mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
1240 lines
45 KiB
Python
1240 lines
45 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import math
|
|
import unittest
|
|
from itertools import permutations
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
class TestBlas(mlx_tests.MLXTestCase):
|
|
@property
|
|
def dtypes(self):
|
|
return ["float32", "float16"]
|
|
|
|
def __gemm_test(
|
|
self,
|
|
shape_a,
|
|
shape_b,
|
|
np_dtype=np.float32,
|
|
f_np_a=lambda x: x,
|
|
f_np_b=lambda x: x,
|
|
f_mx_a=lambda x: x,
|
|
f_mx_b=lambda x: x,
|
|
):
|
|
with self.subTest(
|
|
dtype=np.dtype(np_dtype).name, shape_a=shape_a, shape_b=shape_b
|
|
):
|
|
np.random.seed(42)
|
|
scale = max(np.sum(shape_a), 128)
|
|
a_np = np.random.normal(0.0, 1.0 / scale, shape_a).astype(np_dtype)
|
|
b_np = np.random.normal(0.0, 1.0 / scale, shape_b).astype(np_dtype)
|
|
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
|
|
a_np = f_np_a(a_np.astype(np.float32))
|
|
b_np = f_np_b(b_np.astype(np.float32))
|
|
a_mx = f_mx_a(a_mx)
|
|
b_mx = f_mx_b(b_mx)
|
|
|
|
out_npy = a_np @ b_np
|
|
out_mlx = a_mx @ b_mx
|
|
|
|
self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
|
|
self.assertTrue(np.allclose(out_mlx, out_npy.astype(np_dtype), atol=1e-5))
|
|
|
|
def test_matmul_unaligned(self):
|
|
if not mx.metal.is_available():
|
|
return
|
|
|
|
for dtype in self.dtypes:
|
|
np_dtype = getattr(np, dtype)
|
|
base_shapes = [4, 8, 16, 32, 64, 128]
|
|
perturbations = [-2, -1, 0, 1, 2]
|
|
|
|
for dim in base_shapes:
|
|
for p in perturbations:
|
|
shape_a = (dim + p, dim + p)
|
|
shape_b = (dim + p, dim + p)
|
|
self.__gemm_test(shape_a, shape_b, np_dtype)
|
|
|
|
def test_matmul_shapes(self):
|
|
if not mx.metal.is_available():
|
|
return
|
|
|
|
shapes = [
|
|
(1, 2, 1, 1),
|
|
(1, 1, 2, 1),
|
|
(3, 23, 457, 3),
|
|
]
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
shapes += [
|
|
(16, 768, 768, 128),
|
|
(1, 64, 64, 4096),
|
|
]
|
|
|
|
for dtype in self.dtypes:
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
for B, M, N, K in shapes:
|
|
with self.subTest(transpose="nn"):
|
|
shape_a = (B, M, K)
|
|
shape_b = (B, K, N)
|
|
self.__gemm_test(shape_a, shape_b, np_dtype)
|
|
|
|
with self.subTest(transpose="nt"):
|
|
shape_a = (B, M, K)
|
|
shape_b = (B, N, K)
|
|
self.__gemm_test(
|
|
shape_a,
|
|
shape_b,
|
|
np_dtype,
|
|
f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
|
|
f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
|
|
)
|
|
|
|
with self.subTest(transpose="tn"):
|
|
shape_a = (B, K, M)
|
|
shape_b = (B, K, N)
|
|
self.__gemm_test(
|
|
shape_a,
|
|
shape_b,
|
|
np_dtype,
|
|
f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
|
|
f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
|
|
)
|
|
|
|
with self.subTest(transpose="tt"):
|
|
shape_a = (B, K, M)
|
|
shape_b = (B, N, K)
|
|
self.__gemm_test(
|
|
shape_a,
|
|
shape_b,
|
|
np_dtype,
|
|
f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
|
|
f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
|
|
f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
|
|
f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
|
|
)
|
|
|
|
def test_matmul(self):
|
|
# Note: so far, matmul only works with floating-point types
|
|
a = mx.array([[1.0, 2.0], [3.0, 4.0]])
|
|
|
|
b = mx.array([[0.0, -1.0], [-3.0, 3.0]])
|
|
|
|
expected = [[-6.0, 5.0], [-12.0, 9.0]]
|
|
|
|
self.assertEqual((a @ b).tolist(), expected)
|
|
self.assertEqual(mx.matmul(a, b).tolist(), expected)
|
|
|
|
# Transposed matmul
|
|
np.random.seed(0)
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
|
|
c_npy = a_npy @ np.transpose(b_npy, (1, 0))
|
|
d_npy = np.transpose(a_npy, (1, 0)) @ b_npy
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
|
|
d_mlx = mx.transpose(a_mlx, (1, 0)) @ b_mlx
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-6))
|
|
|
|
def test_matmul_dtypes(self):
|
|
for dt in self.dtypes:
|
|
a_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
|
|
getattr(np, dt)
|
|
)
|
|
b_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
|
|
getattr(np, dt)
|
|
