mlx/python/tests/test_conv.py

1192 lines
40 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import math
import unittest
from itertools import permutations
import mlx.core as mx
import mlx_tests
import numpy as np
try:
import torch
import torch.nn.functional as F
has_torch = True
except ImportError as e:
has_torch = False
class TestConv(mlx_tests.MLXTestCase):
def test_numpy_conv(self):
for dtype in (
"float16",
"float32",
):
np_dtype = getattr(np, dtype)
for M, N, mode in (
(1, 1, "full"),
(25, 5, "full"),
(24, 5, "same"),
(24, 4, "same"),
(24, 4, "valid"),
(4, 24, "full"),
(5, 25, "same"),
(4, 25, "valid"),
):
with self.subTest(dtype=dtype, M=M, N=N, mode=mode):
atol = 1e-6 if dtype == "float32" else 1e-5
a_np = np.random.rand(M).astype(np_dtype)
v_np = np.random.rand(N).astype(np_dtype)
a_mx = mx.array(a_np)
v_mx = mx.array(v_np)
c_np = np.convolve(a_np, v_np, mode=mode)
c_mx = mx.convolve(a_mx, v_mx, mode=mode)
self.assertEqual(c_mx.shape, c_np.shape)
self.assertTrue(np.allclose(c_mx, c_np, atol=atol))
def test_conv_1d_groups_flipped(self):
x = mx.broadcast_to(mx.arange(5).astype(mx.float32), (2, 5)).T
w = mx.broadcast_to(mx.arange(4).astype(mx.float32), (2, 4))
out = mx.conv_general(x[None], w[..., None], flip=True, groups=2)
expected = mx.array([4.0, 4.0, 10.0, 10.0]).reshape(1, 2, 2)
self.assertTrue(mx.allclose(out, expected))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_1D(self):
def run_conv1D(
N,
C,
O,
iH,
kH,
stride,
padding,
dilation=1,
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
iH=iH,
kH=kH,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, int(C / groups))).astype(
np_dtype
)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)), (in_np, wt_np)
)
out_mx = mx.conv1d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.conv1d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.transpose(out_pt, 2, 1)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for iH, kH, stride, padding in (
(1, 1, 1, 0),
(3, 3, 1, 0),
(31, 5, 5, 2),
):
run_conv1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
# Groups tests
N, C, O = (4, 32, 64)
for iH, kH, stride, padding in (
(1, 1, 1, 0),
(3, 3, 1, 0),
(31, 5, 5, 2),
):
for group in (1, 2, 4, 8, 16, 32):
run_conv1D(N, C, O, iH, kH, stride, padding, groups=group, dtype=dtype)
# Strided inputs tests
for tpose_in, tpose_wt in (
((0, 2, 1), (0, 1, 2)),
((0, 2, 1), (0, 2, 1)),
):
with self.subTest(name="strided", tpose_in=tpose_in, tpose_wt=tpose_wt):
in_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
wt_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_mx_t = mx.transpose(in_mx, tpose_in)
wt_mx_t = mx.transpose(wt_mx, tpose_wt)
out_mx = mx.conv1d(in_mx_t, wt_mx_t)
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
(in_np.transpose(tpose_in), wt_np.transpose(tpose_wt)),
)
out_pt = torch.conv1d(in_pt, wt_pt)
out_pt = torch.transpose(out_pt, 2, 1)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=1e-5))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_1D_grad(self):
def run_conv1D_grad(
N,
C,
O,
iH,
kH,
stride,
padding,
dilation=1,
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
iH=iH,
kH=kH,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
oH = 1 + ((iH + 2 * padding - dilation * (kH - 1) - 1) // stride)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
ct_np = np.random.normal(0, 1.0 / C, (N, oH, O)).astype(np_dtype)
in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
in_pt, wt_pt, ct_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
(in_np, wt_np, ct_np),
)
def f(a, b):
return mx.conv1d(
a,
