mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
811 lines
28 KiB
Python
811 lines
28 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import math
|
|
import unittest
|
|
from itertools import permutations
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
try:
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
has_torch = True
|
|
except ImportError as e:
|
|
has_torch = False
|
|
|
|
|
|
class TestConvTranspose(mlx_tests.MLXTestCase):
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_1D(self):
|
|
def run_conv_transpose_1D(
|
|
N,
|
|
C,
|
|
O,
|
|
iH,
|
|
kH,
|
|
stride,
|
|
padding,
|
|
output_padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
iH=iH,
|
|
kH=kH,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0, 1.0 / C, (O, kH, int(C / groups))).astype(
|
|
np_dtype
|
|
)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
|
|
|
|
out_mx = mx.conv_transpose1d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.conv_transpose1d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.transpose(out_pt, 2, 1)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in (
|
|
(1, 1, 1),
|
|
(1, 6, 1),
|
|
(1, 1, 6),
|
|
(4, 32, 64),
|
|
):
|
|
for iH, kH, stride, padding in (
|
|
(1, 1, 1, 0),
|
|
(3, 3, 1, 0),
|
|
(31, 5, 5, 2),
|
|
):
|
|
run_conv_transpose_1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
|
|
|
|
# Groups tests
|
|
N, C, O = (4, 32, 64)
|
|
for iH, kH, stride, padding in (
|
|
(1, 1, 1, 0),
|
|
(3, 3, 1, 0),
|
|
(31, 5, 5, 2),
|
|
):
|
|
for group in (1,):
|
|
run_conv_transpose_1D(
|
|
N, C, O, iH, kH, stride, padding, groups=group, dtype=dtype
|
|
)
|
|
|
|
# Strided inputs tests
|
|
for tpose_in, tpose_wt in (
|
|
((0, 2, 1), (0, 1, 2)),
|
|
((0, 2, 1), (0, 2, 1)),
|
|
):
|
|
with self.subTest(name="strided", tpose_in=tpose_in, tpose_wt=tpose_wt):
|
|
in_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
|
|
wt_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_mx_t = mx.transpose(in_mx, tpose_in)
|
|
wt_mx_t = mx.transpose(wt_mx, tpose_wt)
|
|
out_mx = mx.conv_transpose1d(in_mx_t, wt_mx_t)
|
|
|
|
in_pt = torch.from_numpy(in_np.transpose(tpose_in).transpose(0, 2, 1))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(tpose_wt).transpose(2, 0, 1))
|
|
|
|
out_pt = torch.conv_transpose1d(in_pt, wt_pt)
|
|
out_pt = torch.transpose(out_pt, 2, 1)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=1e-5))
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_1D_grad(self):
|
|
def run_conv_transpose1D_grad(
|
|
N,
|
|
C,
|
|
O,
|
|
iH,
|
|
kH,
|
|
stride,
|
|
padding,
|
|
dilation=1,
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
iH=iH,
|
|
kH=kH,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
# oH = 1 + ((iH + 2 * padding - dilation * (kH - 1) - 1) // stride)
|
|
|
|
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 2, 1)).requires_grad_(True)
|
|
wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1)).requires_grad_(True)
|
|
|
|
out_pt = F.conv_transpose1d(
|
|
in_pt, wt_pt, stride=stride, padding=padding, dilation=dilation
|
|
)
|
|
|
|
# use torch to compute ct
|
|
out_pt.retain_grad()
|
|
out_pt.sum().backward()
|
|
|
|
pt_grad_in = in_pt.grad.permute(0, 2, 1).numpy()
|
|
pt_grad_wt = wt_pt.grad.permute(1, 2, 0).numpy()
|
|
|
|
ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 1))
|
|
|
|
def f(a, b):
|
|
return mx.conv_transpose1d(
|
|
a,
|
|
b,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
_, outs_mx = mx.vjp(
|
|
f,
|
|
[
|
|
in_mx,
|
|
wt_mx,
|
|
],
|
|
[
|
|
ct_mx,
|
|
],
|
|
)
|
|
|
|
mx_grad_in, mx_grad_wt = outs_mx
|
|
|
|
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
|
|
self.assertEqual(in_mx.shape, mx_grad_in.shape)
|
|
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
|
|
|
|
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
|
|
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
|
|
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in (
|
|
(1, 1, 1),
|
|
(1, 6, 1),
|
|
(1, 1, 6),
|
|
(4, 32, 64),
|
|
):
|
|
for iH, kH, stride, padding in (
|
|
(1, 1, 1, 0),
|
|
(3, 3, 1, 0),
|
|
(31, 5, 5, 2),
|
|
):
|
|
run_conv_transpose1D_grad(
|
|
N, C, O, iH, kH, stride, padding, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_2D(self):
|
|
def run_conv_transpose2D(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
dilation=(1, 1),
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iH, iW = idim
|
|
kH, kW = kdim
|
|
scale = 1.0 / math.sqrt(kH * kW * C)
|
|
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups))).astype(
|
|
np_dtype
|
|
)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2)).to("cpu")
|
|
wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2)).to("cpu")
