mlx/python/tests/test_double.py

298 lines
9.7 KiB
Python

# Copyright © 2024 Apple Inc.
import math
import os
import unittest
import mlx.core as mx
import mlx_tests
import numpy as np
class TestDouble(mlx_tests.MLXTestCase):
def test_unary_ops(self):
shape = (3, 3)
x = mx.random.normal(shape=shape)
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
x.astype(mx.float64)
x_double = x.astype(mx.float64, stream=mx.cpu)
ops = [
mx.abs,
mx.arccos,
mx.arccosh,
mx.arcsin,
mx.arcsinh,
mx.arctan,
mx.arctanh,
mx.ceil,
mx.erf,
mx.erfinv,
mx.exp,
mx.expm1,
mx.floor,
mx.log,
mx.logical_not,
mx.negative,
mx.round,
mx.sin,
mx.sinh,
mx.sqrt,
mx.rsqrt,
mx.tan,
mx.tanh,
]
for op in ops:
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
op(x_double)
continue
y = op(x)
y_double = op(x_double)
self.assertTrue(
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
)
def test_binary_ops(self):
shape = (3, 3)
a = mx.random.normal(shape=shape)
b = mx.random.normal(shape=shape)
a_double = a.astype(mx.float64, stream=mx.cpu)
b_double = b.astype(mx.float64, stream=mx.cpu)
ops = [
mx.add,
mx.arctan2,
mx.divide,
mx.multiply,
mx.subtract,
mx.logical_and,
mx.logical_or,
mx.remainder,
mx.maximum,
mx.minimum,
mx.power,
mx.equal,
mx.greater,
mx.greater_equal,
mx.less,
mx.less_equal,
mx.not_equal,
mx.logaddexp,
]
for op in ops:
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
op(a_double, b_double)
continue
y = op(a, b)
y_double = op(a_double, b_double)
self.assertTrue(
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
)
def test_where(self):
shape = (3, 3)
cond = mx.random.uniform(shape=shape) > 0.5
a = mx.random.normal(shape=shape)
b = mx.random.normal(shape=shape)
a_double = a.astype(mx.float64, stream=mx.cpu)
b_double = b.astype(mx.float64, stream=mx.cpu)
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
mx.where(cond, a_double, b_double)
return
y = mx.where(cond, a, b)
y_double = mx.where(cond, a_double, b_double)
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
def test_reductions(self):
shape = (32, 32)
a = mx.random.normal(shape=shape)
a_double = a.astype(mx.float64, stream=mx.cpu)
axes = [0, 1, (0, 1)]
ops = [mx.sum, mx.prod, mx.min, mx.max, mx.any, mx.all]
for op in ops:
for ax in axes:
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
op(a_double, axis=ax)
continue
y = op(a)
y_double = op(a_double)
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
def test_get_and_set_item(self):
shape = (3, 3)
a = mx.random.normal(shape=shape)
b = mx.random.normal(shape=(2,))
a_double = a.astype(mx.float64, stream=mx.cpu)
b_double = b.astype(mx.float64, stream=mx.cpu)
idx_i = mx.array([0, 2])
idx_j = mx.array([0, 2])
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
a_double[idx_i, idx_j]
else:
y = a[idx_i, idx_j]
y_double = a_double[idx_i, idx_j]
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
a_double[idx_i, idx_j] = b_double
else:
a[idx_i, idx_j] = b
a_double[idx_i, idx_j] = b_double
self.assertTrue(mx.allclose(a, a_double.astype(mx.float32, mx.cpu)))
def test_gemm(self):
shape = (8, 8)
a = mx.random.normal(shape=shape)
b = mx.random.normal(shape=shape)
a_double = a.astype(mx.float64, stream=mx.cpu)
b_double = b.astype(mx.float64, stream=mx.cpu)
if mx.default_device() == mx.gpu:
with self.assertRaises(ValueError):
a_double @ b_double
return
y = a @ b
y_double = a_double @ b_double
self.assertTrue(
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
)
