mlx/python/tests/test_init.py

140 lines
5.3 KiB
Python

# Copyright © 2023 Apple Inc.
import unittest
import mlx.core as mx
import mlx.nn.init as init
import mlx_tests
import numpy as np
class TestInit(mlx_tests.MLXTestCase):
def test_constant(self):
value = 5.0
for dtype in [mx.float32, mx.float16]:
initializer = init.constant(value, dtype)
for shape in [(3,), (3, 3), (3, 3, 3)]:
result = initializer(mx.array(mx.zeros(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_normal(self):
mean = 0.0
std = 1.0
for dtype in [mx.float32, mx.float16]:
initializer = init.normal(mean, std, dtype=dtype)
for shape in [(3,), (3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_uniform(self):
low = -1.0
high = 1.0
for dtype in [mx.float32, mx.float16]:
initializer = init.uniform(low, high, dtype)
for shape in [(3,), (3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
self.assertTrue(mx.all(result >= low) and mx.all(result <= high))
def test_identity(self):
for dtype in [mx.float32, mx.float16]:
initializer = init.identity(dtype)
for shape in [(3,), (3, 3), (3, 3, 3)]:
result = initializer(mx.zeros((3, 3)))
self.assertTrue(mx.array_equal(result, mx.eye(3)))
self.assertEqual(result.dtype, dtype)
with self.assertRaises(ValueError):
result = initializer(mx.zeros((3, 2)))
def test_glorot_normal(self):
for dtype in [mx.float32, mx.float16]:
initializer = init.glorot_normal(dtype)
for shape in [(3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_glorot_uniform(self):
for dtype in [mx.float32, mx.float16]:
initializer = init.glorot_uniform(dtype)
for shape in [(3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_he_normal(self):
for dtype in [mx.float32, mx.float16]:
initializer = init.he_normal(dtype)
for shape in [(3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_he_uniform(self):
for dtype in [mx.float32, mx.float16]:
initializer = init.he_uniform(dtype)
for shape in [(3, 3), (3, 3, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
def test_sparse(self):
mean = 0.0
std = 1.0
sparsity = 0.5
for dtype in [mx.float32, mx.float16]:
initializer = init.sparse(sparsity, mean, std, dtype=dtype)
for shape in [(3, 2), (2, 2), (4, 3)]:
result = initializer(mx.array(np.empty(shape)))
with self.subTest(shape=shape):
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
self.assertEqual(
(mx.sum(result == 0) >= 0.5 * shape[0] * shape[1]), True
)
with self.assertRaises(ValueError):
result = initializer(mx.zeros((1,)))
def test_orthogonal(self):
initializer = init.orthogonal(gain=1.0, dtype=mx.float32)
# Test with a square matrix
shape = (4, 4)
result = initializer(mx.zeros(shape, dtype=mx.float32))
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, mx.float32)
I = result @ result.T
eye = mx.eye(shape[0], dtype=mx.float32)
self.assertTrue(
mx.allclose(I, eye, atol=1e-5), "Orthogonal init failed on a square matrix."
)
# Test with a rectangular matrix: more rows than cols
shape = (6, 4)
result = initializer(mx.zeros(shape, dtype=mx.float32))
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, mx.float32)
I = result.T @ result
eye = mx.eye(shape[1], dtype=mx.float32)
self.assertTrue(
mx.allclose(I, eye, atol=1e-5),
"Orthogonal init failed on a rectangular matrix.",
)
if __name__ == "__main__":
mlx_tests.MLXTestRunner()