mlx/tests/ops_tests.cpp

3987 lines
116 KiB
C++

// Copyright © 2023-2024 Apple Inc.
// Required for using M_PI_2 in MSVC.
#define _USE_MATH_DEFINES
#include <cmath>
#include <numeric>
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test copy") {
array x(1.0);
auto y = copy(x);
CHECK_EQ(y.shape(), Shape{});
CHECK_NE(y.id(), x.id());
CHECK_EQ(y.item<float>(), 1.0f);
x = array({1, 2}, {2, 1});
y = copy(x);
CHECK_EQ(y.shape(), Shape{2, 1});
CHECK_EQ(y.dtype(), int32);
CHECK_NE(y.id(), x.id());
CHECK(array_equal(y, x).item<bool>());
}
TEST_CASE("test reshape") {
array x(1.0);
CHECK_EQ(reshape(x, {}).shape(), Shape{});
CHECK_THROWS_AS(reshape(x, {2}), std::invalid_argument);
auto y = reshape(x, {1, 1, 1});
CHECK_EQ(y.shape(), Shape{1, 1, 1});
y = reshape(x, {-1, 1, 1});
CHECK_EQ(y.shape(), Shape{1, 1, 1});
y = reshape(x, {1, 1, -1});
CHECK_EQ(y.shape(), Shape{1, 1, 1});
CHECK_THROWS_AS(reshape(x, {1, -1, -1}), std::invalid_argument);
CHECK_THROWS_AS(reshape(x, {2, -1}), std::invalid_argument);
x = zeros({2, 2, 2});
y = reshape(x, {8});
CHECK_EQ(y.shape(), Shape{8});
CHECK_THROWS_AS(reshape(x, {7}), std::invalid_argument);
y = reshape(x, {-1});
CHECK_EQ(y.shape(), Shape{8});
y = reshape(x, {-1, 2});
CHECK_EQ(y.shape(), Shape{4, 2});
CHECK_THROWS_AS(reshape(x, {-1, 7}), std::invalid_argument);
// Works with empty array
x = array({});
y = reshape(x, {0, 0, 0});
CHECK_EQ(y.shape(), Shape{0, 0, 0});
y.eval();
CHECK_EQ(y.size(), 0);
CHECK_THROWS_AS(reshape(x, {}), std::invalid_argument);
CHECK_THROWS_AS(reshape(x, {1}), std::invalid_argument);
y = reshape(x, {1, 5, 0});
CHECK_EQ(y.shape(), Shape{1, 5, 0});
// Check that reshaping a transposed array doesn't result in a copy
x = reshape(arange(64), {2, 4, 8});
x.eval();
CHECK_EQ(x.strides()[0], 32);
CHECK_EQ(x.strides()[1], 8);
CHECK_EQ(x.strides()[2], 1);
y = reshape(transpose(x, {0, 2, 1}), {2, 4, 2, 4});
y.eval();
CHECK_EQ(y.strides()[0], 32);
CHECK_EQ(y.strides()[1], 2);
CHECK_EQ(y.strides()[2], 1);
CHECK_EQ(y.strides()[3], 8);
CHECK_EQ(x.data<int32_t>(), y.data<int32_t>());
// Split transposed (2, 8, 4) -> (2, 8, 2, 2)
y = reshape(transpose(x, {0, 2, 1}), {2, 8, 2, 2});
y.eval();
CHECK_EQ(y.strides()[0], 32);
CHECK_EQ(y.strides()[1], 1);
CHECK_EQ(y.strides()[2], 16);
CHECK_EQ(y.strides()[3], 8);
CHECK_EQ(x.data<int32_t>(), y.data<int32_t>());
// Split transposed (2, 8, 4) -> (2, 8, 2, 1, 2)
y = reshape(transpose(x, {0, 2, 1}), {2, 8, 2, 1, 2});
y.eval();
CHECK_EQ(y.strides()[0], 32);
CHECK_EQ(y.strides()[1], 1);
CHECK_EQ(y.strides()[2], 16);
// y.strides()[3] can be anything since y.shape()[3] == 1
CHECK_EQ(y.strides()[4], 8);
CHECK_EQ(x.data<int32_t>(), y.data<int32_t>());
// Split transposed (2, 8, 4) -> (2, 8, 2, 1, 2, 1)
y = reshape(transpose(x, {0, 2, 1}), {2, 8, 2, 1, 2, 1});
y.eval();
CHECK_EQ(y.strides()[0], 32);
CHECK_EQ(y.strides()[1], 1);
CHECK_EQ(y.strides()[2], 16);
// y.strides()[3] can be anything since y.shape()[3] == 1
CHECK_EQ(y.strides()[4], 8);
// y.strides()[5] can be anything since y.shape()[5] == 1
CHECK_EQ(x.data<int32_t>(), y.data<int32_t>());
// Check contiguity preservation
x = ones({10, 10});
eval(x);
CHECK(x.flags().row_contiguous);
CHECK(!x.flags().col_contiguous);
y = reshape(x, {2, 5, 10});
eval(y);
CHECK(y.flags().row_contiguous);
CHECK(!y.flags().col_contiguous);
y = reshape(x, {10, 1, 10, 1});
eval(y);
CHECK(y.flags().row_contiguous);
CHECK(!y.flags().col_contiguous);
x = transpose(x, {1, 0});
eval(x);
CHECK(!x.flags().row_contiguous);
CHECK(x.flags().col_contiguous);
y = reshape(x, {2, 5, 10});
eval(y);
CHECK(!y.flags().row_contiguous);
CHECK(y.flags().col_contiguous);
y = reshape(x, {2, 50});
eval(y);
CHECK(y.flags().row_contiguous);
CHECK(!y.flags().col_contiguous);
y = reshape(x, {10, 1, 10, 1});
eval(y);
CHECK(!y.flags().row_contiguous);
CHECK(y.flags().col_contiguous);
}
TEST_CASE("test flatten") {
array x = zeros({2, 3, 4});
CHECK_EQ(flatten(x).shape(), Shape({2 * 3 * 4}));
CHECK_EQ(flatten(x, 1, 1).shape(), Shape({2, 3, 4}));
CHECK_EQ(flatten(x, 1, 2).shape(), Shape({2, 3 * 4}));
CHECK_EQ(flatten(x, 1, 3).shape(), Shape({2, 3 * 4}));
CHECK_EQ(flatten(x, 1, -1).shape(), Shape({2, 3 * 4}));
CHECK_EQ(flatten(x, -2, -1).shape(), Shape({2, 3 * 4}));
CHECK_EQ(flatten(x, -3, -1).shape(), Shape({2 * 3 * 4}));
CHECK_EQ(flatten(x, -4, -1).shape(), Shape({2 * 3 * 4}));
// Check start > end throws
CHECK_THROWS(flatten(x, 2, 1));
// Check start >= ndim throws
CHECK_THROWS(flatten(x, 5, 6));
// Check end < 0 throws
CHECK_THROWS(flatten(x, -5, -4));
// Check scalar flattens to 1D
x = array(1);
CHECK_EQ(flatten(x, -3, -1).shape(), Shape({1}));
CHECK_EQ(flatten(x, 0, 0).shape(), Shape({1}));
}
TEST_CASE("test unflatten") {
array x = array(1);
CHECK_THROWS(unflatten(x, 0, {1, 1}));
x = array({1});
auto out = unflatten(x, 0, {1, 1});
CHECK_EQ(out.shape(), Shape({1, 1}));
CHECK_THROWS(unflatten(x, 1, {1, 1}));
CHECK_THROWS(unflatten(x, 0, {-1, -1}));
CHECK_THROWS(unflatten(x, 0, {-1, 2}));
CHECK_THROWS(unflatten(x, 0, {}));
x = zeros({4, 8});
out = unflatten(x, 1, {2, 2, 2});
CHECK_EQ(out.shape(), Shape({4, 2, 2, 2}));
}
TEST_CASE("test squeeze and expand") {
array x = zeros({2, 1, 2, 1, 2, 1});
CHECK_EQ(squeeze(x).shape(), Shape{2, 2, 2});
CHECK_EQ(squeeze(x, {1, 3, 5}).shape(), Shape{2, 2, 2});
CHECK_EQ(squeeze(x, {-1, -3, -5}).shape(), Shape{2, 2, 2});
CHECK_EQ(squeeze(x, 1).shape(), Shape{2, 2, 1, 2, 1});
CHECK_EQ(squeeze(x, -1).shape(), Shape{2, 1, 2, 1, 2});
CHECK_THROWS(squeeze(x, 0));
CHECK_THROWS(squeeze(x, 2));
CHECK_THROWS(squeeze(x, {1, 3, 1}));
CHECK_THROWS(squeeze(x, {1, 3, -3}));
x = zeros({2, 2});
CHECK_EQ(expand_dims(x, 0).shape(), Shape{1, 2, 2});
CHECK_EQ(expand_dims(x, -1).shape(), Shape{2, 2, 1});
CHECK_EQ(expand_dims(x, 1).shape(), Shape{2, 1, 2});
CHECK_EQ(expand_dims(x, {0, 1, 2}).shape(), Shape{1, 1, 1, 2, 2});
CHECK_EQ(
expand_dims(x, {0, 1, 2, 5, 6, 7}).shape(),
Shape{1, 1, 1, 2, 2, 1, 1, 1});
CHECK_THROWS(expand_dims(x, 3));
CHECK_THROWS(expand_dims(x, -4));
CHECK_THROWS(expand_dims(x, {0, 1, 0}));
CHECK_THROWS(expand_dims(x, {0, 1, -4}));
}
TEST_CASE("test slice") {
array x = array(3);
auto out = slice(x, {}, {});
CHECK_EQ(out.item<int>(), 3);
CHECK_THROWS_AS(slice(x, {1}, {2}), std::invalid_argument);
CHECK_THROWS_AS(slice(x, {}, {2}), std::invalid_argument);
CHECK_THROWS_AS(slice(x, {0}, {}), std::invalid_argument);
x = array({3});
out = slice(x, {0}, {1});
CHECK_EQ(out.item<int>(), 3);
out = slice(x, {-1}, {1});
CHECK_EQ(out.item<int>(), 3);
out = slice(x, {-3}, {10});
CHECK_EQ(out.item<int>(), 3);
out = slice(x, {1}, {0});
eval(out);
CHECK_EQ(out.shape(), Shape{0});
out = slice(x, {0}, {1}, {1});
CHECK_EQ(out.item<int>(), 3);
out = slice(x, {0}, {1}, {10});
CHECK_EQ(out.item<int>(), 3);
x = array({0, 1, 2, 3, 4, 5, 6, 7}, {2, 4});
out = slice(x, {0, 0}, {2, 2});
CHECK(array_equal(out, array({0, 1, 4, 5}, {2, 2})).item<bool>());
out = slice(x, {0, 0}, {0, 2});
CHECK(array_equal(out, reshape(array({}), {0, 2})).item<bool>());
out = slice(x, {0, 2}, {2, 3});
CHECK(array_equal(out, array({2, 6}, {2, 1})).item<bool>());
out = slice(x, {0, 0}, {2, 4}, {1, 2});
CHECK(array_equal(out, array({0, 2, 4, 6}, {2, 2})).item<bool>());
// Check contiguity preservation
x = ones({10, 10});
eval(x);
CHECK(x.flags().row_contiguous);
CHECK(!x.flags().col_contiguous);
out = slice(x, {0, 0}, {10, 5});
eval(out);
CHECK(!out.flags().row_contiguous);
CHECK(!out.flags().col_contiguous);
out = slice(x, {0, 0}, {5, 10});
eval(out);
CHECK(out.flags().row_contiguous);
CHECK(!out.flags().col_contiguous);
x = transpose(x, {1, 0});
eval(x);
CHECK(!x.flags().row_contiguous);
CHECK(x.flags().col_contiguous);
out = slice(x, {0, 0}, {10, 5});
eval(out);
CHECK(!out.flags().row_contiguous);
CHECK(out.flags().col_contiguous);
out = slice(x, {0, 0}, {5, 10});
eval(out);
CHECK(!out.flags().row_contiguous);
CHECK(!out.flags().col_contiguous);
x = ones({6, 4, 10});
out = slice(x, {0, 0, 0}, {6, 4, 10}, {2, 1, 2});
eval(out);
CHECK(!out.flags().contiguous);
CHECK(!out.flags().row_contiguous);
CHECK(!out.flags().col_contiguous);
// Check data size correctness
x = ones({4});
out = slice(x, {0}, {2});
eval(out);
CHECK_EQ(out.data_size(), 2);
out = slice(x, {2}, {4});
eval(out);
CHECK_EQ(out.data_size(), 2);
out = slice(x, {0}, {4}, {2});
eval(out);
CHECK_EQ(out.data_size(), 4);
x = ones({4, 4});
out = slice(x, {0, 0}, {2, 4});
eval(out);
CHECK_EQ(out.data_size(), 8);
out = slice(x, {0, 0}, {1, 2});
eval(out);
CHECK_EQ(out.data_size(), 2);
out = slice(x, {0, 1}, {4, 4});
eval(out);
CHECK_EQ(out.data_size(), 15);
out = slice(x, {1, 2}, {3, 4});
eval(out);
CHECK_EQ(out.data_size(), 6);
x = ones({4, 4, 4});
out = slice(x, {0, 0, 0}, {4, 2, 2});
eval(out);
CHECK_EQ(out.data_size(), 54);
x = ones({4, 4, 4});
out = slice(x, {2, 2, 2}, {3, 3, 3});
eval(out);
CHECK_EQ(out.data_size(), 1);
x = ones({4, 4, 4});
out = slice(x, {2, 2, 2}, {3, 4, 3});
eval(out);
CHECK_EQ(out.data_size(), 5);
}
TEST_CASE("test slice update") {
array x = array({0., 0., 0., 0., 0., 0., 0., 0.}, {8}, float32);
array y = array(
{
1.,
2.,
3.,
4.,
},
{4},
float32);
auto out = slice_update(x, y, {2}, {6}, {1});
CHECK(array_equal(slice(out, {2}, {6}, {1}), y).item<bool>());
out = slice_update(x, y, {5}, {1}, {-1});
CHECK(array_equal(slice(out, {5}, {1}, {-1}), y).item<bool>());
x = reshape(x, {2, 4});
out = slice_update(x, y, {0, 0}, {2, 4}, {1, 1});
out = reshape(out, {8});
CHECK(array_equal(slice(out, {0}, {4}, {1}), y).item<bool>());
CHECK(array_equal(slice(out, {4}, {8}, {1}), y).item<bool>());
}
TEST_CASE("test dynamic slice") {
auto src = reshape(arange(6), {2, 3});
CHECK_THROWS(slice(src, array({1, 0, 0}), {0, 0, 0}, {1, 1}));
CHECK_THROWS(slice(src, array({1, 0}), {0}, {1, 1}));
CHECK_THROWS(slice(src, array({1}), {3}, {1, 1}));
CHECK_THROWS(slice(src, array({1, 0}), {0, 0}, {1, 1}));
CHECK_THROWS(slice(src, array({1}), {0}, {2, 4}));
CHECK_THROWS(slice(src, array({1.0f}, float32), {0}, {1, 1}));
auto out = slice(src, array({1}), {0}, {1, 2});
auto expected = array({3, 4}, {1, 2});
CHECK(array_equal(out, expected).item<bool>());
out = slice(src, array({1, 1}), {0, 1}, {1, 2});
expected = array({4, 5}, {1, 2});
CHECK(array_equal(out, expected).item<bool>());
}
TEST_CASE("test dynamic slice update") {
auto src = zeros({2, 3}, int32);
auto upd = ones({1, 2}, int32);
CHECK_THROWS(slice_update(src, upd, array({1, 0, 0}), {0, 0, 0}));
CHECK_THROWS(slice_update(src, upd, array({1, 0}), {0}));
CHECK_THROWS(slice_update(src, upd, array({1}), {3}));
CHECK_THROWS(slice_update(src, upd, array({1, 0}), {0, 0}));
upd = ones({4}, int32);
CHECK_THROWS(slice_update(src, upd, array({1}), {0}));
upd = ones({1, 4}, int32);
CHECK_THROWS(slice_update(src, upd, array({1}), {0}));
CHECK_THROWS(slice_update(src, upd, array({1.0f}, float32), {0}));
upd = ones({1, 2}, int32);
auto out = slice_update(src, upd, array({1}), {0});
auto expected = reshape(array({0, 0, 0, 1, 1, 0}), {2, 3});
CHECK(array_equal(out, expected).item<bool>());
upd = ones({1, 2}, int32);
out = slice_update(src, upd, array({1, 1}), {0, 1});
expected = reshape(array({0, 0, 0, 0, 1, 1}), {2, 3});
CHECK(array_equal(out, expected).item<bool>());
}
TEST_CASE("test split") {
array x = array(1);
CHECK_THROWS(split(x, 0));
x = array({3});
CHECK_EQ(split(x, 1)[0].item<int>(), 3);
x = array({0, 1, 2});
CHECK_THROWS(split(x, 3, 1));
CHECK_THROWS(split(x, 3, -2));
auto out = split(x, 3, 0);
CHECK_EQ(out.size(), 3);
out = split(x, 3, -1);
CHECK_EQ(out.size(), 3);
for (auto i = 0; i < 3; ++i) {
CHECK_EQ(out[i].shape(), Shape{1});
CHECK_EQ(out[i].dtype(), int32);
CHECK_EQ(out[i].item<int>(), i);
}
x = array({0, 1, 2, 3, 4, 5}, {2, 3});
out = split(x, 2);
CHECK(array_equal(out[0], array({0, 1, 2}, {1, 3})).item<bool>());
CHECK(array_equal(out[1], array({3, 4, 5}, {1, 3})).item<bool>());
out = split(x, 3, 1);
CHECK(array_equal(out[0], array({0, 3}, {2, 1})).item<bool>());
CHECK(array_equal(out[1], array({1, 4}, {2, 1})).item<bool>());
CHECK(array_equal(out[2], array({2, 5}, {2, 1})).item<bool>());
x = zeros({8, 12});
out = split(x, 2);
CHECK_EQ(out.size(), 2);
CHECK_EQ(out[0].shape(), Shape{4, 12});
CHECK_EQ(out[1].shape(), Shape{4, 12});
out = split(x, 3, 1);
CHECK_EQ(out.size(), 3);
CHECK_EQ(out[0].shape(), Shape{8, 4});
CHECK_EQ(out[1].shape(), Shape{8, 4});
CHECK_EQ(out[2].shape(), Shape{8, 4});
out = split(x, Shape{});
CHECK_EQ(out.size(), 1);
CHECK_EQ(out[0].shape(), x.shape());
out = split(x, {3, 7});
CHECK_EQ(out.size(), 3);
CHECK_EQ(out[0].shape(), Shape{3, 12});
CHECK_EQ(out[1].shape(), Shape{4, 12});
CHECK_EQ(out[2].shape(), Shape{1, 12});
out = split(x, Shape{20});
CHECK_EQ(out.size(), 2);
CHECK_EQ(out[0].shape(), Shape{8, 12});
CHECK_EQ(out[1].shape(), Shape{0, 12});
// Negative indices