|
|
|
|
out_mx = mx.conv_transpose2d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.conv_transpose2d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in (
|
|
(1, 1, 1),
|
|
(1, 6, 1),
|
|
(1, 1, 6),
|
|
(4, 32, 64),
|
|
):
|
|
for idim, kdim, stride, padding in (
|
|
((1, 1), (1, 1), (1, 1), (0, 0)),
|
|
((3, 3), (3, 1), (1, 1), (0, 0)),
|
|
((31, 31), (5, 5), (5, 5), (2, 2)),
|
|
):
|
|
run_conv_transpose2D(
|
|
N, C, O, idim, kdim, stride, padding, dtype=dtype
|
|
)
|
|
|
|
# Groups tests
|
|
N, C, O = (4, 32, 64)
|
|
for idim, kdim, stride, padding in (
|
|
((1, 1), (1, 1), (1, 1), (0, 0)),
|
|
((3, 3), (3, 1), (1, 1), (0, 0)),
|
|
((31, 31), (5, 5), (5, 5), (2, 2)),
|
|
):
|
|
for group in (1,):
|
|
run_conv_transpose2D(
|
|
N, C, O, idim, kdim, stride, padding, groups=group, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_2D_grad(self):
|
|
def run_conv_transpose2D_grad(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
dilation=(1, 1),
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iH, iW = idim
|
|
kH, kW = kdim
|
|
scale = 1.0 / math.sqrt(kH * kW * C * O)
|
|
|
|
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0.0, scale, (O, kH, kW, C)).astype(np_dtype)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2)).requires_grad_(
|
|
True
|
|
)
|
|
wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2)).requires_grad_(
|
|
True
|
|
)
|
|
|
|
out_pt = F.conv_transpose2d(
|
|
in_pt, wt_pt, stride=stride, padding=padding, dilation=dilation
|
|
)
|
|
|
|
# use torch to compute ct
|
|
out_pt.retain_grad()
|
|
out_pt.sum().backward()
|
|
|
|
pt_grad_in = in_pt.grad.permute(0, 2, 3, 1).numpy()
|
|
pt_grad_wt = wt_pt.grad.permute(1, 2, 3, 0).numpy()
|
|
|
|
ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 3, 1))
|
|
|
|
def f(a, b):
|
|
return mx.conv_transpose2d(
|
|
a,
|
|
b,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
_, outs_mx = mx.vjp(
|
|
f,
|
|
[in_mx, wt_mx],
|
|
[ct_mx],
|
|
)
|
|
|
|
mx_grad_in, mx_grad_wt = outs_mx
|
|
|
|
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
|
|
self.assertEqual(in_mx.shape, mx_grad_in.shape)
|
|
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
|
|
|
|
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
|
|
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
|
|
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 32, 64), (4, 16, 32)):
|
|
for idim, kdim, stride, padding, dilation in (
|
|
((1, 1), (1, 1), (1, 1), (0, 0), (1, 1)),
|
|
((3, 3), (3, 1), (1, 1), (0, 0), (1, 1)),
|
|
((31, 31), (5, 5), (5, 5), (2, 2), (1, 1)),
|
|
((32, 32), (3, 3), (2, 2), (1, 1), (1, 1)),
|
|
((31, 31), (5, 5), (5, 5), (2, 2), (3, 2)),
|
|
((32, 32), (3, 3), (2, 2), (1, 1), (3, 2)),
|
|
):
|
|
run_conv_transpose2D_grad(
|
|
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_3D(self):
|
|
def run_conv_transpose3D(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
dilation=(1, 1, 1),
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iD, iH, iW = idim
|
|
kD, kH, kW = kdim
|
|
scale = 1.0 / math.sqrt(kD * kH * kW * C * O)
|
|
in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
|
|
np_dtype
|
|
)
|
|
wt_np = np.random.normal(0.0, 1.0, (O, kD, kH, kW, C)).astype(np_dtype)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
|
|
|
|
out_mx = mx.conv_transpose3d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.conv_transpose3d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in (
|
|
(1, 1, 1),
|
|
(1, 6, 1),
|
|
(1, 1, 6),
|
|
(2, 8, 16),
|
|
):
|
|
for idim, kdim, stride, padding in (
|
|
((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0)),
|
|
((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0)),
|
|
((15, 15, 15), (3, 3, 3), (3, 3, 3), (2, 2, 2)),
|
|
):
|
|
run_conv_transpose3D(
|
|
N, C, O, idim, kdim, stride, padding, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_3D_grad(self):
|
|
def run_conv_transpose3D_grad(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
dilation=(1, 1, 1),
|
|
groups=1,
|
|
dtype="float32",
|
|
atol=1e-4,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iD, iH, iW = idim
|
|
kD, kH, kW = kdim
|
|
scale = 1.0 / math.sqrt(kD * kH * kW * C * O)
|
|
|
|
in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
|
|
np_dtype
|
|
)
|
|
wt_np = np.random.normal(0.0, scale, (O, kD, kH, kW, C)).astype(
|
|
np_dtype
|
|
)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3)).requires_grad_(
|
|
True
|
|
)
|
|
wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3)).requires_grad_(
|
|
True
|
|
)
|
|
|
|
out_pt = F.conv_transpose3d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
# use torch to compute ct
|
|
out_pt.retain_grad()
