mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
657 lines
23 KiB
Python
657 lines
23 KiB
Python
import math
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
|
q_dtype = q.dtype
|
|
q = q * mx.array(scale, q_dtype)
|
|
n_q_heads = q.shape[-3]
|
|
n_kv_heads = k.shape[-3]
|
|
n_repeats = n_q_heads // n_kv_heads
|
|
|
|
B = q.shape[0]
|
|
L = q.shape[2]
|
|
kL = k.shape[2]
|
|
|
|
if n_repeats > 1:
|
|
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
|
k = mx.expand_dims(k, 2)
|
|
v = mx.expand_dims(v, 2)
|
|
|
|
scores = q @ mx.swapaxes(k, -1, -2)
|
|
|
|
if mask is not None:
|
|
|
|
if mask == "causal":
|
|
q_offset = max(0, kL - L)
|
|
q_indices = mx.arange(q_offset, q_offset + L)
|
|
k_indices = mx.arange(kL)
|
|
mask = q_indices[:, None] >= k_indices[None]
|
|
|
|
if n_repeats > 1 and mask.ndim >= 3:
|
|
if mask.shape[-3] == 1:
|
|
mask = mx.expand_dims(mask, -3)
|
|
else:
|
|
mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
|
|
|
|
if mask.dtype == mx.bool_:
|
|
scores = mx.where(mask, scores, -np.float32(np.inf))
|
|
else:
|
|
scores += mask
|
|
|
|
scores = mx.softmax(scores, axis=-1, precise=True)
|
|
|
|
out = scores @ v
|
|
if n_repeats > 1:
|
|
out = mx.reshape(out, [B, n_q_heads, L, -1])
|
|
|
|
return out
|
|
|
|
|
|
def do_attention(f, q, k, v, scale, mask=None, transpose=False):
|
|
if transpose:
|
|
q_t = mx.transpose(q, (0, 2, 1, 3))
|
|
k_t = mx.transpose(k, (0, 2, 1, 3))
|
|
v_t = mx.transpose(v, (0, 2, 1, 3))
|
|
o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
|
|
return mx.transpose(o_t, (0, 2, 1, 3))
|
|
else:
|
|
return f(q, k, v, scale=scale, mask=mask)
|
|
|
|
|
|
def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
|
|
np.random.seed(0)
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
|
|
shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
|
|
|
|
scale = 1.0 / math.sqrt(D)
|
|
|
|
q_np = np.random.normal(0.0, 0.5, shape_q).astype(np_dtype)
|
|
k_np = np.random.normal(0.0, 0.5, shape_kv).astype(np_dtype)
|
|
v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
|
|
|
q_mx = mx.array(q_np)
|
|
k_mx = mx.array(k_np)
|
|
v_mx = mx.array(v_np)
|
|
|
|
if mask is not None:
|
|
if mask == "additive":
|
|
mask_np = np.random.normal(0.0, 0.5, (B, qH, qL, kL)).astype(np_dtype)
|
|
mask = mx.array(mask_np)
|
|
elif mask == "bool":
|
|
mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
|
|
mask = mx.array(mask_np)
|
|
|
|
return q_mx, k_mx, v_mx, scale, mask
|
|
|
|
|
|
# SDPA for MHA (n_heads == n_kv_heads)
|
|
def mlx_primitives_sdpa(q, k, v, scale, mask=None):
|
|
p = (q * scale) @ k.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
if mask == "causal":
|
|
q_offset = max(0, k.shape[2] - q.shape[2])
|
|
q_indices = mx.arange(q_offset, q_offset + q.shape[2])
|
|
k_indices = mx.arange(k.shape[2])
|
|
mask = q_indices[:, None] >= k_indices[None]
|
|
p = mx.where(mask, p, mx.finfo(mx.float32).min)
|
|
elif mask.dtype == mx.bool_:
|
|
p = mx.where(mask, p, mx.finfo(mx.float32).min)
|
|
else:
|
|
p += mask
|
|
scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype)
|
|
return scores @ v
|
|
|
|
|
|
# SDPA for GQA (n_heads > n_kv_heads, n_kv_heads > 1, n_heads % n_kv_heads == 0)
|
|
def mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=None):
|
|
n_repeats = q.shape[1] // k.shape[1]
|
|
|
|
# borrowing kv cache tiling from mlx-examples/llms/mistral/mistral.py
|
|
n_heads = q.shape[1]
