y = c(x) self.assertEqual(y.shape, [N, (L - ks + 1) // 2, C_out]) self.assertTrue("bias" in c.parameters()) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False) self.assertTrue("bias" not in c.parameters()) def test_conv2d(self): x = mx.ones((4, 8, 8, 3)) c = nn.Conv2d(3, 1, 8) y = c(x) self.assertEqual(y.shape, [4, 1, 1, 1]) c.weight = mx.ones_like(c.weight) / 8 / 8 / 3 y = c(x) self.assertTrue(np.allclose(y[:, 0, 0, 0], x.mean(axis=(1, 2, 3)))) # 3x3 conv no padding stride 1 c = nn.Conv2d(3, 8, 3) y = c(x) self.assertEqual(y.shape, [4, 6, 6, 8]) self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) # 3x3 conv padding 1 stride 1 c = nn.Conv2d(3, 8, 3, padding=1) y = c(x) self.assertEqual(y.shape, [4, 8, 8, 8]) self.assertLess(mx.abs(y[:, 1:7, 1:7] - c.weight.sum((1, 2, 3))).max(), 1e-4) self.assertLess( mx.abs(y[:, 0, 0] - c.weight[:, 1:, 1:].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 7, 7] - c.weight[:, :-1, :-1].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 1:7, 7] - c.weight[:, :, :-1].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 7, 1:7] - c.weight[:, :-1, :].sum(axis=(1, 2, 3))).max(), 1e-4, ) # 3x3 conv no padding stride 2 c = nn.Conv2d(3, 8, 3, padding=0, stride=2) y = c(x) self.assertEqual(y.shape, [4, 3, 3, 8]) self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) def test_sequential(self): x = mx.ones((10, 2)) m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1)) y = m(x) self.assertEqual(y.shape, [10, 1]) params = m.parameters() self.assertTrue("layers" in params) self.assertEqual(len(params["layers"]), 3) self.assertTrue("weight" in params["layers"][0]) self.assertEqual(len(params["layers"][1]), 0) self.assertTrue("weight" in params["layers"][2]) m.layers[1] = nn.relu y2 = m(x) self.assertTrue(mx.array_equal(y, y2)) def test_module_utilities(self): m = nn.Sequential( nn.Sequential(nn.Linear(2, 10), nn.relu), nn.Sequential(nn.Linear(10, 10), nn.ReLU()), nn.Linear(10, 1), mx.sigmoid, ) children = m.children() self.assertTrue(isinstance(children, dict)) self.assertEqual(len(children), 1) self.assertTrue(isinstance(children["layers"], list)) self.assertEqual(len(children["layers"]), 4) self.assertEqual(children["layers"][3], {}) flat_children = tree_flatten(children, is_leaf=nn.Module.is_module) self.assertEqual(len(flat_children), 3) leaves = tree_flatten(m.leaf_modules(), is_leaf=nn.Module.is_module) self.assertEqual(len(leaves), 4) self.assertEqual(leaves[0][0], "layers.0.layers.0") self.assertEqual(leaves[1][0], "layers.1.layers.0") self.assertEqual(leaves[2][0], "layers.1.layers.1") self.assertEqual(leaves[3][0], "layers.2") self.assertTrue(leaves[0][1] is m.layers[0].layers[0]) self.assertTrue(leaves[1][1] is m.layers[1].layers[0]) self.assertTrue(leaves[2][1] is m.layers[1].layers[1]) self.assertTrue(leaves[3][1] is m.layers[2]) m.eval() def assert_not_training(k, m): self.assertFalse(m.training) m.apply_to_modules(assert_not_training) m.train() def assert_training(k, m): self.assertTrue(m.training) m.apply_to_modules(assert_training) def test_sin_pe(self): m = nn.SinusoidalPositionalEncoding(16, min_freq=0.01) x = mx.arange(10) y = m(x) self.assertEqual(y.shape, [10, 16]) similarities = y @ y.T self.assertLess( mx.abs(similarities[mx.arange(10), mx.arange(10)] - 1).max(), 1e-5 ) def test_io(self): def make_model(): return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2)) m = make_model() tdir = tempfile.TemporaryDirectory() file = os.path.join(tdir.name, "model.npz") m.save_weights(file) m_load = make_model() m_load.load_weights(file) tdir.cleanup() eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters()) self.assertTrue(all(tree_flatten(eq_tree))) def test_relu(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.relu(x) self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0]))) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_leaky_relu(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.leaky_relu(x) self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.01, 0.0]))) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) y = nn.LeakyReLU(negative_slope=0.1)(x) self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.1, 0.0]))) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_elu(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.elu(x) epsilon = 1e-4 expected_y = mx.array([1.0, -0.6321, 0.0]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) y = nn.ELU(alpha=1.1)(x) epsilon = 1e-4 expected_y = mx.array([1.0, -0.6953, 0.0]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_relu6(self): x = mx.array([1.0, -1.0, 0.0, 7.0, -7.0]) y = nn.relu6(x) self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0, 6.0, 0.0]))) self.assertEqual(y.shape, [5]) self.assertEqual(y.dtype, mx.float32) def test_softplus(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.softplus(x) epsilon = 1e-4 expected_y = mx.array([1.3133, 0.3133, 0.6931]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_celu(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.celu(x) epsilon = 1e-4 expected_y = mx.array([1.0, -0.6321, 0.0]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) y = nn.CELU(alpha=1.1)(x) expected_y = mx.array([1.0, -0.6568, 0.0]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_log_sigmoid(self): x = mx.array([1.0, -1.0, 0.0]) y = nn.log_sigmoid(x) epsilon = 1e-4 expected_y = mx.array([-0.3133, -1.3133, -0.6931]) self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon)) self.assertEqual(y.shape, [3]) self.assertEqual(y.dtype, mx.float32) def test_prelu(self): self.assertEqualArray( nn.PReLU()(mx.array([1.0, -1.0, 0.0, 0.5])), mx.array([1.0, -0.25, 0.0, 0.5]), ) def test_mish(self): self.assertEqualArray( nn.Mish()(mx.array([1.0, -1.0, 0.0, 0.5])), mx.array([0.8651, -0.3034, 0.0000, 0.3752]), ) def test_rope(self): for kwargs in [{}, {"traditional": False}, {"base": 10000}]: rope = nn.RoPE(4, **kwargs) shape = (1, 3, 4) x = mx.random.uniform(shape=shape) y = rope(x) self.assertTrue(y.shape, shape) self.assertTrue(y.dtype, mx.float32) y = rope(x, offset=3) self.assertTrue(y.shape, shape) y = rope(x.astype(mx.float16)) self.assertTrue(y.dtype, mx.float16) def test_alibi(self): alibi = nn.ALiBi() shape = [1, 8, 20, 20] x = mx.random.uniform(shape=shape) y = alibi(x) self.assertTrue(y.shape, shape) self.assertTrue(y.dtype, mx.float32) y = alibi(x.astype(mx.float16)) self.assertTrue(y.dtype, mx.float16) if __name__ == "__main__": unittest.main()