mlx/tests/random_tests.cpp
Jesper Stemann Andersen f6c0499b8d
Resolved ambiguity in mlx::core::take_along_axis (#1822)
* Resolved ambiguity in mlx::core::take_along_axis

Detected by GCC 10 on riscv64-linux-gnu.

* Formatted

* Removed superfluous parentheses in random_tests.cpp
2025-02-04 06:06:17 -08:00

717 lines
20 KiB
C++

// Copyright © 2023 Apple Inc.
#include <numeric>
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test random key") {
auto key = random::key(0);
CHECK(array_equal(key, array({0, 0})).item<bool>());
key = random::key(1);
CHECK(array_equal(key, array({0, 1})).item<bool>());
int64_t seed = static_cast<int64_t>(1) << 32;
key = random::key(seed);
CHECK(array_equal(key, array({1, 0})).item<bool>());
key = random::key(seed + 1);
CHECK(array_equal(key, array({1, 1})).item<bool>());
}
TEST_CASE("test global rng") {
random::seed(4);
auto x = random::bits({});
auto y = random::bits({});
random::seed(4);
auto a = random::bits({});
auto b = random::bits({});
CHECK_EQ(x.item<uint32_t>(), a.item<uint32_t>());
CHECK_EQ(y.item<uint32_t>(), b.item<uint32_t>());
}
TEST_CASE("test random split") {
auto [key, subkey] = random::split(random::key(0));
CHECK(array_equal(key, array({4146024105u, 967050713u})).item<bool>());
CHECK(array_equal(subkey, array({2718843009u, 1272950319u})).item<bool>());
auto keys = random::split(random::key(0), 3);
auto expected = array(
{2467461003u,
428148500u,
3186719485u,
3840466878u,
2562233961u,
1946702221u},
{3, 2});
CHECK(array_equal(keys, expected).item<bool>());
}
TEST_CASE("test random bits") {
// Test shapes, types, and sizes
{
auto key = random::key(0);
auto x = random::bits({}, key);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), uint32);
x = random::bits({0}, key);
CHECK(array_equal(x, array({})).item<bool>());
// Check wrong key type or shape
key = array({0, 0});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0u, 0u, 0u}, {3, 1});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0u, 0u}, {2, 1});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
}
// Expected bits in the following tests were generated from
// Jax's Threefry 2x32 implementation using the following in
// python:
//
// ```
// import jax
// import jax.prng
// shape = (SET THIS)
// seed = (SET THIS)
// width = (SET THIS)
// key = jax.random.PRNGKey(seed)
// print(jax.prng.threefry_prng_impl.random_bits(key, width, shape))
{
auto key = random::key(0);
auto x = random::bits({}, key);
auto y = random::bits({}, key);
CHECK_EQ(x.item<uint32_t>(), 1797259609u);
CHECK_EQ(x.item<uint32_t>(), y.item<uint32_t>());
x = random::bits({}, 2, key);
CHECK_EQ(x.item<uint16_t>(), 345);
x = random::bits({}, 1, key);
CHECK_EQ(x.item<uint8_t>(), 89);
}
{
auto key = random::key(1);
auto x = random::bits({}, key);
CHECK_EQ(x.item<uint32_t>(), 507451445u);
x = random::bits({}, 2, key);
CHECK_EQ(x.item<uint16_t>(), 6197);
x = random::bits({}, 1, key);
CHECK_EQ(x.item<uint8_t>(), 53);
CHECK_THROWS(random::bits({}, 0, key));
CHECK_THROWS(random::bits({}, 5, key));
CHECK_THROWS(random::bits({}, -1, key));
}
{
auto key = random::key(0);
auto x = random::bits({3, 1}, key);
auto expected = array({4146024105u, 1351547692u, 2718843009u}, {3, 1});
CHECK(array_equal(x, expected).item<bool>());
x = random::bits({5}, 2, key);
expected = array({20137, 63263, 64300, 20622, 16513}, uint16);
CHECK(array_equal(x, expected).item<bool>());
expected = array({20137, 63263, 64300, 20622, 16513, 41486}, uint16);
x = random::bits({6}, 2, key);