)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
c_npy = np.matmul(a_npy, b_npy, dtype=getattr(np, dt))
|
|
c_mlx = a_mlx @ b_mlx
|
|
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
def test_matmul_batched(self):
|
|
np.random.seed(0)
|
|
# Batched matmul
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
|
|
c_npy = a_npy @ b_npy
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
c_mlx = a_mlx @ b_mlx
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
# Batched and transposed matmul
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
c_npy = a_npy @ np.transpose(b_npy, (0, 2, 1))
|
|
|
|
b_mlx = mx.array(b_npy)
|
|
c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 2, 1))
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
# Batched matmul with simple broadcast
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
|
|
c_npy = a_npy @ b_npy
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
c_mlx = a_mlx @ b_mlx
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
# Both operands broadcasted
|
|
d_npy = np.broadcast_to(b_npy, (5, 16, 16))
|
|
d_mlx = mx.broadcast_to(b_mlx, (5, 16, 16))
|
|
|
|
e_npy = d_npy @ d_npy
|
|
e_mlx = d_mlx @ d_mlx
|
|
|
|
self.assertListEqual(list(e_npy.shape), list(e_mlx.shape))
|
|
self.assertTrue(np.allclose(e_mlx, e_npy, atol=1e-6))
|
|
|
|
# Batched and transposed matmul with simple broadcast
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
c_npy = a_npy @ np.transpose(b_npy, (1, 0))
|
|
c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
# Matmul with vector
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
c_npy = a_npy @ b_npy
|
|
c_mlx = a_mlx @ b_mlx
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
# Test Multiheaded attention style matmul
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
a_npy = np.transpose(a_npy, (0, 2, 1, 3))
|
|
b_npy = np.transpose(b_npy, (0, 2, 1, 3))
|
|
a_mlx = mx.transpose(a_mlx, (0, 2, 1, 3))
|
|
b_mlx = mx.transpose(b_mlx, (0, 2, 1, 3))
|
|
|
|
c_npy = a_npy @ np.transpose(b_npy, (0, 1, 3, 2))
|
|
c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 1, 3, 2))
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
|
|
|
|
def __gemv_test(
|
|
self,
|
|
shape_mat,
|
|
shape_vec,
|
|
np_dtype=np.float32,
|
|
mat_first=True,
|
|
np_mat_f=lambda x: x,
|
|
np_vec_f=lambda x: x,
|
|
mlx_mat_f=lambda x: x,
|
|
mlx_vec_f=lambda x: x,
|
|
):
|
|
with self.subTest(
|
|
shape_mat=shape_mat, shape_vec=shape_vec, mat_first=mat_first
|
|
):
|
|
np.random.seed(42)
|
|
scale = max(np.sum(shape_mat), 32)
|
|
mat_npy = np.random.normal(0.0, 1.0 / scale, shape_mat).astype(np_dtype)
|
|
vec_npy = np.random.normal(0.0, 1.0 / scale, shape_vec).astype(np_dtype)
|
|
|
|
mat_mlx = mx.array(mat_npy)
|
|
vec_mlx = mx.array(vec_npy)
|
|
|
|
mat_npy = np_mat_f(mat_npy)
|
|
vec_npy = np_vec_f(vec_npy)
|
|
mat_mlx = mlx_mat_f(mat_mlx)
|
|
vec_mlx = mlx_vec_f(vec_mlx)
|
|
|
|
if mat_first:
|
|
out_npy = mat_npy @ vec_npy
|
|
out_mlx = mat_mlx @ vec_mlx
|
|
else:
|
|
out_npy = vec_npy @ mat_npy
|
|
out_mlx = vec_mlx @ mat_mlx
|
|
|
|
self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
|
|
self.assertTrue(np.allclose(out_mlx, out_npy, atol=1e-5))
|
|
|
|
def test_matrix_vector(self):
|
|
for dtype in self.dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
# Basic square matrix test
|
|
self.__gemv_test(
|
|
shape_mat=(64, 64), shape_vec=(64, 1), np_dtype=np_dtype
|
|
)
|
|
self.__gemv_test(
|
|
shape_mat=(64, 64),
|
|
shape_vec=(64, 1),
|
|
np_dtype=np_dtype,
|
|
mat_first=False,
|
|
np_vec_f=lambda x: np.transpose(x, (1, 0)),
|
|
mlx_vec_f=lambda x: mx.transpose(x, (1, 0)),
|
|
)
|
|
|
|
# Vector matrix product with aligned and unaligned shapes
|
|
for in_len_base, out_len_base in (
|
|
(2, 2),
|
|
(32, 32),
|
|
(64, 64),
|
|
(2048, 2048),
|
|
):
|
|
for mi in (-1, 0, 1):
|
|
for mj in (-1, 0, 1):
|
|
# Vec mat
|
|
shape_mat = (in_len_base + mi, out_len_base + mj)
|
|
shape_vec = (1, in_len_base + mi)
|
|
self.__gemv_test(
|
|
shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
|
|
)
|
|
|
|
# Mat vec
|
|
shape_mat = (out_len_base + mj, in_len_base + mi)
