mlx/python/tests/test_eval.py

201 lines
5.3 KiB
Python

# Copyright © 2023 Apple Inc.
import unittest
from functools import partial
import mlx.core as mx
import mlx_tests
class TestEval(mlx_tests.MLXTestCase):
def test_eval(self):
arrs = [mx.ones((2, 2)) for _ in range(4)]
mx.eval(*arrs)
for x in arrs:
self.assertEqual(x.tolist(), [[1, 1], [1, 1]])
def test_retain_graph(self):
def fun(x):
y = 3 * x
mx.eval(y)
return 2 * y
dfun_dx = mx.grad(fun)
y = dfun_dx(mx.array(1.0))
self.assertEqual(y.item(), 6.0)
def test_eval_mixed(self):
x = mx.array(1) + 1 + 1
y = 0
z = "hello"
state = [x, y, z]
mx.eval(state)
self.assertEqual(x.item(), 3)
def test_async_eval(self):
x = mx.array(1) + mx.array(1) + mx.array(1)
mx.async_eval(x)
self.assertEqual(x.item(), 3)
# It should be safe to call eval on the array which has been async
# eval'ed
x = mx.array(1) + mx.array(1) + mx.array(1)
self.assertEqual(x.item(), 3)
x = mx.array([1, 2, 3])
y = 2 * x
mx.async_eval(y)
z = 2 * y
mx.async_eval(z)
self.assertTrue(mx.array_equal(y, mx.array([2, 4, 6])))
self.assertTrue(mx.array_equal(z, mx.array([4, 8, 12])))
def test_async_eval_twice(self):
for _ in range(1000):
x = mx.array(1) + mx.array(1) + mx.array(1)
mx.async_eval(x)
y = x + 1
mx.async_eval(y)
self.assertEqual(x.item(), 3)
self.assertEqual(y.item(), 4)
def test_async_eval_in_trace(self):
def fun(x):
y = x + 1.0
mx.async_eval(y)
return mx.exp(y)
# Raises
with self.assertRaises(ValueError):
mx.grad(fun)(mx.array(1.0))
# Also raises
with self.assertRaises(ValueError):
mx.vmap(fun)(mx.ones((2, 2)))
def test_async_eval_into_eval(self):
x = mx.array(1)
y = x + 1
mx.async_eval(y)
a = y - 10
b = mx.abs(a)
self.assertEqual(b.item(), 8)
def test_async_eval_into_eval_diff_stream(self):
s = mx.new_stream(mx.cpu)
x = mx.array(0)
y = x - 5
mx.async_eval(y)
z = mx.abs(y, stream=s)
self.assertEqual(z.item(), 5)
def test_eval_slow_fast_multi_stream(self):
x = mx.ones((8000,))
y = mx.abs(mx.array(-1.0))
for _ in range(20):
x = x + mx.array(1.0)
z = mx.add(x, y, stream=mx.cpu)
self.assertTrue(mx.allclose(z, mx.full((8000,), 22.0)))
# Switch eval order
x = mx.ones((8000,))
y = mx.abs(mx.array(-1.0))
for _ in range(20):
x = x + mx.array(1.0)
z = mx.add(y, x, stream=mx.cpu)
self.assertTrue(mx.allclose(z, mx.full((8000,), 22.0)))
def test_multi_output_eval_during_transform(self):
x = mx.random.uniform(shape=(1024,))
y = mx.ones((1024,))
mx.eval(x, y)
def fn(x):
a, b = mx.divmod(x, x)
mx.eval(a)
return a
out = mx.vjp(fn, (x,), (y,))
out = mx.vjp(fn, (x,), (y,))
peak_mem = mx.get_peak_memory()
out = mx.vjp(fn, (x,), (y,))
self.assertEqual(peak_mem, mx.get_peak_memory())
def test_async_eval_with_multiple_streams(self):
x = mx.array([1.0])
y = mx.array([1.0])
a = mx.array([1.0])
b = mx.array([1.0])
d = mx.default_device()
s2 = mx.new_stream(d)
for _ in range(50):
for _ in range(20):
x = x + y
mx.async_eval(x)
mx.eval(a + b)
def test_donation_for_noops(self):
def fun(x):
s = x.shape
for _ in range(10):
x = mx.abs(x)
x = mx.reshape(x, (-1,))
x = x.T.T
x = mx.stop_gradient(x)
x = mx.abs(x)
return x
x = mx.zeros((4096, 4096))
mx.eval(x)
pre = mx.get_peak_memory()
out = fun(x)
del x
mx.eval(out)
post = mx.get_peak_memory()
self.assertEqual(pre, post)
def fun(x):
for _ in range(10):
x = mx.abs(x)
x = x[:-1]
x = mx.abs(x)
return x
x = mx.zeros((4096 * 4096,))
mx.eval(x)
pre = mx.get_peak_memory()
out = fun(x)
del x
mx.eval(out)
post = mx.get_peak_memory()
self.assertEqual(pre, post)
@unittest.skipIf(not mx.is_available(mx.gpu), "GPU is not available")
def test_multistream_deadlock(self):
s1 = mx.default_stream(mx.gpu)
s2 = mx.new_stream(mx.gpu)
x = mx.array(1.0)
x = mx.abs(x, stream=s1)
for _ in range(1000):
x = mx.abs(x, stream=s2)
mx.eval(x)
s1 = mx.default_stream(mx.gpu)
s2 = mx.new_stream(mx.gpu)
old_limit = mx.set_memory_limit(1000)
x = mx.ones((512, 512), stream=s2)
for _ in range(80):
x = mx.abs(x, stream=s1)
y = mx.abs(x, stream=s2)
z = mx.abs(y, stream=s2)
mx.eval(z)
mx.set_memory_limit(old_limit)
if __name__ == "__main__":
mlx_tests.MLXTestRunner()