CHECK(array_equal(x, expected).item<bool>());
expected = array({20137, 63263, 1497, 14756, 16513, 41486, 44591}, uint16);
x = random::bits({7}, 2, key);
CHECK(array_equal(x, expected).item<bool>());
x = random::bits({8}, 2, key);
expected =
array({20137, 63263, 1497, 14756, 16513, 41486, 44591, 19423}, uint16);
CHECK(array_equal(x, expected).item<bool>());
}
{
auto key = array({0u, 0u, 1u, 1u}, {2, 2});
auto shape = Shape{3};
auto fn = [&shape](array k) { return random::bits(shape, k); };
auto expected = array(
{4146024105u,
1351547692u,
2718843009u,
3725146706u,
1802982961u,
1349634643u},
{2, 3});
CHECK(array_equal(vmap(fn)(key), expected).item<bool>());
expected = array(
{2441914641u,
1110694964u,
3819641963u,
2441914641u,
1110694964u,
3819641963u},
{2, 3});
CHECK(array_equal(vmap(fn, 1)(key), expected).item<bool>());
// Vmap twice
key = array(
{0u,
0u,
1u,
1u,
2u,
2u,
3u,
3u,
4u,
4u,
5u,
5u},
{3, 2, 2});
shape = {2};
auto out = vmap(vmap(fn))(key);
expected = array(
{928981903u,
3453687069u,
3606183818u,
460005496u,
2799733733u,
856293553u,
4081856343u,
3445925136u,
2775548010u,
1430281703u,
305173070u,
2615843348u},
{3, 2, 2});
CHECK(array_equal(out, expected).item<bool>());
out = vmap(vmap(fn, 1), 0)(key);
expected = array(
{1948878966u,
4237131848u,
1948878966u,
4237131848u,
2531170506u,
1858648356u,
2531170506u,
1858648356u,
740561898u,
4234094099u,
740561898u,
4234094099u},
{3, 2, 2});
CHECK(array_equal(out, expected).item<bool>());
}
// Vmap smaller type
{
auto key = array({0u, 0u, 1u, 1u}, {2, 2});
auto fn = [](array k) { return random::bits({5}, 2, k); };
auto expected = array(
{4146024105u,
1351547692u,
2718843009u,
3725146706u,
1802982961u,
1349634643u},
{2, 3});
auto out = vmap(fn)(key);
auto x1 = random::bits({5}, 2, take(key, array(0), 0));
auto x2 = random::bits({5}, 2, take(key, array(1), 0));
CHECK(array_equal(take(out, array(0), 0), x1).item<bool>());
CHECK(array_equal(take(out, array(1), 0), x2).item<bool>());
}
}
TEST_CASE("test random uniform") {
// Test shapes, types, and sizes
{
auto x = random::uniform({});
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float32);
x = random::uniform({}, float16);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float16);
x = random::uniform({0});
CHECK(array_equal(x, array({})).item<bool>());
// Non float type throws
CHECK_THROWS_AS(random::uniform({}, int32), std::invalid_argument);
// dtype respected
x = random::uniform(-.1, .1, {0}, bfloat16);
CHECK_EQ(x.dtype(), bfloat16);
// Check broadcasting
x = random::uniform(zeros({3, 1}), ones({1, 3}), {3, 3});
CHECK_EQ(x.shape(), Shape{3, 3});
CHECK_THROWS_AS(
random::uniform(zeros({3, 3}), 1.0, {1, 3}), std::invalid_argument);
CHECK_THROWS_AS(
random::uniform(zeros({3, 3}), 1.0, {2, 3}), std::invalid_argument);
CHECK_THROWS_AS(
random::uniform(zeros({3, 1}), ones({1, 3}), {1, 3}),
std::invalid_argument);
// Check wrong key type or shape
auto key = array({0, 0});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0u, 0u, 0u}, {3, 1});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
key = array({0u, 0u}, {2, 1});
CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
}
// Expected bits in the following tests were generated from
// Jax's Threefry 2x32 implementation using the following in
// python:
//
// ```
// import jax
// import jax.prng
// shape = (SET THIS)
// seed = (SET THIS)
// key = jax.random.PRNGKey(seed)
// print(jax.prng.threefry_prng_impl.random_bits(key, 32, shape))
constexpr auto to_float = [](uint32_t n) {
