mlx/docs/build/html/usage/distributed.html
CircleCI Docs 0b38729f41 rebase
2025-06-04 01:03:47 +00:00

1357 lines
127 KiB
HTML

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Distributed Communication &#8212; MLX 0.26.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=03e43079" />
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=eba8b062" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=3724ff34"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/scripts/sphinx-book-theme.js?v=887ef09a"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'usage/distributed';</script>
<link rel="icon" href="../_static/mlx_logo.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Using Streams" href="using_streams.html" />
<link rel="prev" title="Conversion to NumPy and Other Frameworks" href="numpy.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search..."
aria-label="Search..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.26.1 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.26.1 documentation - Home"/>`);</script>
</a></div>
<div class="sidebar-primary-item">
<script>
document.write(`
<button class="btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
`);
</script></div>
<div class="sidebar-primary-item"><nav class="bd-links bd-docs-nav" aria-label="Main">
<div class="bd-toc-item navbar-nav active">
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Install</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../install.html">Build and Install</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Usage</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="quick_start.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="lazy_evaluation.html">Lazy Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="unified_memory.html">Unified Memory</a></li>
<li class="toctree-l1"><a class="reference internal" href="indexing.html">Indexing Arrays</a></li>
<li class="toctree-l1"><a class="reference internal" href="saving_and_loading.html">Saving and Loading Arrays</a></li>
<li class="toctree-l1"><a class="reference internal" href="function_transforms.html">Function Transforms</a></li>
<li class="toctree-l1"><a class="reference internal" href="compile.html">Compilation</a></li>
<li class="toctree-l1"><a class="reference internal" href="numpy.html">Conversion to NumPy and Other Frameworks</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Distributed Communication</a></li>
<li class="toctree-l1"><a class="reference internal" href="using_streams.html">Using Streams</a></li>
<li class="toctree-l1"><a class="reference internal" href="export.html">Exporting Functions</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../examples/linear_regression.html">Linear Regression</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mlp.html">Multi-Layer Perceptron</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/llama-inference.html">LLM inference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Python API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/array.html">Array</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.html">mlx.core.array</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.astype.html">mlx.core.array.astype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.at.html">mlx.core.array.at</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.item.html">mlx.core.array.item</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.tolist.html">mlx.core.array.tolist</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.dtype.html">mlx.core.array.dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.itemsize.html">mlx.core.array.itemsize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.nbytes.html">mlx.core.array.nbytes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.ndim.html">mlx.core.array.ndim</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.shape.html">mlx.core.array.shape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.size.html">mlx.core.array.size</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.real.html">mlx.core.array.real</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.imag.html">mlx.core.array.imag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.abs.html">mlx.core.array.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.all.html">mlx.core.array.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.any.html">mlx.core.array.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.argmax.html">mlx.core.array.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.argmin.html">mlx.core.array.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.conj.html">mlx.core.array.conj</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cos.html">mlx.core.array.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cummax.html">mlx.core.array.cummax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cummin.html">mlx.core.array.cummin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cumprod.html">mlx.core.array.cumprod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cumsum.html">mlx.core.array.cumsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.diag.html">mlx.core.array.diag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.diagonal.html">mlx.core.array.diagonal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.exp.html">mlx.core.array.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.flatten.html">mlx.core.array.flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log.html">mlx.core.array.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log10.html">mlx.core.array.log10</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log1p.html">mlx.core.array.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log2.html">mlx.core.array.log2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.logcumsumexp.html">mlx.core.array.logcumsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.logsumexp.html">mlx.core.array.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.max.html">mlx.core.array.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.mean.html">mlx.core.array.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.min.html">mlx.core.array.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.moveaxis.html">mlx.core.array.moveaxis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.prod.html">mlx.core.array.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.reciprocal.html">mlx.core.array.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.reshape.html">mlx.core.array.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.round.html">mlx.core.array.round</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.rsqrt.html">mlx.core.array.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sin.html">mlx.core.array.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.split.html">mlx.core.array.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sqrt.html">mlx.core.array.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.square.html">mlx.core.array.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.squeeze.html">mlx.core.array.squeeze</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.std.html">mlx.core.array.std</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sum.html">mlx.core.array.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.swapaxes.html">mlx.core.array.swapaxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.transpose.html">mlx.core.array.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.T.html">mlx.core.array.T</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.var.html">mlx.core.array.var</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.view.html">mlx.core.array.view</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/data_types.html">Data Types</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.Dtype.html">mlx.core.Dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.DtypeCategory.html">mlx.core.DtypeCategory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.issubdtype.html">mlx.core.issubdtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.finfo.html">mlx.core.finfo</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/devices_and_streams.html">Devices and Streams</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.Device.html">mlx.core.Device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/stream_class.html">mlx.core.Stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.default_device.html">mlx.core.default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_default_device.html">mlx.core.set_default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.default_stream.html">mlx.core.default_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.new_stream.html">mlx.core.new_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_default_stream.html">mlx.core.set_default_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stream.html">mlx.core.stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.synchronize.html">mlx.core.synchronize</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/export.html">Export Functions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.export_function.html">mlx.core.export_function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.import_function.html">mlx.core.import_function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.exporter.html">mlx.core.exporter</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.export_to_dot.html">mlx.core.export_to_dot</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/ops.html">Operations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.abs.html">mlx.core.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.add.html">mlx.core.add</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.addmm.html">mlx.core.addmm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.all.html">mlx.core.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.allclose.html">mlx.core.allclose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.any.html">mlx.core.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arange.html">mlx.core.arange</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arccos.html">mlx.core.arccos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arccosh.html">mlx.core.arccosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arcsin.html">mlx.core.arcsin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arcsinh.html">mlx.core.arcsinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctan.html">mlx.core.arctan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctan2.html">mlx.core.arctan2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctanh.html">mlx.core.arctanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argmax.html">mlx.core.