b,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
_, outs_mx = mx.vjp(
f,
[
in_mx,
wt_mx,
],
[
ct_mx,
],
)
pt_grad_in = F.grad.conv1d_input(
in_pt.shape,
wt_pt,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_wt = F.grad.conv1d_weight(
in_pt,
wt_pt.shape,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_in = torch.transpose(pt_grad_in, 2, 1).numpy()
pt_grad_wt = torch.transpose(pt_grad_wt, 2, 1).numpy()
mx_grad_in, mx_grad_wt = outs_mx
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
self.assertEqual(in_mx.shape, mx_grad_in.shape)
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for iH, kH, stride, padding in (
(1, 1, 1, 0),
(3, 3, 1, 0),
(31, 5, 5, 2),
):
run_conv1D_grad(N, C, O, iH, kH, stride, padding, dtype=dtype)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_2D(self):
def run_conv2D(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1),
groups=1,
dtype="float32",
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
scale = 1.0 / math.sqrt(kH * kW * C)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C))
wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups)))
mx_dtype = getattr(mx, dtype)
torch_dtype = getattr(torch, dtype)
in_mx, wt_mx = map(
lambda x: mx.array(x).astype(mx_dtype), (in_np, wt_np)
)
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2))
.to("cpu")
.to(torch_dtype),
(in_np, wt_np),
)
out_mx = mx.conv2d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
).astype(mx.float32)
out_pt = torch.conv2d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = (
torch.permute(out_pt, (0, 2, 3, 1))
.to(torch.float32)
.numpy(force=True)
)
self.assertEqual(out_pt.shape, out_mx.shape)
if dtype == "bfloat16":
atol, rtol = 1e-1, 1e-3
else:
atol, rtol = 1e-5, 1e-6
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32", "bfloat16"):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for idim, kdim, stride, padding in (
((1, 1), (1, 1), (1, 1), (0, 0)),
((3, 3), (3, 1), (1, 1), (0, 0)),
((31, 31), (5, 5), (5, 5), (2, 2)),
):
run_conv2D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
# Groups tests
N, C, O = (4, 32, 64)
for idim, kdim, stride, padding in (
((1, 1), (1, 1), (1, 1), (0, 0)),
((3, 3), (3, 1), (1, 1), (0, 0)),
((31, 31), (5, 5), (5, 5), (2, 2)),
):
for group in (1, 2, 4, 8, 16, 32):
run_conv2D(
N, C, O, idim, kdim, stride, padding, groups=group, dtype=dtype
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_2D_grad(self):
def run_conv2D_grad(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
scale = 1.0 / math.sqrt(kH * kW * C)
oH = 1 + (
(iH + 2 * padding[0] - dilation[0] * (kH - 1) - 1) // stride[0]
)
oW = 1 + (
(iW + 2 * padding[1] - dilation[1] * (kW - 1) - 1) // stride[1]
)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
wt_np = np.random.normal(0.0, scale, (O, kH, kW, C)).astype(np_dtype)
ct_np = np.random.normal(0.0, scale, (N, oH, oW, O)).astype(np_dtype)
in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
in_pt, wt_pt, ct_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2)).to("cpu"),
(in_np, wt_np, ct_np),
)
def f(a, b):
return mx.conv2d(
a,
b,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
_, outs_mx = mx.vjp(
f,
[in_mx, wt_mx],
[ct_mx],
)
pt_grad_in = F.grad.conv2d_input(
in_pt.shape,
wt_pt,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_wt = F.grad.conv2d_weight(
in_pt,
wt_pt.shape,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_in = torch.permute(pt_grad_in, (0, 2, 3, 1)).numpy()
pt_grad_wt = torch.permute(pt_grad_wt, (0, 2, 3, 1)).numpy()
mx_grad_in, mx_grad_wt = outs_mx
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
