// Copyright © 2023-2024 Apple Inc. #include #include #include #include #include #include #include #include "python/src/utils.h" #include "mlx/fast.h" #include "mlx/ops.h" namespace nb = nanobind; using namespace nb::literals; using namespace mlx::core; void init_fast(nb::module_& parent_module) { auto m = parent_module.def_submodule("fast", "mlx.core.fast: fast operations"); m.def( "rms_norm", &fast::rms_norm, "x"_a, "weight"_a, "eps"_a, nb::kw_only(), "stream"_a = nb::none(), nb::sig( "def rms_norm(x: array, weight: array, eps: float, *, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( Root Mean Square normalization (RMS norm). The normalization is with respect to the last axis of the input ``x``. Args: x (array): Input array. weight (array): A multiplicative weight to scale the result by. The ``weight`` should be one-dimensional with the same size as the last axis of ``x``. eps (float): A small additive constant for numerical stability. Returns: array: The output array. )pbdoc"); m.def( "layer_norm", &fast::layer_norm, "x"_a, "weight"_a.none(), "bias"_a.none(), "eps"_a, nb::kw_only(), "stream"_a = nb::none(), nb::sig( "def layer_norm(x: array, weight: Optional[array], bias: Optional[array], eps: float, *, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( Layer normalization. The normalization is with respect to the last axis of the input ``x``. Args: x (array): Input array. weight (array, optional): A multiplicative weight to scale the result by. The ``weight`` should be one-dimensional with the same size as the last axis of ``x``. If set to ``None`` then no scaling happens. bias (array, optional): An additive offset to be added to the result. The ``bias`` should be one-dimensional with the same size as the last axis of ``x``. If set to ``None`` then no translation happens. eps (float): A small additive constant for numerical stability. Returns: array: The output array. )pbdoc"); m.def( "rope", &fast::rope, "a"_a, "dims"_a, nb::kw_only(), "traditional"_a, "base"_a.none(), "scale"_a, "offset"_a, "freqs"_a = nb::none(), "stream"_a = nb::none(), nb::sig( "def rope(a: array, dims: int, *, traditional: bool, base: Optional[float], scale: float, offset: int, freqs: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( Apply rotary positional encoding to the input. Args: a (array): Input array. dims (int): The feature dimensions to be rotated. If the input feature is larger than dims then the rest is left unchanged. traditional (bool): If set to ``True`` choose the traditional implementation which rotates consecutive dimensions. base (float, optional): The base used to compute angular frequency for each dimension in the positional encodings. Exactly one of ``base`` and ``freqs`` must be ``None``. scale (float): The scale used to scale the positions. offset (int): The position offset to start at. freqs (array, optional): Optional frequencies to use with RoPE. If set, the ``base`` parameter must be ``None``. Default: ``None``. Returns: array: The output array. )pbdoc"); m.def( "scaled_dot_product_attention", &fast::scaled_dot_product_attention, "q"_a, "k"_a, "v"_a, nb::kw_only(), "scale"_a, "mask"_a = nb::none(), "memory_efficient_threshold"_a = nb::none(), "stream"_a = nb::none(), nb::sig( "def scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( A fast implementation of multi-head attention: ``O = softmax(Q @ K.T, dim=-1) @ V``. Supports: * `Multi-Head Attention `_ * `Grouped Query Attention `_ * `Multi-Query Attention `_ Note: The softmax operation is performed in ``float32`` regardless of the input precision. Note: For Grouped Query Attention and Multi-Query Attention, the ``k`` and ``v`` inputs should not be pre-tiled to match ``q``. Args: q (array): Input query array. k (array): Input keys array. v (array): Input values array. scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``) mask (array, optional): An additive mask to apply to the query-key scores. Returns: array: The output array. )pbdoc"); m.def( "affine_quantize", nb::overload_cast< const array&, const array&, const array&, int, int, StreamOrDevice>(&fast::affine_quantize), "w"_a, "scales"_a, "biases"_a, "group_size"_a = 64, "bits"_a = 4, nb::kw_only(), "stream"_a = nb::none(), nb::sig( "def affine_quantize(w: array, /, scales: array, biases: array, group_size: int = 64, bits: int = 4, *, stream: Union[None, Stream, Device] = None) -> array"), R"pbdoc( Quantize the matrix ``w`` using the provided ``scales`` and ``biases`` and the ``group_size`` and ``bits`` configuration. Formally, given the notation in :func:`quantize`, we compute :math:`w_i` from :math:`\hat{w_i}` and corresponding :math:`s` and :math:`\beta` as follows .. math:: w_i = s (\hat{w_i} + \beta) Args: w (array): Matrix to be quantize scales (array): The scales to use per ``group_size`` elements of ``w`` biases (array): The biases to use per ``group_size`` elements of ``w`` group_size (int, optional): The