|
|
shape_vec = (in_len_base + mi, 1)
|
|
self.__gemv_test(
|
|
shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
|
|
)
|
|
|
|
def test_matrix_vector_batched(self):
|
|
for dtype in self.dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
# Batched mat vec
|
|
for shape_mat, shape_vec in (
|
|
((32, 128, 64), (32, 64, 1)),
|
|
((128, 64), (32, 64, 1)),
|
|
((32, 128, 64), (64, 1)),
|
|
((2, 1, 8, 1, 6, 128), (2, 1, 8, 4, 128, 1)),
|
|
):
|
|
self.__gemv_test(
|
|
shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
|
|
)
|
|
|
|
# Batched vec mat
|
|
for shape_vec, shape_mat in (
|
|
((32, 1, 128), (32, 128, 64)),
|
|
((32, 1, 128), (128, 64)),
|
|
((1, 128), (32, 128, 64)),
|
|
((1, 8, 4, 1, 128), (1, 8, 1, 128, 6)),
|
|
):
|
|
self.__gemv_test(
|
|
shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
|
|
)
|
|
|
|
def test_matrix_vector_broadcast(self):
|
|
for dtype in self.dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
# Different broadcasts mat vec
|
|
for shape_mat, shape_vec in (
|
|
((32, 64, 64), (32, 64, 1)),
|
|
((64, 64), (32, 64, 1)),
|
|
((32, 64, 64), (64, 1)),
|
|
):
|
|
self.__gemv_test(
|
|
shape_mat=(64, 64),
|
|
shape_vec=(64, 1),
|
|
np_dtype=np_dtype,
|
|
np_mat_f=(lambda mat_npy: np.broadcast_to(mat_npy, shape_mat)),
|
|
np_vec_f=(lambda vec_npy: np.broadcast_to(vec_npy, shape_vec)),
|
|
mlx_mat_f=(lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat)),
|
|
mlx_vec_f=(lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec)),
|
|
)
|
|
|
|
# Different broadcasts vec mat
|
|
for shape_vec, shape_mat in (
|
|
((32, 1, 64), (32, 64, 64)),
|
|
((32, 1, 64), (64, 64)),
|
|
((1, 64), (32, 64, 64)),
|
|
):
|
|
self.__gemv_test(
|
|
shape_mat=(64, 64),
|
|
shape_vec=(1, 64),
|
|
np_dtype=np_dtype,
|
|
mat_first=False,
|
|
np_mat_f=lambda mat_npy: np.broadcast_to(mat_npy, shape_mat),
|
|
np_vec_f=lambda vec_npy: np.broadcast_to(vec_npy, shape_vec),
|
|
mlx_mat_f=lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat),
|
|
mlx_vec_f=lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec),
|
|
)
|
|
|
|
def test_matrix_vector_attn(self):
|
|
# Multi-query style attention check
|
|
for dtype in self.dtypes:
|
|
# fmt: off
|
|
for (B, D, n_kv_heads, factor, qsl, ksl) in (
|
|
(1, 16, 8, 4, 1, 256),
|
|
(1, 16, 8, 4, 32, 256),
|
|
(1, 16, 8, 4, 256, 1),
|
|
(4, 16, 8, 4, 1, 256),
|
|
(4, 16, 8, 4, 256, 1),
|
|
):
|
|
# fmt: on
|
|
with self.subTest(
|
|
B=B, # Batch size
|
|
D=D, # Dimension of mm
|
|
n_kv_heads=n_kv_heads, # key-value heads
|
|
factor=factor, # factor to get query heads
|
|
qsl=qsl, # Query sequence length
|
|
ksl=ksl, # Key sequence length
|
|
dtype=dtype # Data type
|
|
):
|
|
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
# Fix shapes for kqv
|
|
n_q_heads = n_kv_heads * factor
|
|
Dk = D * n_kv_heads
|
|
Dq = D * n_q_heads
|
|
scale = 1. / math.sqrt(Dk)
|
|
|
|
shape_queries = (B, qsl, Dq)
|
|
shape_keys = (B, ksl, Dk)
|
|
shape_values = (B, ksl, Dk)
|
|
|
|
# Prepare numpy arrays
|
|
q_np = np.random.uniform(-scale, scale, size=shape_queries).astype(np_dtype)
|
|
k_np = np.random.uniform(-scale, scale, size=shape_keys).astype(np_dtype)
|
|
v_np = np.random.uniform(-scale, scale, size=shape_values).astype(np_dtype)
|
|
|
|
# Rearrange to move heads up
|
|
q_np_reshape = q_np.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
|
|
k_np_reshape = k_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
|
|
v_np_reshape = v_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
|
|
|
|
# Do attn style matmul
|
|
s_np = q_np_reshape @ k_np_reshape
|
|
o_np = s_np @ v_np_reshape
|
|
o_np = o_np.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
|
|
|
|
# Test mlx
|
|
q_mx = mx.array(q_np)
|
|
k_mx = mx.array(k_np)
|
|
v_mx = mx.array(v_np)
|
|
|
|
# Rearrange to move heads up
|
|
q_mx_reshape = q_mx.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
|
|
k_mx_reshape = k_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
|
|
v_mx_reshape = v_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
|
|
|
|
# Do attn style matmul
|
|