self.assertEqual(in_mx.shape, mx_grad_in.shape)
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
for dtype in ("float32",):
for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 32, 64), (4, 16, 32)):
for idim, kdim, stride, padding, dilation in (
((1, 1), (1, 1), (1, 1), (0, 0), (1, 1)),
((3, 3), (3, 1), (1, 1), (0, 0), (1, 1)),
((31, 31), (5, 5), (5, 5), (2, 2), (1, 1)),
((32, 32), (3, 3), (2, 2), (1, 1), (1, 1)),
((31, 31), (5, 5), (5, 5), (2, 2), (3, 2)),
((32, 32), (3, 3), (2, 2), (1, 1), (3, 2)),
):
run_conv2D_grad(
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_3D(self):
def run_conv3D(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iD, iH, iW = idim
kD, kH, kW = kdim
scale = 1.0 / math.sqrt(kD * kH * kW * C)
in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
np_dtype
)
wt_np = np.random.normal(0.0, 1.0, (O, kD, kH, kW, C)).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 4, 1, 2, 3)).to("cpu"),
(in_np, wt_np),
)
out_mx = mx.conv3d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.conv3d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 16, 32),
):
continue
for idim, kdim, stride, padding in (
((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0)),
((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0)),
((31, 31, 31), (5, 5, 5), (5, 5, 5), (2, 2, 2)),
):
run_conv3D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
N, C, O = (2, 4, 4)
idim, kdim, stride, padding = (6, 6, 6), (3, 1, 1), (1, 1, 1), (0, 0, 0)
run_conv3D(
N, C, O, idim, kdim, stride, padding, dilation=(2, 2, 2), dtype=dtype
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_3D_grad(self):
def run_conv3D_grad(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iD, iH, iW = idim
kD, kH, kW = kdim
scale = 1.0 / math.sqrt(kD * kH * kW * C)
oD = 1 + (
(iD + 2 * padding[0] - dilation[0] * (kD - 1) - 1) // stride[0]
)
oH = 1 + (
(iH + 2 * padding[1] - dilation[1] * (kH - 1) - 1) // stride[1]
)
oW = 1 + (
(iW + 2 * padding[2] - dilation[2] * (kW - 1) - 1) // stride[2]
)
in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
np_dtype
)
wt_np = np.random.normal(0.0, scale, (O, kD, kH, kW, C)).astype(
np_dtype
)
ct_np = np.random.normal(0.0, scale, (N, oD, oH, oW, O)).astype(
np_dtype
)
in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
in_pt, wt_pt, ct_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 4, 1, 2, 3)).to("cpu"),
(in_np, wt_np, ct_np),
)
def f(a, b):
return mx.conv3d(
a,
b,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
_, outs_mx = mx.vjp(
f,
[in_mx, wt_mx],
[ct_mx],
)
pt_grad_in = F.grad.conv3d_input(
in_pt.shape,
wt_pt,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_wt = F.grad.conv3d_weight(
in_pt,
wt_pt.shape,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_in = torch.permute(pt_grad_in, (0, 2, 3, 4, 1)).numpy()
pt_grad_wt = torch.permute(pt_grad_wt, (0, 2, 3, 4, 1)).numpy()
mx_grad_in, mx_grad_wt = outs_mx
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
self.assertEqual(in_mx.shape, mx_grad_in.shape)
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
for dtype in ("float32",):
for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 16, 32), (4, 8, 16)):
for idim, kdim, stride, padding, dilation in (
((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
((15, 15, 15), (5, 5, 5), (5, 5, 5), (2, 2, 2), (1, 1, 1)),
((16, 16, 16), (3, 3, 3), (2, 2, 2), (1, 1, 1), (1, 1, 1)),
((15, 15, 15), (5, 5, 5), (5, 5, 5), (2, 2, 2), (3, 2, 2)),
((16, 16, 16), (3, 3, 3), (2, 2, 2), (1, 1, 1), (3, 2, 2)),
):
run_conv3D_grad(
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