out = split(x, Shape{-5});
CHECK_EQ(out[0].shape(), Shape{3, 12});
CHECK_EQ(out[1].shape(), Shape{5, 12});
// Different axis
out = split(x, {2, 8}, 1);
CHECK_EQ(out[0].shape(), Shape{8, 2});
CHECK_EQ(out[1].shape(), Shape{8, 6});
CHECK_EQ(out[2].shape(), Shape{8, 4});
// Out of order indices
x = arange(5);
out = split(x, {2, 1, 2});
CHECK(array_equal(out[0], array({0, 1})).item<bool>());
CHECK(array_equal(out[1], array({})).item<bool>());
CHECK(array_equal(out[2], array({1})).item<bool>());
CHECK(array_equal(out[3], array({2, 3, 4})).item<bool>());
}
TEST_CASE("test swap and move axes") {
// Test swapaxes
array a(0.0);
CHECK_THROWS(swapaxes(a, 0, 0));
a = zeros({2});
CHECK_THROWS(swapaxes(a, 0, 1));
CHECK_EQ(swapaxes(a, 0, 0).shape(), Shape{2});
CHECK_EQ(swapaxes(a, -1, -1).shape(), Shape{2});
a = zeros({2, 3, 4});
CHECK_THROWS(swapaxes(a, 0, -4));
CHECK_THROWS(swapaxes(a, 0, 3));
CHECK_THROWS(swapaxes(a, 3, 0));
CHECK_THROWS(swapaxes(a, -4, 0));
CHECK_EQ(swapaxes(a, 0, 2).shape(), Shape{4, 3, 2});
CHECK_EQ(swapaxes(a, 0, 1).shape(), Shape{3, 2, 4});
CHECK_EQ(swapaxes(a, 0, -1).shape(), Shape{4, 3, 2});
CHECK_EQ(swapaxes(a, -2, 2).shape(), Shape{2, 4, 3});
// Test moveaxis
a = array(0.0);
CHECK_THROWS(moveaxis(a, 0, 0));
a = zeros({2});
CHECK_THROWS(moveaxis(a, 0, 1));
CHECK_EQ(moveaxis(a, 0, 0).shape(), Shape{2});
CHECK_EQ(moveaxis(a, -1, -1).shape(), Shape{2});
a = zeros({2, 3, 4});
CHECK_THROWS(moveaxis(a, 0, -4));
CHECK_THROWS(moveaxis(a, 0, 3));
CHECK_THROWS(moveaxis(a, 3, 0));
CHECK_THROWS(moveaxis(a, -4, 0));
CHECK_EQ(moveaxis(a, 0, 2).shape(), Shape{3, 4, 2});
CHECK_EQ(moveaxis(a, 0, 1).shape(), Shape{3, 2, 4});
CHECK_EQ(moveaxis(a, 0, -1).shape(), Shape{3, 4, 2});
CHECK_EQ(moveaxis(a, -2, 2).shape(), Shape{2, 4, 3});
}
TEST_CASE("test transpose") {
array x(1);
auto y = transpose(x);
CHECK_EQ(y.shape(), Shape{});
CHECK_EQ(y.item<int>(), 1);
CHECK_THROWS_AS(transpose(x, {0}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {1}), std::invalid_argument);
x = array({1}, {1});
y = transpose(x);
CHECK_EQ(y.shape(), Shape{1});
CHECK_EQ(y.item<int>(), 1);
// Negative indices
y = transpose(x, {-1});
CHECK_EQ(y.shape(), Shape{1});
CHECK_EQ(y.item<int>(), 1);
CHECK_THROWS_AS(transpose(x, {1}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {0, 0}), std::invalid_argument);
// Works with empty array
x = array({});
y = transpose(x);
CHECK_EQ(y.shape(), Shape{0});
y.eval();
CHECK_EQ(y.size(), 0);
x = array({1, 2, 3, 4, 5, 6}, {2, 3});
y = transpose(x);
CHECK_EQ(y.shape(), Shape{3, 2});
y = transpose(x, {-1, 0});
CHECK_EQ(y.shape(), Shape{3, 2});
y = transpose(x, {-1, -2});
CHECK_EQ(y.shape(), Shape{3, 2});
y.eval();
CHECK(array_equal(y, array({1, 4, 2, 5, 3, 6}, {3, 2})).item<bool>());
y = transpose(x, {0, 1});
CHECK_EQ(y.shape(), Shape{2, 3});
CHECK(array_equal(y, x).item<bool>());
y = transpose(x, {0, -1});
CHECK_EQ(y.shape(), Shape{2, 3});
CHECK(array_equal(y, x).item<bool>());
CHECK_THROWS_AS(transpose(x, {}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {0}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {0, 0}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {0, 0, 0}), std::invalid_argument);
CHECK_THROWS_AS(transpose(x, {0, 1, 1}), std::invalid_argument);
x = array({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {2, 3, 2});
y = transpose(x);
CHECK_EQ(y.shape(), Shape{2, 3, 2});
auto expected = array({1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12}, {2, 3, 2});
CHECK(array_equal(y, expected).item<bool>());
y = transpose(x, {0, 1, 2});
CHECK_EQ(y.shape(), Shape{2, 3, 2});
CHECK(array_equal(y, x).item<bool>());
y = transpose(x, {1, 0, 2});
CHECK_EQ(y.shape(), Shape{3, 2, 2});
expected = array({1, 2, 7, 8, 3, 4, 9, 10, 5, 6, 11, 12}, {3, 2, 2});
CHECK(array_equal(y, expected).item<bool>());
y = transpose(x, {0, 2, 1});
CHECK_EQ(y.shape(), Shape{2, 2, 3});
expected = array({1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12}, {2, 2, 3});
CHECK(array_equal(y, expected).item<bool>());
// Check reshaping a transposed array
x = array({0, 1, 2, 3, 4, 5, 6, 7}, {4, 2});
x = reshape(transpose(x), {2, 2, 2});
expected = array({0, 2, 4, 6, 1, 3, 5, 7}, {2, 2, 2});
CHECK(array_equal(x, expected).item<bool>());
// Check maintaining contiguous status
x = array({0, 1, 2, 3, 4, 5, 6, 7}, {1, 4, 1, 2});
CHECK(x.flags().row_contiguous);
x = transpose(x, {2, 1, 0, 3});
eval(x);
CHECK(x.flags().row_contiguous);
}
TEST_CASE("test comparison ops") {
// Empty array
{
array x({});
array y({});
auto z = x == y;
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.shape(), Shape{0});
}
// Basic cases
{
array x(1.0);
array y(1.0);
CHECK(equal(x, y).item<bool>());
CHECK((x == y).item<bool>());
CHECK((x == 1.0f).item<bool>());
CHECK((1.0f == y).item<bool>());
CHECK(!(x != y).item<bool>());
CHECK(!not_equal(x, y).item<bool>());
CHECK(!(1.0f != y).item<bool>());
CHECK(!(x != 1.0f).item<bool>());
CHECK(array_equal(x, y).item<bool>());
x = array(0.0);
CHECK(!equal(x, y).item<bool>());
CHECK(!array_equal(x, y).item<bool>());
CHECK(not_equal(x, y).item<bool>());
}
// Greater and less
{
array x(1.0);
array y(0.0);
CHECK(greater(x, y).item<bool>());
CHECK((x > 0.0f).item<bool>());
CHECK((1.0f > y).item<bool>());
CHECK(greater_equal(x, y).item<bool>());
CHECK((1.0f >= y).item<bool>());
CHECK(!(x > 1.0f).item<bool>());
CHECK((x >= 1.0f).item<bool>());
CHECK(less(y, x).item<bool>());
CHECK((y < 1.0).item<bool>());
CHECK((y <= 1.0f).item<bool>());
CHECK(!(x < 1.0).item<bool>());
CHECK((x <= 1.0f).item<bool>());
}
// Check array_equal works
{
auto x = zeros({5, 5});
auto y = zeros({5, 5});
CHECK(array_equal(x, y).item<bool>());
x = zeros({1, 1});
CHECK(!array_equal(x, y).item<bool>());
x = ones({5, 5});
CHECK(!array_equal(x, y).item<bool>());
x = array({0.0f, 1.0f, NAN});
y = array({0.0f, 1.0f, NAN});
CHECK(!array_equal(x, y).item<bool>());
CHECK(array_equal(x, y, true).item<bool>());
}
// Check other types
{
auto x = zeros({5, 5}, int32);
auto y = zeros({5, 5}, int32);
CHECK(array_equal(x, y).item<bool>());
x = ones({5, 5}, bool_);
y = ones({5, 5}, bool_);
CHECK(array_equal(x, y).item<bool>());
}
// Check type promotion
{
array x(1.0f);
array y(1);
CHECK_EQ(equal(x, y).item<bool>(), true);
x = array(true, bool_);
CHECK_EQ(equal(x, y).item<bool>(), true);
}
// Broadcasting works
{
auto x = zeros({1, 2});
auto y = zeros({2, 1});
auto z = equal(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.shape(), Shape{2, 2});
auto expected = array({true, true, true, true}, {2, 2});
CHECK(array_equal(z, expected).item<bool>());
x = array({1.0, 2.0}, {1, 2});
y = array({1.0, 2.0}, {2, 1});
z = equal(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.shape(), Shape{2, 2});
expected = array({true, false, false, true}, {2, 2});
CHECK(array_equal(z, expected).item<bool>());
expected = array({false, true, false, false}, {2, 2});
z = greater(x, y);
CHECK(array_equal(z, expected).item<bool>());
expected = array({true, true, false, true}, {2, 2});
z = greater_equal(x, y);
CHECK(array_equal(z, expected).item<bool>());
expected = array({false, false, true, false}, {2, 2});
z = less(x, y);
CHECK(array_equal(z, expected).item<bool>());
expected = array({true, false, true, true}, {2, 2});
z = less_equal(x, y);
CHECK(array_equal(z, expected).item<bool>());
}
}
TEST_CASE("test is nan") {
array x(1.0f);
CHECK_FALSE(isnan(x).item<bool>());
array y(NAN);
CHECK(isnan(y).item<bool>());
array z = identity(7);
CHECK_FALSE(all(isnan(z)).item<bool>());
array w = array({1.0f, NAN, 2.0f});
CHECK_FALSE(all(isnan(w)).item<bool>());
array a(1.0f, bfloat16);
CHECK_FALSE(isnan(a).item<bool>());
array b(1.0f, float16);
CHECK_FALSE(isnan(b).item<bool>());
array c(NAN, bfloat16);
CHECK(isnan(c).item<bool>());
array d(NAN, float16);
CHECK(isnan(d).item<bool>());
}
TEST_CASE("test is inf") {
array x(1.0f);
CHECK_FALSE(isinf(x).item<bool>());
auto inf = std::numeric_limits<float>::infinity();
array y(inf);
CHECK(isinf(y).item<bool>());
auto neginf = -std::numeric_limits<float>::infinity();
CHECK(isinf(array(neginf)).item<bool>());
array z = identity(7);
CHECK_FALSE(any(isinf(z)).item<bool>());
array w = array({1.0f, inf, 2.0f});
CHECK(array_equal(array({false, true, false}), isinf(w)).item<bool>());
array a(1.0f, bfloat16);
CHECK_FALSE(isinf(a).item<bool>());
array b(1.0f, float16);
CHECK_FALSE(isinf(b).item<bool>());
array c(inf, bfloat16);
CHECK(isinf(c).item<bool>());
array d(inf, float16);
CHECK(isinf(d).item<bool>());
}
TEST_CASE("test all close") {
array x(1.0f);
array y(1.0f);
CHECK(allclose(x, y).item<bool>());
y = array(1.1f);
CHECK_FALSE(allclose(x, y).item<bool>());
CHECK(allclose(x, y, 0.1).item<bool>());
CHECK_FALSE(allclose(x, y, 0.01).item<bool>());
CHECK(allclose(x, y, 0.01, 0.1).item<bool>());
}
TEST_CASE("test is close") {
{
array a({1.0, std::numeric_limits<float>::infinity()});
array b({1.0, std::numeric_limits<float>::infinity()});
CHECK(array_equal(isclose(a, b), array({true, true})).item<bool>());
}
{
array a({1.0, -std::numeric_limits<float>::infinity()});
array b({1.0, -std::numeric_limits<float>::infinity()});
CHECK(array_equal(isclose(a, b), array({true, true})).item<bool>());
}
{
array a({1.0, std::numeric_limits<float>::infinity()});
array b({1.0, -std::numeric_limits<float>::infinity()});
CHECK(array_equal(isclose(a, b), array({true, false})).item<bool>());
}
{
array a({1.0, std::nan("1"), std::nan("1")});
array b({1.0, std::nan("1"), 2.0});
CHECK(array_equal(isclose(a, b), array({true, false, false})).item<bool>());
}
{
array a({1.0, std::nan("1"), std::nan("1")});
array b({1.0, std::nan("1"), 2.0});
CHECK(
array_equal(isclose(a, b, 1e-5, 1e-8, true), array({true, true, false}))
.item<bool>());
}
}
TEST_CASE("test reduction ops") {
// Check shapes and throws correctly
{
auto x = array(1);
auto out = sum(x);
CHECK_EQ(out.ndim(), 0);
CHECK_THROWS_AS(sum(x, 0), std::out_of_range);
CHECK_THROWS_AS(sum(x, -1), std::out_of_range);
out = sum(x, std::vector<int>{});
CHECK_EQ(out.shape(), Shape{});
CHECK_EQ(out.size(), 1);
x = array({});
out = sum(x);
CHECK_EQ(out.shape(), Shape{});
CHECK_EQ(out.size(), 1);
out = sum(x, true);
CHECK_EQ(out.shape(), Shape{1});
out = sum(x, std::vector<int>{});
CHECK_EQ(out.shape(), x.shape());
x = zeros({2});
out = sum(x);
CHECK_EQ(out.ndim(), 0);
out = sum(x, -1);
CHECK_EQ(out.ndim(), 0);
out = sum(x, -1, true);
CHECK_EQ(out.ndim(), 1);
CHECK_EQ(out.shape(), Shape{1});
CHECK_THROWS_AS(sum(x, 1), std::out_of_range);
CHECK_THROWS_AS(sum(x, -2), std::out_of_range);
CHECK_THROWS_AS(sum(x, {0, 0}), std::invalid_argument);
CHECK_THROWS_AS(sum(x, {-1, 0}), std::invalid_argument);
x = zeros({2, 3, 4});
out = sum(x, {0, 2});
CHECK_EQ(out.shape(), Shape{3});
out = sum(x, std::vector<int>{});
CHECK_EQ(out.shape(), x.shape());
out = sum(x, {0, -1});
CHECK_EQ(out.shape(), Shape{3});
out = sum(x, {0, -1}, true);
CHECK_EQ(out.shape(), Shape{1, 3, 1});
out = sum(x, true);
CHECK_EQ(out.shape(), Shape{1, 1, 1});
out = sum(x);
CHECK_EQ(out.shape(), Shape{});
CHECK_THROWS_AS(sum(x, 3), std::out_of_range);
CHECK_THROWS_AS(sum(x, -4), std::out_of_range);
CHECK_THROWS_AS(sum(x, {0, 1, -2}), std::invalid_argument);
}
// Test sum
{
auto x = array({});
CHECK_EQ(sum(x).item<float>(), 0.0f);
x = array({1, 2, 3});
CHECK_EQ(sum(x).item<int>(), 6);
CHECK(array_equal(sum(x, std::vector<int>{}), x).item<bool>());
x = ones({2, 3});
CHECK(array_equal(sum(x, 1), full({2}, 3.0f)).item<bool>());
CHECK(array_equal(sum(x, 0), full({3}, 2.0f)).item<bool>());
CHECK_EQ(sum(x, {0, 1}).item<float>(), 6.0f);
x = ones({2, 3, 4});
CHECK(array_equal(sum(x, 0), full({3, 4}, 2.0f)).item<bool>());
CHECK(array_equal(sum(x, 1), full({2, 4}, 3.0f)).item<bool>());
CHECK(array_equal(sum(x, 2), full({2, 3}, 4.0f)).item<bool>());
CHECK(array_equal(sum(x, {0, 1}), full({4}, 6.0f)).item<bool>());
CHECK(array_equal(sum(x, {0, 2}), full({3}, 8.0f)).item<bool>());
CHECK(array_equal(sum(x, {1, 2}), full({2}, 12.0f)).item<bool>());
// Output for bool gets higher precision
x = array({true, true, true});
CHECK_EQ(sum(x).item<int32_t>(), 3);
x = array(2.0f);
x = broadcast_to(x, {2, 2, 2});
CHECK_EQ(sum(x).item<float>(), 16.0f);
// Tests with non-uniform results after reduction
x = array({1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f}, {2, 3});
CHECK(array_equal(sum(x, 0), full({3}, 3.0f)).item<bool>());
CHECK(array_equal(sum(x, 1), array({3.0f, 6.0f}, {2})).item<bool>());
}
// Test prod
{
auto x = array({});
CHECK_EQ(prod(x).item<float>(), 1.0f);
x = array({2, 2, 2});
CHECK_EQ(prod(x).item<int>(), 8);
CHECK(array_equal(prod(x, std::vector<int>{}), x).item<bool>());
x = full({2, 3}, 2.0f);
CHECK(array_equal(prod(x, 1), full({2}, 8.0f)).item<bool>());
CHECK(array_equal(prod(x, 0), full({3}, 4.0f)).item<bool>());