s_mx = q_mx_reshape @ k_mx_reshape
|
|
o_mx = (s_mx @ v_mx_reshape)
|
|
o_mx = o_mx.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
|
|
|
|
# Check against np
|
|
self.assertListEqual(list(s_np.shape), list(s_mx.shape))
|
|
self.assertTrue(np.allclose(s_np, s_mx, atol=1e-4))
|
|
|
|
self.assertListEqual(list(o_np.shape), list(o_mx.shape))
|
|
self.assertTrue(np.allclose(o_np, o_mx, atol=1e-4))
|
|
|
|
def test_matrix_vector_edgecases(self):
|
|
for dtype in self.dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
for in_vec_len in np.arange(1, 5):
|
|
for out_vec_len in np.arange(1, 5):
|
|
for batch_size in np.arange(1, 5):
|
|
with self.subTest(
|
|
problem_shape=(batch_size, in_vec_len, out_vec_len)
|
|
):
|
|
# Matrix vector
|
|
with self.subTest(transpose=False):
|
|
a_npy = np.ones(
|
|
(batch_size, out_vec_len, in_vec_len),
|
|
dtype=np_dtype,
|
|
)
|
|
b_npy = np.ones(
|
|
(batch_size, in_vec_len, 1), dtype=np_dtype
|
|
)
|
|
for i in range(batch_size):
|
|
b_npy[i] *= i + 1.0
|
|
|
|
a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
|
|
c_npy = a_npy @ b_npy
|
|
c_mlx = a_mlx @ b_mlx
|
|
|
|
self.assertListEqual(
|
|
list(c_npy.shape), list(c_mlx.shape)
|
|
)
|
|
self.assertTrue(np.array_equal(c_mlx, c_npy))
|
|
|
|
# Vector matrix
|
|
with self.subTest(transpose=True):
|
|
a_npy = np.ones(
|
|
(batch_size, out_vec_len, in_vec_len),
|
|
dtype=np_dtype,
|
|
)
|
|
b_npy = np.ones(
|
|
(batch_size, 1, out_vec_len), dtype=np_dtype
|
|
)
|
|
for i in range(batch_size):
|
|
b_npy[i] *= i + 1.0
|
|
|
|
a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
|
|
c_npy = b_npy @ a_npy
|
|
c_mlx = b_mlx @ a_mlx
|
|
|
|
self.assertListEqual(
|
|
list(c_npy.shape), list(c_mlx.shape)
|
|
)
|
|
self.assertTrue(np.array_equal(c_mlx, c_npy))
|
|
|
|
def test_mismatch_stride_mm(self):
|
|
np.random.seed(0)
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
# Matmul with batches
|
|
c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, :]
|
|
c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, :]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matvec with batches
|
|
c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, 2:3]
|
|
c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, 2:3]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matmul with slice
|
|
c_npy = a_npy[:, :8, :] @ b_npy[:, :, :8]
|
|
c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, :8]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matmul with slice
|
|
c_npy = a_npy[:, :, :8] @ b_npy[:, :8, :]
|
|
c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :8, :]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matmul transpose with slice
|
|
c_npy = a_npy[:, :8, :] @ b_npy[:, :8, :].swapaxes(-1, -2)
|
|
c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :8, :].swapaxes(-1, -2)
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matmul transpose with slice
|
|
c_npy = a_npy[:, :, :8] @ b_npy[:, :, :8].swapaxes(-1, -2)
|
|
c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :, :8].swapaxes(-1, -2)
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matvec with slice
|
|
c_npy = a_npy[:, :8, :] @ b_npy[:, :, 6:7]
|
|
c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, 6:7]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
# Matvec with slice
|
|
c_npy = a_npy[:, :, :8] @ b_npy[:, 3:11, 2:3]
|
|
c_mlx = a_mlx[:, :, :8] @ b_mlx[:, 3:11, 2:3]
|
|
|
|
self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
|
|
self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
|
|
|
|
def test_addmm(self):
|
|
np.random.seed(0)
|
|
# Batched matmul
|
|
alpha = 0.5
|
|
beta = 2.0
|
|
|
|
# c must broadcast to the output shape
|
|
with self.assertRaises(ValueError):
|
|
mx.addmm(mx.zeros((2, 2, 2)), mx.zeros((2, 2)), mx.zeros((2, 2)))
|
|
|
|
# Regular batched case
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
|
|
# Batched and transposed matmul
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (32, 1, 128), (1, 128)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
b_np_t = np.transpose(b_npy, (0, 2, 1))
|
|
b_mx_t = mx.transpose(b_mlx, (0, 2, 1))
