mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
404 lines
16 KiB
Python
404 lines
16 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
class TestLoad(mlx_tests.MLXTestCase):
|
|
dtypes = [
|
|
"uint8",
|
|
"uint16",
|
|
"uint32",
|
|
"uint64",
|
|
"int8",
|
|
"int16",
|
|
"int32",
|
|
"int64",
|
|
"float32",
|
|
"float16",
|
|
"complex64",
|
|
]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.test_dir_fid = tempfile.TemporaryDirectory()
|
|
cls.test_dir = cls.test_dir_fid.name
|
|
if not os.path.isdir(cls.test_dir):
|
|
os.mkdir(cls.test_dir)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
cls.test_dir_fid.cleanup()
|
|
|
|
def test_save_and_load(self):
|
|
for dt in self.dtypes:
|
|
with self.subTest(dtype=dt):
|
|
for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
|
|
with self.subTest(shape=shape):
|
|
save_file_mlx = os.path.join(self.test_dir, f"mlx_{dt}_{i}.npy")
|
|
save_file_npy = os.path.join(self.test_dir, f"npy_{dt}_{i}.npy")
|
|
|
|
save_arr = np.random.uniform(0.0, 32.0, size=shape)
|
|
save_arr_npy = save_arr.astype(getattr(np, dt))
|
|
save_arr_mlx = mx.array(save_arr_npy)
|
|
|
|
mx.save(save_file_mlx, save_arr_mlx)
|
|
np.save(save_file_npy, save_arr_npy)
|
|
|
|
# Load array saved by mlx as mlx array
|
|
load_arr_mlx_mlx = mx.load(save_file_mlx)
|
|
self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx))
|
|
|
|
# Load array saved by numpy as mlx array
|
|
load_arr_npy_mlx = mx.load(save_file_npy)
|
|
self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx))
|
|
|
|
# Load array saved by mlx as numpy array
|
|
load_arr_mlx_npy = np.load(save_file_mlx)
|
|
self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy))
|
|
|
|
def test_save_and_load_safetensors(self):
|
|
test_file = os.path.join(self.test_dir, "test.safetensors")
|
|
with self.assertRaises(Exception):
|
|
mx.save_safetensors(test_file, {"a": mx.ones((4, 4))}, {"testing": 0})
|
|
|
|
mx.save_safetensors(
|
|
test_file, {"test": mx.ones((2, 2))}, {"testing": "test", "format": "mlx"}
|
|
)
|
|
res = mx.load(test_file, return_metadata=True)
|
|
self.assertEqual(len(res), 2)
|
|
self.assertEqual(res[1], {"testing": "test", "format": "mlx"})
|
|
|
|
for dt in self.dtypes + ["bfloat16"]:
|
|
with self.subTest(dtype=dt):
|
|
for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
|
|
with self.subTest(shape=shape):
|
|
save_file_mlx = os.path.join(
|
|
self.test_dir, f"mlx_{dt}_{i}_fs.safetensors"
|
|
)
|
|
save_dict = {
|
|
"test": (
|
|
mx.random.normal(shape=shape, dtype=getattr(mx, dt))
|
|
if dt in ["float32", "float16", "bfloat16"]
|
|
else mx.ones(shape, dtype=getattr(mx, dt))
|
|
)
|
|
}
|
|
|
|
with open(save_file_mlx, "wb") as f:
|
|
mx.save_safetensors(f, save_dict)
|
|
with open(save_file_mlx, "rb") as f:
|
|
load_dict = mx.load(f)
|
|
|
|
self.assertTrue("test" in load_dict)
|
|
self.assertTrue(
|
|
mx.array_equal(load_dict["test"], save_dict["test"])
|
|
)
|
|
|
|
def test_save_and_load_gguf(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
# TODO: Add support for other dtypes (self.dtypes + ["bfloat16"])
|
|
supported_dtypes = ["float16", "float32", "int8", "int16", "int32"]
|
|
