// Copyright © 2023-2024 Apple Inc. #include #include "mlx/backend/metal/copy.h" #include "mlx/backend/metal/device.h" #include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/kernels/defines.h" #include "mlx/backend/metal/utils.h" #include "mlx/primitives.h" namespace mlx::core { constexpr int SOFTMAX_LOOPED_LIMIT = 4096; void Softmax::eval_gpu(const std::vector& inputs, array& out) { assert(inputs.size() == 1); if (!issubdtype(out.dtype(), floating)) { throw std::runtime_error( "[softmax] Does not support non-floating point types."); } auto& s = stream(); auto& d = metal::device(s.device); // Make sure that the last dimension is contiguous std::vector copies; auto check_input = [&copies, &s](const array& x) -> const array& { bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1; if (no_copy && x.ndim() > 1) { auto s = x.strides()[x.ndim() - 2]; no_copy &= (s == 0 || s == x.shape().back()); } if (no_copy) { return x; } else { copies.push_back(array(x.shape(), x.dtype(), nullptr, {})); copy_gpu(x, copies.back(), CopyType::General, s); return copies.back(); } }; const array& in = check_input(inputs[0]); if (in.is_donatable()) { out.move_shared_buffer(in); } else { out.set_data( allocator::malloc_or_wait(in.data_size() * in.itemsize()), in.data_size(), in.strides(), in.flags()); } int axis_size = in.shape().back(); int n_rows = in.data_size() / axis_size; const int simd_size = 32; const int n_reads = SOFTMAX_N_READS; const int looped_limit = SOFTMAX_LOOPED_LIMIT; std::string kernel_name = (axis_size > looped_limit) ? "looped_" : "block_"; kernel_name += "softmax_"; if (in.dtype() != float32 && precise_) { kernel_name += "precise_"; } kernel_name += type_to_name(out); auto kernel = get_softmax_kernel(d, kernel_name, precise_, out); auto& compute_encoder = d.get_command_encoder(s.index); { MTL::Size grid_dims, group_dims; if (axis_size <= looped_limit) { size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads; size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size; size_t threadgroup_size = simd_size * simds_needed; assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup()); size_t n_threads = n_rows * threadgroup_size; grid_dims = MTL::Size(n_threads, 1, 1); group_dims = MTL::Size(threadgroup_size, 1, 1); } else { size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup(); size_t n_threads = n_rows * threadgroup_size; grid_dims = MTL::Size(n_threads, 1, 1); group_dims = MTL::Size(threadgroup_size, 1, 1); } compute_encoder->setComputePipelineState(kernel); compute_encoder.set_input_array( in.data_shared_ptr() == nullptr ? out : in, 0); compute_encoder.set_output_array(out, 1); compute_encoder->setBytes(&axis_size, sizeof(int), 2); compute_encoder.dispatchThreads(grid_dims, group_dims); } if (!copies.empty()) { d.get_command_buffer(s.index)->addCompletedHandler( [copies = std::move(copies)](MTL::CommandBuffer*) mutable { copies.clear(); }); } } } // namespace mlx::core