|
|
|
|
d_npy = alpha * (a_npy @ b_np_t) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mx_t, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
# Batched matmul with simple broadcast
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
# Matmul with vector
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 128)).astype(np.float32)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (128,), (32, 128)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
|
|
# Matmul with vector
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (32, 128)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
|
|
# Split K specializtion
|
|
a_npy = np.random.normal(0.0, 1.0 / 128, (64, 4096)).astype(np.float32)
|
|
b_npy = np.random.normal(0.0, 1.0 / 128, (4096, 32)).astype(np.float32)
|
|
|
|
a_mlx = mx.array(a_npy)
|
|
b_mlx = mx.array(b_npy)
|
|
|
|
for c_shape in ((1,), (1, 32), (64, 1), (64, 32)):
|
|
c_npy = np.ones(c_shape).astype(np.float32)
|
|
c_mlx = mx.array(c_npy)
|
|
|
|
d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
|
|
d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
|
|
|
|
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
|
|
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
|
|
|
|
def test_addmm_grad(self):
|
|
def make_ref_addmm(alpha, beta):
|
|
return lambda c, a, b: alpha * (a @ b) + beta * c
|
|
|
|
def make_addmm(alpha, beta):
|
|
return lambda c, a, b: mx.addmm(c, a, b, alpha, beta)
|
|
|
|
# B, M, N, K
|
|
shapes = ((1, 64, 32, 128), (4, 28, 24, 47), (1, 1, 24, 47))
|
|
|
|
alpha = 2.0
|
|
beta = 0.5
|
|
|
|
f_test = make_addmm(alpha, beta)
|
|
f_ref = make_ref_addmm(alpha, beta)
|
|
|
|
for B, M, N, K in shapes:
|
|
cotan = mx.ones((B, M, N))
|
|
c = mx.random.normal((B, M, N))
|
|
a = mx.random.normal((B, M, K))
|
|
b = mx.random.normal((B, K, N))
|
|
|
|
out_ref, dout_ref = mx.vjp(
|
|
f_ref,
|
|
[c, a, b],
|
|
[cotan],
|
|
)
|
|
out_test, dout_test = mx.vjp(
|
|
f_test,
|
|
[c, a, b],
|
|
[cotan],
|
|
)
|
|
|
|
self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-4).item())
|
|
|
|
for r, t in zip(dout_ref, dout_test):
|
|
self.assertEqual(r.shape, t.shape)
|
|
self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
|
|
|
|
def test_empty_matmul(self):
|
|
a = mx.array([[], []]).T
|
|
b = mx.array([[1.0, 2.0], [2.0, 3.0]])
|
|
c = a @ b
|
|
mx.eval(c)
|
|
self.assertEqual(c.shape, (0, 2))
|
|
|
|
a = mx.array([[1.0, 2.0], [2.0, 3.0]])
|
|
b = mx.array([[], []])
|
|
c = a @ b
|
|
mx.eval(c)
|
|
self.assertEqual(c.shape, (2, 0))
|
|
|
|
a = mx.array([[], []]).T
|
|
b = mx.array([[], []])
|
|
c = a @ b
|
|
mx.eval(c)
|
|
self.assertEqual(c.shape, (0, 0))
|
|
|
|
c = mx.array(1.0, dtype=mx.float32)
|
|
a = mx.array([], dtype=mx.float32)
|
|
b = mx.array([], dtype=mx.float32)
|
|
out = mx.addmm(c, a, b)
|
|
self.assertEqual(out.item(), 1.0)
|
|
self.assertEqual(out.shape, ())
|
|
|
|
a = mx.zeros(shape=(5, 0))
|
|
b = mx.zeros(shape=(0, 5))
|
|
c = mx.random.uniform(shape=(5, 5))
|
|
out = mx.addmm(c, a, b)
|
|
self.assertTrue(mx.allclose(out, c))
|
|
|
|
def test_block_masked_matmul(self):
|
|
def ref_block_masked_mm(
|
|
a, b, block_size, out_mask=None, lhs_mask=None, rhs_mask=None
|
|
):
|
|
# Get mask adjusted shapes
|
|
M = a.shape[-2]
|
|
N = b.shape[-1]
|
|
K = a.shape[-1]
|
|
|
|
bsx_shape = np.broadcast_shapes(a.shape[:-2], b.shape[:-2])
|
|
|
|
# Expand mask dims
|
|
def expand_mask(mask, block_size, Y, X):
|
|
mask = mx.expand_dims(mask, (-3, -1))
|
|
mask_shape = list(bsx_shape) + list(mask.shape[-4:])
|
|
mask_shape[-1] = block_size
|
|
x = mask_shape[-2] * block_size
|
|
mask_shape[-3] = block_size
|
|
y = mask_shape[-4] * block_size
|
|
mask = mx.broadcast_to(mask, mask_shape)
|
|
mask_shape = mask_shape[:-4] + [y, x]
|
|
return mask.reshape(mask_shape)[..., :Y, :X]
|
|
|
|
a_masked = a
|
|
b_masked = b
|
|
|
|
if lhs_mask is not None:
|
|
lhs_mask = expand_mask(lhs_mask, block_size, M, K).astype(mx.float32)
|
|
a_masked = lhs_mask * a_masked
|
|
|
|
if rhs_mask is not None:
|
|
rhs_mask = expand_mask(rhs_mask, block_size, K, N).astype(mx.float32)
|
|