for dt in supported_dtypes:
|
|
with self.subTest(dtype=dt):
|
|
for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
|
|
with self.subTest(shape=shape):
|
|
save_file_mlx = os.path.join(
|
|
self.test_dir, f"mlx_{dt}_{i}_fs.gguf"
|
|
)
|
|
save_dict = {
|
|
"test": (
|
|
mx.random.normal(shape=shape, dtype=getattr(mx, dt))
|
|
if dt in ["float32", "float16", "bfloat16"]
|
|
else mx.ones(shape, dtype=getattr(mx, dt))
|
|
)
|
|
}
|
|
|
|
mx.save_gguf(save_file_mlx, save_dict)
|
|
load_dict = mx.load(save_file_mlx)
|
|
|
|
self.assertTrue("test" in load_dict)
|
|
self.assertTrue(
|
|
mx.array_equal(load_dict["test"], save_dict["test"])
|
|
)
|
|
|
|
def test_load_f8_e4m3(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
expected = [
|
|
0,
|
|
mx.nan,
|
|
mx.nan,
|
|
-0.875,
|
|
0.4375,
|
|
-0.005859,
|
|
-1.25,
|
|
-1.25,
|
|
-1.5,
|
|
-0.0039,
|
|
]
|
|
expected = mx.array(expected, dtype=mx.bfloat16)
|
|
contents = b'H\x00\x00\x00\x00\x00\x00\x00{"tensor":{"dtype":"F8_E4M3","shape":[10],"data_offsets":[0,10]}} \x00\x7f\xff\xb6.\x83\xba\xba\xbc\x82'
|
|
with tempfile.NamedTemporaryFile(suffix=".safetensors") as f:
|
|
f.write(contents)
|
|
f.seek(0)
|
|
out = mx.load(f)["tensor"]
|
|
self.assertTrue(mx.allclose(out[0], expected[0], equal_nan=True))
|
|
|
|
def test_save_and_load_gguf_metadata_basic(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
|
|
save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
|
|
metadata = {}
|
|
|
|
# Empty works
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
|
|
# Loads without the metadata
|
|
load_dict = mx.load(save_file_mlx)
|
|
self.assertTrue("test" in load_dict)
|
|
self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
|
|
|
|
# Loads empty metadata
|
|
load_dict, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertTrue("test" in load_dict)
|
|
self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
|
|
self.assertEqual(len(meta_load_dict), 0)
|
|
|
|
# Loads string metadata
|
|
metadata = {"meta": "data"}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
load_dict, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertTrue("test" in load_dict)
|
|
self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
|
|
self.assertEqual(len(meta_load_dict), 1)
|
|
self.assertTrue("meta" in meta_load_dict)
|
|
self.assertEqual(meta_load_dict["meta"], "data")
|
|
|
|
def test_save_and_load_gguf_metadata_arrays(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
|
|
save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
|
|
|
|
# Test scalars and one dimensional arrays
|
|
for t in [
|
|
mx.uint8,
|
|
mx.int8,
|
|
mx.uint16,
|
|
mx.int16,
|
|
mx.uint32,
|
|
mx.int32,
|
|
mx.uint64,
|
|
mx.int64,
|
|
mx.float32,
|
|
]:
|
|
for shape in [(), (2,)]:
|
|
arr = mx.random.uniform(shape=shape).astype(t)
|
|
metadata = {"meta": arr}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
_, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertEqual(len(meta_load_dict), 1)
|
|
self.assertTrue("meta" in meta_load_dict)
|
|
self.assertTrue(mx.array_equal(meta_load_dict["meta"], arr))
|
|
self.assertEqual(meta_load_dict["meta"].dtype, arr.dtype)
|
|
|
|
for t in [mx.float16, mx.bfloat16, mx.complex64]:
|
|
with self.assertRaises(ValueError):
|
|
arr = mx.array(1, t)
|
|
metadata = {"meta": arr}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
|
|
def test_save_and_load_gguf_metadata_mixed(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
|
|
save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
|
|
|
|
# Test string and array
|
|
arr = mx.array(1.5)
|
|
metadata = {"meta1": arr, "meta2": "data"}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
_, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertEqual(len(meta_load_dict), 2)
|
|
self.assertTrue("meta1" in meta_load_dict)
|
|
self.assertTrue(mx.array_equal(meta_load_dict["meta1"], arr))
|
|
self.assertEqual(meta_load_dict["meta1"].dtype, arr.dtype)
|
|
self.assertTrue("meta2" in meta_load_dict)
|
|
self.assertEqual(meta_load_dict["meta2"], "data")
|
|
|
|
# Test list of strings
|
|
metadata = {"meta": ["data1", "data2", "data345"]}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
_, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertEqual(len(meta_load_dict), 1)
|
|
self.assertEqual(meta_load_dict["meta"], metadata["meta"])
|
|
|
|
# Test a combination of stuff
|
|
metadata = {
|
|
"meta1": ["data1", "data2", "data345"],
|
|
"meta2": mx.array([1, 2, 3, 4]),
|
|
"meta3": "data",
|
|
"meta4": mx.array(1.5),
|
|
}
|
|
mx.save_gguf(save_file_mlx, save_dict, metadata)
|
|
_, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
|
|
self.assertEqual(len(meta_load_dict), 4)
|
|
for k, v in metadata.items():
|
|
if isinstance(v, mx.array):
|
|
self.assertTrue(mx.array_equal(meta_load_dict[k], v))
|
|
else:
|
|
self.assertEqual(meta_load_dict[k], v)
|
|
|
|
def test_save_and_load_fs(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
for dt in self.dtypes:
|
|
with self.subTest(dtype=dt):
|
|
for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
|
|
with self.subTest(shape=shape):
|
|
save_file_mlx = os.path.join(
|
|
self.test_dir, f"mlx_{dt}_{i}_fs.npy"
|
|
)
|
|
save_file_npy = os.path.join(
|
|
self.test_dir, f"npy_{dt}_{i}_fs.npy"
|
|
)
|
|
|
|
save_arr = np.random.uniform(0.0, 32.0, size=shape)
|
|
save_arr_npy = save_arr.astype(getattr(np, dt))
|
|
save_arr_mlx = mx.array(save_arr_npy)
|
|
|
|
with open(save_file_mlx, "wb") as f:
|
|
mx.save(f, save_arr_mlx)
|
|
|
|
np.save(save_file_npy, save_arr_npy)
|
|
|
|
# Load array saved by mlx as mlx array
|
|
with open(save_file_mlx, "rb") as f:
|
|
load_arr_mlx_mlx = mx.load(f)
|
|
self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx))
|
|
|
|
# Load array saved by numpy as mlx array
|
|
with open(save_file_npy, "rb") as f:
|
|
load_arr_npy_mlx = mx.load(f)
|
|
self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx))
|
|
|
|
# Load array saved by mlx as numpy array
|
|
load_arr_mlx_npy = np.load(save_file_mlx)
|
|
self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy))
|
|
|
|
def test_savez_and_loadz(self):
|
|
if not os.path.isdir(self.test_dir):
|
|
os.mkdir(self.test_dir)
|
|
|
|
for dt in self.dtypes:
|
|
with self.subTest(dtype=dt):
|
|
shapes = [(6,), (6, 6), (4, 1, 3, 1, 2)]
|
|
save_file_mlx_uncomp = os.path.join(
|
|
self.test_dir, f"mlx_{dt}_uncomp.npz"