CHECK_EQ(prod(x, {0, 1}).item<float>(), 64.0f);
x = full({2, 3, 4}, 2.0f);
CHECK(array_equal(prod(x, 0), full({3, 4}, 4.0f)).item<bool>());
CHECK(array_equal(prod(x, 1), full({2, 4}, 8.0f)).item<bool>());
CHECK(array_equal(prod(x, 2), full({2, 3}, 16.0f)).item<bool>());
CHECK(array_equal(prod(x, {0, 1}), full({4}, 64.0f)).item<bool>());
CHECK(array_equal(prod(x, {0, 2}), full({3}, 256.0f)).item<bool>());
CHECK(array_equal(prod(x, {1, 2}), full({2}, 4096.0f)).item<bool>());
// Tests with non-uniform results after reduction
x = array({1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f}, {2, 3});
CHECK(array_equal(prod(x, 0), full({3}, 2.0f)).item<bool>());
CHECK(array_equal(prod(x, 1), array({1.0f, 8.0f}, {2})).item<bool>());
x = array({true, true, true, false, true, false}, {2, 3});
CHECK(array_equal(prod(x, 0), array({false, true, false})).item<bool>());
CHECK(array_equal(prod(x, 1), array({true, false})).item<bool>());
}
// Test all
{
auto x = array({});
CHECK_EQ(all(x).item<bool>(), true);
x = array({2, 2, 2});
CHECK_EQ(all(x).item<bool>(), true);
auto out = all(x, std::vector<int>{});
CHECK(array_equal(out, array({true, true, true})).item<bool>());
x = array({0, 2, 2});
CHECK_EQ(all(x).item<bool>(), false);
x = array({true, true, true, false, true, false}, {2, 3});
CHECK(array_equal(all(x, 1), array({true, false})).item<bool>());
CHECK(array_equal(all(x, 0), array({false, true, false})).item<bool>());
}
// Test any
{
auto x = array({});
CHECK_EQ(any(x).item<bool>(), false);
x = array({0, 0, 0});
CHECK_EQ(any(x).item<bool>(), false);
x = array({0, 2, 0});
CHECK_EQ(any(x).item<bool>(), true);
auto out = any(x, std::vector<int>{});
CHECK(array_equal(out, array({false, true, false})).item<bool>());
x = array({true, false, true, false, false, false}, {2, 3});
CHECK(array_equal(any(x, 1), array({true, false})).item<bool>());
CHECK(array_equal(any(x, 0), array({true, false, true})).item<bool>());
}
// Test max and min
{
auto x = array({});
CHECK_THROWS(max(x));
CHECK_THROWS(min(x));
x = array({1.0f, 2.0f, 3.0f});
CHECK_EQ(max(x).item<float>(), 3.0f);
CHECK_EQ(min(x).item<float>(), 1.0f);
x = array({-2.0f, -1.0f});
CHECK_EQ(max(x).item<float>(), -1.0f);
CHECK_EQ(min(x).item<float>(), -2.0f);
constexpr float inf = std::numeric_limits<float>::infinity();
x = array({inf});
CHECK_EQ(min(x).item<float>(), inf);
x = array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3});
CHECK(array_equal(max(x, 0), array({4.0f, 5.0f, 6.0f})).item<bool>());
CHECK(array_equal(max(x, 1), array({3.0f, 6.0f})).item<bool>());
CHECK(array_equal(min(x, 0), array({1.0f, 2.0f, 3.0f})).item<bool>());
CHECK(array_equal(min(x, 1), array({1.0f, 4.0f})).item<bool>());
x = array({1u, 2u, 3u});
CHECK_EQ(max(x).item<uint32_t>(), 3u);
CHECK_EQ(min(x).item<uint32_t>(), 1u);
x = array({1u, 2u, 3u, 4u, 5u, 6u}, {2, 3});
CHECK(array_equal(max(x, 0), array({4u, 5u, 6u})).item<bool>());
CHECK(array_equal(max(x, 1), array({3u, 6u})).item<bool>());
CHECK(array_equal(min(x, 0), array({1u, 2u, 3u})).item<bool>());
CHECK(array_equal(min(x, 1), array({1u, 4u})).item<bool>());
x = array({true, false, true, false, false, false}, {2, 3});
CHECK(array_equal(max(x, 1), array({true, false})).item<bool>());
CHECK(array_equal(max(x, 0), array({true, false, true})).item<bool>());
x = array({true, true, true, false, true, false}, {2, 3});
CHECK(array_equal(min(x, 1), array({true, false})).item<bool>());
CHECK(array_equal(min(x, 0), array({false, true, false})).item<bool>());
}
// Test logsumexp
{
auto x = array({});
CHECK_THROWS(logsumexp(x));
constexpr float inf = std::numeric_limits<float>::infinity();
x = array({-inf, -inf});
CHECK_EQ(logsumexp(x).item<float>(), -inf);
x = repeat(array(-inf), 5000);
CHECK_EQ(logsumexp(x).item<float>(), -inf);
x = array({0.0f, -inf});
CHECK_EQ(logsumexp(x).item<float>(), 0.0f);
x = array({0.0f, inf});
CHECK_EQ(logsumexp(x).item<float>(), inf);
x = reshape(arange(6, float32), {2, 3});
std::vector<float> nums = {0.0f, 1.0f, 2.0f, 3.0f};
x = array(nums.data(), {2, 2});
auto y = logsumexp(x, {0, 1}, true);
CHECK_EQ(y.shape(), Shape{1, 1});
auto result = std::log(
std::exp(nums[0]) + std::exp(nums[1]) + std::exp(nums[2]) +
std::exp(nums[3]));
CHECK(y.item<float>() == doctest::Approx(result));
auto expected = array(
{std::log(std::exp(nums[0]) + std::exp(nums[2])),
std::log(std::exp(nums[1]) + std::exp(nums[3]))});
CHECK(allclose(logsumexp(x, 0), expected).item<bool>());
expected = array(
{std::log(std::exp(nums[0]) + std::exp(nums[1])),
std::log(std::exp(nums[2]) + std::exp(nums[3]))});
CHECK(allclose(logsumexp(x, 1), expected).item<bool>());
}
// Test softmax
{
for (auto t : {float16, bfloat16, float32}) {
const auto rtol = t == float32 ? 1e-5 : 1e-2;
auto x = array({}, t);
CHECK(array_equal(x, softmax(x)).item<bool>());
// all zeros
x = array({0., 0., 0., 0.}, t);
auto y = array({0.25, 0.25, 0.25, 0.25}, t);
CHECK(array_equal(y, softmax(x)).item<bool>());
CHECK(array_equal(y, softmax(x, -1)).item<bool>());
CHECK(array_equal(y, softmax(x, std::vector<int>{-1})).item<bool>());
CHECK(array_equal(y, softmax(x, std::vector<int>{0})).item<bool>());
auto ones = array(1.0f, t);
CHECK(array_equal(ones, sum(softmax(x))).item<bool>());
// all ones
x = array({1., 1., 1., 1.}, t);
CHECK(array_equal(y, softmax(x)).item<bool>());
CHECK(array_equal(ones, sum(softmax(x))).item<bool>());
// negative values
x = array({-1., -2., -3., -4.}, t);
y = array({0.643914, 0.236883, 0.0871443, 0.0320586}, t);
CHECK(allclose(y, softmax(x), rtol).item<bool>());
CHECK(allclose(ones, sum(softmax(x)), rtol).item<bool>());
// positive and negative values
x = array({1., 0., -1., 0.}, t);
y = array({0.534447, 0.196612, 0.0723295, 0.196612}, t);
CHECK(allclose(y, softmax(x), rtol).item<bool>());
CHECK(allclose(ones, sum(softmax(x)), rtol).item<bool>());
// large positive values
x = array({1000., 1000., 1000.}, t);
y = array({0.333333, 0.333333, 0.333333}, t);
CHECK(allclose(y, softmax(x)).item<bool>());
CHECK(array_equal(ones, sum(softmax(x))).item<bool>());
// large negative values
x = negative(x);
CHECK(allclose(y, softmax(x)).item<bool>());
CHECK(array_equal(ones, sum(softmax(x))).item<bool>());
}
}
}
TEST_CASE("test irregular binary ops") {
// 1D strided
{
auto x = full({128}, 1.0f);
auto y = full({64}, 1.0f);
x = slice(x, {0}, {128}, {4});
y = slice(y, {0}, {64}, {2});
CHECK(array_equal(add(x, y), full({32}, 2.0f)).item<bool>());
}
// 2D broadcasts
{
auto x = full({32, 32}, 4.0f);
auto y = full({32}, 4.0f);
CHECK(array_equal(add(x, y), full({32, 32}, 8.0f)).item<bool>());
y = reshape(y, {32, 1});
CHECK(array_equal(add(x, y), full({32, 32}, 8.0f)).item<bool>());
CHECK(array_equal(subtract(y, x), zeros({32, 32})).item<bool>());
}
}
TEST_CASE("test arithmetic unary ops") {
// Test negative
{
array x(1.0f);
CHECK_EQ(negative(x).item<float>(), -1.0f);
CHECK_EQ((-x).item<float>(), -1.0f);
// works on empty array
CHECK(array_equal(-array({}), array({})).item<bool>());
// Throws on bool
CHECK_THROWS(negative(array(true)));
}
// Test logical not
{
array x(false);
CHECK_EQ(logical_not(x).item<bool>(), true);
x = array(1.0f);
auto y = logical_not(x);
CHECK_EQ(y.dtype(), bool_);
CHECK_EQ(y.item<bool>(), false);
x = array(0);
y = logical_not(x);
CHECK_EQ(y.dtype(), bool_);
CHECK_EQ(y.item<bool>(), true);
}
// Test logical and
{
array x(true);
array y(true);
CHECK_EQ(logical_and(x, y).item<bool>(), true);
x = array(1.0f);
y = array(1.0f);
auto z = logical_and(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.item<bool>(), true);
x = array(0);
y = array(1.0f);
z = logical_and(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.item<bool>(), false);
}
// Test logical or
{
array x(false);
array y(false);
CHECK_EQ(logical_or(x, y).item<bool>(), false);
x = array(1.0f);
y = array(1.0f);
auto z = logical_or(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.item<bool>(), true);
x = array(0);
y = array(1.0f);
z = logical_or(x, y);
CHECK_EQ(z.dtype(), bool_);
CHECK_EQ(z.item<bool>(), true);
}
// Test abs
{
array x({-1.0f, 0.0f, 1.0f});
CHECK(array_equal(abs(x), array({1.0f, 0.0f, 1.0f})).item<bool>());
// works on empty array
CHECK(array_equal(abs(array({})), array({})).item<bool>());
// int32
x = array({-1, 0, 1});
CHECK(array_equal(abs(x), array({1, 0, 1})).item<bool>());
// uint32
x = array({1u, 0u, 1u});
CHECK(array_equal(abs(x), array({1u, 0u, 1u})).item<bool>());
// bool
x = array({false, true});
CHECK(array_equal(abs(x), array({false, true})).item<bool>());
}
// Test sign
{
array x({-1.0f, 0.0f, 1.0f});
CHECK(array_equal(sign(x), x).item<bool>());
// works on empty array
CHECK(array_equal(sign(array({})), array({})).item<bool>());
// int32
x = array({-1, 0, 1});
CHECK(array_equal(sign(x), x).item<bool>());
// uint32
x = array({1u, 0u, 1u});
CHECK(array_equal(sign(x), x).item<bool>());
// bool
x = array({false, true});
CHECK(array_equal(sign(x), x).item<bool>());
// uint64
array x_uint64(
{uint64_t(0xa11cc311cb6acd70),
uint64_t(0x7a375ac3ebb533f3),
uint64_t(0x734969adf9d7190c),
uint64_t(0xb400515a4f673424)});
array expected(
{uint64_t(0x0000000000000001),
uint64_t(0x0000000000000001),
uint64_t(0x0000000000000001),
uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
x_uint64 = array(
{uint64_t(0xa11cc311cb6acd70),
uint64_t(0x7a375ac3ebb533f3),
uint64_t(0x734969adf9d7190c)});
expected = array(
{uint64_t(0x0000000000000001),
uint64_t(0x0000000000000001),
uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
x_uint64 =
array({uint64_t(0xa11cc311cb6acd70), uint64_t(0x7a375ac3ebb533f3)});
expected =
array({uint64_t(0x0000000000000001), uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
x_uint64 = array({uint64_t(0xa11cc311cb6acd70)});
expected = array({uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
x_uint64 = array({uint64_t(0xffffffffffffffff)});
expected = array({uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
x_uint64 = array({uint64_t(0x0000000000000001)});
expected = array({uint64_t(0x0000000000000001)});
CHECK(array_equal(sign(x_uint64), expected).item<bool>());
}
constexpr float neginf = -std::numeric_limits<float>::infinity();
// Test floor and ceil
{
array x(1.0f);
CHECK_EQ(floor(x).item<float>(), 1.0f);
CHECK_EQ(ceil(x).item<float>(), 1.0f);
x = array(1.5f);
CHECK_EQ(floor(x).item<float>(), 1.0f);
CHECK_EQ(ceil(x).item<float>(), 2.0f);
x = array(-1.5f);
CHECK_EQ(floor(x).item<float>(), -2.0f);
CHECK_EQ(ceil(x).item<float>(), -1.0f);
x = array(neginf);
CHECK_EQ(floor(x).item<float>(), neginf);
CHECK_EQ(ceil(x).item<float>(), neginf);
x = array(std::complex<float>(1.0f, 1.0f));
CHECK_THROWS_AS(floor(x), std::invalid_argument);
CHECK_THROWS_AS(ceil(x), std::invalid_argument);
}
// Test round
{
array x({0.5, -0.5, 1.5, -1.5, 2.3, 2.6});
CHECK(array_equal(round(x), array({0, -0, 2, -2, 2, 3})).item<bool>());
x = array({11, 222, 32});
CHECK(array_equal(round(x, -1), array({10, 220, 30})).item<bool>());
}
// Test exponential
{
array x(0.0);
CHECK_EQ(exp(x).item<float>(), 1.0);
x = array(2.0);
CHECK_EQ(exp(x).item<float>(), doctest::Approx(std::exp(2.0f)));
CHECK(array_equal(exp(array({})), array({})).item<bool>());
x = array(neginf);
CHECK_EQ(exp(x).item<float>(), doctest::Approx(0.0f));
// Integer input type
x = array(2);
CHECK_EQ(x.dtype(), int32);
CHECK_EQ(exp(x).item<float>(), doctest::Approx(std::exp(2.0f)));
// Input is irregularly strided
x = broadcast_to(array(1.0f), {2, 2, 2});
CHECK(allclose(exp(x), full({2, 2, 2}, std::exp(1.0f))).item<bool>());
x = split(array({0.0f, 1.0f, 2.0f, 3.0f}, {2, 2}), 2, 1)[0];
auto expected = array({std::exp(0.0f), std::exp(2.0f)}, {2, 1});
CHECK(allclose(exp(x), expected).item<bool>());
}
// Test expm1
{
array x(-1.0f);
CHECK_EQ(expm1(x).item<float>(), doctest::Approx(std::expm1(-1.0f)));
x = array(1.0f);
CHECK_EQ(expm1(x).item<float>(), doctest::Approx(std::expm1(1.0f)));
// Integer input type
x = array(1);
CHECK_EQ(expm1(x).dtype(), float32);
CHECK_EQ(expm1(x).item<float>(), doctest::Approx(std::expm1(1.0f)));
}
// Test sine
{
array x(0.0);
CHECK_EQ(sin(x).item<float>(), 0.0);
x = array(M_PI_2);
CHECK(sin(x).item<float>() == doctest::Approx(std::sin(M_PI_2)));
CHECK(array_equal(sin(array({})), array({})).item<bool>());
// Integer input type
x = array(0);
CHECK_EQ(x.dtype(), int32);
CHECK_EQ(sin(x).item<float>(), std::sin(0.0f));
// Input is irregularly strided
x = broadcast_to(array(1.0f), {2, 2, 2});
CHECK(allclose(sin(x), full({2, 2, 2}, std::sin(1.0f))).item<bool>());
x = split(array({0.0f, 1.0f, 2.0f, 3.0f}, {2, 2}), 2, 1)[0];
auto expected = array({std::sin(0.0f), std::sin(2.0f)}, {2, 1});
CHECK(allclose(sin(x), expected).item<bool>());
}
// Test cos
{
array x(0.0);
CHECK_EQ(cos(x).item<float>(), doctest::Approx(1.0));
x = array(M_PI_2);
