mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
1337 lines
40 KiB
C++
1337 lines
40 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
// Required for using M_2_SQRTPI in MSVC.
|
|
#define _USE_MATH_DEFINES
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <sstream>
|
|
#include <vector>
|
|
#include "doctest/doctest.h"
|
|
|
|
#include "mlx/graph_utils.h"
|
|
#include "mlx/mlx.h"
|
|
|
|
using namespace mlx::core;
|
|
|
|
TEST_CASE("test stop gradient") {
|
|
auto x = zeros({5, 5});
|
|
auto y = stop_gradient(x);
|
|
CHECK(array_equal(y, zeros({5, 5})).item<bool>());
|
|
|
|
x = zeros({5, 5}, int32);
|
|
y = stop_gradient(x);
|
|
CHECK_EQ(y.dtype(), int32);
|
|
CHECK(array_equal(y, zeros({5, 5}, int32)).item<bool>());
|
|
|
|
{
|
|
auto fun = [](array input) { return stop_gradient(add(input, ones({2}))); };
|
|
auto vfun = vmap(fun);
|
|
auto out = vfun(ones({3, 2}));
|
|
CHECK(array_equal(out, full({3, 2}, 2.0)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto fun = [](array input) { return add(stop_gradient(input), ones({2})); };
|
|
auto vfun = vmap(fun);
|
|
auto out = vfun(ones({3, 2}));
|
|
CHECK(array_equal(out, full({3, 2}, 2.0)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto x = array(1.);
|
|
auto fun = [](array in) { return stop_gradient(add(in, in)); };
|
|
auto out = vjp(fun, x, array(1.)).second;
|
|
CHECK(array_equal(out, array(0.)).item<bool>());
|
|
|
|
out = jvp(fun, x, array(1.)).second;
|
|
CHECK(array_equal(out, array(0.)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto x = array(1.);
|
|
auto fun = [](array in) { return add(in, stop_gradient(in)); };
|
|
auto out = vjp(fun, x, array(1.)).second;
|
|
CHECK(array_equal(out, array(1.)).item<bool>());
|
|
|
|
out = jvp(fun, x, array(1.)).second;
|
|
CHECK(array_equal(out, array(1.)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto x = array(1.);
|
|
auto fun = [](array in) {
|
|
for (int i = 0; i < 10; ++i) {
|
|
in = add(in, in);
|
|
}
|
|
return stop_gradient(in);
|
|
};
|
|
{
|
|
auto out = vjp(fun, x, array(1.)).second;
|
|
std::ostringstream g_ss;
|
|
print_graph(g_ss, out);
|
|
auto g_str = g_ss.str();
|
|
auto count = std::count(g_str.begin(), g_str.end(), '\n');
|
|
CHECK(count < 5);
|
|
}
|
|
{
|
|
auto out = jvp(fun, x, array(1.)).second;
|
|
std::ostringstream g_ss;
|
|
print_graph(g_ss, out);
|
|
auto g_str = g_ss.str();
|
|
auto count = std::count(g_str.begin(), g_str.end(), '\n');
|
|
CHECK(count < 5);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test jvp") {
|
|
{
|
|
auto fun = [](const std::vector<array>& inputs) {
|
|
return std::vector<array>{add(inputs[0], inputs[1])};
|
|
};
|
|
auto x = array(1.0f);
|
|
auto y = array(1.0f);
|
|
auto [out, dout] = jvp(fun, {x, y}, {array(1.0f), array(3.0f)});
|
|
CHECK_EQ(out[0].item<float>(), 2.0f);
|
|
CHECK_EQ(dout[0].item<float>(), 4.0f);
|
|
}
|
|
|
|
// Evaling in function while tracing performs graph retention
|
|
{
|
|
auto fun1 = [](const array& x) {
|
|
auto y = 3 * x;
|
|
eval(y);
|
|
CHECK(y.is_available());
|
|
CHECK(y.has_primitive());
|
|
CHECK(y.is_tracer());
|
|
return 2 * y;
|
|
};
|
|
CHECK_EQ(jvp(fun1, array(1.0f), array(1.0f)).second.item<float>(), 6.0f);
|
|
}
|
|
|
|
// Only one argument
|
|
{
|
|
auto x = array(1.0f);
|
|
auto fun = [x](array in) { return add(x, in); };
|
|
auto y = array(1.0f);
|
|
auto out = jvp(fun, y, array(3.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
}
|
|
|
|
// Input also in capture clause
|
|
{
|
|
auto x = array(1.0f);
|
|
auto fun = [x](array in) { return in + x; };
|
|
auto out = jvp(fun, x, array(1.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 1.0f);
|
|
}
|
|
|
|
// Throws on incorrectly shaped inputs
|
|
{
|
|
auto fun = [](array in) { return add(in, in); };
|
|
CHECK_THROWS_AS(jvp(fun, array(1), array({1, 1})), std::invalid_argument);
|
|
}
|
|
|
|
// Throws on wrong number of inputs
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0], inputs[1]};
|
|
};
|
|
CHECK_THROWS_AS(
|
|
jvp(fun, {array(1), array(1)}, {array(1)}), std::invalid_argument);
|
|
}
|
|
|
|
// No dependence between input and output
|
|
{
|
|
auto fun = [](array in) { return array({1.0, 1.0}); };
|
|
auto out = jvp(fun, array(1.0f), array(1.0f)).second;
|
|
CHECK(array_equal(out, zeros({2})).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test vjp") {
|
|
{
|
|
auto x = array(1.0f);
|
|
auto y = array(1.0f);
|
|
auto fun = [y](array in) { return add(in, y); };
|
|
auto [out, dout] = vjp(fun, x, array(1.0f));
|
|
CHECK_EQ(out.item<float>(), 2.0f);
|
|
CHECK_EQ(dout.item<float>(), 1.0f);
|
|
}
|
|
|
|
{
|
|
auto x = array(1.0f);
|
|
auto fun = [](array in) { return in + in + in; };
|
|
auto out = vjp(fun, x, array(1.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
out = vjp(fun, x, array(2.)).second;
|
|
CHECK_EQ(out.item<float>(), 6.0f);
|
|
}
|
|
|
|
// Input also in capture clause
|
|
{
|
|
auto x = array(1.0f);
|
|
auto fun = [x](array in) { return in + x; };
|
|
auto out = vjp(fun, x, array(1.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 1.0f);
|
|
}
|
|
|
|
// Throws on incorrectly shaped outputs
|
|
{
|
|