|
|
out_pt.sum().backward()
|
|
|
|
pt_grad_in = in_pt.grad.permute(0, 2, 3, 4, 1).numpy()
|
|
pt_grad_wt = wt_pt.grad.permute(1, 2, 3, 4, 0).numpy()
|
|
|
|
ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 3, 4, 1))
|
|
|
|
def f(a, b):
|
|
return mx.conv_transpose3d(
|
|
a,
|
|
b,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
_, outs_mx = mx.vjp(
|
|
f,
|
|
[in_mx, wt_mx],
|
|
[ct_mx],
|
|
)
|
|
|
|
mx_grad_in, mx_grad_wt = outs_mx
|
|
|
|
self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
|
|
self.assertEqual(in_mx.shape, mx_grad_in.shape)
|
|
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
|
|
|
|
self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
|
|
self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
|
|
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (2, 4, 8), (2, 8, 16)):
|
|
for idim, kdim, stride, padding, dilation in (
|
|
((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
|
|
((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
|
|
((7, 7, 7), (5, 5, 5), (5, 5, 5), (2, 2, 2), (1, 1, 1)),
|
|
((8, 8, 8), (3, 3, 3), (2, 2, 2), (1, 1, 1), (1, 1, 1)),
|
|
((7, 7, 7), (5, 5, 5), (3, 3, 3), (2, 2, 2), (3, 2, 2)),
|
|
((8, 8, 8), (3, 3, 3), (2, 2, 2), (1, 1, 1), (3, 2, 2)),
|
|
):
|
|
run_conv_transpose3D_grad(
|
|
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_tranpose_1d_output_padding(self):
|
|
def run_conv_transpose_1d_output_padding(
|
|
N, C, O, iH, kH, stride, padding, output_padding, dtype="float32", atol=1e-5
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
iH=iH,
|
|
kH=kH,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
|
|
|
|
out_mx = mx.conv_transpose1d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
|
|
out_pt = torch.conv_transpose1d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
out_pt = torch.transpose(out_pt, 2, 1)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
|
for iH, kH, stride, padding, output_padding in (
|
|
(3, 2, 2, 0, 1),
|
|
(5, 3, 2, 1, 0),
|
|
(7, 4, 3, 1, 2),
|
|
):
|
|
run_conv_transpose_1d_output_padding(
|
|
N, C, O, iH, kH, stride, padding, output_padding, dtype=dtype
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_2d_output_padding(self):
|
|
def run_conv_transpose_2d_output_padding(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
output_padding,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iH, iW = idim
|
|
kH, kW = kdim
|
|
in_np = np.random.normal(0, 1.0 / C, (N, iH, iW, C)).astype(np_dtype)
|
|
wt_np = np.random.normal(0, 1.0 / C, (O, kH, kW, C)).astype(np_dtype)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2))
|
|
|
|
out_mx = mx.conv_transpose2d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
|
|
out_pt = torch.conv_transpose2d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
|
for idim, kdim, stride, padding, output_padding in (
|
|
((3, 3), (2, 2), (2, 2), (0, 0), (1, 1)),
|
|
((5, 5), (3, 3), (2, 2), (1, 1), (0, 0)),
|
|
((7, 7), (4, 4), (3, 3), (1, 1), (2, 2)),
|
|
):
|
|
run_conv_transpose_2d_output_padding(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
output_padding,
|
|
dtype=dtype,
|
|
)
|
|
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_conv_transpose_3d_output_padding(self):
|
|
def run_conv_transpose_3d_output_padding(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
output_padding,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
dtype=dtype,
|
|
N=N,
|
|
C=C,
|
|
O=O,
|
|
idim=idim,
|
|
kdim=kdim,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iD, iH, iW = idim
|
|
kD, kH, kW = kdim
|
|
in_np = np.random.normal(0, 1.0 / C, (N, iD, iH, iW, C)).astype(
|
|
np_dtype
|
|
)
|
|
wt_np = np.random.normal(0, 1.0 / C, (O, kD, kH, kW, C)).astype(
|
|
np_dtype
|
|
)
|
|
|
|
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
|
|
wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
|
|
|
|
out_mx = mx.conv_transpose3d(
|
|
in_mx,
|
|
wt_mx,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
out_pt = torch.conv_transpose3d(
|
|
in_pt,
|
|
wt_pt,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
)
|
|
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
|
|
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
|
for idim, kdim, stride, padding, output_padding in (
|
|
((3, 3, 3), (2, 2, 2), (2, 2, 2), (0, 0, 0), (1, 1, 1)),
|
|
((5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 1, 1), (0, 0, 0)),
|
|
((7, 7, 7), (4, 4, 4), (3, 3, 3), (1, 1, 1), (2, 2, 2)),
|
|
):
|
|
run_conv_transpose_3d_output_padding(
|
|
N,
|
|
C,
|
|
O,
|
|
idim,
|
|
kdim,
|
|
stride,
|
|
padding,
|
|
output_padding,
|
|
dtype=dtype,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner()
|