mlx/python/tests/mpi_test_distributed.py

154 lines
4.7 KiB
Python

# Copyright © 2024 Apple Inc.
import unittest
import mlx.core as mx
import mlx_distributed_tests
class TestMPIDistributed(mlx_distributed_tests.MLXDistributedCommonTestCase):
@classmethod
def setUpClass(cls):
world = mx.distributed.init(strict=True, backend="mpi")
def test_groups(self):
world = mx.distributed.init()
self.assertEqual(world.size(), 8)
self.assertTrue(0 <= world.rank() < 8)
world2 = mx.distributed.init()
self.assertEqual(world.size(), world2.size())
self.assertEqual(world.rank(), world2.rank())
sub = world.split(world.rank() % 2)
self.assertEqual(sub.size(), 4)
self.assertEqual(sub.rank(), world.rank() // 2)
sub = world.split(world.rank() // 2)
self.assertEqual(sub.size(), 2)
def test_all_reduce(self):
world = mx.distributed.init()
dtypes = [
(mx.int8, 0),
(mx.uint8, 0),
(mx.int16, 0),
(mx.uint16, 0),
(mx.int32, 0),
(mx.uint32, 0),
(mx.float32, 1e-6),
(mx.float16, 5e-3),
(mx.bfloat16, 1e-1),
(mx.complex64, 1e-6),
]
sizes = [
(7,),
(10,),
(1024,),
(1024, 1024),
]
key = mx.random.key(0)
group = world.split(world.rank() % 2)
for dt, rtol in dtypes:
for sh in sizes:
for g in [world, group]:
x = (
mx.random.uniform(shape=(g.size(),) + sh, key=key) * 10
).astype(dt)
# All sum
y = mx.distributed.all_sum(x[g.rank()], group=g)
z = x.sum(0)
maxrelerror = (y - z).abs()
if rtol > 0:
maxrelerror /= z.abs()
maxrelerror = maxrelerror.max()
self.assertLessEqual(maxrelerror, rtol)
# All max
y = mx.distributed.all_max(x[g.rank()], group=g)
z = x.max(0)
self.assertTrue(mx.all(y == z))
# All min
y = mx.distributed.all_min(x[g.rank()], group=g)
z = x.min(0)
self.assertTrue(mx.all(y == z))
def test_all_gather(self):
world = mx.distributed.init()
dtypes = [
mx.int8,
mx.uint8,
mx.int16,
mx.uint16,
mx.int32,
mx.uint32,
mx.float32,
mx.complex64,
]
for dt in dtypes:
x = mx.ones((2, 2, 4), dtype=dt)
y = mx.distributed.all_gather(x)
self.assertEqual(y.shape, (world.size() * 2, 2, 4))
self.assertTrue(mx.all(y == 1))
sub = world.split(world.rank() % 2)
for dt in dtypes:
x = mx.ones((2, 2, 4), dtype=dt)
y = mx.distributed.all_gather(x, group=sub)
self.assertEqual(y.shape, (sub.size() * 2, 2, 4))
self.assertTrue(mx.all(y == 1))
def test_mixed(self):
# Make the following groups:
# - world: 0 1 2 3 4 5 6 7
# - sub_1: 0 1 0 1 0 1 0 1
# - sub_2: 0 0 1 1 2 2 3 3
#
# The corresponding colors to make them are
# - world: N/A
# - sub_1: 0 0 1 1 2 2 3 3
# - sub_2: 0 1 0 1 0 1 0 1
world = mx.distributed.init()
sub_1 = world.split(world.rank() // 2)
sub_2 = world.split(world.rank() % 2)
x = mx.ones((1, 8)) * world.rank()
y = mx.distributed.all_sum(x, group=sub_1)
z = mx.distributed.all_gather(y, group=sub_2)
z_target = mx.arange(8).reshape(4, 2).sum(-1, keepdims=True)
self.assertTrue(mx.all(z == z_target))
def test_send_recv(self):
world = mx.distributed.init()
pairs = world.split(world.rank() // 2)
neighbor = (pairs.rank() + 1) % 2
send = pairs.rank() == 0
x = mx.ones(10)
for i in range(10):
if send:
mx.eval(mx.distributed.send(2 * x, neighbor, group=pairs))
else:
x = mx.distributed.recv_like(x, neighbor, group=pairs)
mx.eval(x)
send = not send
self.assertTrue(mx.all(x == (1024 if pairs.rank() == 0 else 512)))
# Check recv and computation in same eval:
y = mx.ones((5, 5)) + mx.array(2.0)
if send:
x = mx.distributed.send(2 * x, neighbor, group=pairs)
else:
x = mx.distributed.recv_like(x, neighbor, group=pairs)
mx.eval(y, x)
if __name__ == "__main__":
unittest.main()