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argmin.html">mlx.core.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argpartition.html">mlx.core.argpartition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argsort.html">mlx.core.argsort</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array_equal.html">mlx.core.array_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.as_strided.html">mlx.core.as_strided</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_1d.html">mlx.core.atleast_1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_2d.html">mlx.core.atleast_2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_3d.html">mlx.core.atleast_3d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_and.html">mlx.core.bitwise_and</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_invert.html">mlx.core.bitwise_invert</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_or.html">mlx.core.bitwise_or</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_xor.html">mlx.core.bitwise_xor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.block_masked_mm.html">mlx.core.block_masked_mm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.broadcast_arrays.html">mlx.core.broadcast_arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.broadcast_to.html">mlx.core.broadcast_to</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ceil.html">mlx.core.ceil</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.clip.html">mlx.core.clip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.concatenate.html">mlx.core.concatenate</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.contiguous.html">mlx.core.contiguous</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conj.html">mlx.core.conj</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conjugate.html">mlx.core.conjugate</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.convolve.html">mlx.core.convolve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv1d.html">mlx.core.conv1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv2d.html">mlx.core.conv2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv3d.html">mlx.core.conv3d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv_transpose1d.html">mlx.core.conv_transpose1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv_transpose2d.html">mlx.core.conv_transpose2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv_transpose3d.html">mlx.core.conv_transpose3d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv_general.html">mlx.core.conv_general</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cos.html">mlx.core.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cosh.html">mlx.core.cosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cummax.html">mlx.core.cummax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cummin.html">mlx.core.cummin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cumprod.html">mlx.core.cumprod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cumsum.html">mlx.core.cumsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.degrees.html">mlx.core.degrees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.dequantize.html">mlx.core.dequantize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.diag.html">mlx.core.diag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.diagonal.html">mlx.core.diagonal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.divide.html">mlx.core.divide</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.divmod.html">mlx.core.divmod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.einsum.html">mlx.core.einsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.einsum_path.html">mlx.core.einsum_path</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.equal.html">mlx.core.equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.erf.html">mlx.core.erf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.erfinv.html">mlx.core.erfinv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.exp.html">mlx.core.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.expm1.html">mlx.core.expm1</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.expand_dims.html">mlx.core.expand_dims</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.eye.html">mlx.core.eye</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.flatten.html">mlx.core.flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.floor.html">mlx.core.floor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.floor_divide.html">mlx.core.floor_divide</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.full.html">mlx.core.full</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.gather_mm.html">mlx.core.gather_mm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.gather_qmm.html">mlx.core.gather_qmm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.greater.html">mlx.core.greater</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.greater_equal.html">mlx.core.greater_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.hadamard_transform.html">mlx.core.hadamard_transform</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.identity.html">mlx.core.identity</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.imag.html">mlx.core.imag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.inner.html">mlx.core.inner</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isfinite.html">mlx.core.isfinite</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isclose.html">mlx.core.isclose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isinf.html">mlx.core.isinf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isnan.html">mlx.core.isnan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isneginf.html">mlx.core.isneginf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isposinf.html">mlx.core.isposinf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.issubdtype.html">mlx.core.issubdtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.kron.html">mlx.core.kron</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.left_shift.html">mlx.core.left_shift</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.less.html">mlx.core.less</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.less_equal.html">mlx.core.less_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linspace.html">mlx.core.linspace</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.load.html">mlx.core.load</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log.html">mlx.core.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log2.html">mlx.core.log2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log10.html">mlx.core.log10</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log1p.html">mlx.core.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logaddexp.html">mlx.core.logaddexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logcumsumexp.html">mlx.core.logcumsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_not.html">mlx.core.logical_not</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_and.html">mlx.core.logical_and</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_or.html">mlx.core.logical_or</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logsumexp.html">mlx.core.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.matmul.html">mlx.core.matmul</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.max.html">mlx.core.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.maximum.html">mlx.core.maximum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.mean.html">mlx.core.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.meshgrid.html">mlx.core.meshgrid</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.min.html">mlx.core.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.minimum.html">mlx.core.minimum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.moveaxis.html">mlx.core.moveaxis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.multiply.html">mlx.core.multiply</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.nan_to_num.html">mlx.core.nan_to_num</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.negative.html">mlx.core.negative</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.not_equal.html">mlx.core.not_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ones.html">mlx.core.ones</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ones_like.html">mlx.core.ones_like</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.outer.html">mlx.core.outer</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.partition.html">mlx.core.partition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.pad.html">mlx.core.pad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.power.html">mlx.core.power</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.prod.html">mlx.core.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.put_along_axis.html">mlx.core.put_along_axis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.quantize.html">mlx.core.quantize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.quantized_matmul.html">mlx.core.quantized_matmul</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.radians.html">mlx.core.radians</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.real.html">mlx.core.real</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.reciprocal.html">mlx.core.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.remainder.html">mlx.core.remainder</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.repeat.html">mlx.core.repeat</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.reshape.html">mlx.core.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.right_shift.html">mlx.core.right_shift</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.roll.html">mlx.core.roll</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.round.html">mlx.core.round</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.rsqrt.html">mlx.core.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save.html">mlx.core.save</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.savez.html">mlx.core.savez</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.savez_compressed.html">mlx.core.savez_compressed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save_gguf.html">mlx.core.save_gguf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save_safetensors.html">mlx.core.save_safetensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sigmoid.html">mlx.core.sigmoid</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sign.html">mlx.core.sign</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sin.html">mlx.core.