)
def __conv_general_test(
self,
in_shape,
wt_shape,
stride=1,
padding=0,
kernel_dilation=1,
input_dilation=1,
groups=1,
flip=False,
np_dtype=np.float32,
atol=1e-5,
):
with self.subTest(
in_shape=in_shape,
wt_shape=wt_shape,
stride=stride,
padding=padding,
kernel_dilation=kernel_dilation,
input_dilation=input_dilation,
groups=groups,
flip=flip,
np_dtype=np_dtype,
):
np.random.seed(0)
scale = 1.0 / math.sqrt(np.prod(wt_shape[1:]))
scale = min(0.3, scale)
in_np = np.random.normal(0, scale, in_shape).astype(np_dtype)
wt_np = np.random.normal(0, scale, wt_shape).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
lambda x: torch.from_numpy(np.moveaxis(x, -1, 1)).to("cpu"),
(in_np, wt_np),
)
out_mx = mx.conv_general(
in_mx,
wt_mx,
stride=stride,
padding=padding,
kernel_dilation=kernel_dilation,
input_dilation=input_dilation,
groups=groups,
flip=flip,
)
def conv_general_pt(
inp, wt, stride, padding, kernel_dilation, input_dilation, groups, flip
):
C = inp.size()[1]
ndim = inp.ndim - 2
map_ints = lambda x: [x] * ndim if isinstance(x, int) else x
stride, padding, kernel_dilation, input_dilation = map(
map_ints, (stride, padding, kernel_dilation, input_dilation)
)
torch_convt_list = (
F.conv_transpose1d,
F.conv_transpose2d,
F.conv_transpose3d,
)
torch_conv_list = (F.conv1d, F.conv2d, F.conv3d)
conv_f = torch_conv_list[ndim - 1]
convt_f = torch_convt_list[ndim - 1]
if flip:
wt = torch.flip(wt, tuple(np.arange(2, wt.ndim)))
if not np.all(input_dilation == 1):
ones = torch.ones(
[C]
+ [
1,
]
* (ndim + 1)
).to(inp.dtype)
inp = convt_f(inp, ones, stride=input_dilation, groups=C)
return conv_f(
inp,
wt,
stride=stride,
padding=padding,
dilation=kernel_dilation,
groups=groups,
)
out_pt = conv_general_pt(
in_pt,
wt_pt,
stride=stride,
padding=padding,
kernel_dilation=kernel_dilation,
input_dilation=input_dilation,
groups=groups,
flip=flip,
)
out_pt = np.moveaxis(out_pt.numpy(), 1, -1)
self.assertEqual(out_mx.shape, out_pt.shape)
self.assertTrue(np.allclose(out_mx, out_pt, atol=atol))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_general(self):
in_shape = (2, 32, 32, 16)
wt_shape = (32, 5, 5, 16)
stride = (1, 1)
padding = (2, 2)
kernel_dilation = (2, 3)
input_dilation = (1, 1)
flip = False
self.__conv_general_test(
in_shape,
wt_shape,
stride,
padding,
kernel_dilation,
input_dilation,
flip=flip,
)
in_shape = (2, 32, 32, 16)
wt_shape = (32, 5, 10, 16)
stride = (2, 3)
padding = (0, 0)
kernel_dilation = (3, 2)
input_dilation = (2, 4)
flip = False
self.__conv_general_test(
in_shape,
wt_shape,
stride,
padding,
kernel_dilation,
input_dilation,
flip=flip,
)
in_shape = (2, 32, 32, 16)
wt_shape = (32, 5, 10, 16)
stride = (2, 2)
padding = (3, 2)
kernel_dilation = (3, 2)
input_dilation = (2, 4)
flip = False
self.__conv_general_test(
in_shape,
wt_shape,
stride,
padding,
kernel_dilation,
input_dilation,
flip=flip,
)
in_shape = (2, 32, 32, 16)
wt_shape = (32, 5, 10, 16)
stride = (2, 3)
padding = (3, 2)
kernel_dilation = (3, 2)
input_dilation = (2, 5)
flip = False
self.__conv_general_test(
in_shape,
wt_shape,
stride,
padding,
kernel_dilation,
input_dilation,
flip=flip,
)
in_shape = (2, 32, 32, 16)
wt_shape = (32, 5, 5, 16)
stride = (2, 3)
padding = (0, 0)
kernel_dilation = (3, 1)
input_dilation = (2, 5)
flip = True
self.__conv_general_test(
in_shape,
wt_shape,
stride,
padding,
kernel_dilation,
input_dilation,
flip=flip,
)
def test_conv_general_flip_grad(self):
for s in (1, 2):
w = mx.random.normal(shape=(1, 2, 2, 1))
x = mx.random.normal(shape=(1, 2, 2, 1))
def conv_t(w):
return mx.conv_general(
x,
w,
stride=1,
padding=(1, 1),
kernel_dilation=1,