auto fun = [](array in) { return add(in, in); };
|
|
CHECK_THROWS_AS(vjp(fun, zeros({1}), zeros({2})), std::invalid_argument);
|
|
}
|
|
|
|
// Throws on wrong number of outputs
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0], inputs[0]};
|
|
};
|
|
CHECK_THROWS_AS(
|
|
vjp(fun, {zeros({1})}, {zeros({2})}), std::invalid_argument);
|
|
}
|
|
|
|
// No dependence between input and output
|
|
{
|
|
auto fun = [](array in) { return array(1.); };
|
|
auto out = vjp(fun, zeros({2}), array(1.)).second;
|
|
CHECK(array_equal(out, zeros({2})).item<bool>());
|
|
}
|
|
|
|
// Handles multiple outputs
|
|
{
|
|
auto x = array(1.);
|
|
auto y = array(2.);
|
|
auto z = array(3.);
|
|
auto fun = [](const std::vector<array>& in) {
|
|
return std::vector<array>{in[0] * in[1], in[1] * in[2]};
|
|
};
|
|
auto out = vjp(fun, {x, y, z}, {array(2.), array(3.)}).second;
|
|
CHECK_EQ(out.size(), 3);
|
|
CHECK_EQ(out[0].item<float>(), 2.0f * 2.0f);
|
|
CHECK_EQ(out[1].item<float>(), 1.0f * 2.0f + 3.0f * 3.0f);
|
|
CHECK_EQ(out[2].item<float>(), 3.0f * 2.0f);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test grad") {
|
|
{
|
|
auto x = array(1.0);
|
|
auto fun = [](array in) { return in + 1; };
|
|
auto [y, dfdx] = value_and_grad(fun)(x);
|
|
CHECK_EQ(y.item<float>(), 2.0f);
|
|
CHECK_EQ(dfdx.item<float>(), 1.0f);
|
|
auto [z, d2fdx2] = value_and_grad(grad(fun))(x);
|
|
CHECK_EQ(z.item<float>(), 1.0f);
|
|
CHECK_EQ(d2fdx2.item<float>(), 0.0f);
|
|
}
|
|
|
|
{
|
|
auto x = array(1.);
|
|
auto fun = [](array in) { return add(in, array(1.)); };
|
|
auto dfdx = grad(fun);
|
|
CHECK(array_equal(dfdx(x), array(1.)).item<bool>());
|
|
auto d2fdx2 = grad(grad(fun));
|
|
CHECK(array_equal(d2fdx2(x), array(0.)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto x = array(1.);
|
|
auto expfn = [](array input) { return exp(input); };
|
|
auto dfdx = grad(expfn);
|
|
CHECK_EQ(dfdx(x).item<float>(), doctest::Approx(std::exp(1.0f)));
|
|
auto d2fdx2 = grad(grad(expfn));
|
|
CHECK_EQ(d2fdx2(x).item<float>(), doctest::Approx(std::exp(1.0f)));
|
|
auto d3fdx3 = grad(grad(grad(expfn)));
|
|
CHECK_EQ(d3fdx3(x).item<float>(), doctest::Approx(std::exp(1.0f)));
|
|
}
|
|
|
|
{
|
|
// No graph retention since the output is independent of y
|
|
auto y = ones({3, 3});
|
|
auto fn1 = [y](array x) {
|
|
x = x + 2.0f;
|
|
eval(y);
|
|
CHECK(x.is_tracer());
|
|
CHECK(!y.is_tracer());
|
|
CHECK(y.is_available());
|
|
CHECK(!y.has_primitive());
|
|
return square(x);
|
|
};
|
|
auto dfdx = grad(fn1)(array(1.0f));
|
|
CHECK_EQ(dfdx.item<float>(), 6.0f);
|
|
|
|
// Graph automatically retained to compute the grad
|
|
auto fn2 = [](array x) {
|
|
x = x + 2.0f;
|
|
eval(x);
|
|
CHECK(x.is_tracer());
|
|
CHECK(x.is_available());
|
|
CHECK(x.has_primitive());
|
|
return square(x);
|
|
};
|
|
dfdx = grad(fn2)(array(1.0f));
|
|
CHECK_EQ(dfdx.item<float>(), 6.0f);
|
|
}
|
|
|
|
// Control flow in grad computation
|
|
{
|
|
auto fn = [](array x) {
|
|
x = x + array(2.0f);
|
|
if (x.item<float>() > 3) {
|
|
return square(x);
|
|
} else {
|
|
return 4 * x;
|
|
}
|
|
};
|
|
|
|
auto dfdx = grad(fn)(array(0.5f));
|
|
CHECK_EQ(dfdx.item<float>(), 4.0f);
|
|
|
|
dfdx = grad(fn)(array(1.5f));
|
|
CHECK_EQ(dfdx.item<float>(), 7.0f);
|
|
}
|
|
|
|
// Grad with multiple inputs
|
|
{
|
|
auto fn = [](std::vector<array> inputs) { return inputs[0] * inputs[1]; };
|
|
auto x = array(2.0f);
|
|
auto y = array(3.0f);
|
|
|
|
auto [value, grads] = value_and_grad(fn)({x, y});
|
|
CHECK_EQ(value.item<float>(), 6.0f);
|
|
CHECK_EQ(grads[0].item<float>(), 3.0f);
|
|
|
|
auto dfdx = grad(fn)({x, y})[0];
|
|
CHECK_EQ(dfdx.item<float>(), 3.0f);
|
|
|
|
auto dfdy = grad(fn, 1)({x, y})[0];
|
|
CHECK_EQ(dfdy.item<float>(), 2.0f);
|
|
|
|
// Negative indexing
|
|
dfdy = grad(fn, -1)({x, y})[0];
|
|
CHECK_EQ(dfdy.item<float>(), 2.0f);
|
|
|
|
grads = grad(fn, {0, 1})({x, y});
|
|
CHECK_EQ(grads[0].item<float>(), 3.0f);
|
|
CHECK_EQ(grads[1].item<float>(), 2.0f);
|
|
|
|
CHECK_THROWS_AS(
|
|
grad(fn, std::vector<int>{})({x, y}), std::invalid_argument);
|
|
CHECK_THROWS_AS(grad(fn, {0, 1, 2})({x, y}), std::invalid_argument);
|
|
CHECK_THROWS_AS(grad(fn, {0, 0})({x, y}), std::invalid_argument);
|
|
CHECK_THROWS_AS(grad(fn, -3)({x, y}), std::invalid_argument);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test creation grads") {
|
|
// Test astype
|
|
{
|
|
auto fn = [](array a) { return astype(a, int32); };
|
|
auto x = ones({4, 4}, float32);
|
|
auto out = vjp(fn, x, full({4, 4}, 2, int32)).second;
|
|
CHECK_EQ(out.dtype(), float32);
|
|
CHECK(array_equal(out, full({4, 4}, 2.0f)).item<bool>());
|
|
|
|
out = jvp(fn, x, full({4, 4}, 2, float32)).second;
|
|
CHECK_EQ(out.dtype(), int32);
|
|
CHECK(array_equal(out, full({4, 4}, 2, int32)).item<bool>());
|
|
}
|
|
|
|
// Test full
|
|
{
|
|
auto full_fn = [](array a) { return full({5, 5, 2}, a); };
|
|
auto x = ones({2}, float32);
|
|
auto out = vjp(full_fn, x, full({5, 5, 2}, 2.0f)).second;
|
|
CHECK(array_equal(out, array({50.0f, 50.0f})).item<bool>());
|
|
|
|
out = jvp(full_fn, x, array({3.0f, 3.0f})).second;
|
|
CHECK(array_equal(out, full({5, 5, 2}, 3.0f)).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test op vjps") {
