.. _optimizers: Optimizers ========== The optimizers in MLX can be used both with :mod:`mlx.nn` but also with pure :mod:`mlx.core` functions. A typical example involves calling :meth:`Optimizer.update` to update a model's parameters based on the loss gradients and subsequently calling :func:`mlx.core.eval` to evaluate both the model's parameters and the **optimizer state**. .. code-block:: python # Create a model model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes) mx.eval(model.parameters()) # Create the gradient function and the optimizer loss_and_grad_fn = nn.value_and_grad(model, loss_fn) optimizer = optim.SGD(learning_rate=learning_rate) for e in range(num_epochs): for X, y in batch_iterate(batch_size, train_images, train_labels): loss, grads = loss_and_grad_fn(model, X, y) # Update the model with the gradients. So far no computation has happened. optimizer.update(model, grads) # Compute the new parameters but also the optimizer state. mx.eval(model.parameters(), optimizer.state) .. currentmodule:: mlx.optimizers .. autosummary:: :toctree: _autosummary :template: optimizers-template.rst OptimizerState Optimizer SGD RMSprop Adagrad AdaDelta Adam AdamW Adamax