CHECK(cos(x).item<float>() == doctest::Approx(std::cos(M_PI_2)));
CHECK(array_equal(cos(array({})), array({})).item<bool>());
// Integer input type
x = array(0);
CHECK_EQ(x.dtype(), int32);
CHECK(cos(x).item<float>() == doctest::Approx(std::cos(0.0f)));
// Input is irregularly strided
x = broadcast_to(array(1.0f), {2, 2, 2});
CHECK(allclose(cos(x), full({2, 2, 2}, std::cos(1.0f))).item<bool>());
x = split(array({0.0f, 1.0f, 2.0f, 3.0f}, {2, 2}), 2, 1)[0];
auto expected = array({std::cos(0.0f), std::cos(2.0f)}, {2, 1});
CHECK(allclose(cos(x), expected).item<bool>());
}
// Test degrees
{
array x(0.0);
CHECK_EQ(degrees(x).item<float>(), 0.0);
x = array(M_PI_2);
CHECK(degrees(x).item<float>() == doctest::Approx(90.0));
CHECK(array_equal(degrees(array({})), array({})).item<bool>());
// Integer input type
x = array(0);
CHECK_EQ(x.dtype(), int32);
CHECK_EQ(degrees(x).item<float>(), 0.0);
// Input is irregularly strided
x = broadcast_to(array(M_PI_2), {2, 2, 2});
CHECK(allclose(degrees(x), full({2, 2, 2}, 90.0)).item<bool>());
float angles[] = {0.0f, M_PI_2, M_PI, 3.0f * M_PI_2};
x = split(array(angles, {2, 2}), 2, 1)[0];
auto expected = array({0.0f, 180.0f}, {2, 1});
CHECK(allclose(degrees(x), expected).item<bool>());
}
// Test radians
{
array x(0.0);
CHECK_EQ(radians(x).item<float>(), 0.0);
x = array(90.0);
CHECK(radians(x).item<float>() == doctest::Approx(M_PI_2));
CHECK(array_equal(radians(array({})), array({})).item<bool>());
// Integer input type
x = array(90);
CHECK_EQ(x.dtype(), int32);
CHECK(radians(x).item<float>() == doctest::Approx(M_PI_2));
// Input is irregularly strided
x = broadcast_to(array(90.0f), {2, 2, 2});
CHECK(allclose(radians(x), full({2, 2, 2}, M_PI_2)).item<bool>());
x = split(array({0.0f, 90.0f, 180.0f, 270.0f}, {2, 2}), 2, 1)[0];
float angles[] = {0.0f, M_PI};
auto expected = array(angles, {2, 1});
CHECK(allclose(radians(x), expected).item<bool>());
}
// Test log
{
array x(0.0);
CHECK_EQ(log(x).item<float>(), neginf);
x = array(1.0);
CHECK_EQ(log(x).item<float>(), log(1.0f));
// Integer input type
x = array(1);
CHECK_EQ(log(x).dtype(), float32);
CHECK_EQ(log(x).item<float>(), log(1.0f));
// Input is irregularly strided
x = broadcast_to(array(1.0f), {2, 2, 2});
CHECK(array_equal(log(x), full({2, 2, 2}, std::log(1.0f))).item<bool>());
x = split(array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}), 2, 1)[0];
auto expected = array({std::log(1.0f), std::log(3.0f)}, {2, 1});
CHECK(array_equal(log(x), expected).item<bool>());
}
// Test log2
{
array x(0.0);
CHECK_EQ(log2(x).item<float>(), neginf);
x = array(1.0);
CHECK_EQ(log2(x).item<float>(), 0.0f);
x = array(1024.0f);
CHECK_EQ(log2(x).item<float>(), 10.0f);
}
// Test log10
{
array x(0.0);
CHECK_EQ(log10(x).item<float>(), neginf);
x = array(1.0);
CHECK_EQ(log10(x).item<float>(), 0.0f);
x = array(1000.0f);
CHECK_EQ(log10(x).item<float>(), 3.0f);
}
// Test log1p
{
array x(-1.0f);
CHECK_EQ(log1p(x).item<float>(), neginf);
x = array(1.0f);
CHECK_EQ(log1p(x).item<float>(), std::log1pf(1.0f));
// Integer input type
x = array(1);
CHECK_EQ(log1p(x).dtype(), float32);
CHECK_EQ(log1p(x).item<float>(), std::log1pf(1.0f));
// Input is irregularly strided
x = broadcast_to(array(1.0f), {2, 2, 2});
CHECK(
array_equal(log1p(x), full({2, 2, 2}, std::log1pf(1.0f))).item<bool>());
x = split(array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}), 2, 1)[0];
auto expected = array({std::log1pf(1.0f), std::log1pf(3.0f)}, {2, 1});
CHECK(array_equal(log1p(x), expected).item<bool>());
}
// Test sigmoid
{
array x(0.0);
CHECK_EQ(sigmoid(x).item<float>(), 0.5f);
// Integer input type
x = array(0);
CHECK_EQ(sigmoid(x).dtype(), float32);
CHECK_EQ(sigmoid(x).item<float>(), 0.5f);
constexpr auto inf = std::numeric_limits<float>::infinity();
x = array(inf);
CHECK_EQ(sigmoid(x).item<float>(), 1.0f);
x = array(-inf);
CHECK_EQ(sigmoid(x).item<float>(), 0.0f);
}
// Test square
{
array x(3.0);
CHECK_EQ(square(x).item<float>(), 9.0);
x = array(2);
CHECK_EQ(square(x).item<int>(), 4);
x = full({3, 3}, 2.0f);
CHECK(array_equal(square(x), full({3, 3}, 4.0f)).item<bool>());
}
// Test sqrt and rsqrt
{
array x(4.0);
CHECK_EQ(sqrt(x).item<float>(), 2.0);
CHECK_EQ(rsqrt(x).item<float>(), 0.5);
x = full({3, 3}, 9.0f);
CHECK(array_equal(sqrt(x), full({3, 3}, 3.0f)).item<bool>());
x = array(4, int32);
CHECK_EQ(sqrt(x).item<float>(), 2.0f);
CHECK_EQ(rsqrt(x).item<float>(), 0.5f);
}
// Test reciprocal
{
array x(8.0);
CHECK_EQ(reciprocal(x).item<float>(), 0.125f);
x = array(2);
auto out = reciprocal(x);
CHECK_EQ(out.dtype(), float32);
CHECK_EQ(out.item<float>(), 0.5f);
x = full({3, 3}, 2.0f);
CHECK(array_equal(reciprocal(x), full({3, 3}, 0.5f)).item<bool>());
}
}
TEST_CASE("test error functions") {
constexpr float inf = std::numeric_limits<float>::infinity();
array x(0.0f);
CHECK_EQ(erf(x).item<float>(), 0.0f);
x = array(inf);
CHECK_EQ(erf(x).item<float>(), 1.0f);
x = array(-inf);
CHECK_EQ(erf(x).item<float>(), -1.0f);
x = array(1, int32);
CHECK_EQ(erf(x).dtype(), float32);
x = array(0.0f);
CHECK_EQ(erfinv(x).item<float>(), 0.0f);
x = array(1.0f);
CHECK_EQ(erfinv(x).item<float>(), inf);
x = array(-1.0f);
CHECK_EQ(erfinv(x).item<float>(), -inf);
x = array(1, int32);
CHECK_EQ(erfinv(x).dtype(), float32);
x = array(2.0f);
CHECK(std::isnan(erfinv(x).item<float>()));
x = array(-2.0f);
CHECK(std::isnan(erfinv(x).item<float>()));
auto vals = {0.9f, 0.5f, 0.1f, -0.1f, -0.5f, -0.9f};
// Expected values are generated from scipy's error function:
// python -c "import scipy.special as ss;
// vals = [0.9, 0.5, 0.1, -0.1, -0.5, -0.9];
// print([ss.erf(x) for x in vals])"
{
auto expected = {
0.7969082124228322,
0.5204998778130465,
0.1124629160182849,
-0.1124629160182849,
-0.5204998778130465,
-0.7969082124228322};
for (int i = 0; i < vals.size(); ++i) {
x = array(vals.begin()[i]);
CHECK_EQ(erf(x).item<float>(), doctest::Approx(expected.begin()[i]));
}
}
// Expected values are generated from scipy's inverse error function:
// python -c "import scipy.special as ss;
// vals = [0.9, 0.5, 0.1, -0.1, -0.5, -0.9];
// print([ss.erfinv(x) for x in vals])"
{
auto expected = {
1.1630871536766738,
0.4769362762044699,
0.08885599049425778,
-0.08885599049425769,
-0.4769362762044699,
-1.1630871536766743};
for (int i = 0; i < vals.size(); ++i) {
x = array(vals.begin()[i]);
CHECK_EQ(erfinv(x).item<float>(), doctest::Approx(expected.begin()[i]));
}
}
// float16_t
{
array x(0.0f, float16);
auto out = erf(x);
CHECK_EQ(out.dtype(), float16);
CHECK_EQ(out.item<float16_t>(), 0.0f);
out = erfinv(x);
CHECK_EQ(out.dtype(), float16);
CHECK_EQ(out.item<float16_t>(), 0.0f);
}
// bfloat
{
array x(0.0f, bfloat16);
auto out = erf(x);
CHECK_EQ(out.dtype(), bfloat16);
CHECK_EQ(out.item<bfloat16_t>(), 0.0f);
out = erfinv(x);
CHECK_EQ(out.dtype(), bfloat16);
CHECK_EQ(out.item<float16_t>(), 0.0f);
}
}
TEST_CASE("test arithmetic binary ops") {
array x(1.0);
array y(1.0);
auto z = add(x, y);
CHECK_EQ(z.item<float>(), 2.0);
z = x + y;
CHECK_EQ(z.item<float>(), 2.0);
z = add(z, x);
CHECK_EQ(z.item<float>(), 3.0);
z.eval(); // No-op
CHECK_EQ(z.item<float>(), 3.0);
// Chain a few adds:
auto out = x;
for (int i = 0; i < 10; ++i) {
out = add(out, x);
}
CHECK_EQ(out.item<float>(), 11.0);
// Works for different shapes
x = array({1.0, 2.0, 3.0}, {1, 3});
y = array({1.0, 2.0, 3.0}, {1, 3});
z = add(x, y);
CHECK_EQ(z.shape(), Shape{1, 3});
auto eq = array_equal(z, array({2.0, 4.0, 6.0}, {1, 3}));
CHECK(eq.item<bool>());
// Works with scalars
x = array({1.0, 2.0, 3.0}, {1, 3});
y = x + 2.0;
CHECK_EQ(y.dtype(), float32);
eq = array_equal(y, array({3.0, 4.0, 5.0}, {1, 3}));
CHECK(eq.item<bool>());
y = 2.0 + x;
CHECK_EQ(y.dtype(), float32);
eq = array_equal(y, array({3.0, 4.0, 5.0}, {1, 3}));
CHECK(eq.item<bool>());
// Check type promotion
y = 2 + x;
CHECK_EQ(y.dtype(), float32);
y = 2.0 + array({1, 2, 3});
CHECK_EQ(y.dtype(), float32);
CHECK(array_equal(y, array({3.0, 4.0, 5.0})).item<bool>());
// Broadcasting works
x = broadcast_to(array({1.0}), {10});
y = broadcast_to(array({2.0}), {10});
z = add(x, y);
CHECK(array_equal(z, full({10}, 3.0)).item<bool>());
x = array({1.0, 2.0}, {1, 2});
y = array({1.0, 2.0}, {2, 1});
z = add(x, y);
CHECK_EQ(z.shape(), Shape{2, 2});
eq = array_equal(z, array({2.0, 3.0, 3.0, 4.0}, {2, 2}));
CHECK(eq.item<bool>());
x = ones({3, 2, 1});
z = x + 2.0;
CHECK_EQ(z.shape(), Shape{3, 2, 1});
eq = array_equal(z, array({3.0, 3.0, 3.0, 3.0, 3.0, 3.0}, {3, 2, 1}));
CHECK(eq.item<bool>());
// Works for empty arrays
x = array({});
y = array({});
z = x + y;
z.eval();
CHECK_EQ(z.size(), 0);
CHECK_EQ(z.shape(), Shape{0});
// Check subtraction
x = array({3, 2, 1});
y = array({1, 1, 1});
CHECK(array_equal(x - y, array({2, 1, 0})).item<bool>());
// Check multiplication
x = array({1, 2, 3});
y = array({2, 2, 2});
CHECK(array_equal(x * y, array({2, 4, 6})).item<bool>());
// Check division
x = array(1);
y = array(1);
CHECK_EQ(divide(x, y).item<float>(), 1.0f);
x = array(1);
y = array(0.5);
CHECK_EQ(divide(x, y).item<float>(), 2.0f);
x = array(1);
y = array(4);
CHECK_EQ(divide(x, y).item<float>(), 0.25f);
x = array(true);
y = array(true);
CHECK_EQ(divide(x, y).item<float>(), 1.0f);
x = array(false);
y = array(true);
CHECK_EQ(divide(x, y).item<float>(), 0.0f);
x = array(true);
y = array(false);
CHECK(std::isinf(divide(x, y).item<float>()));
x = array(false);
y = array(false);
CHECK(std::isnan(divide(x, y).item<float>()));
// Check maximum and minimum
x = array(1.0f);
y = array(0.0f);
CHECK_EQ(maximum(x, y).item<float>(), 1.0f);
CHECK_EQ(minimum(x, y).item<float>(), 0.0f);
y = array(2.0f);
CHECK_EQ(maximum(x, y).item<float>(), 2.0f);
CHECK_EQ(minimum(x, y).item<float>(), 1.0f);
// Check logaddexp
x = array(0.0f);
y = array(0.0f);
CHECK_EQ(logaddexp(x, y).item<float>(), std::log(2.0f));
x = array(0u);
y = array(10000u);
CHECK_EQ(logaddexp(x, y).item<float>(), 10000.0f);
constexpr float inf = std::numeric_limits<float>::infinity();
x = array(inf);
y = array(3.0f);
CHECK_EQ(logaddexp(x, y).item<float>(), inf);
x = array(-inf);
y = array(3.0f);
CHECK_EQ(logaddexp(x, y).item<float>(), 3.0f);
x = array(-inf);
y = array(-inf);
CHECK_EQ(logaddexp(x, y).item<float>(), -inf);
x = array(inf);
y = array(inf);
CHECK_EQ(logaddexp(x, y).item<float>(), inf);
x = array(-inf);
y = array(inf);
CHECK_EQ(logaddexp(x, y).item<float>(), inf);
}
TEST_CASE("test broadcast") {
auto s = broadcast_shapes({1}, {1, 2});
CHECK_EQ(s, Shape{1, 2});
s = broadcast_shapes({1, 2}, {1});
CHECK_EQ(s, Shape{1, 2});
s = broadcast_shapes({2, 2}, {});
CHECK_EQ(s, Shape{2, 2});
s = broadcast_shapes({}, {1, 1});
CHECK_EQ(s, Shape{1, 1});
s = broadcast_shapes({1, 2, 1}, {2});
CHECK_EQ(s, Shape{1, 2, 2});
s = broadcast_shapes({2}, {1, 2, 1});
CHECK_EQ(s, Shape{1, 2, 2});
s = broadcast_shapes({2, 2, 2}, {1, 2, 1});
CHECK_EQ(s, Shape{2, 2, 2});
s = broadcast_shapes({2, 2, 2, 1}, {1, 2, 1});
CHECK_EQ(s, Shape{2, 2, 2, 1});
s = broadcast_shapes({0}, {0, 0});
CHECK_EQ(s, Shape{0, 0});
CHECK_EQ(broadcast_shapes({}, {0}), Shape{0});
s = broadcast_shapes({5, 0}, {0, 5, 0});
CHECK_EQ(s, Shape{0, 5, 0});
CHECK_EQ(broadcast_shapes({}, {0}), Shape{0});
CHECK_EQ(broadcast_shapes({1}, {0}), Shape{0});
CHECK_EQ(broadcast_shapes({1}, {0}), Shape{0});
CHECK_EQ(broadcast_shapes({1}, {0, 0}), Shape{0, 0});
CHECK_EQ(broadcast_shapes({1, 1}, {0}), Shape{1, 0});
CHECK_EQ(broadcast_shapes({1, 1}, {0, 0}), Shape{0, 0});
CHECK_EQ(broadcast_shapes({2, 1}, {1, 0}), Shape{2, 0});
CHECK_EQ(broadcast_shapes({2, 1}, {2, 0}), Shape{2, 0});
CHECK_EQ(broadcast_shapes({2, 1}, {1, 2, 0}), Shape{1, 2, 0});
CHECK_THROWS_AS(broadcast_shapes({2}, {0}), std::invalid_argument);
CHECK_THROWS_AS(broadcast_shapes({2, 1}, {0, 0}), std::invalid_argument);
CHECK_THROWS_AS(broadcast_shapes({3}, {2}), std::invalid_argument);
CHECK_THROWS_AS(broadcast_shapes({1, 3}, {2}), std::invalid_argument);
CHECK_THROWS_AS(broadcast_shapes({3}, {1, 2}), std::invalid_argument);
CHECK_THROWS_AS(
broadcast_shapes({1, 3, 2}, {1, 2, 2}), std::invalid_argument);
auto x = full({1, 1}, 2.3f);
CHECK_EQ(broadcast_to(x, {1, 1}).item<float>(), 2.3f);
x = broadcast_to(x, {5, 1});
CHECK_EQ(x.shape(), Shape{5, 1});
x.eval();
CHECK_EQ(x.strides(), Strides{0, 0});
CHECK_THROWS_AS(broadcast_to(x, {1, 5}), std::invalid_argument);
x = broadcast_to(x, {5, 5});
CHECK_EQ(x.shape(), Shape{5, 5});
x = zeros({2, 1, 2});
x = broadcast_to(x, {4, 2, 1, 2});
CHECK_EQ(x.shape(), Shape{4, 2, 1, 2});
x.eval();
CHECK_EQ(x.strides(), Strides{0, 2, 0, 1});
// Broadcast on empty arrays works as expected
x = array({});
CHECK_THROWS_AS(broadcast_to(x, {1}), std::invalid_argument);
// Broadcast to empty array works as expected
x = array({1});
auto y = broadcast_to(x, {0});
eval(y);
CHECK_EQ(y.size(), 0);
CHECK_EQ(y.shape(), Shape{0});