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sinh.html">mlx.core.sinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.slice.html">mlx.core.slice</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.slice_update.html">mlx.core.slice_update</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.softmax.html">mlx.core.softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sort.html">mlx.core.sort</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.split.html">mlx.core.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sqrt.html">mlx.core.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.square.html">mlx.core.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.squeeze.html">mlx.core.squeeze</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stack.html">mlx.core.stack</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.std.html">mlx.core.std</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stop_gradient.html">mlx.core.stop_gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.subtract.html">mlx.core.subtract</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sum.html">mlx.core.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.swapaxes.html">mlx.core.swapaxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.take.html">mlx.core.take</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.take_along_axis.html">mlx.core.take_along_axis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tan.html">mlx.core.tan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tanh.html">mlx.core.tanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tensordot.html">mlx.core.tensordot</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tile.html">mlx.core.tile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.topk.html">mlx.core.topk</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.trace.html">mlx.core.trace</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.transpose.html">mlx.core.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tri.html">mlx.core.tri</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tril.html">mlx.core.tril</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.triu.html">mlx.core.triu</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.unflatten.html">mlx.core.unflatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.var.html">mlx.core.var</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.view.html">mlx.core.view</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.where.html">mlx.core.where</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.zeros.html">mlx.core.zeros</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.zeros_like.html">mlx.core.zeros_like</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/random.html">Random</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.bernoulli.html">mlx.core.random.bernoulli</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.categorical.html">mlx.core.random.categorical</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.gumbel.html">mlx.core.random.gumbel</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.key.html">mlx.core.random.key</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.normal.html">mlx.core.random.normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.multivariate_normal.html">mlx.core.random.multivariate_normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.randint.html">mlx.core.random.randint</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.seed.html">mlx.core.random.seed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.split.html">mlx.core.random.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.truncated_normal.html">mlx.core.random.truncated_normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.uniform.html">mlx.core.random.uniform</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.laplace.html">mlx.core.random.laplace</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.permutation.html">mlx.core.random.permutation</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/transforms.html">Transforms</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.eval.html">mlx.core.eval</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.async_eval.html">mlx.core.async_eval</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.compile.html">mlx.core.compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.custom_function.html">mlx.core.custom_function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.disable_compile.html">mlx.core.disable_compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.enable_compile.html">mlx.core.enable_compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.grad.html">mlx.core.grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.value_and_grad.html">mlx.core.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.jvp.html">mlx.core.jvp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.vjp.html">mlx.core.vjp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.vmap.html">mlx.core.vmap</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/fast.html">Fast</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.rms_norm.html">mlx.core.fast.rms_norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.layer_norm.html">mlx.core.fast.layer_norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.rope.html">mlx.core.fast.rope</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.scaled_dot_product_attention.html">mlx.core.fast.scaled_dot_product_attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.metal_kernel.html">mlx.core.fast.metal_kernel</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/fft.html">FFT</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fft.html">mlx.core.fft.fft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifft.html">mlx.core.fft.ifft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fft2.html">mlx.core.fft.fft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifft2.html">mlx.core.fft.ifft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fftn.html">mlx.core.fft.fftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifftn.html">mlx.core.fft.ifftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfft.html">mlx.core.fft.rfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfft.html">mlx.core.fft.irfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfft2.html">mlx.core.fft.rfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfft2.html">mlx.core.fft.irfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfftn.html">mlx.core.fft.rfftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfftn.html">mlx.core.fft.irfftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fftshift.html">mlx.core.fft.fftshift</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifftshift.html">mlx.core.fft.ifftshift</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/linalg.html">Linear Algebra</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.inv.html">mlx.core.linalg.inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.tri_inv.html">mlx.core.linalg.tri_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.norm.html">mlx.core.linalg.norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky.html">mlx.core.linalg.cholesky</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky_inv.html">mlx.core.linalg.cholesky_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cross.html">mlx.core.linalg.cross</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.qr.html">mlx.core.linalg.qr</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.svd.html">mlx.core.linalg.svd</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.eigvals.html">mlx.core.linalg.eigvals</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.eig.html">mlx.core.linalg.eig</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.eigvalsh.html">mlx.core.linalg.eigvalsh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.eigh.html">mlx.core.linalg.eigh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.lu.html">mlx.core.linalg.lu</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.lu_factor.html">mlx.core.linalg.lu_factor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.pinv.html">mlx.core.linalg.pinv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.solve.html">mlx.core.linalg.solve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.solve_triangular.html">mlx.core.linalg.solve_triangular</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/metal.html">Metal</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.is_available.html">mlx.core.metal.is_available</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.device_info.html">mlx.core.metal.device_info</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.start_capture.html">mlx.core.metal.start_capture</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.stop_capture.html">mlx.core.metal.stop_capture</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/memory_management.html">Memory Management</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.get_active_memory.html">mlx.core.get_active_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.get_peak_memory.html">mlx.core.get_peak_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.reset_peak_memory.html">mlx.core.reset_peak_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.get_cache_memory.html">mlx.core.get_cache_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_memory_limit.html">mlx.core.set_memory_limit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_cache_limit.html">mlx.core.set_cache_limit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_wired_limit.html">mlx.core.set_wired_limit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.clear_cache.html">mlx.core.clear_cache</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/nn.html">Neural Networks</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.nn.value_and_grad.html">mlx.nn.