MLX
 
Loading...
Searching...
No Matches
steel_attention.h
Go to the documentation of this file.
1// Copyright © 2024 Apple Inc.
2
3using namespace mlx::steel;
4
6// GEMM kernels
8
9constant bool align_Q [[function_constant(200)]];
10constant bool align_K [[function_constant(201)]];
11
12template <typename T>
15 METAL_FUNC TransformScale(T scale_) : scale(scale_) {}
16
17 METAL_FUNC T apply(T x) const {
18 return scale * x;
19 }
20};
21
22struct MaxOp {
23 template <typename T>
24 METAL_FUNC static constexpr T apply(T x, T y) {
25 return metal::max(x, y);
26 }
27};
28
29struct SumOp {
30 template <typename T>
31 METAL_FUNC static constexpr T apply(T x, T y) {
32 return x + y;
33 }
34};
35
36struct MulOp {
37 template <typename T>
38 METAL_FUNC static constexpr T apply(T x, T y) {
39 return x * y;
40 }
41};
42
43struct SubOp {
44 template <typename T>
45 METAL_FUNC static constexpr T apply(T x, T y) {
46 return x - y;
47 }
48};
49
50struct ExpSubOp {
51 template <typename T>
52 METAL_FUNC static constexpr T apply(T x, T y) {
53 return fast::exp(x - y);
54 }
55};
56
57struct DivOp {
58 template <typename T>
59 METAL_FUNC static constexpr T apply(T x, T y) {
60 return x / y;
61 }
62};
63
64// clang-format off
65template <
66 typename T,
67 int BQ,
68 int BK,
69 int BD,
70 int WM,
71 int WN,
72 typename AccumType = float>
73[[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void attention(
74 const device T* Q [[buffer(0)]],
75 const device T* K [[buffer(1)]],
76 const device T* V [[buffer(2)]],
77 device T* O [[buffer(3)]],
78 const constant AttnParams* params [[buffer(4)]],
79 uint simd_lane_id [[thread_index_in_simdgroup]],
80 uint simd_group_id [[simdgroup_index_in_threadgroup]],
81 uint3 tid [[threadgroup_position_in_grid]],
82 uint3 lid [[thread_position_in_threadgroup]]) { // clang-format on
83
84 // Pacifying compiler
85 (void)lid;
86
87 // Move to correct block
88 ulong3 tidl{tid.x, tid.y, tid.z};
89
90 Q += tidl.z * params->Q_strides[0] + // Batch
91 tidl.y * params->Q_strides[1] + // Head
92 tidl.x * BQ * params->Q_strides[2]; // Seqeunce
93
94 ulong kv_head_idx = int(tid.y) / params->gqa_factor;
95 K += tidl.z * params->K_strides[0] + // Batch
96 kv_head_idx * params->K_strides[1]; // Head
97
98 V += tidl.z * params->V_strides[0] + // Batch
99 kv_head_idx * params->V_strides[1]; // Head
100
101 O += tidl.z * params->O_strides[0] + // Batch
102 tidl.y * params->O_strides[1] + // Head
103 tidl.x * BQ * params->O_strides[2]; // Seqeunce
104
105 // Prepare threadgroup memory
106 constexpr short padQ = 0; // 16 / sizeof(T);
107 constexpr short padK = 0; // 16 / sizeof(T);
108 constexpr short padV = 0; // 16 / sizeof(T);
109
110 constexpr short LDQ_tgp = BD + padQ;
111 constexpr short LDK_tgp = BK + padK;
112 constexpr short LDV_tgp = BD + padV;
113
114 threadgroup T Qs[BQ * (BD + padQ)];
115 threadgroup T Ks[(BK + padK) * BD];
116 threadgroup T Vs[BK * (BD + padV)];
117
118 // Prepare block loaders
119 using QBlockLoader = BlockLoaderT<
120 /* typename T = */ T,
121 /* short BROWS = */ BQ,
122 /* short BCOLS = */ BD,
123 /* short kDstStrRow = */ LDQ_tgp,
124 /* short kDstStrCol = */ 1,
125 /* short reduction_dim = */ 1,
126 /* short tgp_size = */ WM * WN * 32>;
127
128 // K is loaded in transposed
129 using KBlockLoader = BlockLoaderT<
130 /* typename T = */ T,
131 /* short BROWS = */ BK,
132 /* short BCOLS = */ BD,
133 /* short kDstStrRow = */ 1,
134 /* short kDstStrCol = */ LDK_tgp,
135 /* short reduction_dim = */ 0,
136 /* short tgp_size = */ WM * WN * 32>;
137
138 using VBlockLoader = BlockLoaderT<
139 /* typename T = */ T,
140 /* short BROWS = */ BK,
141 /* short BCOLS = */ BD,
142 /* short kDstStrRow = */ LDV_tgp,