size of the group in ``w`` that shares a scale and bias. (default: ``64``) bits (int, optional): The number of bits occupied by each element in ``w``. (default: ``4``) Returns: array: The quantized version of ``w`` )pbdoc"); m.def( "metal_kernel", [](const std::string& name, const std::vector& input_names, const std::vector& output_names, const std::string& source, const std::string& header, bool ensure_row_contiguous, bool atomic_outputs) { auto kernel = fast::metal_kernel( name, input_names, output_names, source, header, ensure_row_contiguous, atomic_outputs); return nb::cpp_function( [kernel = std::move(kernel)]( const std::vector& inputs_, const std::vector>& output_shapes, const std::vector& output_dtypes, std::tuple grid, std::tuple threadgroup, const std::optional< std::vector>>& template_args_ = std::nullopt, std::optional init_value = std::nullopt, bool verbose = false, StreamOrDevice s = {}) { std::vector inputs; for (const auto& value : inputs_) { inputs.push_back(to_array(value, std::nullopt)); } std::vector> template_args; if (template_args_) { for (const auto& [name, value] : template_args_.value()) { // Handle bool, int and dtype template args if (nb::isinstance(value)) { bool bool_val = nb::cast(value); template_args.emplace_back(name, bool_val); } else if (nb::isinstance(value)) { int int_val = nb::cast(value); template_args.emplace_back(name, int_val); } else if (nb::isinstance(value)) { Dtype dtype = nb::cast(value); template_args.emplace_back(name, dtype); } else { throw std::invalid_argument( "[metal_kernel] Invalid template argument. Must be `mlx.core.Dtype`, `int` or `bool`."); } } } return kernel( inputs, output_shapes, output_dtypes, grid, threadgroup, template_args, init_value, verbose, s); }, nb::kw_only(), "inputs"_a, "output_shapes"_a, "output_dtypes"_a, "grid"_a, "threadgroup"_a, "template"_a = nb::none(), "init_value"_a = nb::none(), "verbose"_a = false, "stream"_a = nb::none(), nb::sig( "def __call__(self, *, inputs: List[Union[scalar, array]], output_shapes: List[Sequence[int]], output_dtypes: List[Dtype], grid: tuple[int, int, int], threadgroup: tuple[int, int, int], template: Optional[List[Tuple[str, Union[bool, int, Dtype]]]] = None, init_value: Optional[float] = None, verbose: bool = false, stream: Union[None, Stream, Device] = None)"), R"pbdoc( Run the kernel. Args: inputs (List[array]): The inputs passed to the Metal kernel. output_shapes (List[Sequence[int]]): The list of shapes for each output in ``output_names``. output_dtypes (List[Dtype]): The list of data types for each output in ``output_names``. grid (tuple[int, int, int]): 3-tuple specifying the grid to launch the kernel with. threadgroup (tuple[int, int, int]): 3-tuple specifying the threadgroup size to use. template (List[Tuple[str, Union[bool, int, Dtype]]], optional): Template arguments. These will be added as template arguments to the kernel definition. Default: ``None``. init_value (float, optional): Optional value to use to initialize all of the output arrays. By default, output arrays are uninitialized. Default: ``None``. verbose (bool, optional): Whether to print the full generated source code of the kernel when it is run. Default: ``False``. stream (mx.stream, optional): Stream to run the kernel on. Default: ``None``. Returns: List[array]: The list of output arrays.)pbdoc"); }, "name"_a, "input_names"_a, "output_names"_a, "source"_a, "header"_a = "", "ensure_row_contiguous"_a = true, "atomic_outputs"_a = false, R"pbdoc( A jit-compiled custom Metal kernel defined from a source string. Args: name (str): Name for the kernel. input_names (List[str]): The parameter names of the inputs in the function signature. output_names (List[str]): The parameter names of the outputs in the function signature. source (str): Source code. This is the body of a function in Metal, the function signature will be automatically generated. header (str): Header source code to include before the main function. Useful for helper functions or includes that should live outside of the main function body. ensure_row_contiguous (bool): Whether to ensure the inputs are row contiguous before the kernel runs. Default: ``True``. atomic_outputs (bool): Whether to use atomic outputs in the function signature e.g. ``device atomic``. Default: ``False``. Returns: Callable ``metal_kernel``. Example: .. code-block:: python def exp_elementwise(a: mx.array): source = ''' uint elem = thread_position_in_grid.x; T tmp = inp[elem]; out[elem] = metal::exp(tmp); ''' kernel = mx.fast.metal_kernel( name="myexp", input_names=["inp"], output_names=["out"], source=source ) outputs = kernel( inputs=[a], template=[("T", mx.float32)], grid=(a.size, 1, 1), threadgroup=(256, 1, 1), output_shapes=[a.shape], output_dtypes=[a.dtype], verbose=True, ) return outputs[0] a = mx.random.normal(shape=(4, 16)).astype(mx.float16) b = exp_elementwise(a) assert mx.allclose(b, mx.exp(a)) )pbdoc"); }