|
|
B = q.shape[0]
|
|
L = k.shape[2]
|
|
|
|
def repeat(a):
|
|
a = mx.concatenate([mx.expand_dims(a, 2)] * n_repeats, axis=2)
|
|
return a.reshape([B, n_heads, L, -1])
|
|
|
|
k, v = map(repeat, (k, v))
|
|
|
|
return mlx_primitives_sdpa(q, k, v, scale, mask=mask)
|
|
|
|
|
|
class TestFastSelfAttentionSDPA(mlx_tests.MLXTestCase):
|
|
def test_fast_sdpa(self):
|
|
# Not yet supported:
|
|
# * K pre-transposed in kernel, V pre-transposed in kernel
|
|
np.random.seed(0)
|
|
R = 20
|
|
L = R
|
|
Dk = 64
|
|
H = 3
|
|
scale = float(1.0 / np.sqrt(Dk))
|
|
q_npy = np.random.normal(0.0, 1.0, (1, H, R, Dk)).astype(np.float32)
|
|
k_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32)
|
|
v_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32)
|
|
|
|
q_mlx = mx.array(q_npy)
|
|
k_mlx = mx.array(k_npy)
|
|
v_mlx = mx.array(v_npy)
|
|
|
|
reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
|
|
|
|
o_mlx = mx.fast.scaled_dot_product_attention(
|
|
q_mlx, k_mlx, v_mlx, scale=scale, mask=None
|
|
)
|
|
|
|
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
|
|
self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
|
|
|
|
dtypes = [np.float32]
|
|
|
|
Dk = 64
|
|
|
|
if self.is_apple_silicon:
|
|
dtypes.append(np.half)
|
|
|
|
for SEQUENCE_LENGTH in [63, 129, 400]:
|
|
for DTYPE in dtypes:
|
|
B = 2
|
|
H = 24
|
|
n_kv_heads = H
|
|
q_npy = np.random.normal(0.0, 1.0, (B, H, SEQUENCE_LENGTH, Dk)).astype(
|
|
DTYPE
|
|
)
|
|
k_npy = np.random.normal(
|
|
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
|
|
).astype(DTYPE)
|
|
v_npy = np.random.normal(
|
|
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
|
|
).astype(DTYPE)
|
|
|
|
q_mlx = mx.array(q_npy)
|
|
k_mlx = mx.array(k_npy)
|
|
v_mlx = mx.array(v_npy)
|
|
|
|
reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
|
|
o_mlx = mx.fast.scaled_dot_product_attention(
|
|
q_mlx,
|
|
k_mlx,
|
|
v_mlx,
|
|
scale=scale,
|
|
)
|
|
|
|
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
|
|
rtol = 1e-3
|
|
atol = 1e-2
|
|
|
|
if SEQUENCE_LENGTH > 500:
|
|
rtol = 1e-2
|
|
|
|
if DTYPE == np.half:
|
|
rtol = 1e-2
|
|
|
|
self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
|
|
|
|
|
|
class TestFastSDPA(mlx_tests.MLXTestCase):
|
|
def test_fast_sdpa(self):
|
|
# Not yet supported:
|
|
# * K pre-transposed in kernel, V pre-transposed in kernel
|
|
np.random.seed(0)
|
|
L = 43
|
|
R = 1
|
|
Dk = 128
|
|
scale = float(1.0 / np.sqrt(128.0))
|
|
q_npy = np.random.normal(0.0, 1.0, (1, 32, R, Dk)).astype(np.float32)
|
|
k_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
|
|
v_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
|
|
|
|
q_mlx = mx.array(q_npy)
|
|
k_mlx = mx.array(k_npy)
|
|
v_mlx = mx.array(v_npy)
|
|
|
|
reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
|
|
|
|
o_mlx = mx.fast.scaled_dot_product_attention(
|
|
q_mlx, k_mlx, v_mlx, scale=scale, mask=None
|
|
)
|
|
|
|
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
|
|
self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
|
|
|
|
B = 1
|
|
H = 32
|
|
dtypes = [np.float32]
|
|
if self.is_apple_silicon:
|
|
dtypes.append(np.half)
|
|
|
|
for SEQUENCE_LENGTH in [1, 7, 9, 32, 63, 67, 129, 400, 2000]:
|
|
for DO_GQA in [0, 1]:
|
|
for DTYPE in dtypes:
|
|
n_kv_heads = 8 if DO_GQA else 32
|
|
q_npy = np.random.normal(0.0, 1.0, (B, H, R, Dk)).astype(DTYPE)
|
|
k_npy = np.random.normal(
|
|
