# Copyright © 2023 Apple Inc. import os import tempfile import unittest import mlx.core as mx import mlx.nn as nn import mlx_tests import numpy as np from mlx.utils import tree_flatten, tree_map, tree_unflatten class TestNN(mlx_tests.MLXTestCase): def test_linear(self): inputs = mx.zeros((10, 4)) layer = nn.Linear(input_dims=4, output_dims=8) outputs = layer(inputs) self.assertEqual(tuple(outputs.shape), (10, 8)) def test_cross_entropy(self): logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) targets = mx.array([0, 1]) # Test with reduction 'none' losses_none = nn.losses.cross_entropy(logits, targets, reduction="none") expected_none = mx.array([0.0, 0.0]) self.assertTrue(mx.array_equal(losses_none, expected_none)) # Test with reduction 'mean' losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean") expected_mean = mx.mean(expected_none) self.assertEqual(losses_mean, expected_mean) # Test with reduction 'sum' losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum") expected_sum = mx.sum(expected_none) self.assertEqual(losses_sum, expected_sum) def test_l1_loss(self): predictions = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.5, 0.2, 0.9, 0.0]) losses = nn.losses.l1_loss(predictions, targets) self.assertEqual(losses, 0.0) def test_gelu(self): inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414] # From: jax.nn.gelu(np.array(inputs), approximate=False) expected = np.array( [1.0093501, -0.16925684, 0.22918941, 0.60498625, 0.49459383] ) out = nn.GELU()(mx.array(inputs)) self.assertTrue(np.allclose(out, expected)) # Crudely check the approximations x = mx.arange(-6.0, 6.0, 12 / 100) y = nn.gelu(x) y_hat1 = nn.gelu_approx(x) y_hat2 = nn.gelu_fast_approx(x) self.assertLess(mx.abs(y - y_hat1).max(), 0.0003) self.assertLess(mx.abs(y - y_hat2).max(), 0.02) def test_group_norm(self): x = mx.arange(100, dtype=mx.float32) x = x.reshape(1, 10, 10, 1) x = mx.broadcast_to(x, (2, 10, 10, 4)) x = mx.concatenate([x, 0.5 * x], axis=-1) # Group norm in groups last mode g = nn.GroupNorm(2, 8) y = g(x) means = y.reshape(2, -1, 2).mean(axis=1) var = y.reshape(2, -1, 2).var(axis=1) self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6)) g.weight = g.weight * 2 g.bias = g.bias + 3 y = g(x) means = y.reshape(2, -1, 2).mean(axis=1) var = y.reshape(2, -1, 2).var(axis=1) self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6)) # Group norm in groups first mode g = nn.GroupNorm(2, 8, pytorch_compatible=True) y = g(x) means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1)) var = y.reshape(2, -1, 2, 4).var(axis=(1, -1)) self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6)) g.weight = g.weight * 2 g.bias = g.bias + 3 y = g(x) means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1)) var = y.reshape(2, -1, 2, 4).var(axis=(1, -1)) self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6)) self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6)) def test_conv1d(self): N = 5 L = 12 ks = 3 C_in = 2 C_out = 4 x = mx.ones((N, L, C_in)) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks) c.weight = mx.ones_like(c.weight) y = c(x) self.assertEqual(y.shape, [N, L - ks + 1, C_out]) self.assertTrue(mx.allclose(y, mx.full(y.shape, ks * C_in, mx.float32))) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, stride=2) y = c(x) self.assertEqual(y.shape, [N, (L - ks + 1) // 2, C_out]) self.assertTrue("bias" in c.parameters()) c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False) self.assertTrue("bias" not in c.parameters()) def