143 /* short kDstStrCol = */ 1,
144 /* short reduction_dim = */ 0,
145 /* short tgp_size = */ WM * WN * 32>;
146
147 QBlockLoader loader_q(
148 Q, params->Q_strides[2], Qs, simd_group_id, simd_lane_id);
149 KBlockLoader loader_k(
150 K, params->K_strides[2], Ks, simd_group_id, simd_lane_id);
151 VBlockLoader loader_v(
152 V, params->V_strides[2], Vs, simd_group_id, simd_lane_id);
153
154 TransformScale<T> ts(static_cast<T>(params->scale));
155
156 // Prepare MMA tiles
157 constexpr short kFragSize = 8; // MMAFrag size
159
160 constexpr int kNWarps = WM * WN;
161 static_assert(
162 BQ >= (kNWarps * kFragSize) && BQ % (kNWarps * kFragSize) == 0,
163 "Each simdgroup must host atleast 1 simdgroup matrix along Q sequence.");
164
165 // Q seq frags per warp
166 constexpr int TQ = BQ / (kNWarps * kFragSize);
167 // KV sequence frags (all warps load the same frags)
168 constexpr int TK = BK / kFragSize;
169 // HeadDim frags (all warps load the same frags)
170 constexpr int TD = BD / kFragSize;
171
172 static_assert(TQ == 1, "Check TQ");
173
179
180 Otile.clear();
181
182 // Prepare mma tile offsets
183 const short2 simd_coord = MMAFrag_acc_t::get_coord(simd_lane_id);
184 const short sm = simd_coord.y;
185 const short sn = simd_coord.x;
186 const short tm = kFragSize * TQ * simd_group_id;
187
188 const short Qs_offset = (tm + sm) * LDQ_tgp + sn;
189 const short Ks_offset = sm * LDK_tgp + sn;
190 const short Vs_offset = sm * LDV_tgp + sn;
191
192 constexpr short Qs_tile_stride = kFragSize;
193 constexpr short Ks_tile_stride = kFragSize * LDK_tgp;
194
195 threadgroup_barrier(mem_flags::mem_threadgroup);
196
197 // Load Q blocks apply scale
198 if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
199 loader_q.load_safe(short2(BD, params->qL - params->NQ_aligned * BQ));
200 } else {
201 loader_q.load_unsafe();
202 }
203 loader_q.apply_inplace_op(ts);
204
205 // Init row reduction variables
206 constexpr short kRowsPT = decltype(Stile)::kRowsPerThread;
207
208 AccumType max_score[kRowsPT];
209 AccumType sum_score[kRowsPT] = {0};
210
211 // Init to -Inf
213 for (short i = 0; i < kRowsPT; ++i) {
214 max_score[i] = Limits<AccumType>::min;
215 }
216
217 // Loop over KV seq length
218 for (int kb = 0; kb < params->NK; kb++) {
219 // Load K block and apply scale
220 threadgroup_barrier(mem_flags::mem_threadgroup);
221 if (!align_K && kb == (params->NK_aligned)) {
222 loader_k.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
223 } else {
224 loader_k.load_unsafe();
225 }
226
227 threadgroup_barrier(mem_flags::mem_threadgroup);
228
229 // Do S = Q @ K.T
230 Stile.clear();
231
232 for (short dd = 0; dd < TD; dd++) {
233 simdgroup_barrier(mem_flags::mem_none);
234
235 Qtile.template load<T, 1, 1, LDQ_tgp, 1>(
236 &Qs[Qs_offset + dd * Qs_tile_stride]);
237 Ktile.template load<T, 1, 1, LDK_tgp, 1>(
238 &Ks[Ks_offset + dd * Ks_tile_stride]);
239
240 simdgroup_barrier(mem_flags::mem_none);
241
242 tile_matmad(Stile, Qtile, Ktile, Stile);
243 }
244
245 // Mask out of length sequence
246 if (!align_K && kb == (params->NK_aligned)) {
247 using stile_t = decltype(Stile);
248 using selem_t = typename stile_t::elem_type;
249 constexpr auto neg_inf = -metal::numeric_limits<selem_t>::infinity();
250 const short lim = params->kL - params->NK_aligned * BK;
251
253 for (short i = 0; i < stile_t::kTileRows; i++) {
255 for (short j = 0; j < stile_t::kTileCols; j++) {
256 short col_pos = sn + (j * stile_t::kFragCols);
258 for (short jj = 0; jj < stile_t::MMAFrag_t::kElemCols; jj++) {
259 if ((col_pos + jj) >= lim) {
260 Stile.frag_at(i, j)[jj] = neg_inf;
261 }
262 }
263 }
264 }
265 }
266
267 simdgroup_barrier(mem_flags::mem_none);
268
269 // Load V blocks