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
|
|
).astype(DTYPE)
|
|
v_npy = np.random.normal(
|
|
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
|
|
).astype(DTYPE)
|
|
|
|
q_mlx = mx.array(q_npy)
|
|
k_mlx = mx.array(k_npy)
|
|
v_mlx = mx.array(v_npy)
|
|
|
|
reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
|
|
o_mlx = mx.fast.scaled_dot_product_attention(
|
|
q_mlx, k_mlx, v_mlx, scale=scale
|
|
)
|
|
|
|
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
|
|
rtol = 1e-5
|
|
atol = 1e-1
|
|
|
|
if SEQUENCE_LENGTH > 500:
|
|
rtol = 1e-2
|
|
|
|
if DTYPE == np.half:
|
|
rtol = 1e-2
|
|
|
|
self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
|
|
q = mx.random.normal(shape=(1, 32, 1, Dk))
|
|
k = mx.random.normal(shape=(1, 32, 32, Dk))
|
|
v = mx.random.normal(shape=(1, 32, 128, Dk))
|
|
|
|
atol = 1e-6
|
|
y = mlx_primitives_sdpa(q, k, v[:, :, :32], scale)
|
|
y_hat = mx.fast.scaled_dot_product_attention(q, k, v[:, :, :32], scale=scale)
|
|
self.assertTrue(mx.allclose(y, y_hat, atol=atol))
|
|
|
|
# Test with per-example mask
|
|
q = mx.random.normal(shape=(2, 8, 4, 32))
|
|
k = mx.random.normal(shape=(2, 2, 8, 32))
|
|
v = mx.random.normal(shape=(2, 2, 8, 32))
|
|
mask = 10 * mx.random.normal(shape=(2, 1, 4, 8))
|
|
y = mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=mask)
|
|
y_hat = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
|
self.assertTrue(mx.allclose(y, y_hat, atol=atol))
|
|
|
|
# Test with boolean causal mask
|
|
indices = mx.arange(8)
|
|
bool_mask = indices[:, None] >= indices[None]
|
|
additive_mask = (~bool_mask).astype(mx.float32) * mx.finfo(mx.float32).min
|
|
x = mx.random.normal(shape=(1, 2, 8, 32))
|
|
y = mlx_primitives_sdpa_with_gqa(x, x, x, scale, mask=additive_mask)
|
|
y_hat = mx.fast.scaled_dot_product_attention(
|
|
x, x, x, scale=scale, mask=bool_mask
|
|
)
|
|
self.assertTrue(mx.allclose(y, y_hat, atol=atol))
|
|
|
|
def test_fast_sdpa_vector_kv_transposed_head_seq(self):
|
|
D = 64
|
|
Nq = 4
|
|
Nkv = 1
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
|
|
|
|
lengths = [43, 4096]
|
|
for L in lengths:
|
|
k = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
|
|
k = k.swapaxes(1, 2)
|
|
v = v.swapaxes(1, 2)
|
|
masks = [
|
|
mx.array(True),
|
|
mx.array([True] * (L - 10) + [False] * 10),
|
|
mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
|
|
mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
|
|
]
|
|
|
|
for m in masks:
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
|
|
out = mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=m,
|
|
)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
def test_fast_sdpa_vector(self):
|
|
D = 64
|
|
L = 43
|
|
Nq = 4
|
|
Nkv = 1
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=mx.full((Nq, 2, L), False),
|
|
)
|
|
|
|
masks = [
|
|
None,
|
|
mx.array(True),
|
|
mx.array([True] * (L - 10) + [False] * 10),
|
|
mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
|
|
mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
|
|
mx.random.uniform(shape=(Nq, 1, L)),
|
|
mx.random.uniform(shape=(L, 1, Nq)).T,
|
|
mx.log(mx.random.uniform(shape=(Nq, 1, L)) > 0.2),
|
|
mx.log(mx.random.uniform(shape=(L, 1, Nq)).T > 0.2),
|
|
"causal",
|
|
]
|
|
for m in masks:
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
|
|
out = mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=m,
|
|