|
|
// Test abs
|
|
{
|
|
auto out = vjp([](array in) { return abs(in); }, array(-5.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), -1.0f);
|
|
}
|
|
|
|
// Test sign
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return sign(in); }, array(-5.0f), array(10.0f));
|
|
CHECK_EQ(out.second.item<float>(), 0.0f);
|
|
}
|
|
|
|
// Test negate
|
|
{
|
|
auto out = vjp([](array in) { return -in; }, array(1.0), array(2.0));
|
|
CHECK(array_equal(out.second, array(-2.)).item<bool>());
|
|
}
|
|
|
|
// Test square
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return square(in); }, array(2.0f), array(3.0f));
|
|
CHECK_EQ(out.second.item<float>(), 12.0f);
|
|
}
|
|
|
|
// Test sqrt
|
|
{
|
|
auto out = vjp(
|
|
[](array in) { return mlx::core::sqrt(in); }, array(4.0f), array(8.0f));
|
|
CHECK_EQ(out.second.item<float>(), 2.0f);
|
|
}
|
|
|
|
// Test rsqrt
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return rsqrt(in); }, array(4.0f), array(8.0f));
|
|
CHECK_EQ(out.second.item<float>(), -0.5f);
|
|
}
|
|
|
|
// Test exp
|
|
{
|
|
auto out = vjp([](array in) { return exp(in); }, array(1.0f), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), doctest::Approx(2.0f * std::exp(1.0f)));
|
|
}
|
|
|
|
// Test sin
|
|
{
|
|
auto out =
|
|
vjp([](array input) { return sin(input); }, array(1.0f), array(1.0f));
|
|
CHECK(out.second.item<float>() == doctest::Approx(std::cos(1.0f)));
|
|
}
|
|
|
|
// Test cos
|
|
{
|
|
auto out =
|
|
vjp([](array input) { return cos(input); }, array(1.0f), array(1.0f));
|
|
CHECK(out.second.item<float>() == doctest::Approx(-std::sin(1.0f)));
|
|
}
|
|
|
|
// Test log
|
|
{
|
|
auto out = vjp([](array in) { return log(in); }, array(2.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), 0.5f);
|
|
|
|
out = vjp([](array in) { return log(in); }, array(2.0f), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), 1.0f);
|
|
}
|
|
|
|
// Test log1p
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return log1p(in); }, array(1.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), 0.5f);
|
|
|
|
out = vjp([](array in) { return log1p(in); }, array(1.0f), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), 1.0f);
|
|
}
|
|
|
|
constexpr auto inf = std::numeric_limits<float>::infinity();
|
|
|
|
// Test erf
|
|
{
|
|
auto out = vjp([](array in) { return erf(in); }, array(inf), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), doctest::Approx(0.0f));
|
|
|
|
out = vjp([](array in) { return erf(in); }, array(-inf), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), doctest::Approx(0.0f));
|
|
|
|
out = vjp([](array in) { return erf(in); }, array(0.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), static_cast<float>(M_2_SQRTPI));
|
|
}
|
|
|
|
// Test erfinv
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return erfinv(in); }, array(1.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), inf);
|
|
|
|
out = vjp([](array in) { return erfinv(in); }, array(-1.0f), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), inf);
|
|
|
|
out = vjp([](array in) { return erfinv(in); }, array(0.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), static_cast<float>(1.0 / M_2_SQRTPI));
|
|
}
|
|
|
|
// Test sigmoid
|
|
{
|
|
auto out =
|
|
vjp([](array in) { return sigmoid(in); }, array(0.0f), array(1.0f));
|
|
CHECK_EQ(out.second.item<float>(), 0.25f);
|
|
|
|
out = vjp([](array in) { return sigmoid(in); }, array(0.0f), array(2.0f));
|
|
CHECK_EQ(out.second.item<float>(), 0.5f);
|
|
}
|
|
|
|
// Test add
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0] + inputs[1]};
|
|
};
|
|
auto out = vjp(fun, {array(1.0), array(2.0)}, {array(3.0)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 3.0);
|
|
CHECK_EQ(out[1].item<float>(), 3.0);
|
|
|
|
// Check with broadcasting
|
|
out = vjp(fun, {ones({3, 1}), ones({1, 2})}, {full({3, 2}, 2.0)}).second;
|
|
CHECK(array_equal(out[0], full({3, 1}, 4.0)).item<bool>());
|
|
CHECK(array_equal(out[1], full({1, 2}, 6.0)).item<bool>());
|
|
}
|
|
|
|
// Test subtract
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0] - inputs[1]};
|
|
};
|
|
auto out = vjp(fun, {array(1.0), array(2.0)}, {array(3.0)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 3.0);
|
|
CHECK_EQ(out[1].item<float>(), -3.0);
|
|
|
|
// Check with broadcasting
|
|
out = vjp(fun, {ones({3, 1}), ones({1, 2})}, {ones({3, 2})}).second;
|
|
CHECK(array_equal(out[0], full({3, 1}, 2.0)).item<bool>());
|
|
CHECK(array_equal(out[1], full({1, 2}, -3.0)).item<bool>());
|
|
}
|
|
|
|
// Test multiply
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0] * inputs[1]};
|
|
};
|
|
auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(3.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 6.0f);
|
|
CHECK_EQ(out[1].item<float>(), 12.0f);
|
|
|
|
// Check with broadcasting
|
|
out = vjp(fun, {full({3, 1}, 2.0f), full({1, 2}, 4.0f)}, {ones({3, 2})})
|
|
.second;
|
|
CHECK(array_equal(out[0], full({3, 1}, 8.0f)).item<bool>());
|
|
CHECK(array_equal(out[1], full({1, 2}, 6.0)).item<bool>());
|
|
}
|
|
|
|
// Test divide
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{inputs[0] / inputs[1]};