b_masked = rhs_mask * b_masked
|
|
|
|
out = a_masked @ b_masked
|
|
|
|
if out_mask is not None:
|
|
out_mask = expand_mask(out_mask, block_size, M, N).astype(mx.float32)
|
|
out = out * out_mask
|
|
return out
|
|
|
|
def run_test(a, b, block_size, out_mask, a_mask, b_mask, cotan):
|
|
def f_ref(a_, b_):
|
|
return ref_block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
|
|
|
|
def f_test(a_, b_):
|
|
return mx.block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
|
|
|
|
out_ref, dout_ref = mx.vjp(f_ref, [a, b], [cotan])
|
|
out_test, dout_test = mx.vjp(f_test, [a, b], [cotan])
|
|
|
|
self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
|
|
|
|
for r, t in zip(dout_ref, dout_test):
|
|
self.assertEqual(r.shape, t.shape)
|
|
self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
|
|
|
|
def run_test_mask_vjp(a, b, block_size, out_mask, a_mask, b_mask, cotan):
|
|
def f_ref(a_, b_, a_mask_, b_mask_):
|
|
return ref_block_masked_mm(
|
|
a_, b_, block_size, out_mask, a_mask_, b_mask_
|
|
)
|
|
|
|
def f_test(a_, b_, a_mask_, b_mask_):
|
|
return mx.block_masked_mm(
|
|
a_, b_, block_size, out_mask, a_mask_, b_mask_
|
|
)
|
|
|
|
out_ref, dout_ref = mx.vjp(f_ref, [a, b, a_mask, b_mask], [cotan])
|
|
out_test, dout_test = mx.vjp(f_test, [a, b, a_mask, b_mask], [cotan])
|
|
|
|
mx.eval((out_ref, dout_ref, out_test, dout_test))
|
|
|
|
self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
|
|
|
|
for r, t in zip(dout_ref, dout_test):
|
|
self.assertEqual(r.shape, t.shape)
|
|
self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
|
|
|
|
def make_mask(tm_, tn_, batch, np_dtype):
|
|
arr_np_mask = np.random.normal(size=batch + (tm_, tn_)).astype(np_dtype)
|
|
arr_np_bool_mask = arr_np_mask < 0.0
|
|
arr_np_mask[arr_np_bool_mask] = 0.0
|
|
|
|
return mx.array(arr_np_bool_mask), mx.array(arr_np_mask)
|
|
|
|
def test_shape(
|
|
M,
|
|
N,
|
|
K,
|
|
block_size,
|
|
transpose=False,
|
|
np_dtype=np.float32,
|
|
batch_A=(),
|
|
batch_B=(),
|
|
):
|
|
with self.subTest(
|
|
M=M,
|
|
N=N,
|
|
K=K,
|
|
block_size=block_size,
|
|
np_dtype=np_dtype,
|
|
transpose=transpose,
|
|
batch_A=batch_A,
|
|
batch_B=batch_B,
|
|
):
|
|
batch_out = np.broadcast_shapes(batch_A, batch_B)
|
|
cotan = mx.ones(batch_out + (M, N))
|
|
|
|
a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
|
|
b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
|
|
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
|
|
tm = (M + block_size - 1) // block_size
|
|
tn = (N + block_size - 1) // block_size
|
|
tk = (K + block_size - 1) // block_size
|
|
|
|
a_mx_bool_mask, a_mx_mask = make_mask(tm, tk, batch_A, np_dtype)
|
|
b_mx_bool_mask, b_mx_mask = make_mask(tk, tn, batch_B, np_dtype)
|
|
out_mx_bool_mask, out_mx_mask = make_mask(tm, tn, batch_out, np_dtype)
|
|
|
|
# Boolean block masks
|
|
run_test(
|
|
a_mx,
|
|
b_mx,
|
|
block_size,
|
|
out_mx_bool_mask,
|
|
a_mx_bool_mask,
|
|
b_mx_bool_mask,
|
|
cotan,
|
|
)
|
|
run_test(a_mx, b_mx, block_size, out_mx_bool_mask, None, None, cotan)
|
|
run_test(
|
|
a_mx, b_mx, block_size, None, a_mx_bool_mask, b_mx_bool_mask, cotan
|
|
)
|
|
|
|
# Float block masks
|
|
run_test(
|
|
a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
|
|
)
|
|
run_test(a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan)
|
|
run_test_mask_vjp(
|
|
a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
|
|
)
|
|
run_test_mask_vjp(
|
|
a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan
|
|
)
|
|
|
|
shapes = (
|
|
(16, 16, 16, 32),
|
|
(64, 64, 16, 32),
|
|
(128, 128, 128, 32),
|
|
(256, 256, 128, 64),
|
|
(1, 128, 128, 32),
|
|
(256, 1, 128, 64),
|
|
)
|
|
|
|
for M, N, K, block_size in shapes:
|
|
test_shape(M, N, K, block_size)
|
|
|
|
# Test broadcasting
|
|
test_shape(64, 64, 64, 32, batch_A=(1, 2), batch_B=(2, 2))
|
|
test_shape(1, 128, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
|
|
test_shape(128, 1, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
|
|
|
|
a_np = np.ones((128, 256)).astype(np.float32)
|
|
b_np = np.ones((128, 1)).astype(np.float32)
|
|
d_np = np.ones((1, 256)).astype(np.float32)