x = array({1, 2}, {2, 1});
y = broadcast_to(x, {2, 0});
eval(y);
CHECK_EQ(y.size(), 0);
CHECK_EQ(y.shape(), Shape{2, 0});
// Check repeat application works
x = zeros({2});
x = broadcast_to(broadcast_to(x, {2, 2}), {2, 2});
CHECK_EQ(x.shape(), Shape{2, 2});
x.eval();
CHECK_EQ(x.strides(), Strides{0, 1});
x = broadcast_to(broadcast_to(x, {2, 2}), {2, 2, 2});
CHECK_EQ(x.shape(), Shape{2, 2, 2});
x.eval();
CHECK_EQ(x.strides(), Strides{0, 0, 1});
// Broadcast on transposed array works
x = array({0, 1, 2, 3, 4, 5}, {2, 3});
x = broadcast_to(transpose(x), {2, 3, 2});
CHECK_EQ(x.shape(), Shape{2, 3, 2});
y = broadcast_to(array({0, 3, 1, 4, 2, 5}, {3, 2}), {2, 3, 2});
CHECK(array_equal(x, y).item<bool>());
// Reshape on broadcasted array works
x = array(1.0);
x = broadcast_to(x, {2});
x = reshape(x, {1, 2});
CHECK(array_equal(x, ones({1, 2})).item<bool>());
}
TEST_CASE("test gather") {
// Empty input, non-empty indices/slice
CHECK_THROWS(gather(array({}), array({1}), 0, {1}));
// More indices than dimensions
CHECK_THROWS(gather(array(0), array({1}), 0, {1}));
// Mismatch dimensions and indices
CHECK_THROWS(gather(array({0}), {array({0})}, {0, 1}, {1}));
CHECK_THROWS(gather(array({0}), array({0}), -1, {1}));
// Repeat dimensions
CHECK_THROWS(
gather(array({0}, {1, 1}), {array({0}), array({0})}, {0, 0}, {1, 1}));
// Slice sizes incorrect
CHECK_THROWS(gather(array({0}), array({0}), 0, {2}));
CHECK_THROWS(gather(array({0}), array({0}), 0, {0, 0}));
CHECK_THROWS(gather(array({0}), array({0}), 0, {-1}));
// Wrong index type
CHECK_THROWS(gather(array({0}), array({0.0f}), 0, {0}));
CHECK_THROWS(
gather(array({0}, {1, 1}), {array({0}), array({0.0f})}, {0, 1}, {1, 1}));
// Index arrays must be broadcastable
CHECK_THROWS(gather(
array({0}, {1, 1}),
{array({0, 0, 0}, {3}), array({0, 0}, {2})},
{0, 1},
{1, 1}));
// Basic test of correctness with 1D input
auto x = arange(20);
auto y = arange(10);
auto out = gather(x, y, 0, {1});
CHECK_EQ(out.shape(), Shape{10, 1});
CHECK(array_equal(reshape(out, {-1}), y).item<bool>());
out = gather(x, array({15}, uint32), 0, {1});
CHECK_EQ(out.shape(), Shape{1, 1});
CHECK_EQ(out.item<int32_t>(), 15);
// No index gather works
out = gather(x, {}, std::vector<int>{}, {10});
CHECK_EQ(out.shape(), Shape{10});
CHECK(array_equal(out, arange(10)).item<bool>());
// Basic test of correctness with 2D input
x = arange(128);
x = reshape(x, {4, 32});
y = array({0, 1}, uint32);
out = gather(x, y, 0, {1, 32});
CHECK_EQ(out.shape(), Shape{2, 1, 32});
CHECK(array_equal(reshape(out, {64}), arange(64)).item<bool>());
x = reshape(x, {64, 2});
y = array({0}, uint32);
out = gather(x, y, 0, {64, 1});
CHECK_EQ(out.shape(), Shape{1, 64, 1});
CHECK(array_equal(out, reshape(arange(0, 128, 2), {1, 64, 1})).item<bool>());
// Basic test of correctness with 3D input
x = arange(256);
x = reshape(x, {8, 4, 8});
y = array({0}, uint32);
out = gather(x, y, 0, {8, 1, 1});
CHECK_EQ(out.shape(), Shape{1, 8, 1, 1});
CHECK(
array_equal(out, reshape(arange(0, 256, 32), {1, 8, 1, 1})).item<bool>());
x = broadcast_to(array({1, 2}), {20, 2});
out = gather(x, array({5}), 0, {1, 1});
CHECK_EQ(out.item<int>(), 1);
out = gather(x, {array({5}), array({1})}, {0, 1}, {1, 1});
CHECK_EQ(out.item<int>(), 2);
}
TEST_CASE("test take") {
// Empty takes
auto empty = astype(array({}), int32);
auto z = take(array({1}), empty);
CHECK_EQ(z.shape(), Shape{0});
empty = reshape(empty, {1, 0, 1});
z = take(array({1}), empty);
CHECK_EQ(z.shape(), Shape{1, 0, 1});
CHECK_THROWS(take(array({}), array(1)));
z = take(array({}), empty);
CHECK_EQ(z.size(), 0);
// Take a single row
auto x = reshape(arange(256), {8, 4, 8});
z = take(x, array({0}, uint32), 0);
CHECK_EQ(z.shape(), Shape{1, 4, 8});
z = reshape(z, {32});
CHECK(array_equal(z, arange(32)).item<bool>());
z = take(x, array({1}, uint32), 0);
z = reshape(z, {32});
CHECK(array_equal(z, arange(32, 64)).item<bool>());
// Take multiple rows
x = arange(256);
x = reshape(x, {8, 4, 8});
z = take(x, array({0, 1}, uint32), 0);
z = reshape(z, {64});
CHECK(array_equal(z, arange(64)).item<bool>());
// Take along middle axis
x = reshape(arange(8), {2, 2, 2});
z = take(x, array({0}), 1);
CHECK(array_equal(z, array({0, 1, 4, 5}, {2, 1, 2})).item<bool>());
// Irregular strides test
auto a = array({1, 2, 3}, float32);
auto indices = broadcast_to(array(0), {10});
auto b = take(a, indices);
CHECK(array_equal(b, ones({10})).item<bool>());
// Take with 0 dim index
z = take(array({0, 1, 2}), array(0));
CHECK_EQ(z.item<int>(), 0);
CHECK_EQ(z.ndim(), 0);
// Check take with float indices crashes
CHECK_THROWS(take(array({}), array({})));
CHECK_THROWS(take(a, array({1.0, 2.0, 3.0})));
// Check axis
a = array({1, 2, 3, 4}, {2, 2});
CHECK_THROWS(take(a, array({1}), -3));
CHECK_THROWS(take(a, array({1}), 2));
// Check negative indices
a = array({1, 2, 3, 4}, {2, 2});
CHECK_EQ(take(a, array({-1})).item<int>(), 4);
CHECK(array_equal(take(a, array({1, -1})), array({2, 4})).item<bool>());
CHECK(array_equal(take(a, array(-1), 0), array({3, 4})).item<bool>());
// Check shapes
a = zeros({2, 1, 1});
auto out = take(a, array({1}), 0);
CHECK(array_equal(out, zeros({1, 1, 1})).item<bool>());
out = take(a, array({0}), 1);
CHECK(array_equal(out, zeros({2, 1, 1})).item<bool>());
out = take(a, array({0}), 1);
CHECK(array_equal(out, zeros({2, 1, 1})).item<bool>());
a = zeros({1, 2, 1});
out = take(a, array({0}), 0);
CHECK(array_equal(out, zeros({1, 2, 1})).item<bool>());
out = take(a, array({0}), 1);
CHECK(array_equal(out, zeros({1, 1, 1})).item<bool>());
out = take(a, array({0, 1}), 1);
CHECK(array_equal(out, zeros({1, 2, 1})).item<bool>());
// Indices have wrong shape
a = zeros({2, 3, 4});
CHECK_THROWS(take(a, zeros({1, 3, 4}), 1));
CHECK_THROWS(take(a, zeros({2, 3, 7}), 1));
CHECK_THROWS(take(a, zeros({2, 3, 2}), 0));
}
TEST_CASE("test take along axis") {
// No zero dim arrays
auto a = array(1);
CHECK_THROWS(take_along_axis(a, array(0), 0));
// Index and array size mismatches
a = arange(5);
CHECK_THROWS(take_along_axis(a, array({1}), 1));
CHECK_THROWS(take_along_axis(a, array({1}, {1, 1}), 0));
CHECK_THROWS(take_along_axis(a, array(1), -1));
auto out = take_along_axis(a, array({1}), 0);
CHECK_EQ(out.item<int>(), 1);
out = take_along_axis(a, array({1}), -1);
CHECK_EQ(out.item<int>(), 1);
// Empty arrays
a = reshape(array({}), {1, 0});
CHECK_THROWS(take_along_axis(a, array({1}), 0));
out = take_along_axis(a, reshape(array({1}), {1, 1}), 0);
eval(out); // Make sure it runs
CHECK_EQ(out.shape(), Shape{1, 0});
auto inds = reshape(astype(array({}), int32), {1, 0});
out = take_along_axis(a, inds, 0);
eval(out); // Make sure it runs
CHECK_EQ(out.shape(), Shape{1, 0});
a = array({1, 2, 3, 4}, {2, 2});
inds = array({0, 1}, {1, 2});
out = take_along_axis(a, inds, 0);
CHECK(array_equal(out, array({1, 4}, {1, 2})).item<bool>());
inds = array({0, 1, 0, 1, 0, 0, 1, 0}, {4, 2}, int32);
out = take_along_axis(a, inds, 0);
CHECK(array_equal(out, array({1, 4, 1, 4, 1, 2, 3, 2}, {4, 2})).item<bool>());
inds = array({0, 1}, {2, 1});
out = take_along_axis(a, inds, 1);
CHECK(array_equal(out, array({1, 4}, {2, 1})).item<bool>());
// Broadcasting works
inds = array({0}, {1, 1});
out = take_along_axis(a, inds, 0);
CHECK(array_equal(out, array({1, 2}, {1, 2})).item<bool>());
out = take_along_axis(a, inds, 1);
CHECK(array_equal(out, array({1, 3}, {2, 1})).item<bool>());
inds = array({0, 1, 1, 0, 0, 1}, {2, 3}, int32);
out = take_along_axis(a, inds, 1);
CHECK(array_equal(out, array({1, 2, 2, 3, 3, 4}, {2, 3})).item<bool>());
a = reshape(arange(8), {2, 2, 2});
inds = array({0, 1, 0, 0, 1, 0, 0, 1}, {2, 2, 2});
out = take_along_axis(a, inds, 0);
CHECK(array_equal(out, array({0, 5, 2, 3, 4, 1, 2, 7}, {2, 2, 2}))
.item<bool>());
out = take_along_axis(a, inds, 1);
CHECK(array_equal(out, array({0, 3, 0, 1, 6, 5, 4, 7}, {2, 2, 2}))
.item<bool>());
out = take_along_axis(a, inds, 2);
CHECK(array_equal(out, array({0, 1, 2, 2, 5, 4, 6, 7}, {2, 2, 2}))
.item<bool>());
}
TEST_CASE("test put along axis") {
// No zero dim arrays
auto a = array(1);
auto v = array(1);
CHECK_THROWS(put_along_axis(a, array(0), v, 0));
// Index and array size mismatches
a = arange(5);
CHECK_THROWS(put_along_axis(a, array({1}), array({0}), 1));
CHECK_THROWS(put_along_axis(a, array({1}, {1, 1}), array({0}), 0));
CHECK_THROWS(put_along_axis(a, array(1), array(0), -1));
auto expected = array({0, 0, 2, 3, 4});
auto out = put_along_axis(a, array({1}), array({0}), 0);
CHECK(array_equal(out, expected).item<bool>());
// Empty arrays
a = reshape(array({}), {1, 0});
CHECK_THROWS(put_along_axis(a, array({1}), array({0}), 0));
auto inds = reshape(astype(array({}), int32), {1, 0});
out = take_along_axis(a, inds, 0);
eval(out); // Make sure it runs
CHECK_EQ(out.shape(), Shape{1, 0});
a = array({1, 2, 3, 4}, {2, 2});
inds = array({0, 1}, {1, 2});
out = put_along_axis(a, inds, array({0}), 0);
expected = array({0, 2, 3, 0}, {2, 2});
CHECK(array_equal(out, expected).item<bool>());
inds = array({0, 0, 1, 1}, {2, 2}, int32);
auto values = array({2, 3, 4, 5}, {2, 2}, int32);
out = put_along_axis(a, inds, values, 0);
CHECK(array_equal(out, array({2, 3, 4, 5}, {2, 2})).item<bool>());
inds = array({0, 1}, {2, 1});
out = put_along_axis(a, inds, array({0}), 1);
expected = array({0, 2, 3, 0}, {2, 2});
CHECK(array_equal(out, expected).item<bool>());
}
TEST_CASE("test scatter") {
// More indices than dimensions
CHECK_THROWS(scatter(array(0), array({1}), array(1), 0));
// Mismatch dimensions and indices
CHECK_THROWS(scatter(array({0}), {array({0})}, array({1}, {1, 1}), {0, 1}));
CHECK_THROWS(scatter(array({0}), array({0}), array({1}, {1, 1}), -1));
// Repeat dimensions
CHECK_THROWS(scatter(
array({0}, {1, 1}), {array({0}), array({0})}, array({1}), {0, 0}));
// Update sizes incorrect
CHECK_THROWS(scatter(array({0}), array({0}), array({0, 1}), 0));
CHECK_THROWS(scatter(array({0}), array({0}), array({0, 1}, {2, 1}), 0));
CHECK_THROWS(scatter(array({0}, {1}), array({0}), array({0, 1}, {1, 2}), 0));
// Wrong index type
CHECK_THROWS(scatter(array({0}), array({0.0f}), array({0}, {1, 1}), 0));
CHECK_THROWS(scatter(
array({0}, {1, 1}),
{array({0}), array({0.0f})},
array({1}, {1, 1, 1}),
{0, 1}));
// Index arrays must be broadcastable
CHECK_THROWS(scatter(
array({0}, {1, 1}),
{array({0, 0, 0}, {3}), array({0, 0}, {2})},
ones({3, 2, 1, 1}),
{0, 1}));
// Single element scatter
auto in = zeros({4}, float32);
auto inds = arange(2);
auto updates = ones({2, 1}, float32);
auto out = scatter(in, inds, updates, 0);
CHECK(array_equal(out, array({1.0f, 1.0f, 0.0f, 0.0f})).item<bool>());
// Single element scatter add
in = ones({4}, float32);
inds = array({0, 0, 3});
updates = ones({3, 1}, float32);
out = scatter_add(in, inds, updates, 0);
CHECK(array_equal(out, array({3.0f, 1.0f, 1.0f, 2.0f})).item<bool>());
// Single element scatter prod
in = ones({4}, float32);
inds = array({0, 0, 3});
updates = full({3, 1}, 2.0f, float32);
out = scatter_prod(in, inds, updates, 0);
CHECK(array_equal(out, array({4.0f, 1.0f, 1.0f, 2.0f})).item<bool>());
// Single element scatter max
in = ones({4}, float32);
inds = array({0, 0, 3});
updates = array({1.0f, 6.0f, -2.0f}, {3, 1});
out = scatter_max(in, inds, updates, 0);
CHECK(array_equal(out, array({6.0f, 1.0f, 1.0f, 1.0f})).item<bool>());
// Single element scatter min
in = ones({4}, float32);
inds = array({0, 0, 3});
updates = array({1.0f, -6.0f, 2.0f}, {3, 1});
out = scatter_min(in, inds, updates, 0);
CHECK(array_equal(out, array({-6.0f, 1.0f, 1.0f, 1.0f})).item<bool>());
// Empty scatter
in = arange(4, float32);
inds = astype(array({}), uint32);
updates = reshape(array({}), {0, 1});
out = scatter(in, inds, updates, 0);
CHECK(array_equal(out, in).item<bool>());
// Array scatters
in = zeros({4, 4}, float32);
inds = array({0, 1, 2, 3});
updates = reshape(arange(16, float32), {4, 1, 4});
out = scatter(in, inds, updates, 0);
CHECK(array_equal(out, reshape(arange(16, float32), {4, 4})).item<bool>());
// Array scatters with col contiguous updates
in = zeros({4, 4}, float32);
inds = array({0, 1, 2, 3});
updates = transpose(reshape(arange(16, float32), {4, 1, 4}));
out = scatter(in, inds, updates, 0);
CHECK(array_equal(out, transpose(reshape(arange(16, float32), {4, 4})))
.item<bool>());
// Irregular strided index and reduce collision test
in = zeros({10}, float32);
inds = broadcast_to(array(3), {10});
updates = ones({10, 1}, float32);
out = scatter_add(in, inds, updates, 0);
CHECK_EQ(take(out, array(3)).item<float>(), 10);
// 1 element array with 0 dim index
in = array({1}, int32);
updates = array({2}, int32);
out = scatter_max(in, array(0), updates, 0);
CHECK_EQ(out.item<int>(), 2);
// No index arrays or axes
out = scatter_max(array(1), {}, array(2), std::vector<int>{});
CHECK_EQ(out.item<int>(), 2);