return static_cast<float>(n) / UINT32_MAX;
};
{
auto key = random::key(0);
auto x = random::uniform({}, key);
auto y = random::uniform({}, key);
auto expected = to_float(1797259609);
CHECK_EQ(x.item<float>(), expected);
CHECK_EQ(x.item<float>(), y.item<float>());
}
{
auto key = random::key(1);
auto x = random::uniform({}, key);
auto expected = to_float(507451445);
CHECK_EQ(x.item<float>(), expected);
}
{
auto key = random::key(0);
auto x = random::uniform({3, 1}, key);
auto expected = array(
{to_float(4146024105), to_float(1351547692), to_float(2718843009)},
{3, 1});
CHECK(array_equal(x, expected).item<bool>());
}
// Check vmap
{
auto key = random::key(0);
auto fun = [](array k, array low) {
return random::uniform(low, 1, {3}, float32, k);
};
auto out = vmap(fun, -1)(key, zeros({2, 3}));
CHECK_EQ(out.shape(), Shape{2, 3});
key = zeros({2, 2}, uint32);
out = vmap(fun)(key, zeros({2, 3}));
CHECK_EQ(out.shape(), Shape{2, 3});
}
// Check bounds are respected
{
auto key = random::key(128291);
auto out = random::uniform(array(-1.0f), array(1.0f), {100}, float32, key);
CHECK(all(less(out, array(1.0f))).item<bool>());
CHECK(all(greater_equal(out, array(-1.0f))).item<bool>());
}
// Check float16
{
auto key = random::key(0);
auto out = random::uniform({100}, float16, key);
CHECK_EQ(out.dtype(), float16);
CHECK(all(less(out, array(1.0f))).item<bool>());
CHECK(all(greater_equal(out, array(0.0f))).item<bool>());
CHECK(!all(equal(out, array(0.0f))).item<bool>());
CHECK(abs(float(mean(out).item<float16_t>()) - 0.5f) < 0.02);
}
{
auto key = random::key(0);
auto out = random::uniform({100}, bfloat16, key);
CHECK_EQ(out.dtype(), bfloat16);
CHECK(all(less(out, array(1.0f))).item<bool>());
CHECK(all(greater_equal(out, array(0.0f))).item<bool>());
CHECK(!all(equal(out, array(0.0f))).item<bool>());
CHECK(abs(float(mean(out).item<bfloat16_t>()) - 0.5f) < 0.02);
}
}
TEST_CASE("test random normal") {
// Test shapes, types, and sizes
{
auto x = random::normal({});
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float32);
x = random::uniform({0});
CHECK(array_equal(x, array({})).item<bool>());
// Non float type throws
CHECK_THROWS_AS(random::normal({}, int32), std::invalid_argument);
// Check wrong key type or shape
auto key = array({0, 0});
CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
key = array({0u, 0u, 0u}, {3, 1});
CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
key = array({0u, 0u}, {2, 1});
CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::normal({100}, key);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(mean(out).item<float>()) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::normal({200}, float16, key);
CHECK_EQ(out.dtype(), float16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<float16_t>())) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::normal({200}, bfloat16, key);
CHECK_EQ(out.dtype(), bfloat16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<bfloat16_t>())) < 0.1);
}
}
TEST_CASE("test random multivariate_normal") {
// Scope switch to the cpu for SVDs
StreamContext sc(Device::cpu);
{
auto mean = zeros({3});
auto cov = eye(3);
auto x = random::multivariate_normal(mean, cov, {1000}, float32);
CHECK_EQ(x.shape(), Shape{1000, 3});
CHECK_EQ(x.dtype(), float32);
}
// Limit case
{
auto mean = array({0, 0});
auto cov = array({1., -1, -.1, 1.});
cov = reshape(cov, {2, 2});
auto x = random::multivariate_normal(mean, cov, {1}, float32);
CHECK_EQ(x.shape(), Shape{1, 2});
CHECK_EQ(x.dtype(), float32);
}
// Check wrong shapes