|
|
};
|
|
auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 0.5f);
|
|
CHECK_EQ(out[1].item<float>(), -1.0f);
|
|
|
|
// Check with broadcasting
|
|
out = vjp(fun, {full({3, 1}, 4.0f), full({1, 2}, 2.0f)}, {ones({3, 2})})
|
|
.second;
|
|
CHECK(array_equal(out[0], full({3, 1}, 1.0f)).item<bool>());
|
|
CHECK(array_equal(out[1], full({1, 2}, -3.0f)).item<bool>());
|
|
}
|
|
|
|
// Test maximum
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{maximum(inputs[0], inputs[1])};
|
|
};
|
|
auto out = vjp(fun, {array(5.0f), array(2.0f)}, {array(2.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 2.0f);
|
|
CHECK_EQ(out[1].item<float>(), 0.0f);
|
|
|
|
out = vjp(fun, {array(2.0f), array(2.0f)}, {array(1.0f)}).second;
|
|
auto out_a = out[0].item<float>();
|
|
auto out_b = out[1].item<float>();
|
|
// When inputs are equal at most one gradient is nonzero
|
|
CHECK(
|
|
((out_a == 1.0f && out_b == 0.0f) || (out_a == 0.0f && out_b == 1.0f)));
|
|
}
|
|
|
|
// Test minimum
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{minimum(inputs[0], inputs[1])};
|
|
};
|
|
auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(2.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 0.0f);
|
|
CHECK_EQ(out[1].item<float>(), 2.0f);
|
|
|
|
out = vjp(fun, {array(2.0f), array(2.0f)}, {array(1.0f)}).second;
|
|
auto out_a = out[0].item<float>();
|
|
auto out_b = out[1].item<float>();
|
|
CHECK(
|
|
((out_a == 1.0f && out_b == 0.0f) || (out_a == 0.0f && out_b == 1.0f)));
|
|
}
|
|
|
|
// Test logaddexp
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{logaddexp(inputs[0], inputs[1])};
|
|
};
|
|
|
|
constexpr auto inf = std::numeric_limits<float>::infinity();
|
|
|
|
auto out = vjp(fun, {array(2.0), array(2.0f)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 0.5f);
|
|
CHECK_EQ(out[1].item<float>(), 0.5f);
|
|
out = vjp(fun, {array(2.0), array(2.0f)}, {array(2.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 1.0f);
|
|
CHECK_EQ(out[1].item<float>(), 1.0f);
|
|
|
|
out = vjp(fun, {array(inf), array(2.0f)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 1.0f);
|
|
CHECK_EQ(out[1].item<float>(), 0.0f);
|
|
|
|
out = vjp(fun, {array(-inf), array(2.0f)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 0.0f);
|
|
CHECK_EQ(out[1].item<float>(), 1.0f);
|
|
|
|
out = vjp(fun, {array(-10.0f), array(-inf)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 1.0f);
|
|
CHECK_EQ(out[1].item<float>(), 0.0f);
|
|
|
|
out = vjp(fun, {array(-inf), array(-inf)}, {array(1.0f)}).second;
|
|
CHECK(std::isnan(out[0].item<float>()));
|
|
CHECK(std::isnan(out[1].item<float>()));
|
|
}
|
|
|
|
// Test power
|
|
{
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{power(inputs[0], inputs[1])};
|
|
};
|
|
auto out = vjp(fun, {array(4.0f), array(3.0f)}, {array(1.0f)}).second;
|
|
CHECK_EQ(out[0].item<float>(), 48.0f);
|
|
CHECK_EQ(out[1].item<float>(), std::log(4.0f) * 64.0f);
|
|
}
|
|
|
|
// Test sum
|
|
{
|
|
std::vector<int> axes;
|
|
auto fun = [&axes](array input) { return sum(input, axes); };
|
|
axes = {};
|
|
auto out = vjp(fun, array(2.0f), array(3.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
|
|
axes = {0};
|
|
out = vjp(fun, array({}), array(3.0f)).second;
|
|
CHECK_EQ(out.size(), 0);
|
|
CHECK_EQ(out.shape(), Shape{0});
|
|
|
|
axes = {0};
|
|
out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
|
|
.second;
|
|
auto expected =
|
|
array({1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f}, {2, 2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
axes = {1};
|
|
out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
|
|
.second;
|
|
expected =
|
|
array({1.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f, 4.0f}, {2, 2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
axes = {2};
|
|
out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
|
|
.second;
|
|
expected =
|
|
array({1.0f, 1.0f, 2.0f, 2.0f, 3.0f, 3.0f, 4.0f, 4.0f}, {2, 2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
|
|
// Test prod
|
|
{
|
|
std::vector<int> axes;
|
|
auto fun = [&axes](array input) { return prod(input, axes); };
|
|
axes = {};
|
|
auto out = vjp(fun, array(2.0f), array(3.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
|
|
axes = {0};
|
|
out = vjp(fun,
|
|
array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3}),
|
|
array(
|
|
{1.0f, 2.0f, 3.0f},
|
|
{
|
|
3,
|
|
}))
|
|
.second;
|
|
auto expected = array({4.0f, 10.0f, 18.0f, 1.0f, 4.0f, 9.0f}, {2, 3});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
axes = {0, 1};
|
|
out = vjp(fun,
|
|
array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3}),
|
|
array(1.0f))
|
|
.second;
|
|
expected = array({720.0f, 360.0f, 240.0f, 180.0f, 144.0f, 120.0f}, {2, 3});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test gather and take grads") {
|
|
// Check linear takes
|
|
auto linear_f = [](array indices) {
|
|
auto fun_linear = [&indices](array input) { return take(input, indices); };
|
|
|
|
return fun_linear;
|
|
};
|
|
|
|
auto src = ones({4, 4});
|
|
auto ind = array({0, 1, 2, 3}, uint32);
|
|
auto out = vjp(linear_f(ind), src, ones({4})).second;