input_dilation=s,
flip=True,
)
cotan = mx.random.normal(shape=(1, 2 + s, 2 + s, 1))
dw = mx.vjp(conv_t, (w,), (cotan,))[1][0]
x = x.squeeze()
cotan = cotan.squeeze()
dw = dw.squeeze()
dw00 = (cotan[:-1:s, :-1:s] * x).sum()
dw01 = (cotan[:-1:s, 1::s] * x).sum()
dw10 = (cotan[1::s, :-1:s] * x).sum()
dw11 = (cotan[1::s, 1::s] * x).sum()
expected = mx.array([[dw00, dw01], [dw10, dw11]])
self.assertTrue(mx.allclose(dw, expected, rtol=1e-5, atol=1e-5))
# Test with input dilation
inputs = mx.random.normal((1, 14, 14, 2))
kernel = mx.random.normal((2, 7, 7, 2))
def conv_flip(kernel):
return mx.conv_general(
inputs,
kernel,
stride=1,
padding=([6, 6], [15, 15]),
kernel_dilation=(1, 1),
input_dilation=(16, 16),
groups=1,
flip=True,
).sum()
def reverse_sequence(xs, axis=0):
indices = mx.arange(xs.shape[axis] - 1, -1, -1)
return mx.take(xs, indices, axis=axis)
def conv_manual_flip(kernel):
for ax in range(1, kernel.ndim - 1):
kernel = reverse_sequence(kernel, axis=ax)
return mx.conv_general(
inputs,
kernel,
stride=1,
padding=([6, 6], [15, 15]),
kernel_dilation=(1, 1),
input_dilation=(16, 16),
groups=1,
flip=False,
).sum()
grad = mx.grad(conv_flip)(kernel)
expected_grad = mx.grad(conv_manual_flip)(kernel)
self.assertTrue(mx.allclose(grad, expected_grad))
def test_conv_groups_grad(self):
def fn(x, w):
num_groups = x.shape[-1] // w.shape[-1]
return mx.conv1d(x, w, groups=num_groups)
def fn_gt(x, w):
num_groups = x.shape[-1] // w.shape[-1]
group_size = w.shape[-1]
ws = w.reshape(num_groups, -1, *w.shape[1:]).split(num_groups)
xs = x.reshape(*x.shape[:-1], num_groups, -1).split(num_groups, axis=-2)
return mx.concatenate(
[mx.conv_general(x.squeeze(-2), w.squeeze(0)) for x, w in zip(xs, ws)],
axis=-1,
)
mx.random.seed(3)
w = mx.random.normal(shape=(2, 3, 1))
x = mx.random.normal(shape=(1, 5, 2))
cotans = (mx.ones(shape=(1, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
w = mx.random.normal(shape=(2, 3, 2))
x = mx.random.normal(shape=(1, 5, 4))
cotans = (mx.ones(shape=(1, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
w = mx.random.normal(shape=(6, 3, 2))
x = mx.random.normal(shape=(1, 5, 4))
cotans = (mx.ones(shape=(1, 3, 6)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
# Test 2D
w = mx.random.normal(shape=(2, 3, 3, 1))
x = mx.random.normal(shape=(1, 5, 5, 2))
cotans = (mx.ones(shape=(1, 3, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
# Test with flip
def fn(x, w):
num_groups = x.shape[-1] // w.shape[-1]
return mx.conv_general(x, w, groups=num_groups, flip=True)
def fn_gt(x, w):
num_groups = x.shape[-1] // w.shape[-1]
group_size = w.shape[-1]
ws = w.reshape(num_groups, -1, *w.shape[1:]).split(num_groups)
xs = x.reshape(*x.shape[:-1], num_groups, -1).split(num_groups, axis=-2)
return mx.concatenate(
[
mx.conv_general(x.squeeze(-2), w.squeeze(0), flip=True)
for x, w in zip(xs, ws)
],
axis=-1,
)
w = mx.random.normal(shape=(2, 3, 1))
x = mx.random.normal(shape=(1, 5, 2))
cotans = (mx.ones(shape=(1, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
w = mx.random.normal(shape=(2, 3, 2))
x = mx.random.normal(shape=(1, 5, 4))
cotans = (mx.ones(shape=(1, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
# Test 2D
w = mx.random.normal(shape=(2, 3, 3, 1))
x = mx.random.normal(shape=(1, 5, 5, 2))
cotans = (mx.ones(shape=(1, 3, 3, 2)),)
grads = mx.vjp(fn, (x, w), cotans)[1]
expected = mx.vjp(fn_gt, (x, w), cotans)[1]
self.assertTrue(mx.allclose(expected[0], grads[0]))
self.assertTrue(mx.allclose(expected[1], grads[1]))
def test_repeated_conv(self):
x = mx.random.normal((1, 3, 3, 320))
w = mx.random.normal((320, 3, 3, 320))