{
auto mean = zeros({3, 1});
auto cov = eye(3);
CHECK_THROWS_AS(
random::multivariate_normal(
mean,
cov,
{
1000,
},
float32),
std::invalid_argument);
}
{
auto mean = zeros({3});
auto cov = zeros({1, 2, 3, 3});
auto x = random::multivariate_normal(mean, cov, {1000, 2}, float32);
CHECK_EQ(x.shape(), Shape{1000, 2, 3});
}
{
auto mean = zeros({3});
auto cov = eye(4);
CHECK_THROWS_AS(
random::multivariate_normal(mean, cov, {1000, 3}, float32),
std::invalid_argument);
}
// Check wrong type
{
auto mean = zeros({3});
auto cov = eye(3);
CHECK_THROWS_AS(
random::multivariate_normal(mean, cov, {1000, 3}, float16),
std::invalid_argument);
}
}
TEST_CASE("test random randint") {
CHECK_THROWS_AS(
random::randint(array(3), array(5), {1}, float32), std::invalid_argument);
auto x = random::randint(0, 10, {}, uint32);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), uint32);
x = random::randint(0, 2, {}, bool_);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), bool_);
x = random::randint(0, 2, {}, int32);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), int32);
x = random::randint(0, 2, {}, int64);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), int64);
// Check all in bounds
auto low = -10.0;
auto high = 20.0;
x = random::randint(low, high, {1000, 1000});
CHECK((all(low <= x).item<bool>() && all(x < high).item<bool>()));
// Check high < low => all equals to low
low = 20.0;
high = -10.0;
x = random::randint(low, high, {3, 3});
CHECK(all(equal(x, array(low))).item<bool>());
// Check wrong key type or shape
auto key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(
random::randint(low, high, {}, float32, key), std::invalid_argument);
}
TEST_CASE("test random bernoulli") {
auto x = random::bernoulli();
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), bool_);
// Bernoulli parameter can have floating point type
x = random::bernoulli(array(0.5, float16));
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), bool_);
CHECK_THROWS(random::bernoulli(array(1, int32)));
// Negative numbers allowed in Jax
x = random::bernoulli(array(-1.0));
CHECK_FALSE(x.item<bool>());
x = random::bernoulli(array(5.0));
CHECK(x.item<bool>());
// Return array with correct shape
x = random::bernoulli(0.5, {3, 3});
CHECK_EQ(x.shape(), Shape{3, 3});
// Try with p = {}
x = random::bernoulli(array({}));
CHECK_EQ(x.size(), 0);
// Try broadcasting
auto p = array({0.1, 0.2, 0.3});
p = reshape(p, {1, 3});
x = random::bernoulli(p, {4, 3});
CHECK_EQ(x.shape(), Shape{4, 3});
CHECK_THROWS_AS(random::bernoulli(array({}), {3, 3}), std::invalid_argument);
p = array({0.1, 0.2, 0.3});
// Ask for the wrong shape => throws
CHECK_THROWS_AS(random::bernoulli(p, Shape{2}), std::invalid_argument);
// Check wrong key type or shape
auto key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::bernoulli(array(0.5), key), std::invalid_argument);
}
TEST_CASE("Test truncated normal") {
auto x = random::truncated_normal(array(-2.0), array(2.0));
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float32);
x = random::truncated_normal(array(-2.0), array(2.0), {}, float16);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float16);
// Requested shape
x = random::truncated_normal(array(-2.0), array(2.0), {3, 4});
CHECK_EQ(x.shape(), Shape{3, 4});
// Empty array
x = random::truncated_normal(array({}), array({}));
CHECK_EQ(x.size(), 0);
// Broadcast
auto lower = reshape(array({-2.0, -3.0}), {1, 2});
auto higher = reshape(array({0.0, 3.0, 1.5}), {3, 1});