|
|
auto out_1 = take(out, array({0}, uint32), 0);
|
|
auto out_2 = take(out, array({1, 2, 3}, uint32), 0);
|
|
CHECK(array_equal(out_1, ones({1, 4})).item<bool>());
|
|
CHECK(array_equal(out_2, zeros({3, 4})).item<bool>());
|
|
auto tangent = reshape(arange(16), {4, 4});
|
|
out = jvp(linear_f(ind), src, tangent).second;
|
|
CHECK(array_equal(out, array({0, 1, 2, 3})).item<bool>());
|
|
|
|
src = ones({4});
|
|
ind = array({0, 0, 0, 0}, uint32);
|
|
out = vjp(linear_f(ind), src, ones({4})).second;
|
|
out_1 = take(out, array({0}, uint32));
|
|
CHECK_EQ(out_1.item<float>(), 4.0f);
|
|
|
|
tangent = arange(4);
|
|
out = jvp(linear_f(ind), src, tangent).second;
|
|
CHECK(array_equal(out, array({0, 0, 0, 0})).item<bool>());
|
|
|
|
// Check axis takes
|
|
src = ones({4, 4});
|
|
ind = array({0, 1, 2, 3}, uint32);
|
|
|
|
auto fun = [&ind](array input) { return take(input, ind, 0); };
|
|
|
|
out = vjp(fun, src, ones({4, 4})).second;
|
|
CHECK(array_equal(out, src).item<bool>());
|
|
|
|
out = jvp(fun, src, ones({4, 4})).second;
|
|
CHECK(array_equal(out, src).item<bool>());
|
|
|
|
// Check index throw
|
|
auto fun_throw = [](std::vector<array> inputs) {
|
|
return std::vector<array>{take(inputs[0], inputs[1])};
|
|
};
|
|
|
|
CHECK_THROWS_AS(
|
|
vjp(fun_throw, {src, ind}, {ones({4, 4})}), std::invalid_argument);
|
|
|
|
CHECK_THROWS_AS(
|
|
jvp(fun_throw, {src, ind}, {ones({4, 4}), ind}), std::invalid_argument);
|
|
}
|
|
|
|
TEST_CASE("test slice grads") {
|
|
Shape start = {5, 0, 0};
|
|
Shape stop = {7, 2, 4};
|
|
Shape strides = {1, 1, 1};
|
|
|
|
auto fn = [&start, &stop, &strides](array input) {
|
|
return slice(input, start, stop, strides);
|
|
};
|
|
|
|
auto src = ones({8, 8, 8});
|
|
auto out = vjp(fn, src, ones({2, 2, 4})).second;
|
|
CHECK_EQ(sum(out).item<float>(), 16.);
|
|
|
|
out = jvp(fn, src, full({8, 8, 8}, 2.0f)).second;
|
|
CHECK(array_equal(out, full({2, 2, 4}, 2.0f)).item<bool>());
|
|
|
|
src = ones({4, 4});
|
|
start = {2, 0};
|
|
stop = {4, 4};
|
|
strides = {1, 1};
|
|
out = vjp(fn, src, ones({2, 4})).second;
|
|
auto out_1 = take(out, array({0, 1}, uint32), 0);
|
|
auto out_2 = take(out, array({2, 3}, uint32), 0);
|
|
|
|
CHECK(array_equal(out_1, zeros({2, 4})).item<bool>());
|
|
CHECK(array_equal(out_2, ones({2, 4})).item<bool>());
|
|
|
|
start = {0, 0};
|
|
stop = {4, 4};
|
|
strides = {2, 2};
|
|
auto cotangent = array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
|
|
out = vjp(fn, src, cotangent).second;
|
|
auto expected = astype(
|
|
array({1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 0}, {4, 4}), float32);
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
out = jvp(fn, src, ones({4, 4})).second;
|
|
CHECK(array_equal(out, ones({2, 2})).item<bool>());
|
|
|
|
// Empty slices.
|
|
start = {0, 0};
|
|
stop = {0, 4};
|
|
cotangent = reshape(array({}), {0, 2});
|
|
out = vjp(fn, src, cotangent).second;
|
|
CHECK(array_equal(out, zeros({4, 4})).item<bool>());
|
|
|
|
out = jvp(fn, src, ones({4, 4})).second;
|
|
CHECK_EQ(out.size(), 0);
|
|
}
|
|
|
|
TEST_CASE("test min and max vjp") {
|
|
// Test min
|
|
{
|
|
std::vector<int> axes;
|
|
array in({});
|
|
array v({});
|
|
array expected({});
|
|
array out({});
|
|
auto fun = [&axes](array input) { return min(input, axes); };
|
|
|
|
axes = {};
|
|
in = array({2.0f});
|
|
out = vjp(fun, array(2.0f), array(3.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
|
|
axes = {0};
|
|
in = reshape(array({1.0f, 2.0f, 2.0f, -1.0f}), {2, 2});
|
|
v = array({3.0f, 7.0f});
|
|
out = vjp(fun, in, v).second;
|
|
expected = array({3.0f, 0.0f, 0.0f, 7.0f});
|
|
expected = reshape(expected, {2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
axes = {0, 2};
|
|
in = reshape(
|
|
array({1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f}), {2, 2, 2});
|
|
v = array({3.0f, 7.0f});
|
|
out = vjp(fun, in, v).second;
|
|
expected = array({0.0f, 0.0f, 3.5f, 0.0f, 1.5f, 1.5f, 0.0f, 3.5f});
|
|
expected = reshape(expected, {2, 2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
|
|
// Test max
|
|
{
|
|
std::vector<int> axes;
|
|
array in({});
|
|
array v({});
|
|
array expected({});
|
|
array out({});
|
|
auto fun = [&axes](array input) { return max(input, axes); };
|
|
|
|
axes = {};
|
|
in = array({2.0f});
|
|
out = vjp(fun, array(2.0f), array(3.0f)).second;
|
|
CHECK_EQ(out.item<float>(), 3.0f);
|
|
|
|
axes = {0};
|
|
in = reshape(array({1.0f, 2.0f, 2.0f, -1.0f}), {2, 2});
|
|
v = array({3.0f, 7.0f});
|
|
out = vjp(fun, in, v).second;
|
|
expected = array({0.0f, 7.0f, 3.0f, 0.0f});
|
|
expected = reshape(expected, {2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
axes = {0, 2};
|
|
in = reshape(
|
|
array({1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f}), {2, 2, 2});
|
|
v = array({3.0f, 7.0f});
|
|
out = vjp(fun, in, v).second;
|
|
expected = array({3.0f, 0.0f, 0.0f, 3.5f, 0.0f, 0.0f, 3.5f, 0.0f});
|
|
expected = reshape(expected, {2, 2, 2});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test reshape and transpose grads") {
|
|
{
|
|
auto fn = [](array a) { return reshape(a, {3, 4}); };
|
|
|
|