|
|
a_mask_np = np.random.normal(size=(4, 8)).astype(np.float32)
|
|
b_mask_np = np.ones((4, 1)).astype(np.bool_)
|
|
d_mask_np = np.ones((1, 8)).astype(np.bool_)
|
|
c_mask_np = np.random.normal(size=(8, 1)).astype(np.float32)
|
|
e_mask_np = np.random.normal(size=(1, 4)).astype(np.float32)
|
|
|
|
a_mask_np[a_mask_np < 0.0] = 0.0
|
|
e_mask_np[e_mask_np < 0.0] = 0.0
|
|
c_mask_np[c_mask_np < 0.0] = 0.0
|
|
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
d_mx = mx.array(d_np)
|
|
a_mask_mx = mx.array(a_mask_np)
|
|
b_mask_mx = mx.array(b_mask_np)
|
|
d_mask_mx = mx.array(d_mask_np)
|
|
e_mask_mx = mx.array(e_mask_np)
|
|
c_mask_mx = mx.array(c_mask_np)
|
|
|
|
c_mx = mx.block_masked_mm(a_mx.T, b_mx, 32, c_mask_mx, a_mask_mx.T, b_mask_mx)
|
|
e_mx = mx.block_masked_mm(d_mx, a_mx.T, 32, e_mask_mx, d_mask_mx, a_mask_mx.T)
|
|
|
|
a_mask_np = np.broadcast_to(np.expand_dims(a_mask_np, (-3, -1)), (4, 32, 8, 32))
|
|
a_mask_np = a_mask_np.reshape((128, 256))
|
|
a_np *= a_mask_np
|
|
|
|
c_np = a_np.T @ b_np
|
|
e_np = d_np @ a_np.T
|
|
|
|
c_mask_np = np.broadcast_to(np.expand_dims(c_mask_np, (-2)), (8, 32, 1))
|
|
c_mask_np = c_mask_np.reshape((256, 1))
|
|
c_np *= c_mask_np
|
|
|
|
e_mask_np = np.broadcast_to(np.expand_dims(e_mask_np, (-1)), (1, 4, 32))
|
|
e_mask_np = e_mask_np.reshape((1, 128))
|
|
e_np *= e_mask_np
|
|
|
|
self.assertTrue(np.allclose(c_mx, c_np, atol=1e-5))
|
|
self.assertTrue(np.allclose(e_mx, e_np, atol=1e-5))
|
|
|
|
def test_gather_matmul(self):
|
|
def np_gather_mm(a, b, lhs_indices=None, rhs_indices=None):
|
|
a = a.reshape((-1, a.shape[-2], a.shape[-1]))
|
|
b = b.reshape((-1, b.shape[-2], b.shape[-1]))
|
|
lhs_indices = lhs_indices or np.arange(a.shape[0])
|
|
rhs_indices = rhs_indices or np.arange(b.shape[0])
|
|
a = a[lhs_indices, :, :]
|
|
b = b[rhs_indices, :, :]
|
|
out = a @ b
|
|
return out
|
|
|
|
def test_shape(
|
|
M,
|
|
N,
|
|
K,
|
|
np_dtype=np.float32,
|
|
batch_A=(),
|
|
batch_B=(),
|
|
lhs_indices=None,
|
|
rhs_indices=None,
|
|
):
|
|
with self.subTest(
|
|
M=M,
|
|
N=N,
|
|
K=K,
|
|
np_dtype=np_dtype,
|
|
batch_A=batch_A,
|
|
batch_B=batch_B,
|
|
lhs_indices=lhs_indices,
|
|
rhs_indices=rhs_indices,
|
|
):
|
|
a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
|
|
b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
|
|
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
|
|
out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
|
|
|
|
lhs_indices_mx = None if lhs_indices is None else mx.array(lhs_indices)
|
|
rhs_indices_mx = None if rhs_indices is None else mx.array(rhs_indices)
|
|
|
|
out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
|
|
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
|
|
|
inputs = (
|
|
{
|
|
"batch_A": (1,),
|
|
"lhs_indices": (0,),
|
|
"batch_B": (3,),
|
|
"rhs_indices": (2, 1),
|
|
},
|
|
{
|
|
"batch_A": (1,),
|
|
"lhs_indices": None,
|
|
"batch_B": (3,),
|
|
"rhs_indices": (2, 1),
|
|
},
|
|
{
|
|
"batch_A": (2,),
|
|
"lhs_indices": None,
|
|
"batch_B": (3,),
|
|
"rhs_indices": (2, 1),
|
|
},
|
|
{
|
|
"batch_A": (3,),
|
|
"lhs_indices": (0, 2),
|
|
"batch_B": (1,),
|
|
"rhs_indices": (0,),
|
|
},
|
|
{
|
|
"batch_A": (5,),
|
|
"lhs_indices": (0, 2),
|
|
"batch_B": (3,),
|
|
"rhs_indices": (2, 1),
|
|
},
|
|
{
|
|
"batch_A": (4, 2),
|
|
"lhs_indices": (
|
|
(7, 6),
|
|
(5, 4),
|
|
(1, 2),
|
|
),
|
|
"batch_B": (4, 1),
|
|
"rhs_indices": ((2,), (0,), (1,)),
|
|
},
|
|
)
|
|
|
|
for kwargs in inputs:
|
|
test_shape(32, 32, 32, **kwargs)
|
|
test_shape(16, 1, 16, **kwargs)
|
|
|
|
# Add tests for broadcasting
|
|
a_np = np.random.normal(size=(5, 32, 32)).astype(np.float32)
|
|
b_np = np.random.normal(size=(3, 32, 32)).astype(np.float32)
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
|
|
# Numpy
|
|
a_np = a_np.reshape((5, 1, 32, 32))
|
|
b_np = b_np.reshape((1, 3, 32, 32))
|
|
|
|
a_np = np.broadcast_to(a_np, (5, 4, 32, 32))
|
|
b_np = np.broadcast_to(b_np, (2, 3, 32, 32)).swapaxes(1, 0)
|
|
|
|
lhs_indices = [0, 13, 12]
|
|
rhs_indices = [0, 3, 5]
|
|
|
|
out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
|
|
|
|
# MLX
|