// Irregularly strided updates test
in = ones({3, 3});
updates = broadcast_to(array({2, 2, 2}), {1, 3, 3});
inds = array({0});
out = scatter(in, inds, updates, 0);
CHECK(array_equal(out, ones({3, 3}) * 2).item<bool>());
// Along different axis
in = zeros({2, 3});
updates = array({1, 2, 3, 4}, {2, 2, 1});
inds = array({0, 2});
out = scatter(in, inds, updates, 1);
auto expected = array({1, 0, 3, 2, 0, 4}, {2, 3});
CHECK(array_equal(out, expected).item<bool>());
// Multiple index arrays
in = zeros({2, 2});
updates = array({1, 2}, {2, 1, 1});
inds = array({0, 1});
out = scatter(in, {inds, inds}, updates, {0, 1});
CHECK(array_equal(out, array({1, 0, 0, 2}, {2, 2})).item<bool>());
// Broadcasted indices
in = zeros({2, 2});
updates = array({5, 2, 9, 1}, {2, 2, 1, 1});
auto inds0 = array({0, 1}, {2, 1});
auto inds1 = array({0, 1}, {1, 2});
out = scatter(in, {inds0, inds1}, updates, {0, 1});
CHECK(array_equal(out, array({5, 2, 9, 1}, {2, 2})).item<bool>());
// Brodacasted operand
in = broadcast_to(array({0, 0}), {2, 2});
updates = array({1, 1}, {2, 1, 1});
inds = array({0, 1});
out = scatter_add(in, inds, updates, 0);
CHECK(array_equal(out, array({1, 0, 1, 0}, {2, 2})).item<bool>());
// 1D scatter
{
auto dst = zeros({2, 4}, int32);
auto src = reshape(array({1, 2, 3, 4}), {1, 1, 4});
auto idx = array({1});
auto expected = reshape(array({0, 0, 0, 0, 1, 2, 3, 4}), {2, 4});
auto out = scatter(dst, idx, src, 0);
CHECK(array_equal(out, expected).item<bool>());
}
// 1D indices with 2D update
{
auto dst = zeros({3, 4}, int32);
auto indices = {array({1}), array({2})};
auto axes = {0, 1};
auto updates = reshape(array({1, 2, 3, 4}, int32), {1, 2, 2});
auto out = scatter(dst, indices, updates, axes);
auto expected =
reshape(array({0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 3, 4}), {3, 4});
CHECK(array_equal(out, expected).item<bool>());
}
}
TEST_CASE("test is positive infinity") {
array x(1.0f);
CHECK_FALSE(isposinf(x).item<bool>());
array y(std::numeric_limits<float>::infinity());
CHECK(isposinf(y).item<bool>());
array z = identity(7);
CHECK_FALSE(all(isposinf(z)).item<bool>());
array w = array({1.0f, std::numeric_limits<float>::infinity(), 2.0f});
CHECK_FALSE(all(isposinf(w)).item<bool>());
array a(1.0f, bfloat16);
CHECK_FALSE(isposinf(a).item<bool>());
array b(std::numeric_limits<float>::infinity(), float16);
CHECK(isposinf(b).item<bool>());
array c(std::numeric_limits<float>::infinity(), bfloat16);
CHECK(isposinf(c).item<bool>());
}
TEST_CASE("test is negative infinity") {
array x(1.0f);
CHECK_FALSE(isneginf(x).item<bool>());
array y(-std::numeric_limits<float>::infinity());
CHECK(isneginf(y).item<bool>());
array z = identity(7);
CHECK_FALSE(all(isneginf(z)).item<bool>());
array w = array({1.0f, -std::numeric_limits<float>::infinity(), 2.0f});
CHECK_FALSE(all(isneginf(w)).item<bool>());
array a(1.0f, bfloat16);
CHECK_FALSE(isneginf(a).item<bool>());
array b(-std::numeric_limits<float>::infinity(), float16);
CHECK(isneginf(b).item<bool>());
array c(-std::numeric_limits<float>::infinity(), bfloat16);
CHECK(isneginf(c).item<bool>());
}
TEST_CASE("test scatter types") {
for (auto t : {bool_, uint8, uint16, int8, int16}) {
auto in = zeros({4, 4}, t);
auto inds = {arange(4), arange(4)};
auto updates = ones({4, 1, 1}, t);
auto out = scatter(in, inds, updates, {0, 1});
auto expected =
array({1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {4, 4}, t);
CHECK(array_equal(out, expected).item<bool>());
}
for (auto t : {float16, bfloat16}) {
auto in = zeros({4, 4}, t);
auto inds = {arange(4), arange(4)};
auto updates = ones({4, 1, 1}, t);
auto out = scatter(in, inds, updates, {0, 1});
auto expected =
array({1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {4, 4}, t);
CHECK(allclose(out, expected).item<bool>());
}
}
TEST_CASE("test complex ops") {
// Creation ops
{
auto x = full({2, 2}, complex64_t{1, 1});
CHECK_EQ(x.dtype(), complex64);
std::initializer_list<complex64_t> expected = {
{1, 1}, {1, 1}, {1, 1}, {1, 1}};
CHECK(array_equal(x, array(expected, {2, 2})).item<bool>());
}
// Unary ops
{
std::initializer_list<complex64_t> vals = {{0, 1}, {1, 0}, {1, 1}};
auto x = array(vals);
auto y = abs(x);
CHECK_EQ(y.dtype(), float32);
CHECK(array_equal(y, array({1.0f, 1.0f, std::sqrt(2.0f)})).item<bool>());
y = negative(x);
std::initializer_list<complex64_t> expected = {{0, -1}, {-1, 0}, {-1, -1}};
CHECK(array_equal(y, array(expected)).item<bool>());
y = exp(x);
{
std::initializer_list<complex64_t> expected = {
{0.54030231, 0.84147098}, {2.71828183, 0.}, {1.46869394, 2.28735529}};
CHECK(allclose(y, array(expected)).item<bool>());
}
y = sin(x);
{
std::initializer_list<complex64_t> expected = {
{0., 1.17520119}, {0.84147098, 0.}, {1.29845758, 0.63496391}};
CHECK(allclose(y, array(expected)).item<bool>());
}
y = cos(x);
{
std::initializer_list<complex64_t> expected = {
{1.54308063, -0.}, {0.54030231, -0.}, {0.83373003, -0.98889771}};
CHECK(allclose(y, array(expected)).item<bool>());
}
}
// Binary ops
{
std::initializer_list<complex64_t> vals_x = {{0, 1}, {1, 0}, {1, 1}};
auto x = array(vals_x);
std::initializer_list<complex64_t> vals_y = {{2, 0}, {1, 1}, {0, 1}};
auto y = array(vals_y);
auto z = add(x, y);
{
std::initializer_list<complex64_t> expected = {{2, 1}, {2, 1}, {1, 2}};
CHECK(array_equal(z, array(expected)).item<bool>());
}
z = subtract(x, y);
{
std::initializer_list<complex64_t> expected = {{-2, 1}, {0, -1}, {1, 0}};
CHECK(array_equal(z, array(expected)).item<bool>());
}
z = multiply(x, y);
{
std::initializer_list<complex64_t> expected = {{0, 2}, {1, 1}, {-1, 1}};
CHECK(array_equal(z, array(expected)).item<bool>());
}
z = maximum(x, y);
{
std::initializer_list<complex64_t> expected = {{2, 0}, {1, 1}, {1, 1}};
CHECK(array_equal(z, array(expected)).item<bool>());
}
}
// Reductions
if (default_device() == Device::cpu) {
std::initializer_list<complex64_t> vals = {{0, 0}, {1, 0}, {0, 1}};
auto x = array(vals);
CHECK_EQ(max(x).item<complex64_t>(), complex64_t{1, 0});
CHECK_EQ(min(x).item<complex64_t>(), complex64_t{0, 0});
CHECK_EQ(sum(x).item<complex64_t>(), complex64_t{1, 1});
CHECK_EQ(prod(x).item<complex64_t>(), complex64_t{0, 0});
}
}
TEST_CASE("test as_strided op") {
auto x = arange(10);
auto y = as_strided(x, {3, 3}, {1, 1}, 0);
auto expected = array({0, 1, 2, 1, 2, 3, 2, 3, 4}, {3, 3});
CHECK(array_equal(y, expected).item<bool>());
y = as_strided(x, {3, 3}, {0, 3}, 0);
expected = array({0, 3, 6, 0, 3, 6, 0, 3, 6}, {3, 3});
CHECK(array_equal(y, expected).item<bool>());
x = reshape(x, {2, 5}); // 0 1 2 3 ...
x = transpose(x, {1, 0}); // 0 5 1 6 2 7 ...
y = as_strided(x, {3, 3}, {2, 1}, 1);
expected = array({5, 1, 6, 6, 2, 7, 7, 3, 8}, {3, 3});
CHECK(array_equal(y, expected).item<bool>());
}
TEST_CASE("test scan op") {
auto x = array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3});
auto y = cumsum(x, 1, false, true);
auto expected = array({1.0f, 3.0f, 6.0f, 4.0f, 9.0f, 15.0f}, {2, 3});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 1, false, false);
expected = array({0.0f, 1.0f, 3.0f, 0.0f, 4.0f, 9.0f}, {2, 3});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 1, true, true);
expected = array({6.0f, 5.0f, 3.0f, 15.0f, 11.0f, 6.0f}, {2, 3});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 1, true, false);
expected = array({5.0f, 3.0f, 0.0f, 11.0f, 6.0f, 0.0f}, {2, 3});
CHECK(array_equal(y, expected).item<bool>());
x = array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f}, {2, 2, 2});
y = cumsum(x, 0, false, true);
expected =
array({1.0f, 2.0f, 3.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f}, {2, 2, 2});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 1, false, true);
expected =
array({1.0f, 2.0f, 4.0f, 6.0f, 5.0f, 6.0f, 12.0f, 14.0f}, {2, 2, 2});
CHECK(array_equal(y, expected).item<bool>());
x = array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f}, {2, 2, 2});
y = cumsum(x, 0, true, true);
expected =
array({6.0f, 8.0f, 10.0f, 12.0f, 5.0f, 6.0f, 7.0f, 8.0f}, {2, 2, 2});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 1, true, true);
expected =
array({4.0f, 6.0f, 3.0f, 4.0f, 12.0f, 14.0f, 7.0f, 8.0f}, {2, 2, 2});
CHECK(array_equal(y, expected).item<bool>());
x = reshape(x, {4, 2});
y = cumsum(x, 0, false, false);
expected = array({0.0f, 0.0f, 1.0f, 2.0f, 4.0f, 6.0f, 9.0f, 12.0f}, {4, 2});
CHECK(array_equal(y, expected).item<bool>());
y = cumsum(x, 0, true, false);
expected =
array({15.0f, 18.0f, 12.0f, 14.0f, 7.0f, 8.0f, 0.0f, 0.0f}, {4, 2});
CHECK(array_equal(y, expected).item<bool>());
// Check the vmap implementation
auto fun = [](array x) { return cumsum(x, 0, false, true); };
y = vmap(fun, 0, 0)(x);
expected = array({1.0f, 3.0f, 3.0f, 7.0f, 5.0f, 11.0f, 7.0f, 15.0f}, {4, 2});
CHECK(array_equal(y, expected).item<bool>());
y = vmap(fun, 1, 1)(x);
expected = array({1.0f, 2.0f, 4.0f, 6.0f, 9.0f, 12.0f, 16.0f, 20.0f}, {4, 2});
CHECK(array_equal(y, expected).item<bool>());
}
TEST_CASE("test pad") {
auto x = zeros({1, 2, 3});
CHECK_EQ(pad(x, 1).shape(), Shape{3, 4, 5});
CHECK_EQ(pad(x, {0, 1}).shape(), Shape{2, 3, 4});
CHECK_EQ(pad(x, {{1, 1}, {1, 2}, {3, 1}}).shape(), Shape{3, 5, 7});
x = array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
auto padded_x = pad(x, 1);
auto expected = array(
{0.0f,
0.0f,
0.0f,
0.0f,
0.0f,
1.0f,
2.0f,
0.0f,
0.0f,
3.0f,
4.0f,
0.0f,
0.0f,
0.0f,
0.0f,
0.0f},
{4, 4});
CHECK(array_equal(padded_x, expected).item<bool>());
}
TEST_CASE("test power") {
CHECK_EQ(power(array(1), array(2)).item<int>(), 1);
CHECK_EQ((power(array(-1), array(2))).item<int>(), 1);
CHECK_EQ((power(array(-1), array(3))).item<int>(), -1);
CHECK_EQ((power(array(true), array(false))).item<bool>(), true);
CHECK_EQ((power(array(false), array(false))).item<bool>(), true);
CHECK_EQ((power(array(true), array(true))).item<bool>(), true);
CHECK_EQ((power(array(false), array(true))).item<bool>(), false);
auto x = array(2.0f);
CHECK_EQ(
(power(x, array(0.5))).item<float>(),
doctest::Approx(std::pow(2.0f, 0.5f)));
CHECK_EQ(power(x, array(2.0f)).item<float>(), 4.0f);
CHECK(std::isnan((power(array(-1.0f), array(0.5))).item<float>()));
auto a = complex64_t{0.5, 0.5};
auto b = complex64_t{0.5, 0.5};
auto expected = std::pow(a, b);
auto out = (power(array(a), array(b))).item<complex64_t>();
CHECK(abs(out.real() - expected.real()) < 1e-7);
CHECK(abs(out.imag() - expected.imag()) < 1e-7);
a = complex64_t{-1.2, 0.1};
b = complex64_t{2.2, 0.0};
expected = std::pow(a, b);
out = (power(array(a), array(b))).item<complex64_t>();
CHECK(abs(out.real() - expected.real()) < 1e-6);
CHECK(abs(out.imag() - expected.imag()) < 1e-6);
}
TEST_CASE("test where") {
const float inf = std::numeric_limits<float>::infinity();
array condition(true);
array x(1.0f);
array y(0.0f);
auto out = where(condition, x, y);
CHECK_EQ(out.dtype(), float32);
CHECK_EQ(out.item<float>(), 1.0f);
x = array({1, 2}, {2, 1});
y = array({3, 4}, {1, 2});
CHECK(array_equal(where(condition, x, y), broadcast_to(x, {2, 2}))
.item<bool>());
condition = array(false);
CHECK(array_equal(where(condition, x, y), broadcast_to(y, {2, 2}))
.item<bool>());
condition = array({true, false});
out = where(condition, x, y);
auto expected = array({1, 4, 2, 4}, {2, 2});
CHECK(array_equal(where(condition, x, y), expected).item<bool>());
condition = array({true, false, false, true}, {2, 2});
out = where(condition, x, y);
expected = array({1, 4, 3, 2}, {2, 2});
CHECK(array_equal(where(condition, x, y), expected).item<bool>());
x = array(1);
y = array(2);
out = where(condition, x, y);
expected = array({1, 2, 2, 1}, {2, 2});
CHECK(array_equal(where(condition, x, y), expected).item<bool>());
condition = array(true);
x = array({1, 2, 3});
y = array({3, 6, 13});
CHECK(array_equal(where(condition, x, y), array({1, 2, 3})).item<bool>());
condition = array(false);
x = array({1, 2, 3});
y = array({3, 6, 13});
CHECK(array_equal(where(condition, x, y), array({3, 6, 13})).item<bool>());
condition = array({1, 1, 0});
x = array({1, 2, 3});
y = array({11, 12, 13});
CHECK(array_equal(where(condition, x, y), array({1, 2, 13})).item<bool>());
condition = array({true, false}, {2, 1, 1});
x = array({1, 2, 3, 4}, {2, 1, 2});
y = array({11, 22, 33, 44}, {2, 2, 1});
expected = array({1, 2, 1, 2, 33, 33, 44, 44}, {2, 2, 2});
CHECK(array_equal(where(condition, x, y), expected).item<bool>());
condition = array({true, false, false});
x = array({inf, 2.0, 3.0});
y = array({10.0, 20.0, -inf});
CHECK(array_equal(where(condition, x, y), array({inf, 20.0, -inf}))
.item<bool>());
// 4-dim optimized case.
condition = array({false});
x = array({1, 2}, {2, 1, 1, 1});
y = array({3, 4}, {1, 1, 2, 1});
CHECK(array_equal(where(condition, x, y), array({3, 4, 3, 4}, {2, 1, 2, 1}))
.item<bool>());
// 5-dim optimized case.