auto out = vjp(fn, ones({12}), full({3, 4}, 2.0f)).second;
|
|
CHECK(array_equal(out, full({12}, 2.0f)).item<bool>());
|
|
|
|
out = jvp(fn, ones({12}), full({12}, 2.0f)).second;
|
|
CHECK(array_equal(out, full({3, 4}, 2.0f)).item<bool>());
|
|
}
|
|
|
|
{
|
|
auto fn = [](array a) { return transpose(a, {1, 2, 0}); };
|
|
|
|
auto cotan = reshape(arange(24), {3, 4, 2});
|
|
auto out = vjp(fn, ones({2, 3, 4}), cotan).second;
|
|
CHECK(array_equal(out, transpose(cotan, {2, 0, 1})).item<bool>());
|
|
|
|
auto tangent = reshape(arange(24), {2, 3, 4});
|
|
out = jvp(fn, ones({2, 3, 4}), tangent).second;
|
|
CHECK(array_equal(out, transpose(tangent, {1, 2, 0})).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test copy grads") {
|
|
auto fn = [](array a) { return copy(a); };
|
|
|
|
auto cotan = arange(4, float32);
|
|
auto out = vjp(fn, ones({4}), cotan).second;
|
|
CHECK(array_equal(out, arange(4, float32)).item<bool>());
|
|
|
|
auto tangent = arange(4, float32);
|
|
out = jvp(fn, ones({4}), tangent).second;
|
|
CHECK(array_equal(out, tangent).item<bool>());
|
|
}
|
|
|
|
TEST_CASE("test matmul vjp") {
|
|
auto fun = [](std::vector<array> inputs) {
|
|
return std::vector<array>{matmul(inputs[0], inputs[1])};
|
|
};
|
|
|
|
auto a = array({1.0f, 2.0f}, {1, 2});
|
|
auto b = array({3.0f, 4.0f}, {2, 1});
|
|
auto out = vjp(fun, {a, b}, {array({2.0f}, {1, 1})}).second;
|
|
|
|
CHECK(array_equal(out[0], array({6.0f, 8.0f}, {1, 2})).item<bool>());
|
|
CHECK(array_equal(out[1], array({2.0f, 4.0f}, {2, 1})).item<bool>());
|
|
|
|
a = array({1.0f, 2.0f}, {2, 1});
|
|
b = array({3.0f, 4.0f}, {1, 2});
|
|
out = vjp(fun, {a, b}, {array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2})}).second;
|
|
CHECK(array_equal(out[0], array({11.0f, 25.0f}, {2, 1})).item<bool>());
|
|
CHECK(array_equal(out[1], array({7.0f, 10.0f}, {1, 2})).item<bool>());
|
|
|
|
a = array({1.0f, 2.0f, 1.0f, 2.0f}, {2, 2, 1});
|
|
b = array({1.0f, 1.0f, 2.0f, 2.0f}, {2, 1, 2});
|
|
auto vjps = vjp(fun, {a, b}, {ones({2, 2, 2})}).second;
|
|
auto vjpx = array({2.0f, 2.0f, 4.0f, 4.0f}, {2, 2, 1});
|
|
auto vjpy = array({3.0f, 3.0f, 3.0f, 3.0f}, {2, 1, 2});
|
|
CHECK(array_equal(vjps[0], vjpx).item<bool>());
|
|
CHECK(array_equal(vjps[1], vjpy).item<bool>());
|
|
}
|
|
|
|
TEST_CASE("test concatenate grads") {
|
|
auto arrs = split(arange(5, float32), 5);
|
|
eval(arrs);
|
|
|
|
auto fn = [&arrs](const std::vector<array>& inputs) {
|
|
arrs[2] = inputs[0];
|
|
arrs[4] = inputs[1];
|
|
return std::vector<array>{concatenate(arrs, 0)};
|
|
};
|
|
auto out = vjp(fn, {arrs[2], arrs[4]}, {arange(5, float32)}).second;
|
|
|
|
CHECK_EQ(out.size(), 2);
|
|
CHECK_EQ(out[0].item<float>(), 2.0f);
|
|
CHECK_EQ(out[1].item<float>(), 4.0f);
|
|
|
|
out = jvp(fn, {arrs[2], arrs[4]}, {array({2.0f}, {1}), array({3.0f}, {1})})
|
|
.second;
|
|
CHECK_EQ(out.size(), 1);
|
|
CHECK(
|
|
array_equal(out[0], array({0.0f, 0.0f, 2.0f, 0.0f, 3.0f})).item<bool>());
|
|
}
|
|
|
|
TEST_CASE("test split grads") {
|
|
array x = arange(6, float32);
|
|
eval(x);
|
|
|
|
{
|
|
auto fn = [](const array& x) {
|
|
auto parts = split(x, 3);
|
|
return parts[0] * parts[1] + parts[2];
|
|
};
|
|
auto out = vjp(fn, {x}, {ones({2})}).second;
|
|
|
|
CHECK_EQ(out.size(), 6);
|
|
CHECK(array_equal(out, array({2.0f, 3.0f, 0.0f, 1.0f, 1.0f, 1.0f}))
|
|
.item<bool>());
|
|
}
|
|
|
|
{
|
|
auto fn = [](const array& x) {
|
|
auto parts = split(x, 3);
|
|
return parts[0] * parts[2];
|
|
};
|
|
auto out = vjp(fn, {x}, {ones({2})}).second;
|
|
|
|
CHECK_EQ(out.size(), 6);
|
|
CHECK(array_equal(out, array({4.0f, 5.0f, 0.0f, 0.0f, 0.0f, 1.0f}))
|
|
.item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test comparison grads") {
|
|
auto x = ones({3, 1});
|
|
auto y = zeros({1, 3});
|
|
|
|
auto check_vjp_jvp = [&x, &y](auto fn) {
|
|
auto fn_wrap = [&fn](std::vector<array> inputs) {
|
|
return std::vector<array>{fn(inputs[0], inputs[1], default_device())};
|
|
};
|
|
auto out_shape = broadcast_shapes(x.shape(), y.shape());
|
|
std::vector<array> vjps = vjp(fn_wrap, {x, y}, {ones(out_shape)}).second;
|
|
bool correct = array_equal(vjps[0], zeros(x.shape())).item<bool>();
|
|
correct &= array_equal(vjps[1], zeros(y.shape())).item<bool>();
|
|
|
|
std::vector<array> jvps =
|
|
jvp(fn_wrap, {x, y}, {ones(x.shape()), ones(y.shape())}).second;
|
|
correct &= array_equal(jvps[0], zeros(out_shape)).item<bool>();
|
|
return correct;
|
|
};
|
|
|
|
CHECK(check_vjp_jvp(equal));
|
|
CHECK(check_vjp_jvp(greater));
|
|
CHECK(check_vjp_jvp(less));
|
|
CHECK(check_vjp_jvp(greater_equal));
|
|
CHECK(check_vjp_jvp(less_equal));
|
|
}
|
|
|
|
TEST_CASE("test as_strided grads") {
|
|
auto x = ones({11});
|
|
Shape shape = {5, 5};
|
|
Strides strides = {1, 1};
|
|
size_t offset = 0;
|
|
|
|
auto fun = [&shape, &strides, &offset](array x) {
|
|
return as_strided(x, shape, strides, offset);
|
|
};
|
|
|
|
auto out = vjp(fun, x, ones(shape)).second;
|
|
auto expected = array({1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
offset = 1;
|
|
out = vjp(fun, x, ones(shape)).second;
|
|
expected = array({0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
offset = 3;
|
|
shape = {3, 3};
