mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
298 lines
9.7 KiB
Python
298 lines
9.7 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import math
|
|
import os
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
class TestDouble(mlx_tests.MLXTestCase):
|
|
def test_unary_ops(self):
|
|
shape = (3, 3)
|
|
x = mx.random.normal(shape=shape)
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
x.astype(mx.float64)
|
|
|
|
x_double = x.astype(mx.float64, stream=mx.cpu)
|
|
|
|
ops = [
|
|
mx.abs,
|
|
mx.arccos,
|
|
mx.arccosh,
|
|
mx.arcsin,
|
|
mx.arcsinh,
|
|
mx.arctan,
|
|
mx.arctanh,
|
|
mx.ceil,
|
|
mx.erf,
|
|
mx.erfinv,
|
|
mx.exp,
|
|
mx.expm1,
|
|
mx.floor,
|
|
mx.log,
|
|
mx.logical_not,
|
|
mx.negative,
|
|
mx.round,
|
|
mx.sin,
|
|
mx.sinh,
|
|
mx.sqrt,
|
|
mx.rsqrt,
|
|
mx.tan,
|
|
mx.tanh,
|
|
]
|
|
for op in ops:
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
op(x_double)
|
|
continue
|
|
y = op(x)
|
|
y_double = op(x_double)
|
|
self.assertTrue(
|
|
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
|
|
)
|
|
|
|
def test_binary_ops(self):
|
|
shape = (3, 3)
|
|
a = mx.random.normal(shape=shape)
|
|
b = mx.random.normal(shape=shape)
|
|
|
|
a_double = a.astype(mx.float64, stream=mx.cpu)
|
|
b_double = b.astype(mx.float64, stream=mx.cpu)
|
|
|
|
ops = [
|
|
mx.add,
|
|
mx.arctan2,
|
|
mx.divide,
|
|
mx.multiply,
|
|
mx.subtract,
|
|
mx.logical_and,
|
|
mx.logical_or,
|
|
mx.remainder,
|
|
mx.maximum,
|
|
mx.minimum,
|
|
mx.power,
|
|
mx.equal,
|
|
mx.greater,
|
|
mx.greater_equal,
|
|
mx.less,
|
|
mx.less_equal,
|
|
mx.not_equal,
|
|
mx.logaddexp,
|
|
]
|
|
for op in ops:
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
op(a_double, b_double)
|
|
continue
|
|
y = op(a, b)
|
|
y_double = op(a_double, b_double)
|
|
self.assertTrue(
|
|
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
|
|
)
|
|
|
|
def test_where(self):
|
|
shape = (3, 3)
|
|
cond = mx.random.uniform(shape=shape) > 0.5
|
|
a = mx.random.normal(shape=shape)
|
|
b = mx.random.normal(shape=shape)
|
|
|
|
a_double = a.astype(mx.float64, stream=mx.cpu)
|
|
b_double = b.astype(mx.float64, stream=mx.cpu)
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
mx.where(cond, a_double, b_double)
|
|
return
|
|
y = mx.where(cond, a, b)
|
|
y_double = mx.where(cond, a_double, b_double)
|
|
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
|
|
|
|
def test_reductions(self):
|
|
shape = (32, 32)
|
|
a = mx.random.normal(shape=shape)
|
|
a_double = a.astype(mx.float64, stream=mx.cpu)
|
|
|
|
axes = [0, 1, (0, 1)]
|
|
ops = [mx.sum, mx.prod, mx.min, mx.max, mx.any, mx.all]
|
|
|
|
for op in ops:
|
|
for ax in axes:
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
op(a_double, axis=ax)
|
|
continue
|
|
y = op(a)
|
|
y_double = op(a_double)
|
|
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
|
|
|
|
def test_get_and_set_item(self):
|
|
shape = (3, 3)
|
|
a = mx.random.normal(shape=shape)
|
|
b = mx.random.normal(shape=(2,))
|
|
a_double = a.astype(mx.float64, stream=mx.cpu)
|
|
b_double = b.astype(mx.float64, stream=mx.cpu)
|
|
idx_i = mx.array([0, 2])
|
|
idx_j = mx.array([0, 2])
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
a_double[idx_i, idx_j]
|
|
else:
|
|
y = a[idx_i, idx_j]
|
|
y_double = a_double[idx_i, idx_j]
|
|
self.assertTrue(mx.allclose(y, y_double.astype(mx.float32, mx.cpu)))
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
a_double[idx_i, idx_j] = b_double
|
|
else:
|
|
a[idx_i, idx_j] = b
|
|
a_double[idx_i, idx_j] = b_double
|
|
self.assertTrue(mx.allclose(a, a_double.astype(mx.float32, mx.cpu)))
|
|
|
|
def test_gemm(self):
|
|
shape = (8, 8)
|
|
a = mx.random.normal(shape=shape)
|
|
b = mx.random.normal(shape=shape)
|
|
|
|
a_double = a.astype(mx.float64, stream=mx.cpu)
|
|
b_double = b.astype(mx.float64, stream=mx.cpu)
|
|
|
|
if mx.default_device() == mx.gpu:
|
|
with self.assertRaises(ValueError):
|
|
a_double @ b_double
|
|
return
|
|
y = a @ b
|
|
y_double = a_double @ b_double
|
|