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.nn.quantize.html">mlx.nn.quantize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.nn.average_gradients.html">mlx.nn.average_gradients</a></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/module.html">Module</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.training.html">mlx.nn.Module.training</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.state.html">mlx.nn.Module.state</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.apply.html">mlx.nn.Module.apply</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.apply_to_modules.html">mlx.nn.Module.apply_to_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.children.html">mlx.nn.Module.children</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.eval.html">mlx.nn.Module.eval</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.filter_and_map.html">mlx.nn.Module.filter_and_map</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.freeze.html">mlx.nn.Module.freeze</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.leaf_modules.html">mlx.nn.Module.leaf_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.load_weights.html">mlx.nn.Module.load_weights</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.modules.html">mlx.nn.Module.modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.named_modules.html">mlx.nn.Module.named_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.parameters.html">mlx.nn.Module.parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.save_weights.html">mlx.nn.Module.save_weights</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.set_dtype.html">mlx.nn.Module.set_dtype</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.train.html">mlx.nn.Module.train</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.trainable_parameters.html">mlx.nn.Module.trainable_parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.unfreeze.html">mlx.nn.Module.unfreeze</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.update.html">mlx.nn.Module.update</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.update_modules.html">mlx.nn.Module.update_modules</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/layers.html">Layers</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ALiBi.html">mlx.nn.ALiBi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.AvgPool1d.html">mlx.nn.AvgPool1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.AvgPool2d.html">mlx.nn.AvgPool2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.AvgPool3d.html">mlx.nn.AvgPool3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.BatchNorm.html">mlx.nn.BatchNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.CELU.html">mlx.nn.CELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv1d.html">mlx.nn.Conv1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv2d.html">mlx.nn.Conv2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv3d.html">mlx.nn.Conv3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ConvTranspose1d.html">mlx.nn.ConvTranspose1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ConvTranspose2d.html">mlx.nn.ConvTranspose2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ConvTranspose3d.html">mlx.nn.ConvTranspose3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout.html">mlx.nn.Dropout</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout2d.html">mlx.nn.Dropout2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout3d.html">mlx.nn.Dropout3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Embedding.html">mlx.nn.Embedding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ELU.html">mlx.nn.ELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GELU.html">mlx.nn.GELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GLU.html">mlx.nn.GLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GroupNorm.html">mlx.nn.GroupNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GRU.html">mlx.nn.GRU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.HardShrink.html">mlx.nn.HardShrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.HardTanh.html">mlx.nn.HardTanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Hardswish.html">mlx.nn.Hardswish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.InstanceNorm.html">mlx.nn.InstanceNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LayerNorm.html">mlx.nn.LayerNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LeakyReLU.html">mlx.nn.LeakyReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Linear.html">mlx.nn.Linear</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LogSigmoid.html">mlx.nn.LogSigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LogSoftmax.html">mlx.nn.LogSoftmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LSTM.html">mlx.nn.LSTM</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MaxPool1d.html">mlx.nn.MaxPool1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MaxPool2d.html">mlx.nn.MaxPool2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MaxPool3d.html">mlx.nn.MaxPool3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Mish.html">mlx.nn.Mish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MultiHeadAttention.html">mlx.nn.MultiHeadAttention</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.PReLU.html">mlx.nn.PReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.QuantizedEmbedding.html">mlx.nn.QuantizedEmbedding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.QuantizedLinear.html">mlx.nn.QuantizedLinear</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RMSNorm.html">mlx.nn.RMSNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ReLU.html">mlx.nn.ReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ReLU6.html">mlx.nn.ReLU6</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RNN.html">mlx.nn.RNN</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RoPE.html">mlx.nn.RoPE</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SELU.html">mlx.nn.SELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Sequential.html">mlx.nn.Sequential</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Sigmoid.html">mlx.nn.Sigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SiLU.html">mlx.nn.SiLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SinusoidalPositionalEncoding.html">mlx.nn.SinusoidalPositionalEncoding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softmin.html">mlx.nn.Softmin</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softshrink.html">mlx.nn.Softshrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softsign.html">mlx.nn.Softsign</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softmax.html">mlx.nn.Softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softplus.html">mlx.nn.Softplus</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Step.html">mlx.nn.Step</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Tanh.html">mlx.nn.Tanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Transformer.html">mlx.nn.Transformer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Upsample.html">mlx.nn.Upsample</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/functions.html">Functions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.elu.html">mlx.nn.elu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.celu.html">mlx.nn.celu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu.html">mlx.nn.gelu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu_approx.html">mlx.nn.gelu_approx</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu_fast_approx.html">mlx.nn.gelu_fast_approx</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.glu.html">mlx.nn.glu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hard_shrink.html">mlx.nn.hard_shrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hard_tanh.html">mlx.nn.hard_tanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hardswish.html">mlx.nn.hardswish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.leaky_relu.html">mlx.nn.leaky_relu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.log_sigmoid.html">mlx.nn.log_sigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.log_softmax.html">mlx.nn.log_softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.mish.html">mlx.nn.mish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.prelu.html">mlx.nn.prelu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.relu.html">mlx.nn.relu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.relu6.html">mlx.nn.relu6</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.selu.html">mlx.nn.selu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.sigmoid.html">mlx.nn.sigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.silu.html">mlx.nn.silu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softmax.html">mlx.nn.softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softmin.html">mlx.nn.softmin</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softplus.html">mlx.nn.softplus</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softshrink.html">mlx.nn.softshrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.step.html">mlx.nn.step</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.tanh.html">mlx.nn.tanh</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/losses.html">Loss Functions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.binary_cross_entropy.html">mlx.nn.losses.binary_cross_entropy</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.cosine_similarity_loss.html">mlx.nn.losses.cosine_similarity_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.cross_entropy.html">mlx.nn.losses.cross_entropy</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.gaussian_nll_loss.html">mlx.nn.losses.gaussian_nll_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.hinge_loss.html">mlx.nn.losses.hinge_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.huber_loss.html">mlx.nn.losses.huber_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.kl_div_loss.html">mlx.nn.losses.kl_div_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.l1_loss.html">mlx.nn.losses.l1_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.log_cosh_loss.html">mlx.nn.losses.log_cosh_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.margin_ranking_loss.html">mlx.nn.losses.margin_ranking_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.mse_loss.html">mlx.nn.losses.mse_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.nll_loss.html">mlx.nn.losses.nll_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.smooth_l1_loss.html">mlx.nn.losses.smooth_l1_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.triplet_loss.html">mlx.nn.losses.triplet_loss</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/init.html">Initializers</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.constant.html">mlx.nn.init.constant</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.normal.html">mlx.nn.init.normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.uniform.html">mlx.nn.init.uniform</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.identity.html">mlx.nn.init.identity</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.glorot_normal.html">mlx.nn.init.glorot_normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.glorot_uniform.html">mlx.nn.init.glorot_uniform</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.he_normal.html">mlx.nn.init.he_normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.he_uniform.html">mlx.nn.init.he_uniform</a></li>
</ul>