|
|
strides = {0, 1};
|
|
out = vjp(fun, x, ones(shape)).second;
|
|
expected = array({0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
offset = 3;
|
|
shape = {3, 3};
|
|
strides = {0, 1};
|
|
out = vjp(fun, x, reshape(astype(arange(9), x.dtype()), {3, 3})).second;
|
|
expected = array({0, 0, 0, 9, 12, 15, 0, 0, 0, 0, 0});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
|
|
TEST_CASE("test jvp from vjp") {
|
|
// Unary element-wise ops
|
|
{
|
|
auto x = random::uniform({5, 10});
|
|
eval(x);
|
|
|
|
auto compute_derivs = [&x](auto fn) {
|
|
auto fn_wrap = [&fn](array input) { return fn(input, default_device()); };
|
|
|
|
// Compute vjp
|
|
array vjp_out = vjp(fn_wrap, x, ones(x.shape())).second;
|
|
|
|
// Compute jvp
|
|
array jvp_out = jvp(fn_wrap, x, ones(x.shape())).second;
|
|
|
|
return array_equal(vjp_out, jvp_out).item<bool>();
|
|
};
|
|
|
|
CHECK(compute_derivs(mlx::core::abs));
|
|
CHECK(compute_derivs(mlx::core::cos));
|
|
CHECK(compute_derivs(mlx::core::erf));
|
|
CHECK(compute_derivs(mlx::core::erfinv));
|
|
CHECK(compute_derivs(mlx::core::exp));
|
|
CHECK(compute_derivs(mlx::core::log));
|
|
CHECK(compute_derivs(mlx::core::log1p));
|
|
CHECK(compute_derivs(mlx::core::negative));
|
|
CHECK(compute_derivs(mlx::core::sigmoid));
|
|
CHECK(compute_derivs(mlx::core::sign));
|
|
CHECK(compute_derivs(mlx::core::sin));
|
|
CHECK(compute_derivs(mlx::core::square));
|
|
CHECK(compute_derivs(mlx::core::sqrt));
|
|
CHECK(compute_derivs(mlx::core::rsqrt));
|
|
}
|
|
|
|
// Binary element-wise ops
|
|
{
|
|
auto x = random::uniform({5, 10});
|
|
auto y = random::uniform({5, 10});
|
|
eval(x, y);
|
|
|
|
auto compute_derivs = [&x, &y](auto fn) {
|
|
auto fn_wrap = [&fn](std::vector<array> inputs) {
|
|
return std::vector<array>{fn(inputs[0], inputs[1], default_device())};
|
|
};
|
|
|
|
// Compute vjp and add results
|
|
auto vjps = vjp(fn_wrap, {x, y}, {ones(x.shape())}).second;
|
|
array vjp_out = add(vjps[0], vjps[1]);
|
|
|
|
// Compute jvp
|
|
array jvp_out =
|
|
jvp(fn_wrap, {x, y}, {ones(x.shape()), ones(y.shape())}).second[0];
|
|
return array_equal(vjp_out, jvp_out).item<bool>();
|
|
};
|
|
|
|
CHECK(compute_derivs(add));
|
|
CHECK(compute_derivs(divide));
|
|
CHECK(compute_derivs(logaddexp));
|
|
CHECK(compute_derivs(maximum));
|
|
CHECK(compute_derivs(minimum));
|
|
CHECK(compute_derivs(multiply));
|
|
CHECK(compute_derivs(subtract));
|
|
CHECK(compute_derivs(power));
|
|
}
|
|
|
|
// Conditional selection element-wise op
|
|
{
|
|
auto condition = random::randint(0, 2, {5, 10});
|
|
auto x = random::uniform({5, 10});
|
|
auto y = random::uniform({5, 10});
|
|
eval(condition, x, y);
|
|
|
|
auto compute_derivs = [&condition, &x, &y](auto fn) {
|
|
auto fn_wrap = [&fn](std::vector<array> inputs) {
|
|
return std::vector<array>{
|
|
fn(inputs[0], inputs[1], inputs[2], default_device())};
|
|
};
|
|
|
|
// Compute vjp and add results
|
|
auto vjps = vjp(fn_wrap, {condition, x, y}, {ones(x.shape())}).second;
|
|
auto vjp_out = add(add(vjps[0], vjps[1]), vjps[2]);
|
|
|
|
// Compute jvp
|
|
array jvp_out =
|
|
jvp(fn_wrap,
|
|
{condition, x, y},
|
|
{ones(condition.shape()), ones(y.shape()), ones(x.shape())})
|
|
.second[0];
|
|
|
|
array result = array_equal(vjp_out, jvp_out);
|
|
return result.item<bool>();
|
|
};
|
|
|
|
CHECK(compute_derivs(where));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test complex gradients") {
|
|
{
|
|
auto add_fn = [](std::vector<array> inputs) {
|
|
return std::vector<array>{add(inputs[0], inputs[1], default_device())};
|
|
};
|
|
|
|
// Compute jvp
|
|
auto x = array(complex64_t{1.0, 1.0});
|
|
auto y = array(complex64_t{1.0, 1.0});
|
|
auto x_tan = array(complex64_t{1.0, 2.0});
|
|
auto y_tan = array(complex64_t{2.0, 1.0});
|
|
auto jvp_out = jvp(add_fn, {x, y}, {x_tan, y_tan}).second;
|
|
CHECK_EQ(jvp_out[0].item<complex64_t>(), complex64_t{3.0, 3.0});
|
|
|
|
// Compute vjp
|
|
auto cotan = array(complex64_t{3.0, 3.0});
|
|
auto vjp_out = vjp(add_fn, {x, y}, {cotan}).second;
|
|
CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{3.0, 3.0});
|
|
CHECK_EQ(vjp_out[1].item<complex64_t>(), complex64_t{3.0, 3.0});
|
|
}
|
|
|
|
{
|
|
auto multiply_fn =
|
|
[](const std::vector<array>& inputs) -> std::vector<array> {
|
|
return {multiply(inputs[0], inputs[1])};
|
|
};
|
|
|
|
// Compute jvp
|
|
auto x = array(complex64_t{2.0, 4.0});
|
|
auto y = array(3.0f);
|
|
auto x_tan = array(complex64_t{1.0, 2.0});
|
|
auto y_tan = array(2.0f);
|
|
auto jvp_out = jvp(multiply_fn, {x, y}, {x_tan, y_tan}).second;
|
|
CHECK_EQ(jvp_out[0].item<complex64_t>(), complex64_t{7.0, 14.0});
|
|
|
|
// Compute vjp
|
|
auto cotan = array(complex64_t{2.0, 3.0});
|
|
auto vjp_out = vjp(multiply_fn, {x, y}, {cotan}).second;
|
|
CHECK_EQ(vjp_out[0].dtype(), complex64);
|
|
CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{6.0, 9.0});
|
|
CHECK_EQ(vjp_out[1].dtype(), float32);
|
|
CHECK_EQ(vjp_out[1].item<float>(), 16);
|
|
}
|
|
|
|
{
|
|
auto divide_fn =
|
|
[](const std::vector<array>& inputs) -> std::vector<array> {
|
|
return {divide(inputs[0], inputs[1])};
|
|
};
|
|
|
|
// Compute jvp
|
|