def test_type_promotion(self):
import mlx.core as mx
a = mx.array([4, 8], mx.float64)
b = mx.array([4, 8], mx.int32)
with mx.stream(mx.cpu):
c = a + b
self.assertEqual(c.dtype, mx.float64)
def test_lapack(self):
with mx.stream(mx.cpu):
# QRF
A = mx.array([[2.0, 3.0], [1.0, 2.0]], dtype=mx.float64)
Q, R = mx.linalg.qr(A)
out = Q @ R
self.assertTrue(mx.allclose(out, A))
out = Q.T @ Q
self.assertTrue(mx.allclose(out, mx.eye(2)))
self.assertTrue(mx.allclose(mx.tril(R, -1), mx.zeros_like(R)))
self.assertEqual(Q.dtype, mx.float64)
self.assertEqual(R.dtype, mx.float64)
# SVD
A = mx.array(
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=mx.float64
)
U, S, Vt = mx.linalg.svd(A)
self.assertTrue(mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, A))
# Inverse
A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float64)
A_inv = mx.linalg.inv(A)
self.assertTrue(mx.allclose(A @ A_inv, mx.eye(A.shape[0])))
# Tri inv
A = mx.array([[1, 0, 0], [6, -5, 0], [-9, 8, 7]], dtype=mx.float64)
B = mx.array([[7, 0, 0], [3, -2, 0], [1, 8, 3]], dtype=mx.float64)
AB = mx.stack([A, B])
invs = mx.linalg.tri_inv(AB, upper=False)
for M, M_inv in zip(AB, invs):
self.assertTrue(mx.allclose(M @ M_inv, mx.eye(M.shape[0])))
# Cholesky
sqrtA = mx.array(
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=mx.float64
)
A = sqrtA.T @ sqrtA / 81
L = mx.linalg.cholesky(A)
U = mx.linalg.cholesky(A, upper=True)
self.assertTrue(mx.allclose(L @ L.T, A))
self.assertTrue(mx.allclose(U.T @ U, A))
# Psueod inverse
A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float64)
A_plus = mx.linalg.pinv(A)
self.assertTrue(mx.allclose(A @ A_plus @ A, A))
# Eigh
def check_eigs_and_vecs(A_np, kwargs={}):
A = mx.array(A_np, dtype=mx.float64)
eig_vals, eig_vecs = mx.linalg.eigh(A, **kwargs)
eig_vals_np, _ = np.linalg.eigh(A_np, **kwargs)
self.assertTrue(np.allclose(eig_vals, eig_vals_np))
self.assertTrue(
mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs)
)
eig_vals_only = mx.linalg.eigvalsh(A, **kwargs)
self.assertTrue(mx.allclose(eig_vals, eig_vals_only))
# Test a simple 2x2 symmetric matrix
A_np = np.array([[1.0, 2.0], [2.0, 4.0]], dtype=np.float64)
check_eigs_and_vecs(A_np)
# Test a larger random symmetric matrix
n = 5
np.random.seed(1)
A_np = np.random.randn(n, n).astype(np.float64)
A_np = (A_np + A_np.T) / 2
check_eigs_and_vecs(A_np)
# Test with upper triangle
check_eigs_and_vecs(A_np, {"UPLO": "U"})
# LU factorization
# Test 3x3 matrix
a = mx.array(
[[3.0, 1.0, 2.0], [1.0, 8.0, 6.0], [9.0, 2.0, 5.0]], dtype=mx.float64
)
P, L, U = mx.linalg.lu(a)
self.assertTrue(mx.allclose(L[P, :] @ U, a))
# Solve triangular
# Test lower triangular matrix
a = mx.array(
[[4.0, 0.0, 0.0], [2.0, 3.0, 0.0], [1.0, -2.0, 5.0]], dtype=mx.float64
)
b = mx.array([8.0, 14.0, 3.0], dtype=mx.float64)
result = mx.linalg.solve_triangular(a, b, upper=False)
expected = np.linalg.solve(np.array(a), np.array(b))
self.assertTrue(np.allclose(result, expected))
# Test upper triangular matrix
a = mx.array(
[[3.0, 2.0, 1.0], [0.0, 5.0, 4.0], [0.0, 0.0, 6.0]], dtype=mx.float64
)
b = mx.array([13.0, 33.0, 18.0], dtype=mx.float64)
result = mx.linalg.solve_triangular(a, b, upper=True)
expected = np.linalg.solve(np.array(a), np.array(b))
self.assertTrue(np.allclose(result, expected))
def test_conversion(self):
a = mx.array([1.0, 2.0], mx.float64)
b = np.array(a)
self.assertTrue(np.array_equal(a, b))
if __name__ == "__main__":
mlx_tests.MLXTestRunner()