</details></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/optimizers.html">Optimizers</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/optimizer.html">Optimizer</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.state.html">mlx.optimizers.Optimizer.state</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.apply_gradients.html">mlx.optimizers.Optimizer.apply_gradients</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.init.html">mlx.optimizers.Optimizer.init</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.update.html">mlx.optimizers.Optimizer.update</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/common_optimizers.html">Common Optimizers</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.SGD.html">mlx.optimizers.SGD</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.RMSprop.html">mlx.optimizers.RMSprop</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adagrad.html">mlx.optimizers.Adagrad</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adafactor.html">mlx.optimizers.Adafactor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.AdaDelta.html">mlx.optimizers.AdaDelta</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adam.html">mlx.optimizers.Adam</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.AdamW.html">mlx.optimizers.AdamW</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adamax.html">mlx.optimizers.Adamax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Lion.html">mlx.optimizers.Lion</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.MultiOptimizer.html">mlx.optimizers.MultiOptimizer</a></li>
</ul>
</details></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/schedulers.html">Schedulers</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.cosine_decay.html">mlx.optimizers.cosine_decay</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.exponential_decay.html">mlx.optimizers.exponential_decay</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.join_schedules.html">mlx.optimizers.join_schedules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.linear_schedule.html">mlx.optimizers.linear_schedule</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.step_decay.html">mlx.optimizers.step_decay</a></li>
</ul>
</details></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.optimizers.clip_grad_norm.html">mlx.optimizers.clip_grad_norm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/distributed.html">Distributed Communication</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.Group.html">mlx.core.distributed.Group</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.is_available.html">mlx.core.distributed.is_available</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.init.html">mlx.core.distributed.init</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.all_sum.html">mlx.core.distributed.all_sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.all_gather.html">mlx.core.distributed.all_gather</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.send.html">mlx.core.distributed.send</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.recv.html">mlx.core.distributed.recv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.recv_like.html">mlx.core.distributed.recv_like</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/tree_utils.html">Tree Utils</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_flatten.html">mlx.utils.tree_flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_unflatten.html">mlx.utils.tree_unflatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_map.html">mlx.utils.tree_map</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_map_with_path.html">mlx.utils.tree_map_with_path</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_reduce.html">mlx.utils.tree_reduce</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../cpp/ops.html">Operations</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Further Reading</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../dev/extensions.html">Custom Extensions in MLX</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/metal_debugger.html">Metal Debugger</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/custom_metal_kernels.html">Custom Metal Kernels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/mlx_in_cpp.html">Using MLX in C++</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="sbt-scroll-pixel-helper"></div>
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item"><button class="sidebar-toggle primary-toggle btn btn-sm" title="Toggle primary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-bars"></span>
</button></div>
</div>
<div class="header-article-items__end">
<div class="header-article-item">
<div class="article-header-buttons">
<a href="https://github.com/ml-explore/mlx" target="_blank"
class="btn btn-sm btn-source-repository-button"
title="Source repository"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fab fa-github"></i>
</span>
</a>
<div class="dropdown dropdown-download-buttons">
<button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download this page">
<i class="fas fa-download"></i>
</button>
<ul class="dropdown-menu">
<li><a href="../_sources/usage/distributed.rst" target="_blank"
class="btn btn-sm btn-download-source-button dropdown-item"
title="Download source file"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file"></i>
</span>
<span class="btn__text-container">.rst</span>
</a>
</li>
<li>
<button onclick="window.print()"
class="btn btn-sm btn-download-pdf-button dropdown-item"
title="Print to PDF"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file-pdf"></i>
</span>
<span class="btn__text-container">.pdf</span>
</button>
</li>
</ul>
</div>
<button onclick="toggleFullScreen()"
class="btn btn-sm btn-fullscreen-button"
title="Fullscreen mode"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-expand"></i>
</span>
</button>
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script>
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
<button class="sidebar-toggle secondary-toggle btn btn-sm" title="Toggle secondary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-list"></span>
</button>
</div></div>
</div>
</div>
</div>
<div id="jb-print-docs-body" class="onlyprint">
<h1>Distributed Communication</h1>
<!-- Table of contents -->
<div id="print-main-content">
<div id="jb-print-toc">
<div>
<h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started">Getting Started</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#running-distributed-programs">Running Distributed Programs</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#selecting-backend">Selecting Backend</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#training-example">Training Example</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#utilizing-nn-average-gradients">Utilizing <code class="docutils literal notranslate"><span class="pre">nn.average_gradients</span></code></a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started-with-mpi">Getting Started with MPI</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#installing-mpi">Installing MPI</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#setting-up-remote-hosts">Setting up Remote Hosts</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#tuning-mpi-all-reduce">Tuning MPI All Reduce</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started-with-ring">Getting Started with Ring</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#defining-a-ring">Defining a Ring</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#thunderbolt-ring">Thunderbolt Ring</a></li>
</ul>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="distributed-communication">
<span id="usage-distributed"></span><h1>Distributed Communication<a class="headerlink" href="#distributed-communication" title="Link to this heading">#</a></h1>
<p>MLX supports distributed communication operations that allow the computational cost
of training or inference to be shared across many physical machines. At the
moment we support two different communication backends:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://en.wikipedia.org/wiki/Message_Passing_Interface">MPI</a> a
full-featured and mature distributed communications library</p></li>
<li><p>A <strong>ring</strong> backend of our own that uses native TCP sockets and should be
faster for thunderbolt connections.</p></li>
</ul>
<p>The list of all currently supported operations and their documentation can be
seen in the <a class="reference internal" href="../python/distributed.html#distributed"><span class="std std-ref">API docs</span></a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Some operations may not be supported or not as fast as they should be.
We are adding more and tuning the ones we have as we are figuring out the
best way to do distributed computing on Macs using MLX.</p>
</div>
<section id="getting-started">
<h2>Getting Started<a class="headerlink" href="#getting-started" title="Link to this heading">#</a></h2>
<p>A distributed program in MLX is as simple as:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">mlx.core</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">mx</span>
<span class="n">world</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">all_sum</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="n">world</span><span class="o">.</span><span class="n">rank</span><span class="p">(),</span> <span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>The program above sums the array <code class="docutils literal notranslate"><span class="pre">mx.ones(10)</span></code> across all
distributed processes. However, when this script is run with <code class="docutils literal notranslate"><span class="pre">python</span></code> only
one process is launched and no distributed communication takes place. Namely,
all operations in <code class="docutils literal notranslate"><span class="pre">mx.distributed</span></code> are noops when the distributed group has a
size of one. This property allows us to avoid code that checks if we are in a
distributed setting similar to the one below:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">mlx.core</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">mx</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">world</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span>
<span class="c1"># No need for the check we can simply do x = mx.distributed.all_sum(x)</span>
<span class="k">if</span> <span class="n">world</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">all_sum</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<section id="running-distributed-programs">
<h3>Running Distributed Programs<a class="headerlink" href="#running-distributed-programs" title="Link to this heading">#</a></h3>
<p>MLX provides <code class="docutils literal notranslate"><span class="pre">mlx.launch</span></code> a helper script to launch distributed programs.