|
a_mx = a_mx.reshape((5, 1, 32, 32))
|
|
b_mx = b_mx.reshape((1, 3, 32, 32))
|
|
|
|
a_mx = mx.broadcast_to(a_mx, (5, 4, 32, 32))
|
|
b_mx = mx.broadcast_to(b_mx, (2, 3, 32, 32)).swapaxes(1, 0)
|
|
|
|
lhs_indices_mx = mx.array(lhs_indices)
|
|
rhs_indices_mx = mx.array(rhs_indices)
|
|
|
|
out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
|
|
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
|
|
|
# Gemv test
|
|
a_np = np.random.normal(size=(5, 1, 32)).astype(np.float32)
|
|
b_np = np.random.normal(size=(3, 16, 32)).astype(np.float32)
|
|
a_mx = mx.array(a_np)
|
|
b_mx = mx.array(b_np)
|
|
|
|
lhs_indices = [3, 1]
|
|
rhs_indices = [0, 2]
|
|
|
|
b_np_t = np.swapaxes(b_np, -1, -2)
|
|
out_np = np_gather_mm(a_np, b_np_t, lhs_indices, rhs_indices)
|
|
|
|
lhs_indices_mx = mx.array(lhs_indices)
|
|
rhs_indices_mx = mx.array(rhs_indices)
|
|
|
|
b_mx_t = mx.swapaxes(b_mx, -1, -2)
|
|
out_mx = mx.gather_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
|
|
|
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
|
|
|
def test_gather_matmul_grad(self):
|
|
lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
|
|
rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
|
|
|
|
def f_ref(a, b):
|
|
lhs_indices_ = mx.broadcast_to(lhs_indices, (3, 2))
|
|
rhs_indices_ = mx.broadcast_to(rhs_indices, (3, 2))
|
|
M = a.shape[-2]
|
|
N = b.shape[-1]
|
|
K = a.shape[-1]
|
|
|
|
a = a.reshape((-1, M, K))
|
|
b = b.reshape((-1, K, N))
|
|
|
|
a = mx.take(a, lhs_indices_, 0)
|
|
b = mx.take(b, rhs_indices_, 0)
|
|
|
|
return a @ b
|
|
|
|
def f_test(a, b):
|
|
return mx.gather_mm(a, b, lhs_indices, rhs_indices)
|
|
|
|
a_mx = mx.random.normal((4, 2, 32, 32))
|
|
b_mx = mx.random.normal((4, 1, 32, 32))
|
|
|
|
out_test = f_test(a_mx, b_mx)
|
|
out_ref = f_ref(a_mx, b_mx)
|
|
|
|
self.assertTrue(mx.allclose(out_test, out_ref, atol=1e-5))
|
|
|
|
cotan = mx.ones_like(out_test)
|
|
out_ref, dout_ref = mx.vjp(
|
|
f_ref,
|
|
[a_mx, b_mx],
|
|
[cotan],
|
|
)
|
|
out_test, dout_test = mx.vjp(
|
|
f_test,
|
|
[a_mx, b_mx],
|
|
[cotan],
|
|
)
|
|
|
|
for r, t in zip(dout_ref, dout_test):
|
|
self.assertEqual(r.shape, t.shape)
|
|
self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
|
|
|
|
def test_gemv_gemm_same_precision(self):
|
|
mx.random.seed(0)
|
|
N = 256
|
|
if mx.metal.is_available():
|
|
t = mx.bfloat16
|
|
a = mx.random.normal([1, N]).astype(t)
|
|
b = mx.concatenate([a, a], axis=0).astype(t)
|
|
c = mx.random.normal([N, 64]).astype(t)
|
|
out_gemv = a @ c
|
|
out_gemm = (b @ c)[0]
|
|
self.assertTrue(mx.allclose(out_gemv, out_gemm))
|
|
|
|
def test_complex_gemv(self):
|
|
M = 16
|
|
N = 50
|
|
|
|
def rand(shape):
|
|
return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
|
|
|
|
a = rand((M, N))
|
|
b = rand((N, 1))
|
|
c = mx.matmul(a, b)
|
|
c_np = np.matmul(a, b)
|
|
self.assertTrue(np.allclose(c, c_np))
|
|
|
|
# Transposed
|
|
a = rand((N, M))
|
|
b = rand((N, 1))
|
|
c = mx.matmul(a.T, b)
|
|
c_np = np.matmul(np.array(a).T, b)
|
|
self.assertTrue(np.allclose(c, c_np))
|
|
|
|
# Check shapes
|
|
a = mx.random.normal((2, 3)).astype(mx.complex64)
|
|
b = mx.random.normal((3,))
|
|
self.assertEqual((a @ b).shape, (2,))
|
|
|
|
a = mx.random.normal((2, 3)).astype(mx.complex64)
|
|
b = mx.random.normal((3,))
|
|
c = mx.random.normal((2,))
|
|
self.assertEqual(mx.addmm(c, a, b).shape, (2,))
|
|
|
|
def test_complex_gemm(self):
|
|
M = 16
|
|
K = 50
|
|
N = 32
|
|
|
|
def rand(shape):
|
|
return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
|
|
|
|
a = rand((M, K))
|
|
b = rand((K, N))
|
|
c = mx.matmul(a, b)
|
|
c_np = np.matmul(a, b)
|
|
self.assertTrue(np.allclose(c, c_np))
|
|
|
|
# Test addmm
|
|
a = rand((M, K))
|
|
b = rand((K, N))
|
|
c = rand((M, N))
|
|
out = mx.addmm(c, a, b, 2.0, 2.0)
|
|
out_np = 2.0 * np.matmul(a, b) + 2.0 * c
|
|
self.assertTrue(np.allclose(out, out_np))
|
|
|
|
# complex with real
|
|
a = rand((M, K)).real
|
|
b = rand((K, N))
|
|
c = mx.matmul(a, b)
|
|
c_np = np.matmul(a, b)
|
|
self.assertTrue(np.allclose(out, out_np))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner()
|