270 if (!align_K && kb == (params->NK_aligned)) {
271 loader_v.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
272 } else {
273 loader_v.load_unsafe();
274 }
275
276 // Do softmax
277
278 // Temp variables
279 AccumType new_max[kRowsPT];
280 AccumType factor[kRowsPT];
282 for (short i = 0; i < kRowsPT; ++i) {
283 new_max[i] = max_score[i];
284 }
285
286 // Row max
287 Stile.template row_reduce<MaxOp>(new_max);
288
289 // exp(Si - rowmax(Si))
290 Stile.template row_bin_op<ExpSubOp>(new_max);
291
292 // Factor exp(rowmax(Si) - rowmax(Si-1))
294 for (short i = 0; i < kRowsPT; ++i) {
295 factor[i] = fast::exp(max_score[i] - new_max[i]);
296 }
297
298 // Save max for next iteration
300 for (short i = 0; i < kRowsPT; ++i) {
301 max_score[i] = new_max[i];
302 }
303
304 // Row Sum
305 AccumType sum_score_tmp[kRowsPT] = {0};
306 Stile.template row_reduce<SumOp>(sum_score_tmp);
307
308 // Update norm
310 for (short i = 0; i < kRowsPT; ++i) {
311 sum_score[i] = sum_score[i] * factor[i] + sum_score_tmp[i];
312 }
313
314 // Update O
315 Otile.template row_bin_op<MulOp>(factor);
316
317 // Load V into registers
318 threadgroup_barrier(mem_flags::mem_threadgroup);
319 Vtile.template load<T, 1, 1, LDV_tgp, 1>(&Vs[Vs_offset]);
320
321 simdgroup_barrier(mem_flags::mem_none);
322
323 // Do O = S @ V
324 tile_matmad(Otile, Stile, Vtile, Otile);
325
326 // Prepare for next iteration
327 loader_k.next();
328 loader_v.next();
329 }
330
331 // Normalize output
332 Otile.template row_bin_op<DivOp>(sum_score);
333 threadgroup_barrier(mem_flags::mem_none);
334
335 // Store results
336 O += (tm + sm) * params->O_strides[2] + sn;
337
338 if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
339 auto dst_tile_dims =
340 short2(BD - sn, params->qL - BQ * params->NQ_aligned - (tm + sm));
341
342 if (dst_tile_dims.x <= 0 || dst_tile_dims.y <= 0)
343 return;
344
345 Otile.template store_safe<T, 1, 1>(O, params->O_strides[2], dst_tile_dims);
346 } else {
347 Otile.template store<T, 1, 1>(O, params->O_strides[2]);
348 }
349}
METAL_FUNC bfloat16_t max(bfloat16_t x, bfloat16_t y)
Definition bf16_math.h:232
Definition attn.h:19
METAL_FUNC void tile_matmad(thread MMATile< T, M, N > &D, thread MMATile< U, M, K > &A, thread MMATile< U, K, N > &B, thread MMATile< T, M, N > &C)
Definition mma.h:413
#define STEEL_PRAGMA_UNROLL
Definition defines.h:4
constant bool align_Q
Definition steel_attention.h:9
void attention(const device T *Q, const device T *K, const device T *V, device T *O, const constant AttnParams *params, uint simd_lane_id, uint simd_group_id, uint3 tid, uint3 lid)
Definition steel_attention.h:73
constant bool align_K
Definition steel_attention.h:10
Definition steel_attention.h:57
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:59
Definition steel_attention.h:50
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:52
static const constant U min
Definition utils.h:25
Definition steel_attention.h:22
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:24
Definition steel_attention.h:36
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:38
Definition steel_attention.h:43
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:45
Definition steel_attention.h:29
static METAL_FUNC constexpr T apply(T x, T y)
Definition steel_attention.h:31
Definition steel_attention.h:13
METAL_FUNC T apply(T x) const
Definition steel_attention.h:17
T scale
Definition steel_attention.h:14
METAL_FUNC TransformScale(T scale_)
Definition steel_attention.h:15
Definition params.h:12
Definition mma.h:37
Definition loader.h:153
Definition mma.h:223
METAL_FUNC constexpr thread frag_type & frag_at(const short i, const short j)
Definition mma.h:256
METAL_FUNC constexpr void clear()
Definition mma.h:249