Continuing with our initial example we can run it on localhost with 4 processes using</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>mlx.launch<span class="w"> </span>-n<span class="w"> </span><span class="m">4</span><span class="w"> </span>my_script.py
<span class="m">3</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">2</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">1</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">0</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
</pre></div>
</div>
<p>We can also run it on some remote hosts by providing their IPs (provided that
the script exists on all hosts and they are reachable by ssh)</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>mlx.launch<span class="w"> </span>--hosts<span class="w"> </span>ip1,ip2,ip3,ip4<span class="w"> </span>my_script.py
<span class="m">3</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">2</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">1</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">0</span><span class="w"> </span>array<span class="o">([</span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span>,<span class="w"> </span><span class="m">4</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
</pre></div>
</div>
<p>Consult the dedicated <a class="reference internal" href="launching_distributed.html"><span class="doc">usage guide</span></a> for more
information on using <code class="docutils literal notranslate"><span class="pre">mlx.launch</span></code>.</p>
</section>
<section id="selecting-backend">
<h3>Selecting Backend<a class="headerlink" href="#selecting-backend" title="Link to this heading">#</a></h3>
<p>You can select the backend you want to use when calling <a class="reference internal" href="../python/_autosummary/mlx.core.distributed.init.html#mlx.core.distributed.init" title="mlx.core.distributed.init"><code class="xref py py-func docutils literal notranslate"><span class="pre">init()</span></code></a> by passing
one of <code class="docutils literal notranslate"><span class="pre">{'any',</span> <span class="pre">'ring',</span> <span class="pre">'mpi'}</span></code>. When passing <code class="docutils literal notranslate"><span class="pre">any</span></code>, MLX will try to
initialize the <code class="docutils literal notranslate"><span class="pre">ring</span></code> backend and if it fails the <code class="docutils literal notranslate"><span class="pre">mpi</span></code> backend. If they
both fail then a singleton group is created.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>After a distributed backend is successfully initialized <a class="reference internal" href="../python/_autosummary/mlx.core.distributed.init.html#mlx.core.distributed.init" title="mlx.core.distributed.init"><code class="xref py py-func docutils literal notranslate"><span class="pre">init()</span></code></a> will
return <strong>the same backend</strong> if called without arguments or with backend set to
<code class="docutils literal notranslate"><span class="pre">any</span></code>.</p>
</div>
<p>The following examples aim to clarify the backend initialization logic in MLX:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Case 1: Initialize MPI regardless if it was possible to initialize the ring backend</span>
<span class="n">world</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">backend</span><span class="o">=</span><span class="s2">&quot;mpi&quot;</span><span class="p">)</span>
<span class="n">world2</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span> <span class="c1"># subsequent calls return the MPI backend!</span>
<span class="c1"># Case 2: Initialize any backend</span>
<span class="n">world</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">backend</span><span class="o">=</span><span class="s2">&quot;any&quot;</span><span class="p">)</span> <span class="c1"># equivalent to no arguments</span>
<span class="n">world2</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span> <span class="c1"># same as above</span>
<span class="c1"># Case 3: Initialize both backends at the same time</span>
<span class="n">world_mpi</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">backend</span><span class="o">=</span><span class="s2">&quot;mpi&quot;</span><span class="p">)</span>
<span class="n">world_ring</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">backend</span><span class="o">=</span><span class="s2">&quot;ring&quot;</span><span class="p">)</span>
<span class="n">world_any</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span> <span class="c1"># same as MPI because it was initialized first!</span>
</pre></div>
</div>
</section>
</section>
<section id="training-example">
<h2>Training Example<a class="headerlink" href="#training-example" title="Link to this heading">#</a></h2>
<p>In this section we will adapt an MLX training loop to support data parallel
distributed training. Namely, we will average the gradients across a set of
hosts before applying them to the model.</p>
<p>Our training loop looks like the following code snippet if we omit the model,
dataset and optimizer initialization.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">def</span><span class="w"> </span><span class="nf">step</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">grads</span> <span class="o">=</span> <span class="n">loss_grad_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">grads</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span>
<span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">dataset</span><span class="p">:</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">step</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">loss</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
</pre></div>
</div>
<p>All we have to do to average the gradients across machines is perform an
<a class="reference internal" href="../python/_autosummary/mlx.core.distributed.all_sum.html#mlx.core.distributed.all_sum" title="mlx.core.distributed.all_sum"><code class="xref py py-func docutils literal notranslate"><span class="pre">all_sum()</span></code></a> and divide by the size of the <a class="reference internal" href="../python/_autosummary/mlx.core.distributed.Group.html#mlx.core.distributed.Group" title="mlx.core.distributed.Group"><code class="xref py py-class docutils literal notranslate"><span class="pre">Group</span></code></a>. Namely we
have to <a class="reference internal" href="../python/_autosummary/mlx.utils.tree_map.html#mlx.utils.tree_map" title="mlx.utils.tree_map"><code class="xref py py-func docutils literal notranslate"><span class="pre">mlx.utils.tree_map()</span></code></a> the gradients with following function.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">all_avg</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">all_sum</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">/</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>
</div>
<p>Putting everything together our training loop step looks as follows with
everything else remaining the same.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">mlx.utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">tree_map</span>
<span class="k">def</span><span class="w"> </span><span class="nf">all_reduce_grads</span><span class="p">(</span><span class="n">grads</span><span class="p">):</span>
<span class="n">N</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">init</span><span class="p">()</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">grads</span>
<span class="k">return</span> <span class="n">tree_map</span><span class="p">(</span>
<span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">mx</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">all_sum</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span><span class="p">,</span>
<span class="n">grads</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">step</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">grads</span> <span class="o">=</span> <span class="n">loss_grad_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">grads</span> <span class="o">=</span> <span class="n">all_reduce_grads</span><span class="p">(</span><span class="n">grads</span><span class="p">)</span> <span class="c1"># &lt;--- This line was added</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">grads</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span>