test_conv2d(self): x = mx.ones((4, 8, 8, 3)) c = nn.Conv2d(3, 1, 8) y = c(x) self.assertEqual(y.shape, [4, 1, 1, 1]) c.weight = mx.ones_like(c.weight) / 8 / 8 / 3 y = c(x) self.assertTrue(np.allclose(y[:, 0, 0, 0], x.mean(axis=(1, 2, 3)))) # 3x3 conv no padding stride 1 c = nn.Conv2d(3, 8, 3) y = c(x) self.assertEqual(y.shape, [4, 6, 6, 8]) self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) # 3x3 conv padding 1 stride 1 c = nn.Conv2d(3, 8, 3, padding=1) y = c(x) self.assertEqual(y.shape, [4, 8, 8, 8]) self.assertLess(mx.abs(y[:, 1:7, 1:7] - c.weight.sum((1, 2, 3))).max(), 1e-4) self.assertLess( mx.abs(y[:, 0, 0] - c.weight[:, 1:, 1:].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 7, 7] - c.weight[:, :-1, :-1].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 1:7, 7] - c.weight[:, :, :-1].sum(axis=(1, 2, 3))).max(), 1e-4, ) self.assertLess( mx.abs(y[:, 7, 1:7] - c.weight[:, :-1, :].sum(axis=(1, 2, 3))).max(), 1e-4, ) # 3x3 conv no padding stride 2 c = nn.Conv2d(3, 8, 3, padding=0, stride=2) y = c(x) self.assertEqual(y.shape, [4, 3, 3, 8]) self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) def test_sequential(self): x = mx.ones((10, 2)) m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1)) y = m(x) self.assertEqual(y.shape, [10, 1]) params = m.parameters() self.assertTrue("layers" in params) self.assertEqual(len(params["layers"]), 3) self.assertTrue("weight" in params["layers"][0]) self.assertEqual(len(params["layers"][1]), 0) self.assertTrue("weight" in params["layers"][2]) m.layers[1] = nn.relu y2 = m(x) self.assertTrue(mx.array_equal(y, y2)) def test_module_utilities(self): m = nn.Sequential( nn.Sequential(nn.Linear(2, 10), nn.relu), nn.Sequential(nn.Linear(10, 10), nn.ReLU()), nn.Linear(10, 1), mx.sigmoid, ) children = m.children() self.assertTrue(isinstance(children, dict)) self.assertEqual(len(children), 1) self.assertTrue(isinstance(children["layers"], list)) self.assertEqual(len(children["layers"]), 4) self.assertEqual(children["layers"][3], {}) flat_children = tree_flatten(children, is_leaf=nn.Module.is_module) self.assertEqual(len(flat_children), 3) leaves = tree_flatten(m.leaf_modules(), is_leaf=nn.Module.is_module) self.assertEqual(len(leaves), 4) self.assertEqual(leaves[0][0], "layers.0.layers.0") self.assertEqual(leaves[1][0], "layers.1.layers.0") self.assertEqual(leaves[2][0], "layers.1.layers.1") self.assertEqual(leaves[3][0], "layers.2") self.assertTrue(leaves[0][1] is m.layers[0].layers[0]) self.assertTrue(leaves[1][1] is m.layers[1].layers[0]) self.assertTrue(leaves[2][1] is m.layers[1].layers[1]) self.assertTrue(leaves[3][1] is m.layers[2]) m.eval() def assert_not_training(k, m): self.assertFalse(m.training) m.apply_to_modules(assert_not_training) m.train() def assert_training(k, m): self.assertTrue(m.training) m.apply_to_modules(assert_training) def test_sin_pe(self): m = nn.SinusoidalPositionalEncoding(16, min_freq=0.01) x = mx.arange(10) y = m(x) self.assertEqual(y.shape, [10, 16]) similarities = y @ y.T self.assertLess( mx.abs(similarities[mx.arange(10), mx.arange(10)] - 1).max(), 1e-5 ) def test_io(self): def make_model(): return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2)) m = make_model() tdir = tempfile.TemporaryDirectory() file = os.path.join(tdir.name, "model.npz") m.save_weights(file) m_load = make_model() m_load.load_weights(file) tdir.cleanup() eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters()) self.assertTrue(all(tree_flatten(eq_tree))) if __name__ == "__main__": unittest.main()