)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
L = 4096
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
|
|
masks = [
|
|
mx.array(True),
|
|
mx.array([True] * (L - 10) + [False] * 10),
|
|
mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
|
|
mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
|
|
mx.random.uniform(shape=(Nq, 1, L)),
|
|
mx.random.uniform(shape=(L, 1, Nq)).T,
|
|
mx.log(mx.random.uniform(shape=(Nq, 1, L)) > 0.2),
|
|
mx.log(mx.random.uniform(shape=(L, 1, Nq)).T > 0.2),
|
|
"causal",
|
|
]
|
|
for m in masks:
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
|
|
out = mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=m,
|
|
)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
def test_fast_sdpa_few_query(self):
|
|
D = 64
|
|
L = 43
|
|
Lq = 8
|
|
Nq = 8
|
|
Nkv = 1
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Lq, Nq, D))
|
|
q = q.swapaxes(1, 2)
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
|
|
masks = [
|
|
None,
|
|
mx.array(True),
|
|
mx.array([True] * (L - 10) + [False] * 10),
|
|
mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
|
|
mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
|
|
"causal",
|
|
]
|
|
for m in masks:
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
|
|
out = mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=m,
|
|
)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
L = 4096
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, Lq, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
|
|
masks = [
|
|
None,
|
|
mx.array(True),
|
|
mx.array([True] * (L - 10) + [False] * 10),
|
|
mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
|
|
mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
|
|
"causal",
|
|
]
|
|
for m in masks:
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
|
|
out = mx.fast.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
mask=m,
|
|
)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
@unittest.skip("Different head and value dims is not enabled")
|
|
def test_fast_sdpa_vector_value_dims(self):
|
|
D = 192
|
|
V = 128
|
|
Nq = 4
|
|
Nkv = 1
|
|
scale = 1.0
|
|
mx.random.seed(0)
|
|
|
|
for L in [43, 128, 237, 8192]:
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, V))
|
|
ref = mlx_primitives_sdpa(q, k, v, scale)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
def test_sdpa_vector_batched(self):
|
|
D = 64
|
|
q = mx.random.normal(shape=(2, 1, 3, D))
|
|
k = mx.random.normal(shape=(2, 1, 3, D))
|
|
v = mx.random.normal(shape=(2, 1, 3, D))
|
|
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
q = mx.random.normal(shape=(2, 4, 3, D))
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
q = mx.random.normal(shape=(2, 3, 4, D)).swapaxes(1, 2)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
k = mx.random.normal(shape=(2, 3, 1, D)).swapaxes(1, 2)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
q = mx.random.normal(shape=(2, 4, 3, D))
|
|
k = mx.random.normal(shape=(2, 3, 2, D)).swapaxes(1, 2)
|
|
v = mx.random.normal(shape=(2, 2, 3, D))
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
q = mx.random.normal(shape=(2, 4, 3, D))
|
|
k = mx.random.normal(shape=(2, 1, 3, D))
|
|
v = mx.random.normal(shape=(2, 1, 3, D))
|
|
mask = 10 * mx.random.normal(shape=(1, 2, 3, 3)).swapaxes(0, 1)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
|
|
ref = mlx_ref_attn(q, k, v, mask=mask)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