</pre></div>
</div>
<section id="utilizing-nn-average-gradients">
<h3>Utilizing <code class="docutils literal notranslate"><span class="pre">nn.average_gradients</span></code><a class="headerlink" href="#utilizing-nn-average-gradients" title="Link to this heading">#</a></h3>
<p>Although the code example above works correctly; it performs one communication
per gradient. It is significantly more efficient to aggregate several gradients
together and perform fewer communication steps.</p>
<p>This is the purpose of <a class="reference internal" href="../python/_autosummary/mlx.nn.average_gradients.html#mlx.nn.average_gradients" title="mlx.nn.average_gradients"><code class="xref py py-func docutils literal notranslate"><span class="pre">mlx.nn.average_gradients()</span></code></a>. The final code looks
almost identical to the example above:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">def</span><span class="w"> </span><span class="nf">step</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">grads</span> <span class="o">=</span> <span class="n">loss_grad_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">grads</span> <span class="o">=</span> <span class="n">mlx</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">average_gradients</span><span class="p">(</span><span class="n">grads</span><span class="p">)</span> <span class="c1"># &lt;---- This line was added</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">grads</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span>
<span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">dataset</span><span class="p">:</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">step</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">loss</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
</pre></div>
</div>
</section>
</section>
<section id="getting-started-with-mpi">
<h2>Getting Started with MPI<a class="headerlink" href="#getting-started-with-mpi" title="Link to this heading">#</a></h2>
<p>MLX already comes with the ability to “talk” to MPI if it is installed on the
machine. Launching distributed MLX programs that use MPI can be done with
<code class="docutils literal notranslate"><span class="pre">mpirun</span></code> as expected. However, in the following examples we will be using
<code class="docutils literal notranslate"><span class="pre">mlx.launch</span> <span class="pre">--backend</span> <span class="pre">mpi</span></code> which takes care of some nuisances such as setting
absolute paths for the <code class="docutils literal notranslate"><span class="pre">mpirun</span></code> executable and the <code class="docutils literal notranslate"><span class="pre">libmpi.dyld</span></code> shared
library.</p>
<p>The simplest possible usage is the following which, assuming the minimal
example in the beginning of this page, should result in:</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>mlx.launch<span class="w"> </span>--backend<span class="w"> </span>mpi<span class="w"> </span>-n<span class="w"> </span><span class="m">2</span><span class="w"> </span>test.py
<span class="m">1</span><span class="w"> </span>array<span class="o">([</span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
<span class="m">0</span><span class="w"> </span>array<span class="o">([</span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span>...,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span>,<span class="w"> </span><span class="m">2</span><span class="o">]</span>,<span class="w"> </span><span class="nv">dtype</span><span class="o">=</span>float32<span class="o">)</span>
</pre></div>
</div>
<p>The above launches two processes on the same (local) machine and we can see
both standard output streams. The processes send the array of 1s to each other
and compute the sum which is printed. Launching with <code class="docutils literal notranslate"><span class="pre">mlx.launch</span> <span class="pre">-n</span> <span class="pre">4</span> <span class="pre">...</span></code> would
print 4 etc.</p>
<section id="installing-mpi">
<h3>Installing MPI<a class="headerlink" href="#installing-mpi" title="Link to this heading">#</a></h3>
<p>MPI can be installed with Homebrew, using the Anaconda package manager or
compiled from source. Most of our testing is done using <code class="docutils literal notranslate"><span class="pre">openmpi</span></code> installed
with the Anaconda package manager as follows:</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>conda<span class="w"> </span>install<span class="w"> </span>conda-forge::openmpi
</pre></div>
</div>
<p>Installing with Homebrew may require specifying the location of <code class="docutils literal notranslate"><span class="pre">libmpi.dyld</span></code>
so that MLX can find it and load it at runtime. This can simply be achieved by
passing the <code class="docutils literal notranslate"><span class="pre">DYLD_LIBRARY_PATH</span></code> environment variable to <code class="docutils literal notranslate"><span class="pre">mpirun</span></code> and it is
done automatically by <code class="docutils literal notranslate"><span class="pre">mlx.launch</span></code>.</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>mpirun<span class="w"> </span>-np<span class="w"> </span><span class="m">2</span><span class="w"> </span>-x<span class="w"> </span><span class="nv">DYLD_LIBRARY_PATH</span><span class="o">=</span>/opt/homebrew/lib/<span class="w"> </span>python<span class="w"> </span>test.py
$<span class="w"> </span><span class="c1"># or simply</span>
$<span class="w"> </span>mlx.launch<span class="w"> </span>-n<span class="w"> </span><span class="m">2</span><span class="w"> </span>test.py
</pre></div>
</div>
</section>
<section id="setting-up-remote-hosts">
<h3>Setting up Remote Hosts<a class="headerlink" href="#setting-up-remote-hosts" title="Link to this heading">#</a></h3>
<p>MPI can automatically connect to remote hosts and set up the communication over
the network if the remote hosts can be accessed via ssh. A good checklist to
debug connectivity issues is the following:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">ssh</span> <span class="pre">hostname</span></code> works from all machines to all machines without asking for
password or host confirmation</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">mpirun</span></code> is accessible on all machines.</p></li>
<li><p>Ensure that the <code class="docutils literal notranslate"><span class="pre">hostname</span></code> used by MPI is the one that you have configured
in the <code class="docutils literal notranslate"><span class="pre">.ssh/config</span></code> files on all machines.</p></li>
</ul>
</section>
<section id="tuning-mpi-all-reduce">
<h3>Tuning MPI All Reduce<a class="headerlink" href="#tuning-mpi-all-reduce" title="Link to this heading">#</a></h3>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>For faster all reduce consider using the ring backend either with Thunderbolt
connections or over Ethernet.</p>
</div>
<p>Configure MPI to use N tcp connections between each host to improve bandwidth
by passing <code class="docutils literal notranslate"><span class="pre">--mca</span> <span class="pre">btl_tcp_links</span> <span class="pre">N</span></code>.</p>
<p>Force MPI to use the most performant network interface by setting <code class="docutils literal notranslate"><span class="pre">--mca</span>
<span class="pre">btl_tcp_if_include</span> <span class="pre">&lt;iface&gt;</span></code> where <code class="docutils literal notranslate"><span class="pre">&lt;iface&gt;</span></code> should be the interface you want
to use.</p>
</section>
</section>
<section id="getting-started-with-ring">
<h2>Getting Started with Ring<a class="headerlink" href="#getting-started-with-ring" title="Link to this heading">#</a></h2>
<p>The ring backend does not depend on any third party library so it is always
available. It uses TCP sockets so the nodes need to be reachable via a network.