for i in range(8):
y1 = mx.conv2d(x, w, (1, 1), (1, 1), (1, 1), 1)
y2 = mx.conv2d(x, w, (1, 1), (1, 1), (1, 1), 1)
self.assertTrue(mx.allclose(y1, y2))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_depthwise(self):
# fmt: off
shapes = (
# N, H, W, C kH, kW, O, strides, padding, groups
( 2, 16, 16, 32, 1, 1, 32, (2, 2), (1, 1), 32),
( 1, 16, 16, 32, 3, 3, 32, (2, 2), (1, 1), 32),
( 1, 32, 32, 32, 7, 7, 32, (1, 1), (3, 3), 32),
( 3, 32, 32, 32, 5, 5, 32, (1, 2), (0, 0), 32),
( 1, 32, 32, 32, 7, 7, 32, (2, 1), (1, 3), 32),
)
# fmt: on
dtypes = [np.float32]
if mx.default_device() == mx.gpu:
dtypes += [np.float16]
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
for dtype in dtypes:
for flip in [False, True]:
Cw = C // groups
self.__conv_general_test(
(N, H, W, C),
(O, kH, kW, Cw),
strides,
padding,
kernel_dilation=1,
input_dilation=1,
groups=groups,
flip=flip,
np_dtype=dtype,
atol=2e-5 if dtype == np.float32 else 5e-4,
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_asymmetric_padding(self):
inputs = np.random.normal(size=(2, 8, 8, 8, 3)).astype(np.float32)
kernel = np.random.normal(size=(2, 3, 3, 3, 3)).astype(np.float32)
strides = (2, 2, 2)
pt_out = torch.conv3d(
torch.permute(torch.tensor(inputs), (0, 4, 1, 2, 3)),
torch.permute(torch.tensor(kernel), (0, 4, 1, 2, 3)),
stride=strides,
padding=2,
)
pt_out = torch.permute(pt_out, (0, 2, 3, 4, 1))[:, 1:, 1:, 1:, :].numpy()
mx_out = mx.conv_general(
mx.array(inputs),
mx.array(kernel),
stride=strides,
padding=([0, 0, 0], [1, 1, 1]),
)
self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
inputs = np.random.normal(size=(2, 10, 10, 3)).astype(np.float32)
kernel = np.random.normal(size=(2, 2, 2, 3)).astype(np.float32)
pt_out = torch.conv2d(
torch.permute(torch.tensor(inputs), (0, 3, 1, 2)),
torch.permute(torch.tensor(kernel), (0, 3, 1, 2)),
stride=1,
padding=(1, 0),
)
pt_out = torch.permute(pt_out, (0, 2, 3, 1))[:, 1:].numpy()
mx_out = mx.conv_general(
mx.array(inputs),
mx.array(kernel),
stride=1,
padding=([0, 0], [1, 0]),
)
self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
def test_basic_grad_shapes(self):
def loss_fn(kernel, inputs, strides, groups):
return mx.sum(
mx.conv_general(
inputs,
kernel,
stride=strides,
groups=groups,
)
)
for in_shape, k_shape, strides, groups in [
((3, 5, 4), (6, 2, 2), (2,), 2),
((3, 5, 4), (24, 2, 1), (2,), 4),
((3, 5, 5, 4), (6, 2, 2, 2), (2, 1), 2),
((3, 5, 5, 4), (24, 2, 2, 1), (2, 2), 4),
]:
grads = mx.grad(loss_fn)(
mx.zeros(k_shape), mx.zeros(in_shape), strides, groups
)
self.assertEqual(grads.shape, k_shape)
def test_1d_conv_with_2d(self):
x = mx.random.uniform(shape=(2, 10, 16))
y = mx.random.normal(shape=(16, 3, 16))
out = mx.conv1d(x, y, padding=1)
out_2d = mx.conv2d(
mx.expand_dims(x, axis=2), mx.expand_dims(y, axis=2), padding=(1, 0)
)
self.assertTrue(mx.allclose(out, out_2d.squeeze(2)))
x = mx.random.uniform(shape=(2, 10, 4))
y = mx.random.normal(shape=(4, 3, 4))
out = mx.conv1d(x, y, padding=1)
out_2d = mx.conv2d(
mx.expand_dims(x, axis=2), mx.expand_dims(y, axis=2), padding=(1, 0)
)
self.assertTrue(mx.allclose(out, out_2d.squeeze(2)))
def test_conv2d_unaligned_channels(self):
x = mx.random.uniform(shape=(2, 16, 16, 21))
w = mx.random.uniform(shape=(32, 3, 3, 21))
y = mx.conv2d(x, w, stream=mx.cpu)
y_hat = mx.conv2d(x, w)
self.assertTrue(mx.allclose(y, y_hat))
x = mx.random.uniform(shape=(2, 16, 16, 21))
w = mx.random.uniform(shape=(21, 3, 3, 21))
y = mx.conv2d(x, w, stream=mx.cpu)
y_hat = mx.conv2d(x, w)
self.assertTrue(mx.allclose(y, y_hat))
if __name__ == "__main__":
mlx_tests.MLXTestRunner()