|
|
class TestSDPA(mlx_tests.MLXTestCase):
|
|
@property
|
|
def dtypes(self):
|
|
return ["float32", "float16"] if mx.metal.is_available() else ["float32"]
|
|
|
|
def test_sdpa(self):
|
|
if not mx.metal.is_available():
|
|
return
|
|
|
|
# fmt: off
|
|
shapes_64 = (
|
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
|
( 1, 128, 128, 64, 32, 32),
|
|
( 1, 64, 128, 64, 32, 32),
|
|
( 1, 65, 128, 64, 32, 8),
|
|
( 1, 64, 127, 64, 32, 8),
|
|
( 1, 65, 127, 64, 32, 8),
|
|
( 1, 127, 65, 64, 32, 8),
|
|
)
|
|
|
|
shapes_128 = (
|
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
|
( 1, 128, 128, 128, 32, 8),
|
|
( 1, 64, 128, 128, 32, 8),
|
|
( 1, 65, 127, 128, 32, 8),
|
|
( 1, 127, 65, 128, 32, 8),
|
|
)
|
|
# fmt: on
|
|
|
|
shapes = shapes_64 + shapes_128
|
|
masks = [None, "additive", "bool", "causal"]
|
|
transposes = (False, True)
|
|
|
|
for dtype in self.dtypes:
|
|
for t in transposes:
|
|
for mask_str in masks:
|
|
for B, qL, kL, D, qH, kH in shapes:
|
|
with self.subTest(
|
|
B=B,
|
|
qsl=qL,
|
|
ksl=kL,
|
|
head_dim=D,
|
|
n_q_heads=qH,
|
|
n_kv_heads=kH,
|
|
mask=mask_str,
|
|
transpose=t,
|
|
dtype=dtype,
|
|
):
|
|
|
|
np.random.seed(0)
|
|
q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
|
|
B, qL, kL, D, qH, kH, mask_str, t, dtype
|
|
)
|
|
|
|
out_ref = do_attention(
|
|
mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, t
|
|
)
|
|
|
|
out_fst = do_attention(
|
|
mx.fast.scaled_dot_product_attention,
|
|
q_mx,
|
|
k_mx,
|
|
v_mx,
|
|
scale,
|
|
mask,
|
|
t,
|
|
)
|
|
|
|
atol = 2e-5 if dtype == "float32" else 3e-4
|
|
|
|
self.assertListEqual(
|
|
list(out_ref.shape), list(out_fst.shape)
|
|
)
|
|
|
|
diff = mx.abs(out_fst - out_ref) - atol * mx.abs(out_ref)
|
|
self.assertLessEqual(mx.max(diff).item(), atol)
|
|
|
|
def test_sdpa_broadcast_mask(self):
|
|
mask = mx.array(True)
|
|
D = 64
|
|
Nq = 4
|
|
Nkv = 1
|
|
scale = 1.0
|
|
L = 256
|
|
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
def test_sdpa_promote_mask(self):
|
|
mask = mx.array(2.0, mx.bfloat16)
|
|
D = 64
|
|
Nq = 4
|
|
Nkv = 1
|
|
scale = 1.0
|
|
L = 256
|
|
|
|
mx.random.seed(0)
|
|
q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
|
|
k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
|
|
ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
|
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
|
|
|
def test_sdpa_nan_bug(self):
|
|
N = 128
|
|
q_shape = (1, 1, N, 128)
|
|
kv_shape = (1, 1, N, 128)
|
|
q = mx.random.uniform(shape=q_shape)
|
|
k = mx.random.uniform(shape=kv_shape)
|
|
v = mx.random.uniform(shape=kv_shape)
|
|
|
|
# Make boolean window causal mask
|
|
linds = rinds = mx.arange(N)
|
|
linds = linds[:, None]
|
|
rinds = rinds[None]
|
|
mask = linds >= rinds
|
|
mask = mask & (linds <= rinds + 111)
|
|
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
|
|
expected = mlx_ref_attn(q, k, v, mask=mask, scale=1.0)
|
|
self.assertFalse(mx.isnan(out).any().item())
|
|
self.assertLessEqual(mx.abs(out - expected).max().item(), 1e-4)
|
|
|
|
# And an additive one
|
|
mask = mx.log(mask)
|
|
|
|
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
|
|
expected = mlx_ref_attn(q, k, v, mask=mask, scale=1.0)
|
|
self.assertFalse(mx.isnan(out).any().item())
|
|
self.assertLessEqual(mx.abs(out - expected).max().item(), 1e-4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner(failfast=True)
|