As the name suggests the nodes are connected in a ring which means that rank 1
can only communicate with rank 0 and rank 2, rank 2 only with rank 1 and rank 3
and so on and so forth. As a result <a class="reference internal" href="../python/_autosummary/mlx.core.distributed.send.html#mlx.core.distributed.send" title="mlx.core.distributed.send"><code class="xref py py-func docutils literal notranslate"><span class="pre">send()</span></code></a> and <a class="reference internal" href="../python/_autosummary/mlx.core.distributed.recv.html#mlx.core.distributed.recv" title="mlx.core.distributed.recv"><code class="xref py py-func docutils literal notranslate"><span class="pre">recv()</span></code></a> with
arbitrary sender and receiver is not supported in the ring backend.</p>
<section id="defining-a-ring">
<h3>Defining a Ring<a class="headerlink" href="#defining-a-ring" title="Link to this heading">#</a></h3>
<p>The easiest way to define and use a ring is via a JSON hostfile and the
<code class="docutils literal notranslate"><span class="pre">mlx.launch</span></code> <a class="reference internal" href="launching_distributed.html"><span class="doc">helper script</span></a>. For each node one
defines a hostname to ssh into to run commands on this node and one or more IPs
that this node will listen to for connections.</p>
<p>For example the hostfile below defines a 4 node ring. <code class="docutils literal notranslate"><span class="pre">hostname1</span></code> will be
rank 0, <code class="docutils literal notranslate"><span class="pre">hostname2</span></code> rank 1 etc.</p>
<div class="highlight-json notranslate"><div class="highlight"><pre><span></span><span class="p">[</span>
<span class="w"> </span><span class="p">{</span><span class="nt">&quot;ssh&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;hostname1&quot;</span><span class="p">,</span><span class="w"> </span><span class="nt">&quot;ips&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="s2">&quot;123.123.123.1&quot;</span><span class="p">]},</span>
<span class="w"> </span><span class="p">{</span><span class="nt">&quot;ssh&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;hostname2&quot;</span><span class="p">,</span><span class="w"> </span><span class="nt">&quot;ips&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="s2">&quot;123.123.123.2&quot;</span><span class="p">]},</span>
<span class="w"> </span><span class="p">{</span><span class="nt">&quot;ssh&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;hostname3&quot;</span><span class="p">,</span><span class="w"> </span><span class="nt">&quot;ips&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="s2">&quot;123.123.123.3&quot;</span><span class="p">]},</span>
<span class="w"> </span><span class="p">{</span><span class="nt">&quot;ssh&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;hostname4&quot;</span><span class="p">,</span><span class="w"> </span><span class="nt">&quot;ips&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="s2">&quot;123.123.123.4&quot;</span><span class="p">]}</span>
<span class="p">]</span>
</pre></div>
</div>
<p>Running <code class="docutils literal notranslate"><span class="pre">mlx.launch</span> <span class="pre">--hostfile</span> <span class="pre">ring-4.json</span> <span class="pre">my_script.py</span></code> will ssh into each
node, run the script which will listen for connections in each of the provided
IPs. Specifically, <code class="docutils literal notranslate"><span class="pre">hostname1</span></code> will connect to <code class="docutils literal notranslate"><span class="pre">123.123.123.2</span></code> and accept a
connection from <code class="docutils literal notranslate"><span class="pre">123.123.123.4</span></code> and so on and so forth.</p>
</section>
<section id="thunderbolt-ring">
<h3>Thunderbolt Ring<a class="headerlink" href="#thunderbolt-ring" title="Link to this heading">#</a></h3>
<p>Although the ring backend can have benefits over MPI even for Ethernet, its
main purpose is to use Thunderbolt rings for higher bandwidth communication.
Setting up such thunderbolt rings can be done manually, but is a relatively
tedious process. To simplify this, we provide the utility <code class="docutils literal notranslate"><span class="pre">mlx.distributed_config</span></code>.</p>
<p>To use <code class="docutils literal notranslate"><span class="pre">mlx.distributed_config</span></code> your computers need to be accessible by ssh via
Ethernet or Wi-Fi. Subsequently, connect them via thunderbolt cables and then call the
utility as follows:</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>mlx.distributed_config<span class="w"> </span>--verbose<span class="w"> </span>--hosts<span class="w"> </span>host1,host2,host3,host4
</pre></div>
</div>
<p>By default the script will attempt to discover the thunderbolt ring and provide
you with the commands to configure each node as well as the <code class="docutils literal notranslate"><span class="pre">hostfile.json</span></code>
to use with <code class="docutils literal notranslate"><span class="pre">mlx.launch</span></code>. If password-less <code class="docutils literal notranslate"><span class="pre">sudo</span></code> is available on the nodes
then <code class="docutils literal notranslate"><span class="pre">--auto-setup</span></code> can be used to configure them automatically.</p>
<p>To validate your connection without configuring anything
<code class="docutils literal notranslate"><span class="pre">mlx.distributed_config</span></code> can also plot the ring using DOT format.</p>
<div class="highlight-shell notranslate"><div class="highlight"><pre><span></span>mlx.distributed_config<span class="w"> </span>--verbose<span class="w"> </span>--hosts<span class="w"> </span>host1,host2,host3,host4<span class="w"> </span>--dot<span class="w"> </span>&gt;ring.dot
dot<span class="w"> </span>-Tpng<span class="w"> </span>ring.dot<span class="w"> </span>&gt;ring.png
open<span class="w"> </span>ring.png
</pre></div>
</div>
<p>If you want to go through the process manually, the steps are as follows:</p>
<ul class="simple">
<li><p>Disable the thunderbolt bridge interface</p></li>
<li><p>For the cable connecting rank <code class="docutils literal notranslate"><span class="pre">i</span></code> to rank <code class="docutils literal notranslate"><span class="pre">i</span> <span class="pre">+</span> <span class="pre">1</span></code> find the interfaces
corresponding to that cable in nodes <code class="docutils literal notranslate"><span class="pre">i</span></code> and <code class="docutils literal notranslate"><span class="pre">i</span> <span class="pre">+</span> <span class="pre">1</span></code>.</p></li>
<li><p>Set up a unique subnetwork connecting the two nodes for the corresponding
interfaces. For instance if the cable corresponds to <code class="docutils literal notranslate"><span class="pre">en2</span></code> on node <code class="docutils literal notranslate"><span class="pre">i</span></code>
and <code class="docutils literal notranslate"><span class="pre">en2</span></code> also on node <code class="docutils literal notranslate"><span class="pre">i</span> <span class="pre">+</span> <span class="pre">1</span></code> then we may assign IPs <code class="docutils literal notranslate"><span class="pre">192.168.0.1</span></code> and
<code class="docutils literal notranslate"><span class="pre">192.168.0.2</span></code> respectively to the two nodes. For more details you can see
the commands prepared by the utility script.</p></li>
</ul>
</section>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="numpy.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Conversion to NumPy and Other Frameworks</p>
</div>
</a>
<a class="right-next"
href="using_streams.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Using Streams</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> Contents
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started">Getting Started</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#running-distributed-programs">Running Distributed Programs</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#selecting-backend">Selecting Backend</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#training-example">Training Example</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#utilizing-nn-average-gradients">Utilizing <code class="docutils literal notranslate"><span class="pre">nn.average_gradients</span></code></a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started-with-mpi">Getting Started with MPI</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#installing-mpi">Installing MPI</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#setting-up-remote-hosts">Setting up Remote Hosts</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#tuning-mpi-all-reduce">Tuning MPI All Reduce</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#getting-started-with-ring">Getting Started with Ring</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#defining-a-ring">Defining a Ring</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#thunderbolt-ring">Thunderbolt Ring</a></li>
</ul>
</li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
<div class="bd-footer-content__inner container">
<div class="footer-item">
<p class="component-author">
By MLX Contributors
</p>
</div>
<div class="footer-item">
<p class="copyright">
© Copyright 2023, Apple.
<br/>
</p>
</div>
<div class="footer-item">
</div>
<div class="footer-item">
</div>
</div>
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b"></script>
<footer class="bd-footer">
</footer>
</body>
</html>