condition = array({true, false}, {2, 1, 1, 1, 1});
x = array({1, 2, 3, 4}, {2, 1, 1, 1, 2});
y = array({11, 22}, {1, 1, 2, 1, 1});
CHECK(array_equal(
where(condition, x, y),
array({1, 2, 1, 2, 11, 11, 22, 22}, {2, 1, 2, 1, 2}))
.item<bool>());
}
TEST_CASE("test stack") {
auto x = array({});
CHECK_EQ(stack({x}, 0).shape(), Shape{1, 0});
CHECK_EQ(stack({x}, 1).shape(), Shape{0, 1});
x = array({1, 2, 3}, {3});
CHECK_EQ(stack({x}, 0).shape(), Shape{1, 3});
CHECK_EQ(stack({x}, 1).shape(), Shape{3, 1});
auto y = array({4, 5, 6}, {3});
auto z = std::vector<array>{x, y};
CHECK_EQ(stack(z).shape(), Shape{2, 3});
CHECK_EQ(stack(z, 0).shape(), Shape{2, 3});
CHECK_EQ(stack(z, 1).shape(), Shape{3, 2});
CHECK_EQ(stack(z, -1).shape(), Shape{3, 2});
CHECK_EQ(stack(z, -2).shape(), Shape{2, 3});
CHECK_THROWS_MESSAGE(stack({}, 0), "No arrays provided for stacking");
x = array({1, 2, 3}, {3}, float16);
y = array({4, 5, 6}, {3}, int32);
CHECK_EQ(stack({x, y}, 0).dtype(), float16);
x = array({1, 2, 3}, {3}, int32);
y = array({4, 5, 6, 7}, {4}, int32);
CHECK_THROWS_MESSAGE(
stack({x, y}, 0), "All arrays must have the same shape and dtype");
}
TEST_CASE("test eye") {
auto eye_3 = eye(3);
CHECK_EQ(eye_3.shape(), Shape{3, 3});
auto expected_eye_3 =
array({1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f}, {3, 3});
CHECK(array_equal(eye_3, expected_eye_3).item<bool>());
auto eye_3x2 = eye(3, 2);
CHECK_EQ(eye_3x2.shape(), Shape{3, 2});
auto expected_eye_3x2 = array({1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, {3, 2});
CHECK(array_equal(eye_3x2, expected_eye_3x2).item<bool>());
}
TEST_CASE("test tri") {
auto _tri = tri(4, 4, 0, float32);
CHECK_EQ(_tri.shape(), Shape{4, 4});
auto expected_tri = array(
{1.0f,
0.0f,
0.0f,
0.0f,
1.0f,
1.0f,
0.0f,
0.0f,
1.0f,
1.0f,
1.0f,
0.0f,
1.0f,
1.0f,
1.0f,
1.0f},
{4, 4});
CHECK(array_equal(_tri, expected_tri).item<bool>());
}
TEST_CASE("test tril") {
auto _tril = tril(full({4, 4}, 2.0f, float32), 0);
CHECK_EQ(_tril.shape(), Shape{4, 4});
auto expected_tri = array(
{2.0f,
0.0f,
0.0f,
0.0f,
2.0f,
2.0f,
0.0f,
0.0f,
2.0f,
2.0f,
2.0f,
0.0f,
2.0f,
2.0f,
2.0f,
2.0f},
{4, 4});
CHECK(array_equal(_tril, expected_tri).item<bool>());
}
TEST_CASE("test triu") {
auto _triu = triu(full({4, 4}, 2.0f, float32), 0);
CHECK_EQ(_triu.shape(), Shape{4, 4});
auto expected_tri = array(
{2.0f,
2.0f,
2.0f,
2.0f,
0.0f,
2.0f,
2.0f,
2.0f,
0.0f,
0.0f,
2.0f,
2.0f,
0.0f,
0.0f,
0.0f,
2.0f},
{4, 4});
CHECK(array_equal(_triu, expected_tri).item<bool>());
}
TEST_CASE("test identity") {
auto id_4 = identity(4);
CHECK_EQ(id_4.shape(), Shape{4, 4});
auto expected_id_4 = array(
{1.0f,
0.0f,
0.0f,
0.0f,
0.0f,
1.0f,
0.0f,
0.0f,
0.0f,
0.0f,
1.0f,
0.0f,
0.0f,
0.0f,
0.0f,
1.0f},
{4, 4});
CHECK(array_equal(id_4, expected_id_4).item<bool>());
}
TEST_CASE("test eye with positive k offset") {
auto eye_3_k1 = eye(3, 4, 1);
CHECK_EQ(eye_3_k1.shape(), Shape{3, 4});
auto expected_eye_3_k1 = array(
{0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f},
{3, 4});
CHECK(array_equal(eye_3_k1, expected_eye_3_k1).item<bool>());
}
TEST_CASE("test eye with negative k offset") {
auto eye_4_k_minus1 = eye(4, 3, -1);
CHECK_EQ(eye_4_k_minus1.shape(), Shape{4, 3});
auto expected_eye_4_k_minus1 = array(
{0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f},
{4, 3});
CHECK(array_equal(eye_4_k_minus1, expected_eye_4_k_minus1).item<bool>());
}
TEST_CASE("test basic clipping") {
array a({1.0f, 4.0f, 3.0f, 8.0f, 5.0f}, {5});
array expected({2.0f, 4.0f, 3.0f, 6.0f, 5.0f}, {5});
auto clipped = clip(a, array(2.0f), array(6.0f));
CHECK(array_equal(clipped, expected).item<bool>());
}
TEST_CASE("test clipping with only min") {
array a({-1.0f, 1.0f, 0.0f, 5.0f}, {4});
array expected({0.0f, 1.0f, 0.0f, 5.0f}, {4});
auto clipped = clip(a, array(0.0f), std::nullopt);
CHECK(array_equal(clipped, expected).item<bool>());
}
TEST_CASE("test clipping with only max") {
array a({2.0f, 3.0f, 4.0f, 5.0f}, {4});
array expected({2.0f, 3.0f, 4.0f, 4.0f}, {4});
auto clipped = clip(a, std::nullopt, array(4.0f));
CHECK(array_equal(clipped, expected).item<bool>());
}
TEST_CASE("test linspace") {
auto x = linspace(0, 10, 5);
auto expected = array({0.0f, 2.5f, 5.0f, 7.5f, 10.0f}, {5});
CHECK(array_equal(x, expected).item<bool>());
x = linspace(0, 10, 5, int32);
expected = array({0, 2, 5, 7, 10}, {5});
CHECK(array_equal(x, expected).item<bool>());
x = linspace(0, 1, 0);
expected = array(std::initializer_list<float>{}, {0});
CHECK(array_equal(x, expected).item<bool>());
}
TEST_CASE("test quantize dequantize") {
auto x1 = ones({128, 1});
auto x2 = expand_dims(arange(0, 512, float32), 0);
auto x = x1 * x2;
for (int i = 2; i <= 8; i *= 2) {
int el_per_int = 32 / i;
auto [x_q, scales, biases] = quantize(x, 128, i);
CHECK_EQ(x_q.shape(), Shape{128, 512 / el_per_int});
CHECK_EQ(scales.shape(), Shape{128, 4});
CHECK_EQ(biases.shape(), Shape{128, 4});
auto x_hat = dequantize(x_q, scales, biases, 128, i);
auto max_diff = max(abs(x - x_hat)).item<float>();
CHECK(max_diff <= 127.0 / (1 << i));
}
}
TEST_CASE("test repeat") {
auto data = array({13, 3, 16, 6, 14, 4, 15, 5, 11, 1, 12, 2}, {3, 2, 2});
auto repeat_axis_0 = repeat(data, 2, 0);
auto expected_axis_0 = array(
{13, 3, 16, 6, 13, 3, 16, 6, 14, 4, 15, 5,
14, 4, 15, 5, 11, 1, 12, 2, 11, 1, 12, 2},
{6, 2, 2});
auto repeat_axis_1 = repeat(data, 2, 1);
auto expected_axis_1 = array(
{13, 3, 13, 3, 16, 6, 16, 6, 14, 4, 14, 4,
15, 5, 15, 5, 11, 1, 11, 1, 12, 2, 12, 2},
{3, 4, 2});
auto repeat_axis_2 = repeat(data, 2); // default axis == ndim - 1 == 2
auto expected_axis_2 = array(
{13, 13, 3, 3, 16, 16, 6, 6, 14, 14, 4, 4,
15, 15, 5, 5, 11, 11, 1, 1, 12, 12, 2, 2},
{24});
// check output
CHECK(array_equal(repeat_axis_0, expected_axis_0).item<bool>());
CHECK(array_equal(repeat_axis_1, expected_axis_1).item<bool>());
CHECK(array_equal(repeat_axis_2, expected_axis_2).item<bool>());
auto data_2 = array({1, 3, 2}, {3});
auto repeat_2 = repeat(data_2, 2, 0);
auto expected_2 = array({1, 1, 3, 3, 2, 2}, {6});
CHECK(array_equal(repeat_2, expected_2).item<bool>());
auto data_3 = array({1, 2, 3, 4, 5, 4, 0, 1, 2}, {3, 3});
auto repeat_3 = repeat(data_3, 2, 0);
auto expected_3 =
array({1, 2, 3, 1, 2, 3, 4, 5, 4, 4, 5, 4, 0, 1, 2, 0, 1, 2}, {6, 3});
CHECK(array_equal(repeat_3, expected_3).item<bool>());
// 0 repeats
auto repeat_4 = repeat(data_3, 0, 0);
auto expected_4 = array({});
CHECK(array_equal(repeat_2, expected_2).item<bool>());
// negative repeats
CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument);
}
TEST_CASE("tile") {
auto x = array({1, 2, 3}, {3});
auto y = tile(x, {2});
auto expected = array({1, 2, 3, 1, 2, 3}, {6});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {2});
expected = array({1, 2, 1, 2, 3, 4, 3, 4}, {2, 4});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {4, 1});
expected = array({1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}, {8, 2});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {2, 2});
expected = array({1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4}, {4, 4});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3}, {3});
y = tile(x, {2, 2, 2});
expected = array(
{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3},
{2, 2, 6});
CHECK(array_equal(y, expected).item<bool>());
}
TEST_CASE("tensordot") {
auto x = reshape(arange(60.), {3, 4, 5});
auto y = reshape(arange(24.), {4, 3, 2});
auto z = tensordot(x, y, {1, 0}, {0, 1});
auto expected = array(
{4400, 4730, 4532, 4874, 4664, 5018, 4796, 5162, 4928, 5306}, {5, 2});
CHECK(array_equal(z, expected).item<bool>());
x = reshape(arange(360.), {3, 4, 5, 6});
y = reshape(arange(360.), {6, 4, 5, 3});
CHECK_THROWS_AS(tensordot(x, y, {2, 1, 3}, {1, 2, 0}), std::invalid_argument);
x = reshape(arange(60.), {3, 4, 5});
y = reshape(arange(120.), {4, 5, 6});
z = tensordot(x, y, 2);
expected = array(
{14820.,
15010.,
15200.,
15390.,
15580.,
15770.,
37620.,
38210.,
38800.,
39390.,
39980.,
40570.,
60420.,
61410.,
62400.,
63390.,
64380.,
65370.},
{3, 6});
CHECK(array_equal(z, expected).item<bool>());
}
TEST_CASE("outer") {
auto x = arange(1.0, 5.0);
auto y = arange(1.0, 4.0);
auto z = outer(x, y);
auto expected = array(
{1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 3.0, 6.0, 9.0, 4.0, 8.0, 12.0}, {4, 3});
CHECK(array_equal(z, expected).item<bool>());
x = ones({5});
y = linspace(-2., 2., 5);
z = outer(x, y);
expected = array(
{-2., -1., 0., 1., 2., -2., -1., 0., 1., 2., -2., -1., 0.,
1., 2., -2., -1., 0., 1., 2., -2., -1., 0., 1., 2.},
{5, 5});
CHECK(array_equal(z, expected).item<bool>());
}
TEST_CASE("inner") {
CHECK_THROWS_AS(
inner(reshape(arange(5.), {1, 5}), reshape(arange(6.), {2, 3})),
std::invalid_argument);
auto x = array({1., 2., 3.});
auto y = array({0., 1., 0.});
auto z = inner(x, y);
CHECK_EQ(z.item<float>(), 2.f);
x = reshape(arange(24.), {2, 3, 4});
y = arange(4.);
z = inner(x, y);
auto expected = array({14., 38., 62., 86., 110., 134.}, {2, 3});
CHECK(array_equal(z, expected).item<bool>());
x = reshape(arange(2.), {1, 1, 2});
y = reshape(arange(6.), {3, 2});
z = inner(x, y);
expected = array({1., 3., 5.}, {1, 1, 3});
CHECK(array_equal(z, expected).item<bool>());
z = inner(eye(2), array(7.));
expected = array({7., 0., 0., 7.}, {2, 2});
CHECK(array_equal(z, expected).item<bool>());
}
TEST_CASE("test divmod") {
auto x = array({1, 2, 3});
auto y = array({1, 1, 1});
auto out = divmod(x, y);
CHECK(array_equal(out[0], array({1, 2, 3})).item<bool>());
CHECK(array_equal(out[1], array({0, 0, 0})).item<bool>());
x = array({5, 6, 7});
y = array({2, 2, 2});
out = divmod(x, y);
CHECK(array_equal(out[0], array({2, 3, 3})).item<bool>());
CHECK(array_equal(out[1], array({1, 0, 1})).item<bool>());
// Siblings should be gone after evaling the graph
CHECK(out[0].siblings().empty());
CHECK(out[1].siblings().empty());
x = array({5.0, 6.0, 7.0});
y = array({2.0, 2.0, 2.0});
out = divmod(x, y);
CHECK(array_equal(out[0], array({2.0, 3.0, 3.0})).item<bool>());
CHECK(array_equal(out[1], array({1.0, 0.0, 1.0})).item<bool>());
x = array({1.0}, complex64);
y = array({2.0}, complex64);
CHECK_THROWS(divmod(x, y));
// Check that we can eval on both outputs
x = array({1.0});
y = array({2.0});
out = divmod(x, y);
eval(out);
CHECK_EQ(out[0].item<float>(), 0.0);
CHECK_EQ(out[1].item<float>(), 1.0);
// Check nested in the graph
x = array({1.0});
y = array({2.0});
out = divmod(x, y);
auto z = out[0] + out[1];
CHECK_EQ(z.item<float>(), 1.0);
// Check that we can still eval when one output goes out of scope
std::vector<array> out_holder;
{
out_holder.push_back(divmod(x, y)[0]);
}
eval(out_holder);
CHECK_EQ(out_holder[0].item<float>(), 0.0);
// Check that we can still eval when the other output goes out of scope
out_holder.clear();
{
out_holder.push_back(divmod(x, y)[1]);
}
eval(out_holder);
CHECK_EQ(out_holder[0].item<float>(), 1.0);
}
TEST_CASE("test diagonal") {
auto x = array({0, 1, 2, 3, 4, 5, 6, 7}, {4, 2});
auto out = diagonal(x);
CHECK(array_equal(out, array({0, 3}, {2})).item<bool>());
CHECK_THROWS_AS(diagonal(x, 1, 6, 0), std::out_of_range);
CHECK_THROWS_AS(diagonal(x, 1, 0, -3), std::out_of_range);
x = array({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {3, 4});
out = diagonal(x, 2, 1, 0);
CHECK(array_equal(out, array({8}, {1})).item<bool>());
out = diagonal(x, -1, 0, 1);
CHECK(array_equal(out, array({4, 9}, {2})).item<bool>());
out = diagonal(x, -5, 0, 1);
eval(out);
CHECK_EQ(out.shape(), Shape{0});
x = array({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {3, 2, 2});
out = diagonal(x, 1, 0, 1);
CHECK(array_equal(out, array({2, 3}, {2, 1})).item<bool>());
out = diagonal(x, 0, 2, 0);
CHECK(array_equal(out, array({0, 5, 2, 7}, {2, 2})).item<bool>());
out = diagonal(x, 1, -1, 0);
CHECK(array_equal(out, array({4, 9, 6, 11}, {2, 2})).item<bool>());
x = reshape(arange(16), {2, 2, 2, 2});
out = diagonal(x, 0, 0, 1);
CHECK(array_equal(out, array({0, 12, 1, 13, 2, 14, 3, 15}, {2, 2, 2}))
.item<bool>());
CHECK_THROWS_AS(diagonal(x, 0, 1, 1), std::invalid_argument);
x = array({0, 1}, {2});
CHECK_THROWS_AS(diagonal(x, 0, 0, 1), std::invalid_argument);
}
TEST_CASE("test diag") {
// To few or too many dimensions
CHECK_THROWS(diag(array(0.0)));
CHECK_THROWS(diag(array({0.0}, {1, 1, 1})));
// Test with 1D array
auto x = array({0, 1, 2, 3}, {4});
auto out = diag(x, 0);
CHECK(
array_equal(
out, array({0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3}, {4, 4}))
.item<bool>());
out = diag(x, 1);
CHECK(array_equal(
out,
array(
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0},
{5, 5}))
.item<bool>());
out = diag(x, -1);
CHECK(array_equal(
out,
array(
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0},
{5, 5}))
.item<bool>());
// Test with 2D array
x = array({0, 1, 2, 3, 4, 5, 6, 7, 8}, {3, 3});
out = diag(x, 0);
CHECK(array_equal(out, array({0, 4, 8}, {3})).item<bool>());
out = diag(x, 1);
CHECK(array_equal(out, array({1, 5}, {2})).item<bool>());
out = diag(x, -1);
CHECK(array_equal(out, array({3, 7}, {2})).item<bool>());
}
TEST_CASE("test issubdtype") {
const auto cats = {
complexfloating,
floating,
inexact,
signedinteger,
unsignedinteger,
integer,
number,
generic};
const auto types = {
bool_,
uint8,
uint16,
uint32,
uint64,
int8,
int16,
int32,
int64,
float16,
float32,
bfloat16,
complex64};
for (const auto& type : types) {
CHECK(issubdtype(type, type));
CHECK(issubdtype(type, generic));
switch (kindof(type)) {
case Dtype::Kind::b:
CHECK_FALSE(issubdtype(type, complexfloating));
CHECK_FALSE(issubdtype(type, floating));
CHECK_FALSE(issubdtype(type, inexact));
CHECK_FALSE(issubdtype(type, signedinteger));
CHECK_FALSE(issubdtype(type, unsignedinteger));
CHECK_FALSE(issubdtype(type, integer));
CHECK_FALSE(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
case Dtype::Kind::u:
CHECK_FALSE(issubdtype(type, complexfloating));
CHECK_FALSE(issubdtype(type, floating));
CHECK_FALSE(issubdtype(type, inexact));
CHECK_FALSE(issubdtype(type, signedinteger));
CHECK(issubdtype(type, unsignedinteger));
CHECK(issubdtype(type, integer));
CHECK(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
case Dtype::Kind::i:
CHECK_FALSE(issubdtype(type, complexfloating));
CHECK_FALSE(issubdtype(type, floating));
CHECK_FALSE(issubdtype(type, inexact));
CHECK(issubdtype(type, signedinteger));
CHECK_FALSE(issubdtype(type, unsignedinteger));
CHECK(issubdtype(type, integer));
CHECK(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
case Dtype::Kind::f:
CHECK_FALSE(issubdtype(type, complexfloating));
CHECK(issubdtype(type, floating));