x = random::truncated_normal(lower, higher);
// All in bounds
CHECK_EQ(x.shape(), Shape{3, 2});
CHECK((all(x <= higher).item<bool>() && all(lower <= x).item<bool>()));
// high < low => all equal to low
x = random::truncated_normal(array(2.0), array(-2.0));
CHECK(all(x == array(2.0)).item<bool>());
// Non broadcastable => throws
CHECK_THROWS_AS(
random::truncated_normal(lower, higher, {4, 2}), std::invalid_argument);
auto key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(
random::truncated_normal(array(-2.0), array(2.0), {1, 1}, float32, key),
std::invalid_argument);
}
TEST_CASE("test categorical") {
auto logits = zeros({10, 20});
using random::categorical;
// Invalid axes
CHECK_THROWS(categorical(logits, 2));
CHECK_THROWS(categorical(logits, -3));
// Invalid requested shapes
CHECK_THROWS(categorical(logits, 1, Shape{1}));
CHECK_THROWS(categorical(logits, 1, Shape{11}));
CHECK_THROWS(categorical(logits, 1, {10, 1}));
CHECK_EQ(categorical(logits, -1).shape(), Shape{10});
CHECK_EQ(categorical(logits, 0).shape(), Shape{20});
CHECK_EQ(categorical(logits, 1).shape(), Shape{10});
auto out = categorical(logits);
CHECK_EQ(out.shape(), Shape{10});
CHECK_EQ(out.dtype(), uint32);
CHECK(max(out).item<uint32_t>() < 20);
out = categorical(logits, 0, {5, 20});
CHECK_EQ(out.shape(), Shape{5, 20});
CHECK(max(out).item<uint32_t>() < 10);
float inf = std::numeric_limits<float>::infinity();
logits = array({1.0f, -2.0f, inf, 4.0f, 3.0f});
CHECK_EQ(categorical(logits).item<uint32_t>(), 2);
logits = array({-inf, -2.0f, -inf, -inf});
CHECK_EQ(categorical(logits).item<uint32_t>(), 1);
logits = zeros({5, 4, 3});
CHECK_EQ(categorical(logits, -1, 7).shape(), Shape{5, 4, 7});
CHECK_EQ(categorical(logits, -2, 7).shape(), Shape{5, 3, 7});
CHECK_EQ(categorical(logits, -3, 7).shape(), Shape{4, 3, 7});
}
TEST_CASE("test laplace") {
// Test shapes, types, and sizes
{
auto x = random::laplace({});
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float32);
// Non float type throws
CHECK_THROWS_AS(random::laplace({}, int32), std::invalid_argument);
// Check wrong key type or shape
auto key = array({0, 0});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0u, 0u, 0u}, {3, 1});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0u, 0u}, {2, 1});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({1000000}, key);
float sample_mean = mean(out).item<float>();
float sample_variance = var(out).item<float>();
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(sample_mean) < 0.1);
// Chebyshev's inequality.
for (int k = 1; k <= 5; ++k) {
float prob_above =
mean(greater_equal(out, array(k * std::sqrt(sample_variance))))
.item<float>();
float bound = 1 / std::pow(k, 2);
CHECK(prob_above < bound);
}
// Expected variance for Laplace distribution is 2*scale^2.
float expected_variance = 2.0;
CHECK(std::abs(sample_variance - expected_variance) < 0.01);
// Expected kurtosis of Laplace distribution is 3.
array fourth_pows = power(out - sample_mean, array(4));
float sample_kurtosis =
mean(fourth_pows).item<float>() / std::pow(sample_variance, 2) - 3;
float expected_kurtosis = 3.0;
CHECK(std::abs(sample_kurtosis - expected_kurtosis) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({10000}, float16, key);
CHECK_EQ(out.dtype(), float16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<float16_t>())) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({10000}, bfloat16, key);
CHECK_EQ(out.dtype(), bfloat16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<bfloat16_t>())) < 0.1);
}
}