|
|
)
|
|
save_file_npy_uncomp = os.path.join(
|
|
self.test_dir, f"npy_{dt}_uncomp.npz"
|
|
)
|
|
save_file_mlx_comp = os.path.join(self.test_dir, f"mlx_{dt}_comp.npz")
|
|
save_file_npy_comp = os.path.join(self.test_dir, f"npy_{dt}_comp.npz")
|
|
|
|
# Make dictionary of multiple
|
|
save_arrs_npy = {
|
|
f"save_arr_{i}": np.random.uniform(
|
|
0.0, 32.0, size=shapes[i]
|
|
).astype(getattr(np, dt))
|
|
for i in range(len(shapes))
|
|
}
|
|
save_arrs_mlx = {k: mx.array(v) for k, v in save_arrs_npy.items()}
|
|
|
|
# Save as npz files
|
|
np.savez(save_file_npy_uncomp, **save_arrs_npy)
|
|
mx.savez(save_file_mlx_uncomp, **save_arrs_mlx)
|
|
np.savez_compressed(save_file_npy_comp, **save_arrs_npy)
|
|
mx.savez_compressed(save_file_mlx_comp, **save_arrs_mlx)
|
|
|
|
for save_file_npy, save_file_mlx in (
|
|
(save_file_npy_uncomp, save_file_mlx_uncomp),
|
|
(save_file_npy_comp, save_file_mlx_comp),
|
|
):
|
|
# Load array saved by mlx as mlx array
|
|
load_arr_mlx_mlx = mx.load(save_file_mlx)
|
|
for k, v in load_arr_mlx_mlx.items():
|
|
self.assertTrue(mx.array_equal(save_arrs_mlx[k], v))
|
|
|
|
# Load arrays saved by numpy as mlx arrays
|
|
load_arr_npy_mlx = mx.load(save_file_npy)
|
|
for k, v in load_arr_npy_mlx.items():
|
|
self.assertTrue(mx.array_equal(save_arrs_mlx[k], v))
|
|
|
|
# Load array saved by mlx as numpy array
|
|
load_arr_mlx_npy = np.load(save_file_mlx)
|
|
for k, v in load_arr_mlx_npy.items():
|
|
self.assertTrue(np.array_equal(save_arrs_npy[k], v))
|
|
|
|
def test_non_contiguous(self):
|
|
a = mx.broadcast_to(mx.array([1, 2]), [4, 2])
|
|
|
|
save_file = os.path.join(self.test_dir, "a.npy")
|
|
mx.save(save_file, a)
|
|
aload = mx.load(save_file)
|
|
self.assertTrue(mx.array_equal(a, aload))
|
|
|
|
save_file = os.path.join(self.test_dir, "a.safetensors")
|
|
mx.save_safetensors(save_file, {"a": a})
|
|
aload = mx.load(save_file)["a"]
|
|
self.assertTrue(mx.array_equal(a, aload))
|
|
|
|
save_file = os.path.join(self.test_dir, "a.gguf")
|
|
mx.save_gguf(save_file, {"a": a})
|
|
aload = mx.load(save_file)["a"]
|
|
self.assertTrue(mx.array_equal(a, aload))
|
|
|
|
# safetensors and gguf only work with row contiguous
|
|
# make sure col contiguous is handled properly
|
|
save_file = os.path.join(self.test_dir, "a.safetensors")
|
|
a = mx.arange(4).reshape(2, 2).T
|
|
mx.save_safetensors(save_file, {"a": a})
|
|
aload = mx.load(save_file)["a"]
|
|
self.assertTrue(mx.array_equal(a, aload))
|
|
|
|
save_file = os.path.join(self.test_dir, "a.gguf")
|
|
mx.save_gguf(save_file, {"a": a})
|
|
aload = mx.load(save_file)["a"]
|
|
self.assertTrue(mx.array_equal(a, aload))
|
|
|
|
def test_load_donation(self):
|
|
x = mx.random.normal((1024,))
|
|
mx.eval(x)
|
|
save_file = os.path.join(self.test_dir, "donation.npy")
|
|
mx.save(save_file, x)
|
|
mx.synchronize()
|
|
|
|
mx.reset_peak_memory()
|
|
scale = mx.array(2.0)
|
|
y = mx.load(save_file)
|
|
mx.eval(y)
|
|
load_only = mx.get_peak_memory()
|
|
y = mx.load(save_file) * scale
|
|
mx.eval(y)
|
|
load_with_binary = mx.get_peak_memory()
|
|
|
|
self.assertEqual(load_only, load_with_binary)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner()
|