// Copyright © 2023-2024 Apple Inc. #include #include #include "mlx/fast.h" #include "mlx/ops.h" #include "python/src/utils.h" namespace py = pybind11; using namespace py::literals; using namespace mlx::core; void init_extensions(py::module_& parent_module) { py::options options; options.disable_function_signatures(); auto m = parent_module.def_submodule("fast", "mlx.core.fast: fast operations"); m.def( "rope", [](const array& a, int dims, bool traditional, float base, float scale, int offset, const StreamOrDevice& s /* = {} */) { return fast::rope(a, dims, traditional, base, scale, offset, s); }, "a"_a, "dims"_a, py::kw_only(), "traditional"_a, "base"_a, "scale"_a, "offset"_a, "stream"_a = none, R"pbdoc( rope(a: array, dims: int, *, traditinoal: bool, base: float, scale: float, offset: int, stream: Union[None, Stream, Device] = None) -> array Apply rotary positional encoding to the input. Args: a (array): Input array. dims (int): The feature dimensions to be rotated. If the input feature is larger than dims then the rest is left unchanged. traditional (bool): If set to ``True`` choose the traditional implementation which rotates consecutive dimensions. base (float): The base used to compute angular frequency for each dimension in the positional encodings. scale (float): The scale used to scale the positions. offset (int): The position offset to start at. Returns: array: The output array. )pbdoc"); m.def( "scaled_dot_product_attention", [](const array& q, const array& k, const array& v, const float scale, const std::optional& mask, const StreamOrDevice& s) { return fast::scaled_dot_product_attention(q, k, v, scale, mask, s); }, "q"_a, "k"_a, "v"_a, py::kw_only(), "scale"_a, "mask"_a = none, "stream"_a = none, R"pbdoc( scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Union[None, array] = None, stream: Union[None, Stream, Device] = None) -> array A fast implementation of multi-head attention: O = softmax(Q @ K.T, dim=-1) @ V. Supports [Multi-Head Attention](https://arxiv.org/abs/1706.03762), [Grouped Query Attention](https://arxiv.org/abs/2305.13245), and [Multi-Query Attention](https://arxiv.org/abs/1911.02150). This function will dispatch to an optimized Metal kernel when the query sequence length is 1. It handles other cases with regular MLX operations. Note: The softmax operation is performed in float32 precision regardless of input precision (float16 or float32). Note: For Grouped Query Attention and Multi-Query Attention, the input arrays for `key` and `value` should not be pre-tiled to match the `query` array. Args: q (array): Input query array. k (array): Input keys array. v (array): Input values array. scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``) mask (array, optional): An additive mask to apply to the query-key scores. Returns: array: The output array. )pbdoc"); }