auto x = array(complex64_t{2.0, 3.0});
|
|
auto y = array(complex64_t{1.0, 2.0});
|
|
auto x_tan = array(complex64_t{3.0, 4.0});
|
|
auto y_tan = array(complex64_t{4.0, -2.0});
|
|
auto jvp_out = jvp(divide_fn, {x, y}, {x_tan, y_tan}).second;
|
|
CHECK_EQ(
|
|
jvp_out[0].item<complex64_t>(), doctest::Approx(complex64_t{2.6, 2.8}));
|
|
|
|
// Compute vjp
|
|
auto cotan = array(complex64_t{2.0, -4.0});
|
|
auto vjp_out = vjp(divide_fn, {x, y}, {cotan}).second;
|
|
CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{2.0, 0.0});
|
|
CHECK_EQ(vjp_out[1].item<complex64_t>(), complex64_t{-3.2, -0.4});
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test scan grads") {
|
|
// Test cumsum
|
|
{
|
|
int axis = 0;
|
|
int reverse = false;
|
|
int inclusive = true;
|
|
auto fun = [&axis, &reverse, &inclusive](array x) {
|
|
return cumsum(x, axis, reverse, inclusive);
|
|
};
|
|
|
|
auto out = vjp(fun, ones({4}), ones({4})).second;
|
|
auto expected = array({4.0f, 3.0f, 2.0f, 1.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = true;
|
|
out = vjp(fun, ones({4}), ones({4})).second;
|
|
expected = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = true;
|
|
inclusive = false;
|
|
out = vjp(fun, ones({4}), ones({4})).second;
|
|
expected = array({0.0f, 1.0f, 2.0f, 3.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = false;
|
|
inclusive = false;
|
|
out = vjp(fun, ones({4}), ones({4})).second;
|
|
expected = array({3.0f, 2.0f, 1.0f, 0.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
|
|
// Test cumprod
|
|
{
|
|
int axis = 0;
|
|
int reverse = false;
|
|
int inclusive = true;
|
|
auto fun = [&axis, &reverse, &inclusive](array x) {
|
|
return cumprod(x, axis, reverse, inclusive);
|
|
};
|
|
|
|
auto x = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
|
|
auto g = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
|
|
auto out = vjp(fun, x, g).second;
|
|
auto expected = array({119.0f, 59.0f, 38.0f, 24.0f}, {4});
|
|
CHECK(allclose(out, expected).item<bool>());
|
|
|
|
reverse = true;
|
|
out = vjp(fun, x, g).second;
|
|
expected = array({24.0f, 36.0f, 36.0f, 31.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
inclusive = false;
|
|
out = vjp(fun, x, g).second;
|
|
expected = array({0.0f, 12.0f, 16.0f, 15.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = false;
|
|
out = vjp(fun, x, g).second;
|
|
expected = array({32.0f, 15.0f, 8.0f, 0.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
|
|
// Test cumsum jvp
|
|
{
|
|
int axis = 0;
|
|
int reverse = false;
|
|
int inclusive = true;
|
|
auto fun = [&axis, &reverse, &inclusive](array x) {
|
|
return cumsum(x, axis, reverse, inclusive);
|
|
};
|
|
|
|
auto x = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
|
|
auto out = jvp(fun, x, ones({4})).second;
|
|
auto expected = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = true;
|
|
out = jvp(fun, x, ones({4})).second;
|
|
expected = array({4.0f, 3.0f, 2.0f, 1.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
inclusive = false;
|
|
out = jvp(fun, x, ones({4})).second;
|
|
expected = array({3.0f, 2.0f, 1.0f, 0.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
|
|
reverse = false;
|
|
out = jvp(fun, x, ones({4})).second;
|
|
expected = array({0.0f, 1.0f, 2.0f, 3.0f}, {4});
|
|
CHECK(array_equal(out, expected).item<bool>());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test update state") {
|
|
auto y = array({1.0});
|
|
auto x = array({1.0, 1.0});
|
|
auto state = array({0.0, 0.0});
|
|
auto fn = [&state, &x](array y) {
|
|
x = y * x;
|
|
state = state + x;
|
|
return sum(x);
|
|
};
|
|
grad(fn)(y);
|
|
eval(state);
|
|
CHECK(!state.has_primitive());
|
|
CHECK(state.is_available());
|
|
CHECK(array_equal(state, array({1.0, 1.0})).item<bool>());
|
|
}
|
|
|
|
TEST_CASE("test grad types") {
|
|
{
|
|
auto fn = [](array x) { return sum(x); };
|
|
|
|
for (auto t : {float16, bfloat16, float32}) {
|
|
auto x = array(1.0, t);
|
|
auto dfdx = grad(fn)(x);
|
|
CHECK_EQ(dfdx.dtype(), t);
|
|
}
|
|
}
|
|
|
|
{
|
|
// Check for multi-input grad
|
|
auto fn = [](std::vector<array> inputs) {
|
|
return sum(inputs[0] + inputs[1]);
|
|
};
|
|
|
|
for (auto t : {float16, bfloat16, float32}) {
|
|
auto x = array(1.0, t);
|
|
auto y = array(1.0, t);
|
|
auto out = grad(fn)({x, y});
|
|
CHECK_EQ(out[0].dtype(), t);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test grad dynamic slices") {
|
|
{
|
|
auto fn = [](const array& x) { return slice(x, array({0}), {0}, {1, 2}); };
|
|
auto x = array({1, 2, 3, 4}, {2, 2});
|
|
auto out = vjp(fn, x, array({1, 1}, {1, 2})).second;
|
|
CHECK(array_equal(out, array({1, 1, 0, 0}, {2, 2})).item<bool>());
|
|
}
|
|
{
|
|
auto fn = [](const std::vector<array>& inputs) {
|
|
const auto& x = inputs[0];
|
|
const auto& update = inputs[1];
|
|
return std::vector<array>{slice_update(x, update, array({0}), {0})};
|
|
};
|
|
auto x = zeros({2, 2});
|
|
auto update = array({3.f, 4.f}, {1, 2});
|
|
auto outs = vjp(fn, {x, update}, {ones({2, 2})}).second;
|
|
CHECK(allclose(outs[0], array({0.f, 0.f, 1.f, 1.f}, {2, 2})).item<bool>());
|
|
CHECK(allclose(outs[1], ones({1, 2})).item<bool>());
|
|
}
|
|
}
|