self.assertTrue(
|
|
mx.allclose(y, y_double.astype(mx.float32, mx.cpu), equal_nan=True)
|
|
)
|
|
|
|
def test_type_promotion(self):
|
|
import mlx.core as mx
|
|
|
|
a = mx.array([4, 8], mx.float64)
|
|
b = mx.array([4, 8], mx.int32)
|
|
|
|
with mx.stream(mx.cpu):
|
|
c = a + b
|
|
self.assertEqual(c.dtype, mx.float64)
|
|
|
|
def test_lapack(self):
|
|
with mx.stream(mx.cpu):
|
|
# QRF
|
|
A = mx.array([[2.0, 3.0], [1.0, 2.0]], dtype=mx.float64)
|
|
Q, R = mx.linalg.qr(A)
|
|
out = Q @ R
|
|
self.assertTrue(mx.allclose(out, A))
|
|
out = Q.T @ Q
|
|
self.assertTrue(mx.allclose(out, mx.eye(2)))
|
|
self.assertTrue(mx.allclose(mx.tril(R, -1), mx.zeros_like(R)))
|
|
self.assertEqual(Q.dtype, mx.float64)
|
|
self.assertEqual(R.dtype, mx.float64)
|
|
|
|
# SVD
|
|
A = mx.array(
|
|
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=mx.float64
|
|
)
|
|
U, S, Vt = mx.linalg.svd(A)
|
|
self.assertTrue(mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, A))
|
|
|
|
# Inverse
|
|
A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float64)
|
|
A_inv = mx.linalg.inv(A)
|
|
self.assertTrue(mx.allclose(A @ A_inv, mx.eye(A.shape[0])))
|
|
|
|
# Tri inv
|
|
A = mx.array([[1, 0, 0], [6, -5, 0], [-9, 8, 7]], dtype=mx.float64)
|
|
B = mx.array([[7, 0, 0], [3, -2, 0], [1, 8, 3]], dtype=mx.float64)
|
|
AB = mx.stack([A, B])
|
|
invs = mx.linalg.tri_inv(AB, upper=False)
|
|
for M, M_inv in zip(AB, invs):
|
|
self.assertTrue(mx.allclose(M @ M_inv, mx.eye(M.shape[0])))
|
|
|
|
# Cholesky
|
|
sqrtA = mx.array(
|
|
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=mx.float64
|
|
)
|
|
A = sqrtA.T @ sqrtA / 81
|
|
L = mx.linalg.cholesky(A)
|
|
U = mx.linalg.cholesky(A, upper=True)
|
|
self.assertTrue(mx.allclose(L @ L.T, A))
|
|
self.assertTrue(mx.allclose(U.T @ U, A))
|
|
|
|
# Psueod inverse
|
|
A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float64)
|
|
A_plus = mx.linalg.pinv(A)
|
|
self.assertTrue(mx.allclose(A @ A_plus @ A, A))
|
|
|
|
# Eigh
|
|
def check_eigs_and_vecs(A_np, kwargs={}):
|
|
A = mx.array(A_np, dtype=mx.float64)
|
|
eig_vals, eig_vecs = mx.linalg.eigh(A, **kwargs)
|
|
eig_vals_np, _ = np.linalg.eigh(A_np, **kwargs)
|
|
self.assertTrue(np.allclose(eig_vals, eig_vals_np))
|
|
self.assertTrue(
|
|
mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs)
|
|
)
|
|
|
|
eig_vals_only = mx.linalg.eigvalsh(A, **kwargs)
|
|
self.assertTrue(mx.allclose(eig_vals, eig_vals_only))
|
|
|
|
# Test a simple 2x2 symmetric matrix
|
|
A_np = np.array([[1.0, 2.0], [2.0, 4.0]], dtype=np.float64)
|
|
check_eigs_and_vecs(A_np)
|
|
|
|
# Test a larger random symmetric matrix
|
|
n = 5
|
|
np.random.seed(1)
|
|
A_np = np.random.randn(n, n).astype(np.float64)
|
|
A_np = (A_np + A_np.T) / 2
|
|
check_eigs_and_vecs(A_np)
|
|
|
|
# Test with upper triangle
|
|
check_eigs_and_vecs(A_np, {"UPLO": "U"})
|
|
|
|
# LU factorization
|
|
# Test 3x3 matrix
|
|
a = mx.array(
|
|
[[3.0, 1.0, 2.0], [1.0, 8.0, 6.0], [9.0, 2.0, 5.0]], dtype=mx.float64
|
|
)
|
|
P, L, U = mx.linalg.lu(a)
|
|
self.assertTrue(mx.allclose(L[P, :] @ U, a))
|
|
|
|
# Solve triangular
|
|
# Test lower triangular matrix
|
|
a = mx.array(
|
|
[[4.0, 0.0, 0.0], [2.0, 3.0, 0.0], [1.0, -2.0, 5.0]], dtype=mx.float64
|
|
)
|
|
b = mx.array([8.0, 14.0, 3.0], dtype=mx.float64)
|
|
|
|
result = mx.linalg.solve_triangular(a, b, upper=False)
|
|
expected = np.linalg.solve(np.array(a), np.array(b))
|
|
self.assertTrue(np.allclose(result, expected))
|
|
|
|
# Test upper triangular matrix
|
|
a = mx.array(
|
|
[[3.0, 2.0, 1.0], [0.0, 5.0, 4.0], [0.0, 0.0, 6.0]], dtype=mx.float64
|
|
)
|
|
b = mx.array([13.0, 33.0, 18.0], dtype=mx.float64)
|
|
|
|
result = mx.linalg.solve_triangular(a, b, upper=True)
|
|
expected = np.linalg.solve(np.array(a), np.array(b))
|
|
self.assertTrue(np.allclose(result, expected))
|
|
|
|
def test_conversion(self):
|
|
a = mx.array([1.0, 2.0], mx.float64)
|
|
b = np.array(a)
|
|
self.assertTrue(np.array_equal(a, b))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner()
|