CHECK(issubdtype(type, inexact));
CHECK_FALSE(issubdtype(type, signedinteger));
CHECK_FALSE(issubdtype(type, unsignedinteger));
CHECK_FALSE(issubdtype(type, integer));
CHECK(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
case Dtype::Kind::c:
CHECK(issubdtype(type, complexfloating));
CHECK_FALSE(issubdtype(type, floating));
CHECK(issubdtype(type, inexact));
CHECK_FALSE(issubdtype(type, signedinteger));
CHECK_FALSE(issubdtype(type, unsignedinteger));
CHECK_FALSE(issubdtype(type, integer));
CHECK(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
case Dtype::Kind::V:
CHECK_FALSE(issubdtype(type, complexfloating));
CHECK(issubdtype(type, floating));
CHECK(issubdtype(type, inexact));
CHECK_FALSE(issubdtype(type, signedinteger));
CHECK_FALSE(issubdtype(type, unsignedinteger));
CHECK_FALSE(issubdtype(type, integer));
CHECK(issubdtype(type, number));
CHECK(issubdtype(type, generic));
break;
}
}
for (const auto& type : types) {
CHECK(issubdtype(type, type));
CHECK(issubdtype(type, generic));
for (auto type1 : types) {
CHECK_EQ(issubdtype(type, type1), type == type1);
}
}
for (const auto& cat : cats) {
CHECK(issubdtype(cat, cat));
switch (cat) {
case Dtype::Category::complexfloating:
CHECK(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK_FALSE(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::floating:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK(issubdtype(cat, floating));
CHECK(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK_FALSE(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::inexact:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK_FALSE(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::signedinteger:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK_FALSE(issubdtype(cat, inexact));
CHECK(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::unsignedinteger:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK_FALSE(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK(issubdtype(cat, unsignedinteger));
CHECK(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::integer:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK_FALSE(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::number:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK_FALSE(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK_FALSE(issubdtype(cat, integer));
CHECK(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
case Dtype::Category::generic:
CHECK_FALSE(issubdtype(cat, complexfloating));
CHECK_FALSE(issubdtype(cat, floating));
CHECK_FALSE(issubdtype(cat, inexact));
CHECK_FALSE(issubdtype(cat, signedinteger));
CHECK_FALSE(issubdtype(cat, unsignedinteger));
CHECK_FALSE(issubdtype(cat, integer));
CHECK_FALSE(issubdtype(cat, number));
CHECK(issubdtype(cat, generic));
break;
}
}
}
TEST_CASE("test atleast_1d") {
auto x = array(1);
auto out = atleast_1d(x);
CHECK_EQ(out.ndim(), 1);
CHECK_EQ(out.shape(), Shape{1});
x = array({1, 2, 3}, {3});
out = atleast_1d(x);
CHECK_EQ(out.ndim(), 1);
CHECK_EQ(out.shape(), Shape{3});
x = array({1, 2, 3}, {3, 1});
out = atleast_1d(x);
CHECK_EQ(out.ndim(), 2);
CHECK_EQ(out.shape(), Shape{3, 1});
}
TEST_CASE("test atleast_1d vector") {
auto x = std::vector<array>{
array(1), array({1, 2, 3}, {3}), array({1, 2, 3}, {3, 1})};
auto out = atleast_1d(x);
CHECK_EQ(out.size(), 3);
CHECK_EQ(out[0].ndim(), 1);
CHECK_EQ(out[0].shape(), Shape{1});
CHECK_EQ(out[1].ndim(), 1);
CHECK_EQ(out[1].shape(), Shape{3});
CHECK_EQ(out[2].ndim(), 2);
CHECK_EQ(out[2].shape(), Shape{3, 1});
}
TEST_CASE("test atleast_2d") {
auto x = array(1);
auto out = atleast_2d(x);
CHECK_EQ(out.ndim(), 2);
CHECK_EQ(out.shape(), Shape{1, 1});
x = array({1, 2, 3}, {3});
out = atleast_2d(x);
CHECK_EQ(out.ndim(), 2);
CHECK_EQ(out.shape(), Shape{1, 3});
x = array({1, 2, 3}, {3, 1});
out = atleast_2d(x);
CHECK_EQ(out.ndim(), 2);
CHECK_EQ(out.shape(), Shape{3, 1});
}
TEST_CASE("test atleast_2d vector") {
auto x = std::vector<array>{
array(1), array({1, 2, 3}, {3}), array({1, 2, 3}, {3, 1})};
auto out = atleast_2d(x);
CHECK_EQ(out.size(), 3);
CHECK_EQ(out[0].ndim(), 2);
CHECK_EQ(out[0].shape(), Shape{1, 1});
CHECK_EQ(out[1].ndim(), 2);
CHECK_EQ(out[1].shape(), Shape{1, 3});
CHECK_EQ(out[2].ndim(), 2);
CHECK_EQ(out[2].shape(), Shape{3, 1});
}
TEST_CASE("test atleast_3d") {
auto x = array(1);
auto out = atleast_3d(x);
CHECK_EQ(out.ndim(), 3);
CHECK_EQ(out.shape(), Shape{1, 1, 1});
x = array({1, 2, 3}, {3});
out = atleast_3d(x);
CHECK_EQ(out.ndim(), 3);
CHECK_EQ(out.shape(), Shape{1, 3, 1});
x = array({1, 2, 3}, {3, 1});
out = atleast_3d(x);
CHECK_EQ(out.ndim(), 3);
CHECK_EQ(out.shape(), Shape{3, 1, 1});
}
TEST_CASE("test atleast_3d vector") {
auto x = std::vector<array>{
array(1), array({1, 2, 3}, {3}), array({1, 2, 3}, {3, 1})};
auto out = atleast_3d(x);
CHECK_EQ(out.size(), 3);
CHECK_EQ(out[0].ndim(), 3);
CHECK_EQ(out[0].shape(), Shape{1, 1, 1});
CHECK_EQ(out[1].ndim(), 3);
CHECK_EQ(out[1].shape(), Shape{1, 3, 1});
CHECK_EQ(out[2].ndim(), 3);
CHECK_EQ(out[2].shape(), Shape{3, 1, 1});
}
TEST_CASE("test topk") {
auto x = reshape(arange(10), {2, 5});
{
auto y = topk(x, 1, 1);
CHECK(array_equal(y, array({4, 9}, {2, 1})).item<bool>());
}
{
auto y = topk(x, 2, 0);
CHECK(array_equal(y, x).item<bool>());
}
{
auto y = topk(x, 1, 0);
CHECK(array_equal(y, array({5, 6, 7, 8, 9}, {1, 5})).item<bool>());
}
}
TEST_CASE("test meshgrid") {
// Test default
auto x = array({1, 2, 3}, {3});
auto in = std::vector<array>{x};
auto out = meshgrid(in);
CHECK(array_equal(out[0], x).item<bool>());
// Test different lengths
auto y = array({4, 5}, {2});
in = std::vector<array>{x, y};
out = meshgrid(in);
auto expected_zero = array({1, 2, 3, 1, 2, 3}, {2, 3});
auto expected_one = array({4, 4, 4, 5, 5, 5}, {2, 3});
CHECK(array_equal(out[0], expected_zero).item<bool>());
CHECK(array_equal(out[1], expected_one).item<bool>());
// Test sparse true
in = std::vector<array>{x, x};
out = meshgrid(in, true);
expected_zero = array({1, 2, 3}, {1, 3});
expected_one = array({1, 2, 3}, {3, 1});
CHECK(array_equal(out[0], expected_zero).item<bool>());
CHECK(array_equal(out[1], expected_one).item<bool>());
}
TEST_CASE("test conv1d") {
auto in = astype(
array(
{0.5488135,
0.71518937,
0.60276338,
0.54488318,
0.4236548,
0.64589411},
{1, 3, 2}),
float16);
int kernel = 3;
int stride = 1;
int padding = 1;
{
int groups = 1;
auto wt = astype(
array(
{
0.43758721, 0.891773, 0.96366276, 0.38344152,
0.79172504, 0.52889492,
0.56804456, 0.92559664, 0.07103606, 0.0871293,
0.0202184, 0.83261985,
0.77815675, 0.87001215, 0.97861834, 0.79915856,
0.46147936, 0.78052918,
0.11827443, 0.63992102, 0.14335329, 0.94466892,
0.52184832, 0.41466194
},
{4, 3, 2}),
float16);
auto expected = array(
{1.56836,
0.567383,
1.8125,
1.29492,
2.34375,
1.61035,
2.77539,
1.61328,
1.40527,
0.933105,
1.87402,
1.09082},
{1, 3, 4});
auto out = conv1d(in, wt, stride, padding, /* dilation= */ 1, groups);
CHECK(allclose(out, expected).item<bool>());
}
{
int groups = 2;
auto wt = array(
{0.43758721,
0.891773,
0.96366276,
0.38344152,
0.79172504,
0.52889492,
0.56804456,
0.92559664,
0.07103606,
0.0871293,
0.0202184,
0.83261985
},
{4, 3, 1});
auto expected = array(
{1.07007,
0.753201,
0.700818,
0.468176,
1.18568,
0.91152,
0.956607,
0.611213,
0.641404,
0.566401,
0.907472,
0.0605397},
{1, 3, 4});
auto out = conv1d(in, wt, stride, padding, /* dilation= */ 1, groups);
CHECK(allclose(out, expected).item<bool>());
}
}
TEST_CASE("test conv2d") {
auto in = array(
{0.57429284,
-0.21628855,
-0.18673691,
-0.3793517,
0.3059678,
-0.8137168,
0.6168841,
-0.26912728},
{1, 2, 2, 2});
std::pair<int, int> kernel{2, 2};
std::pair<int, int> stride{1, 1};
std::pair<int, int> padding{0, 0};
{
int groups = 1;
auto wt = array(
{0.3190391, -0.24937038, 1.4621079, -2.0601406, -0.3224172,
-0.38405436, 1.1337694, -1.0998913, -0.1724282, -0.8778584,
0.04221375, 0.58281523, -1.1006192, 1.1447237, 0.9015907,
0.50249434, 0.90085596, -0.68372786, -0.12289023, -0.93576944,
-0.26788807, 0.53035545, -0.69166076, -0.39675352, -0.6871727,
-0.84520566, -0.6712461, -0.0126646, -1.1173104, 0.2344157,
1.6598022, 0.74204415},
{4, 2, 2, 2});
auto expected =
array({1.9549234, -0.98542136, 0.2097499, 0.20991313}, {1, 1, 1, 4});
auto out = conv2d(in, wt, stride, padding, /* dilation= */ {1, 1}, groups);
CHECK(allclose(out, expected).item<bool>());
}
{
int groups = 2;
auto wt = array(
{0.3190391,
-0.24937038,
1.46210794,
-2.06014071,
-0.3224172,
-0.38405435,
1.13376944,
-1.09989127,
-0.17242821,
-0.87785842,
0.04221375,
0.58281521,
-1.10061918,
1.14472371,
0.90159072,
0.50249434},
{4, 2, 2, 1});
auto expected = array(
{-0.59372161, -0.44505326, 0.17910982, -1.06507601}, {1, 1, 1, 4});
auto out = conv2d(in, wt, stride, padding, /* dilation= */ {1, 1}, groups);
CHECK(allclose(out, expected).item<bool>());
}
{
in = array(
{0.57429284,
-0.21628855,
-0.18673691,
-0.3793517,
0.3059678,
-0.8137168,
0.6168841,
-0.26912728,
0.57429284,
-0.21628855,
-0.18673691,
-0.3793517,
0.3059678,
-0.8137168,
0.6168841,
-0.26912728},
{2, 2, 2, 2});
int groups = 2;
auto wt = array(
{0.3190391,
-0.24937038,
1.46210794,
-2.06014071,
-0.3224172,
-0.38405435,
1.13376944,
-1.09989127,
-0.17242821,
-0.87785842,
0.04221375,
0.58281521,
-1.10061918,
1.14472371,
0.90159072,
0.50249434},
{4, 2, 2, 1});
auto expected = array(
{-0.59372161, -0.44505326, 0.17910982, -1.06507601}, {1, 1, 1, 4});
auto out = conv2d(in, wt, stride, padding, /* dilation= */ {1, 1}, groups);
CHECK(allclose(out, expected).item<bool>());
}
}
TEST_CASE("test trace") {
auto in = eye(3);
auto out = trace(in).item<float>();
CHECK_EQ(out, 3.0);
in = array({1, 2, 3, 4, 5, 6, 7, 8, 9}, {3, 3}, int32);
auto out2 = trace(in).item<int>();
CHECK_EQ(out2, 15);
in = reshape(arange(8), {2, 2, 2});
auto out3 = trace(in, 0, 0, 1);
CHECK(array_equal(out3, array({6, 8}, {2})).item<bool>());
auto out4 = trace(in, 0, 1, 2, float32);
CHECK(array_equal(out4, array({3, 11}, {2})).item<bool>());
}
TEST_CASE("test view") {
auto in = array(3);
CHECK_THROWS(view(in, int64));
in = array({1, 2, 3});
CHECK_THROWS(view(in, int64));
in = array({1, 2, 3, 4}, int64);
auto out = view(in, int32);
CHECK(array_equal(out, array({1, 0, 2, 0, 3, 0, 4, 0})).item<bool>());
}
TEST_CASE("test roll") {
auto x = reshape(arange(10), {2, 5});
auto y = roll(x, 2);
CHECK(array_equal(y, array({8, 9, 0, 1, 2, 3, 4, 5, 6, 7}, {2, 5}))
.item<bool>());
y = roll(x, -2);
CHECK(array_equal(y, array({2, 3, 4, 5, 6, 7, 8, 9, 0, 1}, {2, 5}))
.item<bool>());
y = roll(x, 2, 1);
CHECK(array_equal(y, array({3, 4, 0, 1, 2, 8, 9, 5, 6, 7}, {2, 5}))
.item<bool>());
y = roll(x, -2, 1);
CHECK(array_equal(y, array({2, 3, 4, 0, 1, 7, 8, 9, 5, 6}, {2, 5}))
.item<bool>());
y = roll(x, 2, {0, 0, 0});
CHECK(array_equal(y, array({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {2, 5}))
.item<bool>());
y = roll(x, 1, {1, 1, 1});
CHECK(array_equal(y, array({2, 3, 4, 0, 1, 7, 8, 9, 5, 6}, {2, 5}))
.item<bool>());
y = roll(x, {1, 2}, {0, 1});
CHECK(array_equal(y, array({8, 9, 5, 6, 7, 3, 4, 0, 1, 2}, {2, 5}))
.item<bool>());
y = roll(array({}), 0, 0);
CHECK(array_equal(y, array({})).item<bool>());
}
TEST_CASE("test contiguous") {
auto x = array({1, 2, 3});
x = contiguous(broadcast_to(x, {2, 2, 3}));
eval(x);
CHECK(x.flags().row_contiguous);
CHECK_EQ(x.strides(), decltype(x.strides()){6, 3, 1});
x = array({1, 2, 1, 2}, {2, 2});
x = contiguous(transpose(x), true);
eval(x);
CHECK(x.flags().col_contiguous);
CHECK_EQ(x.strides(), decltype(x.strides()){1, 2});
}
TEST_CASE("test bitwise shift operations") {
std::vector<Dtype> dtypes = {
int8, int16, int32, int64, uint8, uint16, uint32, uint64};
for (const auto& dtype : dtypes) {
array x = full({4}, 1, dtype);
array y = full({4}, 2, dtype);
auto left_shift_result = left_shift(x, y);
CHECK_EQ(left_shift_result.dtype(), dtype);
CHECK(array_equal(left_shift_result, array({4, 4, 4, 4}, dtype))
.item<bool>());
auto right_shift_result = right_shift(full({4}, 4, dtype), y);
CHECK_EQ(right_shift_result.dtype(), dtype);
CHECK(array_equal(right_shift_result, full({4}, 1, dtype)).item<bool>());
}
array x = array({127, -128}, int8);
array y = array({1, 1}, int8);
auto left_shift_result = left_shift(x, y);
auto right_shift_result = right_shift(x, y);
CHECK(array_equal(left_shift_result, array({-2, 0}, int8)).item<bool>());
CHECK(array_equal(right_shift_result, array({63, -64}, int8)).item<bool>());
array x_bool = full({4}, true, bool_);
array y_bool = full({4}, true, bool_);
auto left_shift_bool_result = left_shift(x_bool, y_bool);
auto right_shift_bool_result = right_shift(x_bool, y_bool);
CHECK_EQ(left_shift_bool_result.dtype(), uint8);
CHECK(array_equal(left_shift_bool_result, full({4}, 2, uint8)).item<bool>());
CHECK_EQ(right_shift_bool_result.dtype(), uint8);
CHECK(array_equal(right_shift_bool_result, full({4}, 0, uint8)).item<bool>());
}
TEST_CASE("test conv_transpose1d with output_padding") {
auto in = array({1.0, 2.0, 3.0}, {1, 1, 3});
auto wt = array({1.0, 1.0, 1.0}, {1, 1, 3});
int stride = 2;
int padding = 0;
int dilation = 1;
int output_padding = 1;
int groups = 1;
auto out = conv_transpose1d(
in, wt, stride, padding, dilation, output_padding, groups);
auto expected = array({6.0, 0.0}, {1, 2, 1});
CHECK(array_equal(out, expected).item<bool>());
}
TEST_CASE("test conv_transpose2d with output_padding") {
auto in = array({1.0, 2.0, 3.0, 4.0}, {1, 1, 2, 2});
auto wt = array({1.0, 1.0, 1.0, 1.0}, {2, 1, 1, 2});
std::pair<int, int> stride{2, 2};
std::pair<int, int> padding{0, 0};
std::pair<int, int> output_padding{1, 1};
std::pair<int, int> dilation{1, 1};
int groups = 1;
auto out = conv_transpose2d(
in, wt, stride, padding, dilation, output_padding, groups);
auto expected = array(
{3.0,
3.0,
0.0,
0.0,
7.0,
7.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0},
{1, 2, 4, 2});
CHECK(array_equal(out, expected).item<bool>());
}
TEST_CASE("test conv_transpose3d with output_padding") {
auto in = array({1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0}, {1, 1, 2, 2, 2});
auto wt = array({1.0, 1.0}, {1, 1, 1, 1, 2});
std::tuple<int, int, int> stride{2, 2, 2};
std::tuple<int, int, int> padding{0, 0, 0};
std::tuple<int, int, int> output_padding{1, 1, 1};
std::tuple<int, int, int> dilation{1, 1, 1};
int groups = 1;
auto out = conv_transpose3d(
in, wt, stride, padding, dilation, output_padding, groups);
auto expected = array(
{3.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.0, 0.0, 15.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
{1, 2, 4, 4, 1});
CHECK(array_equal(out, expected).item<bool>());
}